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AbstractConcrete steel towers are increasingly being used for onshore windturbines. The lower part consists of separated segmented concreterings connected with dry joints. Due to slight deviations from theaxisymmetric cross section, closely spaced modes occur. Therefore,the influences of small system changes on closely spaced modes, par-ticularly the mode shapes, should be investigated to enable reliablevibration based monitoring. In this context, the influence of imper-fections due to the waviness of the dry joints requires attention. Asno acceleration measurements on concrete towers considering smallsystem changes have been performed so far, this has not yet beeninvestigated. Therefore, an experiment is carried out using a large-scale laboratory model of a prestressed concrete segment tower. Thesystem modifications are introduced by changing the preload. Thischanges the influence of imperfections of the surfaces of the horizon-tal dry joints, estimated by measuring strain and displacement at the
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2 Influence of system changes on closely spaced modes

lowest joint. An increasing preload causes the first two pairs of bend-ing modes to move closer together. This enables to study the effectof the closeness of natural frequencies on the related mode shapesbased on the same structure. Thus, the known effects of increasinguncertainty of the alignment and a rotation of the mode shape in themode subspace with closer natural frequencies can be shown experi-mentally. In this work the operational modal analysis (OMA) methodsBayesian-OMA (BAYOMA) and Stochastic Subspace Identification (SSI)are used. Local imperfections can significantly affect modal parame-ters, so these should be considered for vibration based monitoring.
Keywords: close modes, concrete steel tower, OMA, identification uncertainty

1 Introduction
In the construction of wind turbines, the tower is a decisive cost factordue to material and transport costs. With increasing tower heights, hybridtowers are often used for onshore wind turbines. This type of tower con-sists of segmented concrete rings with vertical and horizontal dry joints inthe lower part and conical steel tubes in the upper part. They reach hubheights of over 160 m [6] and can be particularly economical due to lowertransport as well as manufacturing costs compared to conventional steeltowers. The increase in economic efficiency is achieved by prefabricatingthe lower tower section in segments and providing the structural integrityby externally prestressing the concrete after stacking the segment rings.In a segmented concrete tower, geometric and material nonlinearitiesoccur due to the contact at the horizontal dry joints. Due to the manu-facturing process, the contact surface exhibits imperfections in the formof waviness, as shown in Figure 1. The waviness leads to an uneven loaddistribution between segment rings on a local level. Hence, an inhomo-geneous stress distribution emerges at the joint, as Theiler et al. [28]demonstrated numerically. In a large scale laboratory experiment of aprestressed segmented concrete tower, the inhomogeneous strain distri-bution was detected using displacement and strain measurements at thejoint [23]. The experiments showed that while the mean value of the straindistribution at the joint increases with the preload, the inhomogeneousstrain distribution remained qualitatively the same under varying preload.An early damage detection for the segment joints can be achieved using astructural health monitoring (SHM) approach. A distinction can be madebetween local and global monitoring. In the case of local monitoring, mea-surements are taken in the area of an expected damage location - forexample, concrete spalling at the dry joint. Strain gauges are often usedfor this purpose. In contrast to this, global monitoring, like vibration-based,attempts to obtain a statement about the global state of the monitored
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Fig. 1 Illustration of the imperfection due to waviness of a dry horizontal joint.
structure on the basis of fewer sensors [16]. This makes global monitoringsignificantly more cost-effective. However, measurements are more diffi-cult to interpret and usually damages as small as with local monitoringcannot be identified. For a global vibration-based monitoring concept of ahybrid tower, knowledge of the influence of imperfections on the modalparameters is necessary.For vibration-based global monitoring, operational modal analysis(OMA) identification methods are mostly used, as they do not requireequipping the monitored structure with additional excitation actuators likee.g. electromagnetic shakers. A challenge that arises when monitoringa tower structure with a symmetrical cross-section is the identificationof closely spaced bending modes. The widely used frequency domaindecomposition (FDD) method determines the modal parameters from thesingular value decomposition (SVD) of the spectral matrix [10]. Hence, theFDD can only approximately identify the modal parameters in the case ofclosely spaced modes because the excitation can usually not be modallydecoupled. An alternative frequency domain identification method is theBayesian operational modal analysis (BAYOMA), which is able to properlyidentify closely spaced modes [3]. In addition, this method also providesthe uncertainty of modal parameters. A more detailed investigation of theidentification uncertainty of closely spaced modes when using BAYOMAdemonstrates, that mode shapes in particular are more uncertain to iden-tify than in a well separated case [4]. However, in case of a high signalto noise ratio (SNR), the identification of the mode subspace (MSS) is stillpossible with a low uncertainty. A detailed description of the BAYOMAmethod is given in Section 2.In time domain, the stochastic subspace identification (SSI) [29] is a pop-ular OMA method. A distinction can be made between covariance-driven(SSI-COV) and data-driven stochastic subspace identification (SSI-DAT). InSSI-DAT, the raw data is used as the basis for the system identification,whereas in SSI-COV, covariance matrices are used. For both methods, itis a challenge to distinguish physical modes from spurious modes and tofind stable paths with respect to the model order. So-called stabilisation dia-grams and various additional algorithms are used for the mode selection,with some of these being able to identify closely spaced modes [18, 26].
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In addition to the methods mentioned above, there are furtherOMA algorithms that can identify closely spaced modes, like naturalexcitation technique with eigensystem realisation (NExT ERA) [19] andpoly-reference least squares complex frequency-domain (pLSCF) [24].In the literature, there are several examples of experimental inves-tigations of the dynamics of structures with closely spaced modes. Forinstance, a prototype of a concrete tower of a wind turbine was investigated[12]. In that study, the cross-section was symmetrical, however the bendingmodes were well-separated due to attachments mounted to the structure.Similar results were shown in a study of a monopole telecoms structure[20], where the expected alignment of the first mode shape due to physicalattachments also corresponds to the identified alignment. Brownjohn et al.[11] investigated the dynamics of offshore lighthouses using BAYOMA andalso found a significant difference in the bending mode natural frequen-cies, which are also due to attachments. However, by taking into accountthe uncertainties of the mode shapes, the alignment of the mode shapeswas not necessarily the same as the visible structural symmetry. The influ-ence of environmental conditions and damage on closely spaced modeswas investigated using the Leibniz University Test Structure for Monitor-ing (LUMO) considering the identification uncertainties [22]. In this study,the comparison of mode shapes with a mode subspace proved to be muchmore reliable than a simple comparison of mode shapes and thus a betterdamage-sensitive feature for closely spaced modes. Dooms et al. examineda silo using the SSI and found out that in case of closely spaced modes,complex mode shapes occur that have no dominant phase in the complexplane[15]. A similar observation was made when examining a steel mast[27].In this work the investigations of the influence small system changes onmodal parameters, in particular on the mode alignment, of closely spacedmodes are carried out on a large scaled prestressed concrete tower withhorizontal dry joints in a laboratory. This makes it possible to selectivelyinsert system changes, such as changes of the preload. At the same time,undesirable influences, such as temperature changes and operational con-ditions, can be largely avoided. Due to the symmetrical tower structureclosely spaced modes occur, which can be influenced by system changes.For the identification OMA methods are used, because they are suitable forreal-world applications, as they do not require knowledge of the excitation.The excitation in the experiment takes place from the ambient influencesfrom the laboratory and is not measured.BAYOMA is used as the identification method, since an uncertaintycalculation can be carried out. This allows a more precise investigation ofclosely spaced modes and the influence of smallest system changes. Toverify that the effects to be observed are not caused by the identificationmethod, the results are compared with the SSI-COV. In order to be ableto estimate the changes in the imperfections due to the change of the
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preload, local monitoring of the lowest joint is also evaluated on the basisof strain and displacement measurements. In the following chapter, thetwo identification methods are described in more detail and the specialcharacteristics of closely spaced modes are discussed. Chapter 3 describesthe experiment and the results are presented in Chapter 4. Afterwards,the study will be summarised and an outlook will be given.
2 Operational Modal Analysis
For vibration-based monitoring of large structures, OMA is usuallyemployed. Unlike experimental modal analysis, the excitation is unknown[9]. Instead, it is assumed that the structure is excited with a distributedstochastic force f , which exhibits a white noise spectrum in the consideredfrequency range. The structural responses (displacements u, velocities
u̇ and accelerations ü) of a linear time invariant mechanical structureto such a force is expressed using the equation of motion for a ndegree-of-freedom (DOF) system

Mü +Cu̇ +Ku = f , (1)
withM ,C andK as mass -, damping- and stiffness matrices. For the case ofmodal damping, the system can be modally decoupled with u = Φq, where
Φ is the modal matrix, that contains n mode shape vectors Φ = [φ1...φn]and the modal coordinate vector q. The decoupled equation of motion foreach mode corresponds to that of a single DOF system

q̈j + 4ζjπf0j q̇j + 4π2f20jqj = pj , (2)
where pj is the modal force, ζj is the modal damping and f0j the natu-ral frequency of the system. BAYOMA uses modal decoupling, which isdescribed in the following subsection. In contrast, the SSI-COV identifiesa state space model for the system. This method will be briefly explainedin subsection 2.2.
2.1 Bayesian operational modal analysisThe basic idea of BAYOMA was introduced by Yuen et al. [31]. The methodhas been improved by Au et al. [3, 2] by reducing the number of design vari-ables of the underlying numerical optimisation problem in case of manymeasurement degrees of freedom or closely spaced modes. In this chap-ter, an insight into the method is given. More information can be found inthe corresponding literature e.g. [5].The scaled discrete Fourier transformation (DFT) F of a measuredGaussian distributed acceleration signal ü with nChannel channels, Ndatadata points and a sampling rate fs with the corresponding frequency point
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fk = kfs/Ndata is
Fk = F(fk) = √ 1

Ndatafs

Ndata−1∑
j=0 üje−2πijk/Ndata , (3)

where i is the imaginary number. In case of a high sampling rate and along data duration, the DFT is asymptotically independent and Gaussiandistributed at different frequencies. In the case of Nmodes dominant modesin the considered frequency range, the model of the DFT is
Fk = Nmodes∑

j=1 φjhjksjk + εk with hjk = 11 − β2
jk − 2βζji

and β = f0j
fk

, (4)
where φj is the unit norm mode shape vector, sjk is the modal force inthe frequency domain, εk is the modelling error and hjk is the transferfunction of a damped 1-DOF system for acceleration responses. Assumingthat the power spectral density (PSD) of the model error Se is the samefor all channels and the model error as well as the hermitian PSD matrixof the modal force S is constant in the considered frequency range, theexpected value of the PSD is
Ek(Θ) = E[FkF∗

k|Θ] = Nmodes∑
j=1

Nmodes∑
m=1 hjkh∗

mkSjmφjφT
m + SeInChannel

= ΦHkΦT + SeInChannelwith Hk = diag([h1,k . . . hNmodes,k]) S diag([h1,k . . . hNmodes,k])∗. (5)
Thus, Ek(Θ) corresponds to the theoretical PSD of the modal parameters
Θ and corresponds to the covariance matrix of Fk. For two dominantmodes, Equation 5 is dependent on 9 + 2nChannel parameters

Θ = [φT1 ,φT2 , f01, f02, ζ1, ζ2, S11, S22, Re(S12), Im(S12), Se]. (6)
In the special case of incoherence of the modal force, the modal forcematrix S is a diagonal matrix, so that the modes can be perfectly decoupled.In this case, extensions of the FDD could also identify the closely spacedmodes without a bias. Applying the special case of Bayes’ theorem, wherethe prior of the modal parameters is uniformly distributed, results in theposterior being proportional to the likelihood.The negative loglikelihood function (NLLF) L for a multivariate Gaus-sian distribution is

L(Θ) = nChannelNf lnπ + Nf∑
k=1 ln∣∣Ek(Θ)∣∣ + Nf∑

k=1 F∗
kEk(Θ)−1Fk , (7)
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where Nf is the number of considered frequency points. The most prob-able values (MPV) of the modal parameters can then be obtained byminimising the NLLF and therefore solving for Θ.With an increasing number of sensors, the number of parameters tobe identified increases according to Equation 6. To make the number ofdesign parameters independent of the number of sensors, the mode shapesubspace (MSS) is determined before starting the optimisation. The MSSis a subspace spanned by the m dominating mode shapes. To obtain thedominating mode shapes for the MSS the real part of the spectral matrixcan be summed up over the frequency range of interest, assuming thatthe mode shape is real-valued

D = Nf∑
k=1 Re(FkF∗

k). (8)
The dominating mode shapes can be obtained by an eigenvalue decom-position. In the case of two modes, the MSS Ψ1,2 is determined from theunit norm eigenvectors Ψ of the two highest eigenvalues. The subsequentoptimisation only needs to determine the rotation angle α1 and α2 of themodes in the MSS to obtain the mode shapes Φ = Ψ1,2T(α1, α2) using thetransformation matrix T

T(α1, α2) = [cos(α1) cos(α2)sin(α1) sin(α2)
] . (9)

This converts the expected value of Equation 5 into
Ek(Θα) = Ψ1,2THk(Ψ1,2T)T + SeΨInΨT ,

with Θα = [α1, α2, f01, f02, ζ1, ζ2, S11, S22, Re(S12), Im(S21), Se]. Due to thetransformation matrix, the unit length constraint is satisfied. Thus, 11parameters are to be identified regardless of the number of sensors. Notethat the mode shapes are not necessarily orthogonal due to the chosensensor positions and measuring directions. An efficient way of solving thisoptimisation problem, as well as adjusting the mode subspace for verynoisy data, can be found in [3].Given the assumed Gaussian distribution, the posterior covariance ofthe modal parameters is calculated from the inverse Hessian matrix of theNLLF (Equation 7) with the excepted value of Equation 5 at the MPV. Themode shapes are constraint to unit norm in BAYOMA. The considerationof this constraint in the derivation, as well as the possibility of the numer-ical and analytical double derivation, is described in [2]. The roots of thediagonal entries are the standard deviation of the corresponding modalparameters.
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2.2 SSI-COVIn the stochastic subspace identification the system is modelled as a lineartime-invariant discrete-time stochastic state space model
xk+1 = Axk +wk

yk = Cxk + vk
(10)

with the state matrix A, the output matrix C, the discrete-time state vec-tor xk and the discrete-time output vector yk [7]. The unknown input ismodelled by the process noise wk and the measurement noise vk. Bothare assumed to be zero mean, uncorrelated and possessing a white noisepower spectral density.The modal parameters are calculated from the state matrix A and theoutput matrix C. This is accomplished by determining the eigenvalues µiand eigenvectors θi of A and deriving the continuous-time eigenvalues λiusing λi = ln (µi)fs.The modal parameters, i.e. the natural frequencies fi , damping ratios
ζi and mode shapes φi , can then be obtained with

fi = |λi|2π , ζi = − Re(λi)
|λi|

, φi = Cθi. (11)The various SSI algorithms are classified in the literature as covariance-driven SSI or data-driven SSI [9]. The main difference between theseapproaches is the formulation of the subspace matrix H, from which theobservability matrix O can be obtained. In this study, the SSI-COV is usedfor the system identification. In that case the matrix H with l block rowsand m block columns is assembled from the covariance matrices Ry(i)
H =


Ry(1) Ry(2) . . . Ry(m)
Ry(2) Ry(3) . . . Ry(m + 1)... ... . . . ...
Ry(l) Ry(l + 1) . . . Ry(l + m − 1)

 . (12)
The subspace matrix H can be expressed as the matrix product

H = OZ, using the observability matrix O and a matrix Z. The observ-ability matrix is defined as
O =


C
CA
...

CAl−1

 . (13)
A singular value decomposition (SVD) is used to obtain H = USV T ,which enables solving for the matrices O and Z

O = US1/2 and Z = S1/2VT . (14)
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The system matrix A can be constructed by removing one block fromthe top and one block from the bottom of O. In the first block of O theoutput matrix C can be found [7].In contrast to BAYOMA, the elements of the mode shape vectors iden-tified using SSI are complex-valued. In case of a modally damped system,the mode shape is therefore oriented in a straight line in the complexplane at an angle called mean phase (MP) [25]

MP(φj ) = arctan (
−V12
V22

) with USVT = [Re(φj ) Im(φj )], (15)
where USVT is the SVD. V12 as well as V22 are the corresponding elementsof the matrix V . Using the mean phase, the mode can then be rotated tothe real axis accordingly

φj,real = Re (
φje−i MP) . (16)

In this process, deviations from the mean phase lead to inaccuracies. Themean phase deviation (MPD) metric

MPD(φj) =
∑n

k=1
∣∣∣φjk

∣∣∣ arccos
∣∣∣∣∣∣∣Re(φjk)V22 − Im(φjk)V12∣∣∣φjk

∣∣∣ √
V212 + V222

∣∣∣∣∣∣∣∑n
k=1

∣∣∣φjk

∣∣∣ (17)
has been established as a quality criterion for identified mode shapes[25]. In Equation 17, n is the number of elements of the mode shape φj .Closely spaced modes can be detrimental to the mode shape identificationand should be considered when using this established procedure. Furtherdetails are described in the next section.

2.3 Special aspects of closely spaced modesThere are several metrics for determining the closeness of natural fre-quencies [30, 4], which are mathematically similar. In this paper theformulation by Au et al. [4] is chosen, because it is usually used in contextof BAYOMA. The closeness of two modes can be expressed using the dis-tance in terms of the frequency as well as the half-width of both modes.Therefore, in addition to the natural frequencies, the damping ratios arenecessary to determine the closeness. For nearly equally damped modes,the close mode factor ej for mode j can be calculated as follows
ej =∣∣∣∣∣ fk − fj

fjζj

∣∣∣∣∣ . (18)
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In this study the close mode factor e of a mode pair j and k is calculatedas the mean value of ej and ek. A visualisation of the PSD of two modeswith different close mode factors is shown in Figure 2. For e ≤ 1, thenatural frequencies of the modes are within the half-power width of eachother. This range is referred to as closely spaced modes in the following.From about e > 10 onwards, the modes are clearly well-separated. In theextreme case of two equal natural frequencies e = 0, a double eigenvalueproblem occurs. In this case, every linear combination of the two eigen-
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Fig. 2 A visualisation of the PSD of two modes with different close mode factors
vectors is also a eigenvector of the system, so that only the mode subspace(MSS) can be uniquely determined. A visualisation of the MSS for the firstbending mode of a cantilever beam, spanned by the two linearly indepen-dent vectors ψk and ψm is given in Figure 3. Another possible eigenvectoris φj .

Fig. 3 Visualisation of the mode subspace (MSS) from the first bending mode pair [ψkψm]of a cantilever structure. Another possible mode shape φj is shown in green.
Usually, the frequencies are not exactly the same in real-world engi-neering structures. Theoretical considerations show that small mass andstiffness changes lead to rotations of mode shapes of very closely spacedmodes within the MSS [8]. A more detailed investigation of the identifi-cation uncertainty of closely spaced modes demonstrates, that the modeshape in particular is more uncertain to identify than other modal param-eters [4]. In case of a high signal to noise ratio (SNR) the identificationof the MSS is possible with a very low uncertainty. The main part of theuncertainty of the mode shape is orthogonal to the MSS and corresponds
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to the position in the MSS. This uncertainty is independent of the SNR anddepends mainly on the close mode factor e as well as the disparity factor
d, which describes the ratio of the modal forces of the two modes

djk = Sjj
Skk

, (19)
where Sjj is the modal force of the considered mode j and Skk the modalforce of the neighbouring mode k. The closer the modes and the smallerthe disparity factor, the more uncertain is the position of the mode shape
j in the MSS. For this reason, the well known modal assurance criterion(MAC) [1]

MACj,k =
∣∣∣φH

j φk

∣∣∣2
φH

j φjφH
k φk

. (20)
is prone to high uncertainties for closely spaced modes. Therefore, Greset al. [17] propose to employ a scaled and shifted χ2 distribution for thecomparison of two almost equal modes considering their uncertainties. Inthe case of closely spaced modes, a beta distribution is better suited todescribe the resulting probability density function [22].A modification to MAC for comparing closely spaced modes is thesubspace of order 2 modal assurance criterion (S2MAC) [13]. The S2MACcompares a subspace spanned by two mode shapes [ψkψm] with a modeshape vector φj . For real-valued unit norm modes, such as those resultingfrom BAYOMA identification, the S2MAC can be calculated as

S2MACj,k,m = (φT
j ψk)2 − 2(φT

j ψk)(ψT
kψm)(φT

j ψm) + (φT
j ψm)21 − (ψT

kψm)2 . (21)
Similar to the distribution of the MAC, the distribution of the S2MAC canbe expressed as a beta distribution.In this paper a tower with closely spaced bending modes is examined.The vibration is measured in x- and y-direction in all measuring levels(ML). Accordingly, the direction angle γ of a mode shape can be calculatedanalogously to the MP in Equation 15

γ = arctan (
−V12
V22

) with USVT = [φx φy ], (22)
where φx are the entries of the mode shape in x-direction, and φy are theentries of the mode shape in y-direction. For bending modes, the anglecorresponds to the alignment of the mode shape in the MSS and is accord-ingly subject to higher uncertainty. The distribution of the direction anglecan be modelled as a Gaussian distribution.In order to compare the mode shapes identified with BAYOMA andSSI-COV, the complex mode shapes have to be transformed to real mode
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shapes. In the case of closely spaced modes, greater care is required. Themode shapes are often not on one straight line in the complex plane.In the case of a nearly axisymmetric structure, a circle was observed inthe complex plane [15]. The measurement was taken at one height at sixdifferent angles in radial direction of the structure to investigate wineglassmodes. To monitor bending modes, in many applications two sensors areused at one height, which measure at 90◦ to each other. If measurementsare situated at different heights, two dominant lines are observed – onefor every measurement direction – in the complex plane for each modeshape in the case of closely spaced modes. This will be shown in moredetail in Chapter 4.When converting the mode into real space according to Equation 16,this can lead to an incorrect alignment of the mode. As a result, thedirection angle γ can be incorrect. When comparing with a mode sub-space using the S2MAC, the error has no influence. One indicator of thephenomenon is the MPD. When separate mean phases occur for eachmeasured spatial direction the MPD increases.
3 Investigated structure
The experiment took place at the Test Centre Support Structures locatedat the Leibniz University of Hannover. The investigated prestressed rein-forced concrete tower consists of 16 conical concrete ring segments(designated E1 to E16) with a total height of 7.5 m and is shown in Figure4. Each individual segment has a wall thickness of 4 cm and a compressivestrength of 77MPa. The lowest concrete ring is fixed to the foundation bya high-strength mortar. A steel cross serves as the upper tower termina-tion, which is joined to the uppermost concrete ring segment by a steelinsert. To preload the joints, a tendon is used in the tower centre, which isanchored to the foundation and to the head construction. In addition, thefoundation is attached to the clamping field with four steel anchors. Thepre-tension force applied is about 300 kN per steel anchor.In this experiment, local joint monitoring at the lowest joint, as well asglobal monitoring of tower and tendon dynamics are investigated. Low-noise IEPE accelerometers with a customised IEPE signal conditioner witha high-pass filter cut-off frequency of 0.0106 Hz are used to measure thedynamics of the tower [21]. Two accelerometers are mounted on eachconcrete segment in the x and y-direction to investigate the bending modesof the tower.To determine the preload, four electrical strain gauges are installed onthe tendon. In addition, 3 acceleration sensors are attached to the steel todetermine the natural frequencies of the tendon.It is expected, that the highest imperfections of the surface of the dryjoint can be observed between segment E16 and E15 due to the largest jointsurface. Therefore, sensors for local monitoring are installed at the lowest
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Fig. 4 Sensor setup attached to the tower. Left: Picture of the tower, center: sketch of thetower with measuring positions, top right: strain gauge on the tendon, center right: IEPEaccelerometer
joint between segment E16 and E15. The changes in strain distribution in
z-direction over the circumference of the ring segment are recorded byselectively arranging strain gauges placed in the immediate vicinity of thejoint (blue diamonds in Figure 5) as well as at a distance of 20 m from thejoint (red stars in Figure 5). In addition, laser sensors distributed aroundthe circumference above the strain gauges on segment E16 measure thechange in displacement due to changing preload from 15mm above to15mm below the joint. The detailed arrangement of the sensor setup at thesegments E15/E16 is shown in Figure 5. It should be noted that at segmentE16, the strain gauge failed at 73 degrees.
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Fig. 5 Displacement laser sensors and strain gauges at the joint between segment E15 andE16. The colour gradient in the right shows the colours for the different sensor positions forFigure 6.
4 Results
In this section, the influence of preload on the natural frequencies andmode shapes is investigated in more detail. In the following, a credibleinterval encompassing two standard deviations is used for the uncertaintiesof the natural frequencies and the direction angle in the figures. Thiscorresponds approximately to a 95% credible interval, which is used todisplay MAC and S2MAC.For each preload level, 40 data sets are evaluated. The measurementtime for each data set is 10 minutes and the signals were recorded usinga sampling rate of 1000 Hz and a 24bit digital to analogue converter.
4.1 Influence of the preload on the jointAn important parameter for segmented towers is the preload. The preload
Fp can be determined from the strain gauges on the tendon

Fp = εmeasEsteelAsteel, (23)
where Esteel is the Young’s modulus of steel, εmeas is the measured strain onthe tendon and Asteel is the effective cross-sectional area. The dependenceof the strain on the preload close to the lowest joint and in the middle ofthe ring segment E16 is shown in Figure 6.The strain measurements, shown in Figure 6a, imply that the loadtransfer between the joint starts at different preload levels at the differ-ent measurement points. This is indicative of unevenness in the joint andis consistent with the results of Klein et al. [23]. The expected linear rela-tionship sets in at a preload level above 500 kN for all strain gauges. Thestrain distribution is more homogeneous in the middle of segment E16(Figure 6b), which is evident from a linear relationship between strain andpreload at lower preload levels. Nevertheless, there are deviations in the
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Fig. 6 Dependence of strain and displacement in z-direction on the preload
strain distribution over the entire cross-section, which can be caused byan inhomogeneous material. In addition, it can also be the effect of theimperfection of the joint. In Figure 6c, the laser measurements initiallyshow large increase in displacement at low preloads, which changes to theexpected linear relationship as the preload increases. The higher increasein displacement at low preload compared to higher preload mainly occursdue to the closing of the joint. At higher preload, the linear behaviouris caused mainly by the straining of the concrete. The deviations of thedisplacements, as well as the strain at the joint in Figure 6a, over thecross-section indicate an imperfection of the joint due to a waviness. Thus,the strain and displacement sensors, which are mounted shifted by 22.5degrees, do not show any similar trends in the distribution. The dynam-ics of the tower are studied at five preload levels (150 kN, 300kN, 450kN,640 kN and 750 kN), which are marked by the black dashed lines in Figure6. Due to the strain distribution at the joint shown in Figure 6a as well asthe displacement distribution shown in 6c, it can be assessed that only apart of the joint surface is involved in the load transfer at the lower threepreload levels.



16 Influence of system changes on closely spaced modes

4.2 Influence of the preload on the dynamics of the towerThe basics of the dynamics of the tower are initially presented using thefirst preload level of 150 kN. For further investigations, all preload levelsare used. The experiments are performed under ambient excitation, whichis mainly caused by machine equipment operating in the laboratory. Theupper part of Figure 7 shows the first two singular values in the spectralmatrix of the acceleration sensors in the frequency range from 0 Hz to45 Hz. The averaged spectrum is not used for the identification but onlyfor visualisation. In the following, the first two bending mode pairs and the
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Fig. 7 Top: Two highest singular values (SV) of the averaged spectral matrix. The identi-fication range of BAYOMA is marked with black lines. Bottom: Stabilisation diagram fromthe SSI-COV based on an unaveraged spectral matrix. The data is from a measurement at apreload level of 150 kN.
first tendon mode are evaluated. The ranges used for identification withBAYOMA are marked black in the upper diagram of Figure 7. The fre-quency ranges between 15 Hz and 20 Hz, as well as 30 Hz and 35Hz are notconsidered further, since they belong to modes where mainly the tendonis moving decoupled from the rest of the structure. The narrow peaks (e.g.between 24 and 26 Hz) in the spectrum are caused by harmonic excita-tion from aggregates located in the laboratory. In order to save computingtime, especially when using the SSI, the signals are low-pass filtered andsubsequently downsampled to 125 Hz, as the modes investigated in thisstudy are below 50 Hz. For identification using the SSI, model orders up to120 are evaluated. The covariance matrices are formed from the inverseDFT of the spectral matrices. Since BAYOMA always uses an unaveragedspectrum for the identification, the SSI is applied in the same manner. Themode selection of the SSI is done by a multi-stage clustering algorithm[25], which takes eigenvalue, frequency and damping deviation as well as
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the MAC as criteria. In contrast to [25] the MPD is not used as a crite-rion, because of the mean phases divided according to the measurementdirection. An example of an stabilisation diagram is shown in the lowerdiagram of Figure 7, where the modes are marked according to the clus-tering results. In Figure 8 the two investigated bending mode shapes ofthe tower with dominant x-direction for a preload of 150 kN identified withBAYOMA are shown. The mode shapes of the SSI are similar and there-for not shown. The tendon mode is not shown in this figure due to the

Fig. 8 Mode shape of the first two bending modes in the x-direction at 150 kN preloadidentified with BAYOMA.
low spatial sensor resolution on the tendon.The influence of the preload on the investigated natural frequenciesis shown in Figure 9. As expected, there is an almost linear relationshipbetween the preload and the first tendon mode. Thus, the imperfectionshave only a minor influence on the tendon mode, so the modes will notbe considered further in the investigations. The situation is different forthe bending modes of the tower structure. At the low preload level, thebending modes are each well separated in the frequency domain. As thepreload increases, the distance in the frequency domain between the bend-ing modes decreases. In addition, all natural frequencies increase. This
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Fig. 9 The natural frequencies identified with BAYOMA and the close mode factor as adependence on the preload levels.
effect decreases with higher preload levels. The cause of this effect is prob-ably the imperfections in the joints. With low preload, only parts of thejoint surface participate in the load transfer, which leads to an asymmetricstiffness in the bending directions. As the preload increases, a larger areacontributes to the load transfer so that the stiffness becomes more sym-metrical. Therefore the natural frequencies are getting closer. Due to thiseffect, it becomes possible to investigate the influence of closely spacedmodes on the same structure for different distances in the frequencyrange. Unlike the first pair of bending modes, the closeness of the secondbending modes increases up to a preload of 450kN and then decreasesslightly. This may be due to imperfections, but cannot be said with absolutecertainty. A comparison of the two applied identification methods usingthe B1X mode as an example is shown in Figure 10. The natural frequen-
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cies are normalised for each preload level to the median of the naturalfrequency identified with BAYOMA. The deviation of both identificationmethods is less than 0.5 % for all preload levels. Noticeable are the devia-tions of the lowest preload level. However, these are negligible comparedto the system change. Basically, both identification methods identify simi-lar natural frequencies, which correspond to the trend of Figure 9, so theobserved effect in natural frequencies does not depend on the identificationmethod.
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In the following, the mode shapes are examined in more detail. Forthis study, the MAC, S2MAC and the direction angle γ identified with BAY-OMA are used. The most probable value (MPV) and the uncertainty ofthe parameters are determined from the covariance matrices of the modeshape using a Monte Carlo method with 1000 samples each. A beta distri-bution is assumed for the MAC and S2MAC, while a normal distributionis used for the direction angle. The identification results of the first mea-surement at a preload level of 150 kN serve as the reference mode shapes.Figure 11 shows the MAC, S2MAC and direction angle for the first bending
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Fig. 11 Influence of the preload on the MAC, S2MAC and direction angle γ of the firstbending mode pair identified with BAYOMA. Red is the B1X, blue the B1Y.
mode pair. As expected, the uncertainty of the MAC as well as of the direc-tion angle increases with decreasing distance in the frequency domainand thus increasing preload. However, the uncertainty of the S2MAC staysnearly constant, while the absolute value decreases slightly. This indicatesa minor change in the MSS, which is slightly larger in the B1Y direc-tion. This observation supports the theory, that the MSS of closely spacedmodes remains relatively constant for small system changes and the mainchange is in the alignment of the mode in the MSS. Since the S2MAC onlyindicates changes in the MSS, it remains close to 1. The MAC comparestwo mode shapes so that changes in alignment are also noticeable in theMAC. The results of the modes identified with the SSI are very similar, sothey are not presented.The most significant changes of the mode shape at different preloadlevels is the direction angle γ. The trend of that angle of the modeshape identified with BAYOMA and the SSI is shown in Figure 12. As thepreload increases, the mode rotates slightly counterclockwise independentof the identification method. This supports the theoretical considerationsof Brincker et al. [8], which state that a rotation of the mode shapes in theMSS is observed in the transition from well-separated modes to closelyspaced ones. In this experiment the direction angle is nearly equivalentto the rotation angle in the MSS. It is also apparent, that the observeduncertainties are increasing.Similar results were obtained for the second bending mode pair, asshown in Figure 13. The smaller the distance in frequency space, the lowerthe MPV of the MAC value. Also, the uncertainties of the MAC as well asof the direction angles increase the closer the modes become. In contrast
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Fig. 13 Influence of the preload on the MAC, S2MAC and direction angle γ of the secondbending mode pair identified using BAYOMA. Purple is the B2X, yellow the B2Y.
to the first pair of bending modes, the B2X mode is identified more reliablyexcept for a preload of 450 kN. At this preload level, the MAC and directionangle scatters very strongly, because in this case the modes are very closelyspaced. Like the first bending mode pair, the bending mode in y-directiondeviates more from the reference MSS than the one in x-direction, whichcan be observed with the S2MAC and indicates a change of the MSS.Due to the change of the MSS compared to the reference MSS at 150kN,a part of the high alignment uncertainty also affects the S2MAC. Thus,the S2MAC becomes more uncertain with increasing preload. As with thefirst bending mode pair, mode rotation can be observed by changing thepreload, which is shown in Figure 14. In addition, a greater scatteringis also observed for closer modes. In this case, the observed clockwiserotation of the alignment of the mode correlates with the close modefactor. For higher preload levels, the median of the direction angles differsbetween the two identification algorithms for both bending mode pairs.Possible reasons are the lower energy level at higher preload levels andthe errors during the transformation of complex modes of the SSI to realones due to multiple dominant phases in the complex plane.Figure 15 shows that the uncertainty of the direction angle is mainlydependent on the close mode factor. In addition, the standard deviationof the first bending mode dominating in the x-direction is significantlyhigher than in the y-direction. For the second pair of bending modes, the
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standard deviation of the B2Y mode is higher than the one of the B2Xmode. This is consistent with the investigation in Figure 12 and Figure 14.Au et al. [4] list in their proposed uncertainty laws for closely spaced modesfurther influences on the uncertainty of the mode shape within the modesubspace, e.g. the ratio between the modal power of both modes, modaldamping, and the number of periods in the measurement time. For latterreason, the angles of the second bending mode pairs can be determinedwith less uncertainty than those of the first mode. The difference in theuncertainties of the x and y-direction occurs due to the different excitationlevels. The more excited mode with a disparity factor greater than 1 has alower standard deviation of the direction angle than the less excited mode.It is important to note that the signal to noise ratio has no influence onthe uncertainty of the mode alignment in the mode subspace, but on theidentification of the mode subspace itself [4].Theoretically, the identification uncertainty of BAYOMA should be sim-ilar to the observed uncertainty if all assumptions are satisfied and thedata sets are comparable [2]. However, despite of laboratory conditions,there are differences in the data sets, such as excitation and small tem-perature changes, so that the observed and identification uncertainty of
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BAYOMA differ. A comparison of the uncertainty of the direction angleis shown in Figure 16. Here, the boxplots correspond to the identifica-
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Fig. 16 Comparison of the identification uncertainty of BAYOMA (boxplot) and the observeduncertainty (BAYOMA: green line, SSI: magenta line) of the direction angle γ for differentpreload levels. The close mode factor e of identification results of BAYOMA is shown as well.
tion uncertainty of BAYOMA of the individual measurement data sets. Theobserved standard deviation of the entire measurement series of the MPVof BAYOMA is shown in green and of the SSI in magenta. The trend ofthe observed and identification uncertainties is the same for the studiedmodes. However, the observed uncertainties are often higher. Particularlylarge deviations of the uncertainties can be observed for lower close modefactors. The reasons are temperature as well as excitation changes in theperiod under consideration. In addition, assumptions of BAYOMA, espe-cially of the excitation, may be violated, so that the calculated uncertaintiesmay be inaccurate. Moreover, the observed uncertainty of the angle ofthe SSI is mostly higher than the one of BAYOMA. The reason for thehigher dispersion is probably the effect of the two mean phases of thecomplex mode shape in the complex plane separated by the measurementdirections, as shown in Figure 17.
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A real mode is necessary for the calculation of the direction angle. Dueto the two dominant phases in the complex plane, an error occurs in thetransformation from the complex to the real mode, which is noticeablein the alignment of the mode. A measure for the inaccuracy is the meanphase deviation (MPD), which is shown for the four observed modes inFigure 18.
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Fig. 18 Distribution of the MPD of the complex mode shape of the SSI as well as the closemode factor e as a function of the preload levels.
As expected the MPD values correlate with the close mode factor. Asshown in Figure 17, at higher preload levels each measurement directionhas a different mean phase in the complex plane. This leads to high MPDvalues and errors in the transformation into the real space. By takinginto account the measurement directions separately, the MPD becomessignificantly lower. This is shown in Figure 19 for the B1X mode. The MPD
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Fig. 19 Distribution of the MPD of the complex mode shape B1X of the SSI as well as theclose mode factor e as a function of the preload levels separated according to measurementdirections.
values in the dominant x-direction is significantly lower, which supportsthe hypothesis of two different phases in the complex plane.
5 Summary and Outlook
This study investigates the influence of small system changes on the modalparameters of a large-scale experimental prestressed concrete tower witha total height of 7.5 m. The system changes are introduced by changing thepreload, which changes the influence of the imperfections due to surfacewaviness of dry horizontal joints. To monitor the effects of the imperfec-tions at the joints, a local instrumentation encompassing strain gauges and
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laser sensors was applied to the lowest joint. With increasing preload, alarger area of the joint surface is likely to contribute to the load trans-fer. For both bending mode pairs, the respective distance between thenatural frequencies becomes smaller with increasing preload. This effectmakes it possible to experimentally investigate the influences of closelyspaced modes in more detail for the same structure. The known effectthat closer natural frequencies lead to a rotation of the mode shape inthe mode subspace could be demonstrated experimentally using BAYOMAand SSI-COV. Furthermore, it could be shown that the uncertainty of thealignment of the mode shape in the MSS increases with the closeness ofthe modes. Another influence on the uncertainty is the disparity of themodal force of the closely spaced modes, which makes the alignment ofthe more excited mode significantly more reliable to identify. The S2MACmetric, which specifically indicates changes of the mode subspace, wasfound to be a more reliable quantity than the traditional MAC metric. Evena slight change in the mode subspace due to the preload change couldbe observed using the former metric. A comparison of the observed andidentification uncertainty of BAYOMA of the direction angle shows thatwhile the trend matches, significant deviations occurred in some cases.This can be explained on the hand due to changes in excitation, tempera-ture, etc., which make the data sets not exactly comparable. On the otherhand, BAYOMA’s assumptions are almost always violated in reality, so theuncertainties are a good guide, but one should be aware that they are notnumerically exact. The investigation of the complex mode shapes of closelyspaced modes identified with the SSI-COV indicated different dominatingphases in the complex plane separated by the measurement directions.This means that greater caution is required when transforming complexclosely spaced modes into the real space. This may lead to higher uncer-tainties in the alignment of the real mode in the mode subspace comparedto BAYOMA as shown in Figure 16.The study showed that for structures, which exhibit closely spacedmodes as well as joints, the joint surface imperfections can have a greatinfluence on the modal parameters. In such cases methods that have modalparameters as input, like model updating for damage localisation, shouldtake into account the imperfections. Furthermore, metrics should be usedthat are insensitive to the slight changes in mode alignment in the MSS. Inthe future, the influence of the imperfections of real wind turbine hybridtowers should be investigated. Moreover, appropriate data normalisationmethods should be applied in order to reduce the influence of the imper-fections and environmental and operational conditions, thereby enablinga reliable damage detection.In future works on the experiment, the higher modes could be analysedusing additional excitation sources. In addition, the identification uncer-tainties of the SSI [14] should also be calculated and compared with those
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of BAYOMA, especially for closely spaced modes. The cause of the dif-ferent mean phases of the complex mode shape of closely space modesseparated by measurement direction identified with the SSI, should alsobe investigated in more detail. The experiment will be used in the futureto investigate the dynamic joint opening with a hydraulic actuator.
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