
Received: 11 March 2022 Revised: 2 December 2022 Accepted: 8 December 2022

DOI: 10.1002/spe.3182

S H O R T C O M M U N I C A T I O N

Implementing scripted conversations by means of
smart assistants

Moisés Pacheco-Lorenzo1 Manuel J. Fernández-Iglesias1

Sonia Valladares-Rodriguez2 Luis E. Anido-Rifón1

1atlanTTic, University of Vigo, Vigo, Spain
2Artificial Intelligence Department,
UNED, Madrid, Spain

Correspondence
Manuel J. Fernández-Iglesias, atlanTTic,
University of Vigo, Vigo, Spain.
Email: manolo@uvigo.gal

Funding information
Ministerio de Economía y
Competitividad, Grant/Award Number:
PID2020-115137RB-I00; Ministry of
Science, Innovation and Universities,
Grant/Award Number: FPU19/01981;
University of Vigo/CISUG, Grant/Award
Number: openaccesscharges

Abstract
Smart assistants are among the most popular technological devices at home.
With a built-in voice-based user interface, they provide access to a broad port-
folio of online services and information, and constitute the central element of
state-of-the-art home automation systems. This work discusses the challenges
addressed and the solutions adopted for the design and implementation of
scripted conversations by means of off-the-shelf smart assistants. Scripted con-
versations play a fundamental role in many application fields, such as call center
facilities, retail customer services, rapid prototyping, role-based training or the
management of neuropsychiatric disorders. To illustrate this proposal, an actual
implementation of the phone version of the Montreal cognitive assessment test
as an Amazon’s Alexa skill is described as a proof-of-concept.

K E Y W O R D S

cloud computing, conversational agent, human–computer interaction, Montreal cognitive
assessment test, scripted conversation, smart assistant

1 INTRODUCTION

Smart speakers1 are voice-activated speakers that interact with human users by responding to voice commands. These
devices interact with other elements in the digital home ecosystem and back-end services by means of Bluetooth, NFC,
Wi-Fi and other wireless protocols. A typical smart speaker is programmed to perform different tasks on behalf of the user,
such as accessing entertainment content and information sources, listing daily activities, providing assistance with home
chores, managing communications and interacting with smart home devices, among many others. This rich portfolio of
features promoted an increasing demand over other technological products and services at home.2

Smart speakers (cf. Table 1) are powered by an artificial intelligence-driven virtual assistant with speech recogni-
tion, natural language processing and speech synthesis capabilities. As such, virtual smart assistants in smart speakers
can emulate human conversations and therefore act as conversational agents. The artificial intelligence-enabled com-
puting capabilities of these agents are not hosted by the smart speakers themselves, but are provided by their vendors

Abbreviations: AI, artificial intelligence; AWS, Amazon Web Services; JSON, JavaScript Object Notation; MoCA, Montreal cognitive assessment;
NFC, near-field communication; NLP, natural language processing; PARADISE, PARAdigm for dialogue system evaluation; SaaS, Software as a
Service; T-MoCA, Montreal cognitive assessment, telephone version; TV, television.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

Softw: Pract Exper. 2022;1–13. wileyonlinelibrary.com/journal/spe 1

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4462-8724
https://orcid.org/0000-0003-1195-9949
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/SPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3182&domain=pdf&date_stamp=2022-12-20

2 PACHECO-LORENZO et al.

T A B L E 1 Most popular smart speakers and assistants

Vendor Devices Assistant User SW Dev. platform Dev. cloud

Amazon Echo Alexa Skill Alexa console Amazon Web Services

Apple Homepod Siri App Apple developers Google Cloud

Google Nest Google Actions Google developers Google Cloud

in a cloud-computing environment according to the Software as a Service model (SaaS3). In other words, when the user
interacts with a smart speaker using voice commands or phrases, the captured audio information is sent through the net-
work to the processing back-end, and in some cases an appropriate response is computed and sent back to the speaker
to be uttered by it. Besides smart speakers, virtual assistants can be hosted by most smart off-the-shelf devices, such as
computers, mobile phones, television sets, watches, or earphones.

As pointed out above, partnerships between manufacturers of smart appliances and those of smart speakers promoted
the integration of their smart assistants with last-generation TV sets, streaming devices, connected cars, smart watches
and many others. As a consequence, they became ubiquitous, and any piece of software developed for a smart assis-
tant became immediately available everywhere, to everybody, anytime. Due to the supporting SaaS model of commercial
off-the-shelf smart devices, the resources required to implement smart assistants are fairly modest.

The development of applications for smart devices is in most cases supported by their creators through cloud-based
developers’ platforms.4,5 Typically, registered developers are offered a collection of tools to design, implement, and deploy
their applications in a controlled environment. This approach dramatically simplifies and expedites application develop-
ment, but also limits the features and functionalities available to those supported by the provided tools and, in some cases,
in a very restricted way. For example, access is not granted to users’ raw speech signals, but just to the already processed
plain text resulting from the speech-to-text conversion process performed at the back-end. Moreover, recording sponta-
neous data in real-world situations requires protecting the privacy of those involved, which in turn involves ethical and
legal considerations.6

No matter their limitations, off-the-shelf smart assistants are still well-suited to implement conversation-based inter-
actions, and more specifically scripted conversations or dialogs. In their most simple form, scripting chatbots are provided
with the responses to a collection of keywords, which in turn are extracted from text-converted users’ utterances.7 When-
ever the assistant detects a keyword, the corresponding response is articulated, and the assistant waits for a new user’s
utterance according to the script. More advanced versions rely on conversational artificial intelligence techniques8 to
identify a wide collection of user requests without being explicitly trained on every possible variation.

Scripted conversations play a fundamental role in many application fields, such as call center facilities,9 retail customer
services,10 rapid prototyping,11 role-based training,12 autism management,13 or the management of other neuropsychi-
atric disorders.14 As a general approach in these applications, a conversation tree is generated beforehand collecting all
possible conversation sequences, which in turn are composed of a succession of cues detected from users’ utterances and
their responses from the assistant. Then, the user or the assistant triggers a conversation, which will proceed according
to the script until an endpoint is reached. Note that conversation scripts may include cycles to handle errors, missing or
unidentified keywords, or as a consequence of the specific characteristics of the application field (e.g., to handle a new
user request for service once the previous one is completed).

Despite being conceptually simple, implementing scripted conversations by means of off-the-shelf smart assistants
poses relevant challenges. As pointed out above, developers do not have access to raw speech signals, but to the text
obtained after being processed by speech-to-text algorithms. This information, together with additional time indications
(e.g., timeouts when no response is detected, time delays, etc.) is the only information available from speech interac-
tions. This limitation becomes especially challenging when relevant information is encoded in non-textual data, such as
non-textual responses (e.g., noises, onomatopoeias, etc.), prosodic features or simply when measuring reaction time is
required.

The aim of this work is to discuss the challenges addressed and the solutions adopted for the design and implemen-
tation of scripted conversations using smart assistants. This work is illustrated with the development of a conversational
agent aimed to assess the cognitive status of an individual by means of the telephone version of the Montreal cognitive
assessment test (T-MoCA). This assessment test15 generates a total score with a maximum of 22 points, eliminating the
items from the original test requiring visual stimuli or the use of paper and pencil. It was successfully administered via

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

PACHECO-LORENZO et al. 3

landline telephones and cellphones, without requiring more advanced technological equipment or proficiency, such as
videoconferencing. The original MoCA test has a discrimination power similar to the Mini-Mental State Examination
test,16 presently the reference test to detect cognitive impairment. Therefore, T-MoCA is a promising approach to design
a screening solution to detect mild cognitive impairment based on smart conversational agents.

Although the solutions adopted in this particular case are applicable to any major smart assistant platform, Amazon’s
Alexa smart assistant solution was selected as our development environment for this proof-of-concept implementation,
because of its popularity and the availability of developers’ tools and support. The next section introduces the basic details
of the development of a conversational agent. First, the standard development workflow is described together with the
common characteristics of smart assistant’s back-end applications. Then, the most relevant aspects of the implementa-
tion of a scripted conversation are discussed in Section 3, and a standard evaluation of the implementation’s performance
is presented in Section 4. The solutions adopted to address the challenges encountered are discussed in Section 5 and
finally, Section 6 summarizes the scripted conversation model introduced in this article and offers some concluding
remarks.

2 MATERIALS AND METHODS: BASICS OF A CONVERSATIONAL AGENT

The development of a smart assistant application to implement scripted conversations has some specific characteristics
that have to be considered along the different software development phases.

2.1 Conversational agent design guidelines

As pointed out above, tools available to create new applications are constrained to those offered by the original smart
assistant’s developers. Besides, applications have to meet some standards on availability, robustness and flexibility. As a
consequence, there are some guidelines that should be adopted from the very early design stages.

First, your design must be adaptable. For this, different sentences or cues have to be defined for each intent (cf. 3).
The possibility of repeating or correcting a previous interaction must also be considered to deal with incorrectly triggered
actions due to speech recognition errors or to handle silence-triggered timeouts.

Another design aspect that must be addressed is personalization. In case different user profiles are foreseen, specific
sentences should be identified for each profile. In the same way, interactions have to be designed taking into account
existing localization information or restrictions. Note that scripted conversations may be specific to a given profile or
locale, which has to be considered in your design.

Availability is another key aspect when designing a conversational agent. In other words, it should be guaranteed that
application invocation is simple and can be achieved by means of a short utterance. Besides, tasks should be kept simple
and specific, and lengthy interactions and unnecessary questions should be avoided.

Finally, note that a smart assistant’s conversation has to be perceived as being as close as possible to an interaction
with an actual person, that is, it has to be relatable. For that, conversations have to be scripted to sound clear, concise and
natural, for example by introducing some variety in vocal interactions.

2.2 Building a conversational agent

Applications for commercial-off-the-shelf smart assistants are implemented as cloud-based remote services. Therefore,
building a conversational agent implementing a specific voice interaction model requires an Internet-accessible endpoint
for hosting that cloud-based service.

As a general approach, conversational agents will be eventually deployed as web services or remote procedures,
depending on the vendor. Smart speakers would invoke a specific application triggered by a specific voice command
from a collection of equivalent voice commands. Off-the-shelf smart assistants react to particular voice keywords
(e.g., Hey Google in the case of Google Home or Alexa in the case of Amazon Alexa) followed by an applica-
tion invocation command. Only when triggered, data is sent to the cloud to be processed by the application’s logic
(cf. Figure 1).

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 PACHECO-LORENZO et al.

F I G U R E 1 Conversational agent’s deploy model for off-the-shelf smart assistants. The smart device/smart assistant deals exclusively
with voice signals. Application code interacts exclusively with natural language processing (NLP) cloud services by means of character strings.

As a simpler option, Google and Amazon provide Google Assistant or Alexa-hosted options to build, store and host
smart speaker applications and their resources in their respective cloud environments. This approach dramatically sim-
plifies application development, particularly in the case of simple or popular interaction models, which can be accessed
as pre-built modules in their respective development environments.

In general, these applications are event-driven and follow a synchronous invocation-response model. In other words,
smart assistant applications can be seen as a collection of event handlers, each of them processing a specific user’s
invocation, represented as a text string, to generate an appropriate response, also as a text string.

Smart speaker applications can be developed in a wide variety of software engineering environments and program-
ming languages. For example, interaction models may be implemented in Node.js, Java, Python, C# or Go in the case of
Alexa, and Node.js, Go, C++ or Java in the case of Google Assistant, among others.

Note that smart assistants and other conversational agent-enabled solutions just collect user’s voice utterances to
be submitted to cloud-based natural language processing (NLP) services and play back voice signals generated by such
services. NLP services are basically artificial intelligence (AI) models that are continuously learning to improve their
efficacy. Application code receives just the plain text generated by speech recognition modules in the NLP service and
has no access to the original audio signal. In the same way, application code may generate text streams as a response to
events, which in turn would be converted to speech signals by the voice synthesis modules in the NLP service.

3 RESULTS: STEP-BY-STEP IMPLEMENTATION OF A SCRIPTED
CONVERSATION

The next paragraphs describe the most relevant details and the challenges addressed related to the implementation of
scripted conversations. This discussion is illustrated with an actual case study, namely the implementation of T-MoCA as
an Alexa skill, that is, as an application to be invoked by means of an Amazon smart speaker or any device implementing
the Alexa smart assistant interface. Thus, the main requirement that the devised implementation has to satisfy is that it
must keep the T-MoCA’s discrimination capabilities. In other words, the scripted conversation implemented should be
indistinguishable from the original telephone test insofar its ability to detect mild detect cognitive impairment is con-
cerned. As pointed out above, the Alexa ecosystem was selected because of its popularity, its availability in a broad range
of home appliances and computing equipment beyond Amazon devices, and the comprehensive collection of software
development, testing and deployment resources provided by Amazon.

First, the skill’s invocation name has to be defined. This is the word or phrase that the user needs to utter in order for
Alexa to launch the skill implementing T-MoCA. It must be defined as a string of lowercase characters and it cannot con-
tain any of the Alexa Skill’s standard launch phrases (e.g., launch, open, load, begin, etc.), any of the predefined wake-up
words (such as Alexa, Amazon, etc.) or prepositions. In our case, the selected invocation name was digimoca. Thus, an
example invocation would be:

“Alexa, open digimoca”

The next step consists of the identification of all relevant intents and their mapping to spoken utterances. An intent
represents a behavior that fulfills a user’s voiced request. Behaviors may include, for example, interacting with other
software modules, updating local or remote data elements or synthesizing a voiced response. Thus, in this phase, a set of

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

PACHECO-LORENZO et al. 5

F I G U R E 2 Interactive workflow of the DigiMoca Alexa skill.

sample utterances are specified that are mapped to specific intents. As depicted in Figure 2, every time the user produces
one of the defined utterances, the spoken words are resolved to a specific intent, which in turn is implemented and handled
by the Alexa cloud service.

Besides the intents specific to an application, all Alexa skills are equipped with four basic intents, namely Cancel,
Help, Stop, and NavigateHome. The first three provide usage directions and support for quitting a skill, while Nav-
igateHome is only used when developing complex skills that involve multiple steps. Developers may also add built-in
(i.e., predefined) as well as custom intents.

To determine which intents are necessary to implement a scripted conversation, all the elements that serve as
cues to trigger user responses have to be identified. In our particular case, all items in T-MoCA had to be mapped
to the corresponding scripted conversation elements. For each question or sentence in the scripted conversation that
the conversational agent will produce, all the likely responses from the user should be identified. These will corre-
spond to the sample utterances discussed above to be handled by the back-end cloud service. For example, for each
item in T-MoCA, all possible responses from the subject being tested for cognitive impairment should be identified in
advance.

Once all utterances are identified, they are classified according to their meaning. Then, an intent is defined for each
group of equivalent utterances from the application’s perspective, T-MoCA in our case. For this, built-in intents may
be exploited (e.g., Yes, No, Repeat, Next, etc.) and custom ones will be created from scratch when required. When
implementing scripted conversations, the FallBackIntent built-in intent is especially relevant as it will address any
unmapped utterances, that is, those occasions when the smart assistant will not understand the user.

Intents may include optional arguments, known as slots, to store additional information such as variable data.
Slots are typed, that is, they may take a value from a finite set of values. In the same way as intents, both built-in
and custom types may be used. Intents are collected in a JavaScript Object Notation (JSON) open data interchange
format file.

Once intents are defined, the actual implementation of the skill is addressed. In a nutshell, a skill is an event-driven
piece of code that handles each of the intents in the application. The Alexa Skills Kit, a software development framework
that supports the implementation of skills in Node.js, Java, and Python, is used to construct Alexa skills. In this discussion,
Python was selected as the programming language.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 PACHECO-LORENZO et al.

F I G U R E 3 Excerpt of the lambda_function.py collecting the intent handlers’ logic.

The skill code will be hosted by the Amazon cloud and run by the AWS Lambda service, Amazon’s serverless cloud
computing service. The concept of serverless computing17 refers to a cloud computing model that does not require main-
taining specific servers to run a service (i.e., the DigiMoca skill in our example). AWS Lambda is a fully managed service
that takes care of all the infrastructure needs.

Essentially, skill implementation proceeds in three steps:

1. Create a lambda_function.py file to collect all the handlers eventually run by the AWS Lambda service for each
intent. This code has always the same structure (cf. Figure 3).

2. As pointed out above, skills are event-driven applications. In a nutshell, skills implement mandatory can_handle()
and handle() methods. These methods receive as input data a JSON-encoded Python dictionary containing all the
information from the user’s request, as depicted in Figure 4. The can_handle()method is initially invoked for each
handler defined, until one of them returns True. The test_state attribute, which is stored as a session attribute,
provides the state information elements item and step determining the exact point inside a scripted conversation
and therefore whether such handler is the appropriate one at this time. As for the handle() method, its purpose is
to actually handle the user response, which is also stored in the input object along with the slots (i.e., relevant data
elements) inside it. Finally, conversation advances to the next stage by invoking NextIntentHandler’s, handle()
method to update the item and step values and send back a new cue (i.e., the next line in the scripted conversation)
to the user. Figure 5 illustrates the user state elements in the case of T-MoCA.

3. Create a CustomSkillBuilder object to collect all the created intent and exception handler classes. Then, the skill
will run as a lambda_handler object created by invoking the homonym method in the CustomSkillBuilder
object.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

PACHECO-LORENZO et al. 7

F I G U R E 4 Excerpt of handlers’ code for the Mes (month) intent. In this example, the user responds with today’s month when asked.
The user’s response is appended to the state object, which contains all the responses to the test so far (cf. Figure 5).

4 EVALUATION

In order to evaluate the performance of the DigiMoca implementation, the PARADISE (PARAdigm for DIalogue Sys-
tem Evaluation) framework18 was utilized. PARADISE establishes two performance metrics, namely dialog cost, which
should be minimized, and task completion or success, which should be maximized. The main contributions to dialog
cost are the amount of dialog actions, particularly the number of turns required to complete it, and the time that the user
takes to complete a conversation. In our specific case, however, dialog cost evaluation would not be applicable, since Digi-
MoCA was designed to perform cognitive assessment by means of a conversation or dialog that is intentionally conceived
as a cognitive demanding task. Therefore the resulting measure would be more related to the user’s level of cognitive
impairment than anything else.

Task completion, on the other hand, measures how well the speaker is able to understand the user and it is extremely
important for this application, since misunderstandings may lead to a contamination of the overall cognitive test
result. Thus, according to the PARADISE framework, we used the Kappa coefficient in order to measure task comple-
tion.19,20 The Kappa coefficient 𝜅 is computed from a confusion matrix, which shows the number of understandings and
misunderstandings between user and speaker, for each possible scenario.

Table 2 depicts the DigiMoca’s confusion matrix, created from 42 sessions with 21 different participants who com-
pleted the DigiMoCA test. Each row represents the expressed intent from the user (regardless of the particular utterance)
and each column represents the detected intent by DigiMoCA. The first 7 intents (namely, “Cancel,” “Stop,” “Fallback,”
“Repeat,” “Yes,” “No,” and “Next”) are default built-in intents, which nevertheless are applicable to our purpose as they
are relevant in the original T-MoCa test. Intents 8 to 18 (i.e., from the “Remember” intent onward) are DigiMoca-specific
intents. The values on the main diagonal (bold values) represent the occasions when the skill understood the correct
intent from the user, whereas numbers outside the main diagonal represent misunderstandings or mismatches between
the user intent and the intent triggered by the speaker. We should stress the importance of the “Fallback” intent, which
represents anything that the user says that does not match any of the other intents (e.g., a nonsensical sentence). As we
can see, the most common types of misunderstanding occur when (1) the user says something that does not correspond
to any intent (but the skill thinks otherwise) or (2) the user correctly utters an intent (e.g., says a number) but the “Fall-
back” intent is triggered instead. Type (1) misunderstandings fall correspond to the values on the third row, whereas type
(2) misunderstandings appear on the third column.

Given the confusion matrix in Table 2, the Kappa coefficient measures the success of DigiMoCA at obtaining the
information necessary to complete the whole cognitive task. It is computed as follows:

𝜅 = P(A) − P(E)
1 − P(E)

,

where P(A) is the percentage of times that the speaker understood the user correctly (i.e., triggered intents match expressed
intents), and P(E) is the percentage of times that the speaker is expected to match the proper intent by chance. Values
of 𝜅 greater than 0.75 may be taken to represent excellent agreement beyond chance, values below 0.40 may be taken

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 PACHECO-LORENZO et al.

F I G U R E 5 State variables in the case of T-MoCA. The state object collects all the information relevant to score the test, to sequence its
elements and to provide inter-session persistence.

to represent poor agreement beyond chance, and values between 0.40 and 0.75 may be taken to represent fair to good
agreement beyond chance.21 The fact that 𝜅 takes into account the complexity of the task by introducing the agreement
beyond chance makes it a suitable metric for task completion.18 In this case, the expected chance of agreement P(E) is
unknown, but can be estimated using the following formula:

P(E) =
n∑

i=1

(ti

T

)2
,

where ti is the sum of elements in column i of M, and T is the sum of all the elements in M (T =
∑n

i=1ti). On the other
hand, P(A) can be directly computed as follows:

P(A) =
∑n

i=1Mi,i

T
,

where Mi,i is the ith element on the main diagonal.
Thus, DigiMoCA’s task success values obtained according to the PARADISE framework are P(E) = 0.1676, P(A) =

0.9176, which corresponds to a Kappa coefficient 𝜅 of 0.9010. Therefore, DigiMoca understands the user correctly 91.76%
of times with an excellent agreement beyond chance. According to the nomenclature proposed by Landis and Koch22 for
the description of strength of agreement based on Kappa statistics, we can label DigiMoCA as “Almost Perfect” in terms

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

PACHECO-LORENZO et al. 9

T A B L E 2 Confusion matrix: Expressed intent versus triggered intent.

Intent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Cancel 5

Stop 18

Fallback 272 3 4 25

Repeat 3

Yes 52 795

No 45 854

Next 7 63

Remember 33 307

Numbers 20 158 7

FirstSent 36

SecondSent 34

Transport 2 40

Measure 5 37

Week 3 39

Month 2 40

Place 5 35

DigitList 76

WordList 27 163

of task completion. This is a very positive result, but also a expected one considering that DigiMoCA’s implementation
relies on Alexa’s speech recognition services.

5 DISCUSSION ON THE MAIN ISSUES AND CHALLENGES ADDRESSED

In the following paragraphs we discuss the issues identified when implementing a scripted conversation according
to the model in Section 3. In general, these issues are not specific to our proof-of-concept T-MoCA implementa-
tion, but can be extrapolated to other scripted conversation-based situations. Table 3 summarizes the challenges
addressed.

As pointed out above, the dialog between user and smart assistant is triggered by a user’s utterance, which the agent’s
artificial intelligence NLP model maps to an intent. Then, the intent generates a response that is voiced by the smart
device, which in turn triggers a utterance from the user that triggers a new intent. This process is iterated until the
conversation is abandoned (e.g., by invoking one of the Cancel/Exit intents) or completed.

T A B L E 3 Conversation-related challenges addressed.

Challenge Solution

Keeping track of user responses Persistent user state information management (cf. Figure 5)

Dealing with limited attention span Measure response time to timed cues

Lack of detailed timing information Statistical estimation of roundtrip times

Speech rate adaptation Prosodic annotations

Users’ verbal fluency Frequency analysis-based word lists

Orientation, location awareness Location services, system’s datetime services

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 PACHECO-LORENZO et al.

Keeping track of user’s responses and user’s state is a key element when implementing a scripted conversation in
general, and T-MoCA in particular. In our case, in order to compute the final score of the test, we need to save the responses
to each test item. From a more general perspective, the sequence of user responses serves as an annotated log of the
complete conversation, which may be utilized for quality assessment, as evidence in performance evaluation processes,
as a profiling mechanism, to route a request for service and so forth. This can be done both intra-session and spanning
different sessions, utilizing session and persistent attributes respectively. For this, a state object is created as discussed
above to encapsulate all attributes containing the information about user responses. Then, an attributes_manager
object is used to manage its values (cf. Figure 4).

Typically, a session ends when the smart assistant does not provide a cue to the user (i.e., when the underlying
scripted conversation reaches one of the defined final sentences) or when the user fails to provide a response to the
smart assistant in time (i.e., before a predefined timeout, which may be specific to each cue, is triggered). In the latter
case, persistence is required to recover an ongoing conversation (i.e., a testing session in our particular case) that was
abruptly terminated. Amazon skills rely on DynamoDB23 for persistent storage. In our context, this is utilized to store
the state object in the form of a JSON-like dictionary. When a session expires, attributes are stored in the persistent
layer. Accordingly, every time a new conversation starts, the previous session’s attributes are retrieved from the persis-
tence layer. If no persistent attributes exist (e.g., when a scripted conversation is initiated anew), new default values are
created.

Attention span is a relevant indicator of cognitive issues and measuring attention is another central element of cogni-
tive tests. From a wider perspective, attention span is also relevant in the case of long and tiring conversations or distracted
or unmotivated users. For example, one of the T-MoCA items requires the user to tap their hand on the table at specific
moments, which in turn is used to estimate their ability to focus attention. However, this is not possible when interacting
with a smart assistant, as any sound other than speech is not transcribed and therefore not available to the cloud AI model.
After consulting with a psychologist, we implemented a workaround that serves the same purpose. Instead of tapping
on the table, the user has to immediately respond “yes” or “no” to a specific voiced clue uttered by the smart assistant.
This is reflected in the script as prosodic annotations. In general, attention-gathering cues can be defined to be uttered
at specific times along the scripted conversation. Then, lack of response or response time are considered to estimate
attention span.

Incidentally, another limitation from off-the-shelf voice assistants with a direct impact in software development is
the lack of detailed timing information. For example, access to the actual reaction times is not provided. In order to
adequately estimate reaction time (e.g., when estimating attention span), the overall roundtrip time (e.g., time between
the smart agent sending an utterance and a response being received from the cloud AI model) has to be estimated. For
this, the average value of minimum round trip times for all response time-monitored interactions is subtracted to obtain
an estimation of users’ reaction time. In our case, scores are computed taking as a reference the established T-MoCA
threshold for table-tapping reactions, namely one second.

An additional common issue when modeling scripted conversation is the decrease in speech comprehension with
increasing speech rates. This is especially relevant in the case of users with limited fluency in the assistant’s language or
in the case of senior users. In our specific case, typical users are senior adults being tested to confirm or discard cognitive
impairment. A most relevant trait of this user profile is the decline of speech comprehension with increasing speech rates,
as a consequence of a slowing of brain function with age.24 As a consequence, speech adaptation is required to avoid this
confounding factor, as poorer performance may be a consequence of auditory decline rather than cognitive impairment.
To address speech rate adaptation, prosodic annotations are introduced in order to adapt the conversational agent’s speech
cadence. In our case, speech rates are adapted to that typical of an elderly person (cf. Figure 6).

Interacting users’ verbal fluency is another relevant aspect to consider when implementing scripted conversations.
As the smart assistant is triggered by specific verbal cues (i.e., the ones mapped to intents), its selection is instrumental
to guarantee one of the basic design guidelines of a conversational agent in Section 2.1, namely being perceived as close
as possible to an interaction with an actual person. In our case, fluency is a most relevant trait addressed by T-MoCA
as it is an indicator of cognitive decline. This requires the subject saying words of a certain type and starting with a spe-
cific letter. In order to check if the word uttered by the user is a valid one in DigiMoca, a list of valid words including
the most common words in the user’s mother tongue is generated (approx. 2000 words, no proper nouns, numbers or
verb inflections). There are essentially two ways to achieve this, namely by assigning the user’s utterance to the Query-
Text property and checking it against the word list or using a new slot type with the list of valid words as possible
values.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

PACHECO-LORENZO et al. 11

F I G U R E 6 Example of prosodic annotations. In this case, the smart assistant is requested to utter these sentences slowly. In line 3, a
1-second timeout is defined to confirm user’s awareness about the task to be carried out.

Finally, the place and time when a scripted conversation is taking place was also addressed. For this, the smart assis-
tant’s location details, together with date, month, year and day of the week values can be fetched from existing location
services. To obtain time information, standard system services can be queried through standard libraries (e.g., Python’s
datetime.now()) while the assistant’s location can be obtained by means of its own location services (e.g., Location
Services for Alexa Skills). In the case of T-MoCA, orientation is another relevant trait to assess cognitive decline, that is,
individuals under evaluation being aware of their actual location and time of the day. To assess orientation in DigiMoka,
the smart assistant’s time and location details are obtained as indicated when the user is queried for the time of the day
and location. Then, results are compared to generate the corresponding score. Besides, this information is stored in the
user’s state object (cf. Figure 5).

6 CONCLUSION

This article discusses the implementation of intelligent conversational agents utilizing off-the-shelf smart assistants. This
approach is illustrated with the implementation of a standardized conversation-based test for the detection of cognitive
disorders, which are typically diagnosed using pen-and-paper tests.

From a software engineering standpoint, smart assistants are basically speech-based interfaces to event-driven soft-
ware applications. Cloud based NLP services convert users’ speech interactions into text and back. At the back-end,
event-based software applications react to specific cues or triggering sentences by performing business logic-defined
activities, such as playing music, updating a calendar, launching other applications, or doing some task on behalf ft the
user.

In some cases, the reaction to triggering sentences may include the synthesis of a voiced response to be played back
to the user. In turn, this sentence may inspire a voiced response from the user, which may serve to trigger a new event at
the back-end application. This process may be iterated to model a scripted conversation or dialog.

The event handling logic at the back-end may be as simple as registering the (text version of) user’s voiced intervention,
but it may also involve complex decision-making to guide the scripted conversation to evolve in different ways. Using
back-end storage, information about previous interactions may be utilized to drive the conversation along different paths
and also to provide persistence to allow interrupted conversations to be resumed.

On the other hand, from a neuropsychological point of view, this work lays the foundations for digitizing and adapting
to a conversational agent classical pencil and paper tests affected by confounding variables. In particular, challenges such
as keeping track of user responses; speech rate adaptation to asses attentional span by prosodic annotations, or users’

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 PACHECO-LORENZO et al.

verbal fluency, among others, were addressed. Thus, this adaptation represents a promising step in the development of
easy-to-use and easy-to-administer smart digital solutions for the elderly.

Besides cognitive assessment, the use of questionnaires as an evaluation, screening or diagnosis tool is common prac-
tice in other fields like neuropsychiatry, social sciences, or psychology. As a consequence, a successful approach to the
introduction of conversational agents in these fields may suppose a relevant advance in a broad range of scenarios. As
demonstrated in this article, the state of the art is mature enough to support the development of complex conversational
agents at a reasonable cost.

ACKNOWLEDGMENTS
This research was funded by the Spanish Ministry of Economy, Industry and Competitiveness Grant
PID2020-115137RB-I00: Servicios y Aplicaciones para un Envejecimiento Saludable (SAPIENS), and by the Ministry of
Science, Innovation and Universities under the Grant reference FPU19/01981 (Formación de Profesorado Universitario).
University of Vigo/CISUG: openaccesscharges.

AUTHOR CONTRIBUTIONS
Moisés Pacheco-Lorenzo: Conceptualization; methodology; investigation; original draft preparation. Manuel J.
Fernández-Iglesias: original draft preparation; review and editing. Sonia Valladares-Rodriguez: investigation; PAR-
ADISE validation. Luis E. Anido-Rifón: supervision; resources; funding and acquisition; project administration. All
authors read and agreed to the published version of the manuscript.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Manuel J. Fernández-Iglesias https://orcid.org/0000-0003-4462-8724
Sonia Valladares-Rodriguez https://orcid.org/0000-0003-1195-9949

REFERENCES
1. Bentley F, Luvogt C, Silverman M, Wirasinghe R, White B, Lottridge D. Understanding the long-term use of smart speaker assistants. Proc

ACM Interact Mob Wearable Ubiquitous Technol. 2018;2(3):1-24. doi:10.1145/3264901
2. Kexel CA, Osterloh J, Hanel C. Smart home – A new marketing era. In: Thorhauer Y, Kexel CA, eds. Facetten der Digitalisierung: Chancen

und Herausforderungen für Mensch und Management. Springer Fachmedien; 2020:31-53.
3. Loukis E, Janssen M, Mintchev I. Determinants of software-as-a-service benefits and impact on firm performance. Decis Support Syst.

2019;117:38-47. doi:10.1016/j.dss.2018.12.005
4. Jimenez C, Saavedra E, de Campo G, Santamaria A. Alexa-based voice assistant for smart home applications. IEEE Potent. 2021;40:31-38.

doi:10.1109/MPOT.2020.3002526
5. Noda K. Google home: smart speaker as environmental control unit. Disab Rehabilit Assist Technol. 2018;13(7):674-675. doi:10.1080/

17483107.2017.1369589
6. Wyatt D, Choudhury T, Bilmes J. Conversation detection and speaker segmentation in privacy sensitive situated speech data. In: van

Hamme H, van Son R, eds. Proceedings of Interspeech 2007. ISCA; 2007:586-589.
7. Adamopoulou E, Moussiades L. An overview of chatbot technology. In: Maglogiannis I, Iliadis L, Pimenidis E, eds. Artificial Intelligence

Applications and Innovations. IFIP Advances in Information and Communication Technology WG 12.5. Springer; 2020:373-383.
8. Albayrak N, Özdemir A, Zeydan E. An overview of artificial intelligence based chatbots and an example chatbot application. Proceedings

of the 26th Signal Processing and Communications Applications Conference (SIU); 2018:1130-1134; IEEE, Curran Associates Proceedings.
9. Szymanski MH, Wall P, Watts-Englert J. Creating interactional alignment in call center customer care. In: de Waal Malefyt T, McCabe M,

eds. Women, Consumption and Paradox. Routledge; 2020:78-102.
10. Sheehan B, Jin HS, Gottlieb U. Customer service chatbots: anthropomorphism and adoption. J Bus Res. 2020;115:14-24. doi:10.1016/j.

jbusres.2020.04.030
11. Choi Y, Monserrat TJKP, Park J, Shin H, Lee N, Kim J. ProtoChat: supporting the conversation design process with crowd feedback. Proc

ACM Human-Comput Interact. 2021;4(CSCW3). doi:10.1145/3432924
12. Daubman BR, Bernacki R, Stoltenberg M, Wilson E, Jacobsen J. Best practices for teaching clinicians to use a serious illness conversation

guide. Palliat Med Rep. 2020;1(1):135-142. doi:10.1089/pmr.2020.0066
13. Grosberg D, Charlop MH. Teaching conversational speech to children with autism spectrum disorder using text-message prompting. J Appl

Behav Anal. 2017;50(4):789-804. doi:10.1002/jaba.403

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-4462-8724
https://orcid.org/0000-0003-4462-8724
https://orcid.org/0000-0003-1195-9949
https://orcid.org/0000-0003-1195-9949
info:doi/10.1145/3264901
info:doi/10.1016/j.dss.2018.12.005
info:doi/10.1109/MPOT.2020.3002526
info:doi/10.1080/17483107.2017.1369589
info:doi/10.1080/17483107.2017.1369589
info:doi/10.1016/j.jbusres.2020.04.030
info:doi/10.1016/j.jbusres.2020.04.030
info:doi/10.1145/3432924
info:doi/10.1089/pmr.2020.0066
info:doi/10.1002/jaba.403

PACHECO-LORENZO et al. 13

14. Pacheco-Lorenzo MR, Valladares-Rodríguez SM, Anido-Rifón LE, Fernóndez-Iglesias MJ. Smart conversational agents for the detection
of neuropsychiatric disorders: a systematic review. J Biomed Inform. 2021;113:103632. doi:10.1016/j.jbi.2020.103632

15. Katz MJ, Wang C, Nester CO, et al. T-MoCA: a valid phone screen for cognitive impairment in diverse community samples.
Alzheimer’s Dement Diagnos Assessment Disease Monitor. 2021;13(1):e12144. doi:10.1002/dad2.12144

16. Pinto TCC, Machado L, Bulgacov TM, et al. Is the montreal cognitive assessment (MoCA) screening superior to the mini-mental state
examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) in the elderly? Int Psychog.
2019;31(4):491-504. doi:10.1017/S1041610218001370

17. Baldini I, Castro P, Chang K, et al. Serverless computing: current trends and open problems. In: Chaudhary S, Somani G, Buyya R, eds.
Research Advances in Cloud Computing. Springer; 2017:1-20.

18. Walker MA, Litman DJ, Kamm CA, Abella A. PARADISE: a framework for evaluating spoken dialogue agents. arXiv preprint
cmp-lg/9704004; 1997.

19. Siegel S, Castellan N. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill International Editions Statistics Series.
McGraw-Hill; 1988.

20. Rehman UU, Chang D, Jung Y, Akhtar U, Razzaq M, Lee S. Medical instructed real-time assistant for patient with Glaucoma and Diabetic
conditions. Appl Sci. 2020;10:2216. doi:10.3390/app10072216

21. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Wiley; 2003.
22. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-174.
23. Sivasubramanian S. Amazon DynamoDB: a seamlessly scalable non-relational database service. In: Candan KS, Chen Y, Fuxman A, Gra-

vano L, eds. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. Association of Computer Machinery;
2012:729-730.

24. Schneider BA, Daneman M, Murphy DR. Speech comprehension difficulties in older adults: cognitive slowing or age-related changes in
hearing? Psychol Aging. 2005;20:261-271. doi:10.1037/0882-7974.20.2.261

How to cite this article: Pacheco-Lorenzo M, Fernández-Iglesias MJ, Valladares-Rodriguez S, Anido-Rifón LE.
Implementing scripted conversations by means of smart assistants. Softw Pract Exper. 2022;1-13. doi:
10.1002/spe.3182

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3182 by U

niversidad de V
igo, W

iley O
nline L

ibrary on [21/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

info:doi/10.1016/j.jbi.2020.103632
info:doi/10.1002/dad2.12144
info:doi/10.1017/S1041610218001370
info:doi/10.3390/app10072216
info:doi/10.1037/0882-7974.20.2.261

	Implementing scripted conversations by means of smart assistants
	1 INTRODUCTION
	2 MATERIALS AND METHODS: BASICS OF A CONVERSATIONAL AGENT
	2.1 Conversational agent design guidelines
	2.2 Building a conversational agent

	3 RESULTS: STEP-BY-STEP IMPLEMENTATION OF A SCRIPTED CONVERSATION
	4 EVALUATION
	5 DISCUSSION ON THE MAIN ISSUES AND CHALLENGES ADDRESSED
	6 CONCLUSION

	ACKNOWLEDGMENTS
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

