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A B S T R A C T

In this short note, we consider some issues regarding the instability of some elastodynamical problems when
the elasticity tensor is not positive definite. By using the so-called logarithmic convexity argument, we prove
the instability of solutions when the time derivative of the elasticity tensor is semi-definite negative or it
satisfies another restriction on the coefficients. The uniqueness of the solution is also concluded. Finally, a
simple one-dimensional example is provided to demonstrate the numerical behaviour of the instability.
1. Introduction

In recent years, few results have been established in the theory
of small deformations superimposed on large deformations of elastic
materials. It is suspected that this is due to the fact that it leads to a
difficult to deal with and, for this reason, it is appropriate to consider
the approximate problem [1]. We recall that the first contributions
in this line were provided by Green [2,3], Knops and Wilkes [4],
and, more recently, by Ieşan [5]. An existence result was obtained
by Navarro and Quintanilla [6] (see also the work of Quintanilla and
Williams [7] for the viscoelastodynamics). A couple of considerations
should be given in the case of the isothermal elasticity. The theory
of incremental elasticity has given impetus to theoretical research into
equations of elastic bodies for which little or no information is known
concerning elasticities [4]. The case when the elasticity tensor is not
positive definite but time-independent has been deeply studied by
Knops [8,9], but the problem when it also depends on the time has
not received too much attention.

The analysis provided by Knops to obtain the instability of solu-
tions uses the so-called logarithmic convexity argument. However, to
our knowledge the extension of this argument to the case when the
elasticity tensor also depends on the time has not been considered yet.
In this short note, we will give a couple of situations where the classical
argument of logarithmic convexity can be adapted. Therefore, we will
provide sufficient conditions to guarantee the exponential growth of
the solutions to the problem of the small deformations, superimposed
on a large deformation in the case that the primary state depends on
the time. In fact, our arguments are strongly based on the analysis for
the case when the elasticity tensor is independent of the time, but we
adapt the method to some cases when it also depends on the time.
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2. Basic equations

Let 𝐵 be a bounded domain in R3 with a boundary smooth enough
to apply the divergence theorem. As we want to study the incremental
problem of isothermal elasticity in the case that the primary state is not
at equilibrium, we consider the system

𝜌�̈�𝑖(𝒙, 𝑡) =
(

𝐶𝑖𝑗𝑘𝑙(𝒙, 𝑡)𝑢𝑘,𝑙(𝒙, 𝑡)
)

,𝑗
𝒙 ∈ 𝐵, 𝑡 ≥ 0, (1)

where 𝜌 is the mass density, 𝑢𝑖 is the displacement vector and 𝐶𝑖𝑗𝑘𝑙 is
the elasticity tensor which depends on the material point and the time.
As usual, we assume that the elasticity tensor satisfies the symmetry
property:

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 . (2)

We want to study the problem determined by the system (1) with the
initial conditions:

𝑢𝑖(𝒙, 0) = 𝑢0𝑖 (𝒙), �̇�𝑖(𝒙, 0) = 𝑣0𝑖 (𝒙) 𝒙 ∈ 𝐵, (3)

and homogeneous Dirichlet boundary conditions:

𝑢𝑖(𝒙, 𝑡) = 0 𝑡 > 0, 𝒙 ∈ 𝜕𝐵. (4)

We are going to prove the instability of the solutions under suitable
conditions on the constitutive functions.

We assume that

(i) 𝜌 ≥ 𝜌0 > 0.
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(ii) The time derivative of the elasticity tensor is semi-definite nega-
tive; that is,

�̇�𝑖𝑗𝑘𝑙𝜉𝑖𝑗𝜉𝑘𝑙 ≤ 0

for every tensor 𝜉𝑖𝑗 .
(iii) There exists a positive constant 𝑘 ≥ 0 such that

(𝐶𝑖𝑗𝑘𝑙 − 𝑘�̇�𝑖𝑗𝑘𝑙)𝜉𝑖𝑗𝜉𝑘𝑙 ≥ 0

for every tensor 𝜉𝑖𝑗 .

We are going to prove the instability of the solutions under either
ssumptions (i)–(ii) or either (i)–(iii).

The meaning of assumption (i) is clear. Condition (ii) states that the
lasticity tensor is stronger with the time. Assumption (iii) is a technical
ondition which can be understood as a restriction on the class of the
lasticity tensors. However, we will give some examples.

It is known that, if we assume that the elasticity tensor is not
ositive definite, we can obtain the instability of solutions in the case
hat 𝐶𝑖𝑗𝑘𝑙 does not depend on time. Hence, our aim here is to extend
his kind of results when the elasticity tensor also depends on the time.

In order to find possible applications of this analysis, it will useful
o propose examples on the elasticity tensor satisfying conditions (ii)
r (iii).

We note that the tensors of the form

𝑖𝑗𝑘𝑙(𝒙, 𝑡) = 𝐶𝑖𝑗𝑘𝑙(𝒙, 0)𝑒𝛼𝑡, (5)

here 𝛼 ≥ 0 and 𝐶𝑖𝑗𝑘𝑙(𝒙, 0) is a negative semi-definite tensor, satisfy
onditions (ii) or (iii). In general, if we assume that 𝐶𝑖𝑗𝑘𝑙(𝒙, 𝑡) =
𝐶𝑖𝑗𝑘𝑙(𝒙, 0)𝑓 (𝑡), where 𝑓 (𝑡) is a non-decreasing function such that 𝑓 (0) ≥ 0
and 𝐶𝑖𝑗𝑘𝑙(𝒙, 0) is a negative semi-definite tensor, condition (ii) holds.
However, it is worth noting that we can define some other tensors
satisfying condition (iii) even if the tensor 𝐶𝑖𝑗𝑘𝑙(𝒙, 0) is not negative
semi-definite. In fact, all the tensors of the form (5) always satisfy
condition (iii).

3. Instability result

In this section, we prove a result of exponential instability in the
cases (i)–(ii) or (i) and (iii) for the solutions to the problem (1)–(4).

We first give the proof in the case (i)–(ii), which is easier, and later
we will provide suitable arguments to study the other case.

The analysis needs the energy equation

𝐸(𝑡) = 1
2 ∫𝐵

(

𝜌�̇�𝑖�̇�𝑖 + 𝐶𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙
)

𝑑𝑣

−1
2 ∫

𝑡

0 ∫𝐵
�̇�𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 𝑑𝑣𝑑𝑠 = 𝐸(0).

(6)

Since we assume that condition (ii) holds, we obtain

1(𝑡) ≤ 𝐸1(0) = 𝐸(0), (7)

here

1(𝑡) =
1
2 ∫𝐵

(

𝜌�̇�𝑖�̇�𝑖 + 𝐶𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙
)

𝑑𝑣.

We are going to prove our result by means of the logarithmic convexity
argument. In fact, we will follow similar arguments to the ones pro-
posed in [9]. It is known that this method is strongly based on a suitable
selection of the function to evaluate. In our case, we define the function

𝐹𝜔,𝑡0 (𝑡) =
1
2 ∫𝐵

𝜌𝑢𝑖𝑢𝑖 𝑑𝑣 + 𝜔(𝑡 + 𝑡0)2, 𝑡 ≥ 0,

where 𝜔 and 𝑡0 are two positive constants to be chosen later.
A direct differentiation gives

�̇�𝜔,𝑡 (𝑡) = 𝜌𝑢𝑖�̇�𝑖 𝑑𝑣 + 2𝜔(𝑡 + 𝑡0), 𝑡 ≥ 0,
2

0 ∫𝐵 t
and

𝐹𝜔,𝑡0 (𝑡) = ∫𝐵
(𝜌�̇�𝑖�̇�𝑖 + 𝜌𝑢𝑖�̈�𝑖) 𝑑𝑣 + 2𝜔, 𝑡 ≥ 0.

In view of system (1) we see that

̈𝜔,𝑡0 (𝑡) = ∫𝐵
(𝜌�̇�𝑖�̇�𝑖 − 𝐶𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙) 𝑑𝑣 + 2𝜔, 𝑡 ≥ 0,

nd, after the use of the energy inequality (7), we obtain

̈𝜔,𝑡0 (𝑡) ≥ 2∫𝐵
𝜌�̇�𝑖�̇�𝑖 𝑑𝑣 + 2(𝜔 − 𝐸(0)), 𝑡 ≥ 0.

It then follows that
̈𝜔,𝑡0 (𝑡)𝐹𝜔,𝑡0 (𝑡) − (�̇�𝜔,𝑡0 (𝑡))

2 ≥ 2(𝜔 + 𝐸(0))𝐹𝜔,𝑡0 (𝑡), 𝑡 ≥ 0.

In the case that 𝐸(0) < 0, we can choose 𝜔 = −𝐸(0) to obtain that
𝑑2

𝑑𝑡2
𝑙𝑛𝐹𝜔,𝑡0 (𝑡) ≥ 0, 𝑡 ≥ 0. (8)

This inequality implies that

𝐹𝜔,𝑡0 (𝑡) ≥ 𝐹𝜔,𝑡0 (0) exp
�̇�𝜔,𝑡0 (0)
𝐹𝜔,𝑡0 (0)

𝑡,

which is an estimate of exponential instability. We note that we can
always select 𝑡0 large enough to guarantee that 𝐹𝜔,𝑡0 (0) > 0. Moreover,
n the case that 𝐸(0) = 0 and �̇�0,0(0) > 0 we can also obtain the
xponential growth.

It is also worth noting that, in the case that we will assume null
nitial conditions, we obtain
𝑑2

𝑑𝑡2
𝑙𝑛𝐹0,0(𝑡) ≥ 0, 𝑡 ≥ 0.

t is also known that

0,0(𝑡) ≤ 𝐹0,0(0)1−𝑡∕𝑇𝐹0,0(𝑇 )𝑡∕𝑇 , 0 ≤ 𝑡 ≤ 𝑇 .

Therefore, 𝐹0,0(𝑡) = 0 for 0 ≤ 𝑡 ≤ 𝑇 . It then follows the uniqueness of
solutions under conditions (i) and (ii).

In the remain of this section, we prove the exponential instability
and the uniqueness of the solutions to problem (1)–(4) under conditions
(i) and (iii). It is worth noting that the key point to prove it is to show
the inequality (7). In view of the equality (6) it will be enough to show
that

𝐺(𝑡) = ∫

𝑡

0 ∫𝐵
�̇�𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 𝑑𝑣𝑑𝑠 ≤ 0 (9)

for every solution such that 𝐸(0) ≤ 0.
Thanks to inequality (6) we see that

∫𝐵
𝐶𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 𝑑𝑣 − ∫

𝑡

0 ∫𝐵
�̇�𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 𝑑𝑣𝑑𝑠 ≤ 0,

and, using condition (iii), we have

𝑘∫𝐵
�̇�𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 𝑑𝑣 − ∫

𝑡

0 ∫𝐵
�̇�𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 𝑑𝑣𝑑𝑠 ≤ 0.

We can write this inequality in the form

𝑘�̇�(𝑡) − 𝐺(𝑡) ≤ 0,

which implies that

𝐺(𝑡) ≤ 𝐺(0)𝑒−𝑘
−1𝑡.

Since 𝐺(0) = 0, we obtain the inequality (9). Therefore, we can
adapt the previous analysis to this new case to obtain the exponential
instability and the uniqueness results proposed before.

Remark 1. This uniqueness result can be adapted to include also elas-
ticity tensors of the form 𝐶𝑖𝑗𝑘𝑙(𝒙, 𝑡) = 𝐶𝑖𝑗𝑘𝑙(𝒙, 0)𝑓 (𝑡), where 𝐶𝑖𝑗𝑘𝑙(𝒙, 0) is

negative semi-definite tensor, and 𝑓 (𝑡) is the solution to the ordinary
ifferential equation:
̇ = 𝑓 𝛼 ,

or a given 𝛼 > 1. However, in this case we note that this function 𝑓

ends to infinity at a finite time.
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Fig. 1. Displacement at final time.

. A numerical example

In this final section, our aim is to perform some numerical sim-
lations to show the theoretical behaviour obtained in the previ-
3

us sections. For the sake of simplicity, we restrict ourselves to the
one-dimensional case, and so we have to study the following problem:

𝜌�̈� + 𝑒𝑡𝐶𝑢𝑥𝑥 = 0 in (0, 𝐿) × (0, 𝑇 ),
(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0 for a.e. 𝑡 ∈ (0, 𝑇 ),
𝑢(𝑥, 0) = 𝑢0(𝑥), �̇�(𝑥, 0) = 𝑣0(𝑥) for a.e. 𝑥 ∈ (0, 𝐿).

ere, 𝐿 represents the length of the bar, (0, 𝑇 ), 𝑇 > 0, denotes the time
nterval, and 𝐶 is a positive constant which represents the spatial part
f the elasticity coefficient. As we can see, the elastic coefficient is
1111 = −𝑒𝑡𝐶 and so condition (ii) is met.

In the simulations, we have used the following data:

= 100, 𝐿 = 1, 𝑇 = 0.3, 𝐶 = 10−4

nd the initial conditions:
0(𝑥) = 0, 𝑢0(𝑥) = 𝑥(𝑥 − 1) for a.e. 𝑥 ∈ (0, 1).

e note that, with the prescribed initial conditions, it is easy to
onclude that 𝐸(0) < 0.

We will not provide details regarding the numerical approximation
f this problem since it is quite standard. We only note that we have
sed continuous and piecewise affine finite elements for the spatial ap-
roximation, and the implicit Euler scheme for the time discretization
f the first-order time derivatives (we write the problem in terms of the
elocity field).

Therefore, taking the spatial discretization parameter ℎ = 10−5 and
he time discretization parameter 𝑘 = 0.3 × 10−4, in Fig. 1 we plot
he displacement field at final time. As we can see, the solution has
ncreased drastically at that time, with big oscillations near the corners.
Fig. 2. Displacements at final time (zooms near the left corner 𝑥 = 0).
Fig. 3. Evolution in time of the displacements of points 𝑥 = 0.003 (left) and 𝑥 = 0.5 (right).
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This is possibly due to the negative value of the elastic coefficient,
which leads to the concentration of the deformation far away from the
point where the maximum initial displacement is applied (the middle
point of the bar).

Moreover, in order to better observe the oscillations of the deforma-
tion, we show two zooms near the left corner 𝑥 = 0. In Fig. 2 we can see
the results obtained. We can clearly appreciate how the oscillations are
really high and we note that, for the sake of clarity, we also performed
this example with a reduced mesh size, although a similar oscillating
behaviour was also found.

Finally, in Fig. 3 the evolution in time of the displacements at points
𝑥 = 0.003 and 𝑥 = 0.5 (the middle point of the bar) are shown. We can
see how the deformation at point 𝑥 = 0.003 changes very slowly until
time 𝑡 = 0.25, where it begins to increase quickly (in fact, at time 𝑡 = 0.9
it reaches value 10230). However, the displacement at the middle point
is almost constant and equal to the initial value −0.25 even if a small
change is also produced again at time 𝑡 = 0.25.

5. Conclusions

In this short note, we considered an incremental problem arising in
elastodynamics. The main difficulty of this study was the assumption
that the elasticity tensor was not positive definite. Then, by using
logarithmic convexity arguments, we proved that this kind of problems
were unstable for the cases where the tensor was semi-definite negative
or satisfying a restriction on its coefficients. The uniqueness of the solu-
tion for both cases was also proved. Finally, we presented a numerical
example involving a simple one-dimensional problem to demonstrate
numerically the unstable behaviour of the solution.
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