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Abstract

Concrete steel towers are increasingly being used for onshore wind
turbines. The lower part consists of separated segmented concrete
rings connected with dry joints. Due to slight deviations from the
axisymmetric cross section, closely spaced modes occur. Therefore,
the influences of small system changes on closely spaced modes, par-
ticularly the mode shapes, should be investigated to enable reliable
vibration based monitoring. In this context, the influence of imper-
fections due to the waviness of the dry joints requires attention. As
no acceleration measurements on concrete towers considering small
system changes have been performed so far, this has not yet been
investigated. Therefore, an experiment is carried out using a large-
scale laboratory model of a prestressed concrete segment tower. The
system modifications are introduced by changing the preload. This
changes the influence of imperfections of the surfaces of the horizon-
tal dry joints, estimated by measuring strain and displacement at the
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lowest joint. An increasing preload causes the first two pairs of bend-
ing modes to move closer together. This enables to study the effect
of the closeness of natural frequencies on the related mode shapes
based on the same structure. Thus, the known effects of increasing
uncertainty of the alignment and a rotation of the mode shape in the
mode subspace with closer natural frequencies can be shown experi-
mentally. In this work the operational modal analysis (OMA) methods
Bayesian-OMA (BAYOMA) and Stochastic Subspace Identification (SSI)
are used. Local imperfections can significantly affect modal parame-
ters, so these should be considered for vibration based monitoring.

Keywords: close modes, concrete steel tower, OMA, identification uncertainty

1 Introduction

In the construction of wind turbines, the tower is a decisive cost factor
due to material and transport costs. With increasing tower heights, hybrid
towers are often used for onshore wind turbines. This type of tower con-
sists of segmented concrete rings with vertical and horizontal dry joints in
the lower part and conical steel tubes in the upper part. They reach hub
heights of over 160 m [6] and can be particularly economical due to lower
transport as well as manufacturing costs compared to conventional steel
towers. The increase in economic efficiency is achieved by prefabricating
the lower tower section in segments and providing the structural integrity
by externally prestressing the concrete after stacking the segment rings.

In a segmented concrete tower, geometric and material nonlinearities
occur due to the contact at the horizontal dry joints. Due to the manu-
facturing process, the contact surface exhibits imperfections in the form
of waviness, as shown in Figure 1. The waviness leads to an uneven load
distribution between segment rings on a local level. Hence, an inhomo-
geneous stress distribution emerges at the joint, as Theiler et al. [2§]
demonstrated numerically. In a large scale laboratory experiment of a
prestressed segmented concrete tower, the inhomogeneous strain distri-
bution was detected using displacement and strain measurements at the
joint [23]. The experiments showed that while the mean value of the strain
distribution at the joint increases with the preload, the inhomogeneous
strain distribution remained qualitatively the same under varying preload.
An early damage detection for the segment joints can be achieved using a
structural health monitoring (SHM) approach. A distinction can be made
between local and global monitoring. In the case of local monitoring, mea-
surements are taken in the area of an expected damage location - for
example, concrete spalling at the dry joint. Strain gauges are often used
for this purpose. In contrast to this, global monitoring, like vibration-based,
attempts to obtain a statement about the global state of the monitored
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Fig. 1 Tllustration of the imperfection due to waviness of a dry horizontal joint.

structure on the basis of fewer sensors [16]. This makes global monitoring
significantly more cost-effective. However, measurements are more diffi-
cult to interpret and usually damages as small as with local monitoring
cannot be identified. For a global vibration-based monitoring concept of a
hybrid tower, knowledge of the influence of imperfections on the modal
parameters is necessary.

For vibration-based global monitoring, operational modal analysis
(OMA) identification methods are mostly used, as they do not require
equipping the monitored structure with additional excitation actuators like
e.g. electromagnetic shakers. A challenge that arises when monitoring
a tower structure with a symmetrical cross-section is the identification
of closely spaced bending modes. The widely used frequency domain
decomposition (FDD) method determines the modal parameters from the
singular value decomposition (SVD) of the spectral matrix [10]. Hence, the
FDD can only approximately identify the modal parameters in the case of
closely spaced modes because the excitation can usually not be modally
decoupled. An alternative frequency domain identification method is the
Bayesian operational modal analysis (BAYOMA), which is able to properly
identify closely spaced modes [3]. In addition, this method also provides
the uncertainty of modal parameters. A more detailed investigation of the
identification uncertainty of closely spaced modes when using BAYOMA
demonstrates, that mode shapes in particular are more uncertain to iden-
tify than in a well separated case [4]. However, in case of a high signal
to noise ratio (SNR), the identification of the mode subspace (MSS) is still
possible with a low uncertainty. A detailed description of the BAYOMA
method is given in Section 2.

In time domain, the stochastic subspace identification (SSI) [29] is a pop-
ular OMA method. A distinction can be made between covariance-driven
(SSI-COV) and data-driven stochastic subspace identification (SSI-DAT). In
SSI-DAT, the raw data is used as the basis for the system identification,
whereas in SSI-COV, covariance matrices are used. For both methods, it
is a challenge to distinguish physical modes from spurious modes and to
find stable paths with respect to the model order. So-called stabilisation dia-
grams and various additional algorithms are used for the mode selection,
with some of these being able to identify closely spaced modes [18, 26].
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In addition to the methods mentioned above, there are further
OMA algorithms that can identify closely spaced modes, like natural
excitation technique with eigensystem realisation (NExT ERA) [19] and
poly-reference least squares complex frequency-domain (pLSCF) [24].

In the literature, there are several examples of experimental inves-
tigations of the dynamics of structures with closely spaced modes. For
instance, a prototype of a concrete tower of a wind turbine was investigated
[12]. In that study, the cross-section was symmetrical, however the bending
modes were well-separated due to attachments mounted to the structure.
Similar results were shown in a study of a monopole telecoms structure
[20], where the expected alignment of the first mode shape due to physical
attachments also corresponds to the identified alignment. Brownjohn et al.
[11] investigated the dynamics of offshore lighthouses using BAYOMA and
also found a significant difference in the bending mode natural frequen-
cies, which are also due to attachments. However, by taking into account
the uncertainties of the mode shapes, the alignment of the mode shapes
was not necessarily the same as the visible structural symmetry. The influ-
ence of environmental conditions and damage on closely spaced modes
was investigated using the Leibniz University Test Structure for Monitor-
ing (LUMO) considering the identification uncertainties [22]. In this study,
the comparison of mode shapes with a mode subspace proved to be much
more reliable than a simple comparison of mode shapes and thus a better
damage-sensitive feature for closely spaced modes. Dooms et al. examined
a silo using the SSI and found out that in case of closely spaced modes,
complex mode shapes occur that have no dominant phase in the complex
plane[15]. A similar observation was made when examining a steel mast
[27].

In this work the investigations of the influence small system changes on
modal parameters, in particular on the mode alignment, of closely spaced
modes are carried out on a large scaled prestressed concrete tower with
horizontal dry joints in a laboratory. This makes it possible to selectively
insert system changes, such as changes of the preload. At the same time,
undesirable influences, such as temperature changes and operational con-
ditions, can be largely avoided. Due to the symmetrical tower structure
closely spaced modes occur, which can be influenced by system changes.
For the identification OMA methods are used, because they are suitable for
real-world applications, as they do not require knowledge of the excitation.
The excitation in the experiment takes place from the ambient influences
from the laboratory and is not measured.

BAYOMA is used as the identification method, since an uncertainty
calculation can be carried out. This allows a more precise investigation of
closely spaced modes and the influence of smallest system changes. To
verify that the effects to be observed are not caused by the identification
method, the results are compared with the SSI-COV. In order to be able
to estimate the changes in the imperfections due to the change of the
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preload, local monitoring of the lowest joint is also evaluated on the basis
of strain and displacement measurements. In the following chapter, the
two identification methods are described in more detail and the special
characteristics of closely spaced modes are discussed. Chapter 3 describes
the experiment and the results are presented in Chapter 4. Afterwards,
the study will be summarised and an outlook will be given.

2 Operational Modal Analysis

For vibration-based monitoring of large structures, OMA is usually
employed. Unlike experimental modal analysis, the excitation is unknown
[9]. Instead, it is assumed that the structure is excited with a distributed
stochastic force f, which exhibits a white noise spectrum in the considered
frequency range. The structural responses (displacements u, velocities
u and accelerations ii) of a linear time invariant mechanical structure
to such a force is expressed using the equation of motion for a n
degree-of-freedom (DOF) system

Mii + Cu + Ku = f, (1)

with M, C and K as mass -, damping- and stiffness matrices. For the case of
modal damping, the system can be modally decoupled with u = ®q, where
® is the modal matrix, that contains n mode shape vectors ® = [¢@,...@,]
and the modal coordinate vector q. The decoupled equation of motion for
each mode corresponds to that of a single DOF system

d; + 4Ctfosqy + 47°fq; = py (2)

where p; is the modal force, ¢; is the modal damping and fo; the natu-
ral frequency of the system. BAYOMA uses modal decoupling, which is
described in the following subsection. In contrast, the SSI-COV identifies
a state space model for the system. This method will be briefly explained
in subsection 2.2.

2.1 Bayesian operational modal analysis

The basic idea of BAYOMA was introduced by Yuen et al. [31]. The method
has been improved by Au et al. [3, 2] by reducing the number of design vari-
ables of the underlying numerical optimisation problem in case of many
measurement degrees of freedom or closely spaced modes. In this chap-
ter, an insight into the method is given. More information can be found in
the corresponding literature e.g. [5].

The scaled discrete Fourier transformation (DFT) & of a measured
Gaussian distributed acceleration signal it with Nchanner channels, Ngata
data points and a sampling rate fs with the corresponding frequency point
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fk = kfs/Ndata is

N, a(a"i
F, = g:(f ) _ 1 d§ : s —27TijR/Ngata (3)
= k) = Nd ) f u,e ’
atals i—0

where i is the imaginary number. In case of a high sampling rate and a
long data duration, the DFT is asymptotically independent and Gaussian
distributed at different frequencies. In the case of N o4es dominant modes
in the considered frequency range, the model of the DFT is

Nmodes
. 1 foj
Fp = hipsip + € th hy = ———— and B = —, 4
k ?_1 @jhjesje + € with hj = 27— PRI B f, (4)

where ¢@; is the unit norm mode shape vector, s, is the modal force in
the frequency domain, € is the modelling error and hj, is the transfer
function of a damped 1-DOF system for acceleration responses. Assuming
that the power spectral density (PSD) of the model error S, is the same
for all channels and the model error as well as the hermitian PSD matrix
of the modal force S is constant in the considered frequency range, the
expected value of the PSD is

Nmodes Nmodes

EL(©) = E[FF;®] = Y Y hirh}Sim@@n + Selncyma
j=1 m=1

= (ka(bT + Se I”Channe!
with Hk = diag([hl,k e thodesrk]) S diag([hlyk e thodesrk])*' (5)

Thus, E(®) corresponds to the theoretical PSD of the modal parameters
® and corresponds to the covariance matrix of Fj. For two dominant
modes, Equation 5 is dependent on 9 + 2nchannel parameters

® = [@], @1, for, foz, 1, €, St1, Sa, Re(S1a), Im(Sys), Sel- (6)

In the special case of incoherence of the modal force, the modal force
matrix S is a diagonal matrix, so that the modes can be perfectly decoupled.
In this case, extensions of the FDD could also identify the closely spaced
modes without a bias. Applying the special case of Bayes’ theorem, where
the prior of the modal parameters is uniformly distributed, results in the
posterior being proportional to the likelihood.

The negative loglikelihood function (NLLF) L for a multivariate Gaus-
sian distribution is

Ny Ny
L(®) = NchannetNfINT + Y " In|Ex(®)] + Y | FLEL(®) ' F, (7)
k=1 k=1
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where Ny is the number of considered frequency points. The most prob-
able values (MPV) of the modal parameters can then be obtained by
minimising the NLLF and therefore solving for ©.

With an increasing number of sensors, the number of parameters to
be identified increases according to Equation 6. To make the number of
design parameters independent of the number of sensors, the mode shape
subspace (MSS) is determined before starting the optimisation. The MSS
is a subspace spanned by the m dominating mode shapes. To obtain the
dominating mode shapes for the MSS the real part of the spectral matrix
can be summed up over the frequency range of interest, assuming that
the mode shape is real-valued

Ny
D =) Re(F,Fj). (8)
k=1

The dominating mode shapes can be obtained by an eigenvalue decom-
position. In the case of two modes, the MSS ¥, 5 is determined from the
unit norm eigenvectors ¥ of the two highest eigenvalues. The subsequent
optimisation only needs to determine the rotation angle a4 and ay, of the
modes in the MSS to obtain the mode shapes ® = ¥, ,T(ay, as) using the
transformation matrix T

T(ay, ag) = 9)

cos(ay) cos(ay)
sin(ay) sin(ag)] )

This converts the expected value of Equation 5 into
Ep(®,) = W1 oTH(¥1,T)" + S VI, ¥,

with @y = [a1, ag, for, fo2, €1, Co, Si1, Soo, Re(S9), Im(Syy), Se]. Due to the
transformation matrix, the unit length constraint is satisfied. Thus, 11
parameters are to be identified regardless of the number of sensors. Note
that the mode shapes are not necessarily orthogonal due to the chosen
sensor positions and measuring directions. An efficient way of solving this
optimisation problem, as well as adjusting the mode subspace for very
noisy data, can be found in [3].

Given the assumed Gaussian distribution, the posterior covariance of
the modal parameters is calculated from the inverse Hessian matrix of the
NLLF (Equation 7) with the excepted value of Equation 5 at the MPV. The
mode shapes are constraint to unit norm in BAYOMA. The consideration
of this constraint in the derivation, as well as the possibility of the numer-
ical and analytical double derivation, is described in [2]. The roots of the
diagonal entries are the standard deviation of the corresponding modal
parameters.
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2.2 SSI-COV

In the stochastic subspace identification the system is modelled as a linear
time-invariant discrete-time stochastic state space model

Xpi1 = Axp + wy (10)
Y, =Cxp + v

with the state matrix A, the output matrix C, the discrete-time state vec-
tor xp and the discrete-time output vector y, [7]. The unknown input is
modelled by the process noise w, and the measurement noise vg. Both
are assumed to be zero mean, uncorrelated and possessing a white noise
power spectral density.

The modal parameters are calculated from the state matrix A and the
output matrix C. This is accomplished by determining the eigenvalues p;
and eigenvectors 0; of A and deriving the continuous-time eigenvalues A;
using A; = In (p;)fs.

The modal parameters, i.e. the natural frequencies f;, damping ratios
¢; and mode shapes ¢;, can then be obtained with

il —Re(};)
fi= o =
The various SSI algorithms are classified in the literature as covariance-
driven SSI or data-driven SSI [9]. The main difference between these
approaches is the formulation of the subspace matrix ¥C, from which the
observability matrix O can be obtained. In this study, the SSI-COV is used
for the system identification. In that case the matrix ¥C with [ block rows
and m block columns is assembled from the covariance matrices Ry (i)

9; = C6,. (11)

Ro1) Ry(2) ... Rym)

R Ry(3) ... Ry(m+1)

I = : : . : : (12)
Ry(I) Ryl +1) ... Ry(l+m —1)

The subspace matrix ¥C can be expressed as the matrix product
FC = OF, using the observability matrix O and a matrix &. The observ-
ability matrix is defined as

C
o-| 4. (13)
CA1~1
A singular value decomposition (SVD) is used to obtain 9C = USVT,
which enables solving for the matrices O and 3

O = US'? and 5 = S'?V7. (14)
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The system matrix A can be constructed by removing one block from
the top and one block from the bottom of O. In the first block of O the
output matrix C can be found [7].

In contrast to BAYOMA, the elements of the mode shape vectors iden-
tified using SSI are complex-valued. In case of a modally damped system,
the mode shape is therefore oriented in a straight line in the complex
plane at an angle called mean phase (MP) [25]

MP(g;) = arctan <_v2;2> with USV" = [Re(g;) Im(g;)], (15)

where USVT is the SVD. Vj, as well as Vs, are the corresponding elements
of the matrix V. Using the mean phase, the mode can then be rotated to
the real axis accordingly

Pjreal = Re <(pje_i MP) . (16)

In this process, deviations from the mean phase lead to inaccuracies. The
mean phase deviation (MPD) metric

(p]k)VQQ Im ((p]k)V12

Y ket ‘(pjk‘ arccos
"P}k‘ VYV T+ Vo
Zk=1 |‘ij‘
has been established as a quality criterion for identified mode shapes
[25]. In Equation 17, n is the number of elements of the mode shape ¢;.
Closely spaced modes can be detrimental to the mode shape identification

and should be considered when using this established procedure. Further
details are described in the next section.

MPD(g;) = (17)

2.3 Special aspects of closely spaced modes

There are several metrics for determining the closeness of natural fre-
quencies [30, 4], which are mathematically similar. In this paper the
formulation by Au et al. [4] is chosen, because it is usually used in context
of BAYOMA. The closeness of two modes can be expressed using the dis-
tance in terms of the frequency as well as the half-width of both modes.
Therefore, in addition to the natural frequencies, the damping ratios are
necessary to determine the closeness. For nearly equally damped modes,
the close mode factor e; for mode j can be calculated as follows

_|fe =i .

18
e (18)

j
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In this study the close mode factor e of a mode pair j and k is calculated
as the mean value of e; and e. A visualisation of the PSD of two modes
with different close mode factors is shown in Figure 2. For e < 1, the
natural frequencies of the modes are within the half-power width of each
other. This range is referred to as closely spaced modes in the following.
From about e > 10 onwards, the modes are clearly well-separated. In the
extreme case of two equal natural frequencies e = 0, a double eigenvalue
problem occurs. In this case, every linear combination of the two eigen-

e=0.5 e=1 e=5 e=10
o a [} o
%) %] %) 7]
o o o o
Frequency Frequency Frequency Frequency

Fig. 2 A visualisation of the PSD of two modes with different close mode factors

vectors is also a eigenvector of the system, so that only the mode subspace
(MSS) can be uniquely determined. A visualisation of the MSS for the first
bending mode of a cantilever beam, spanned by the two linearly indepen-
dent vectors ¥, and ¥, is given in Figure 3. Another possible eigenvector

is ¢;.

Fig. 3 Visualisation of the mode subspace (MSS) from the first bending mode pair [¥,,,]
of a cantilever structure. Another possible mode shape ¢; is shown in green.

Usually, the frequencies are not exactly the same in real-world engi-
neering structures. Theoretical considerations show that small mass and
stiffness changes lead to rotations of mode shapes of very closely spaced
modes within the MSS [8]. A more detailed investigation of the identifi-
cation uncertainty of closely spaced modes demonstrates, that the mode
shape in particular is more uncertain to identify than other modal param-
eters [4]. In case of a high signal to noise ratio (SNR) the identification
of the MSS is possible with a very low uncertainty. The main part of the
uncertainty of the mode shape is orthogonal to the MSS and corresponds
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to the position in the MSS. This uncertainty is independent of the SNR and
depends mainly on the close mode factor e as well as the disparity factor
d, which describes the ratio of the modal forces of the two modes
Sjj
djp = Set’ (19)
where §;; is the modal force of the considered mode j and S, the modal
force of the neighbouring mode k. The closer the modes and the smaller
the disparity factor, the more uncertain is the position of the mode shape
j in the MSS. For this reason, the well known modal assurance criterion
(MAC) [1]
2
“P?‘Pk‘
¢l 90! @,
is prone to high uncertainties for closely spaced modes. Therefore, Gres
et al. [17] propose to employ a scaled and shifted x? distribution for the
comparison of two almost equal modes considering their uncertainties. In
the case of closely spaced modes, a beta distribution is better suited to
describe the resulting probability density function [22].
A modification to MAC for comparing closely spaced modes is the
subspace of order 2 modal assurance criterion (S2MAC) [13]. The S2MAC
compares a subspace spanned by two mode shapes [¢,¥,,] with a mode

shape vector ¢;. For real-valued unit norm modes, such as those resulting
from BAYOMA identification, the S2MAC can be calculated as

MAC; ; = (20)

T 2 _ T T T T 2
SQMACj‘k'm _ ((p] wk) 2((p] wk)(wk d)m)((p] Ibm) + (‘p] d)m) ) (21)

1- (¢I£¢m)2

Similar to the distribution of the MAC, the distribution of the S2MAC can
be expressed as a beta distribution.

In this paper a tower with closely spaced bending modes is examined.
The vibration is measured in x- and y-direction in all measuring levels
(ML). Accordingly, the direction angle v of a mode shape can be calculated
analogously to the MP in Equation 15

12) with USV” = [@, ¢,], (22)
Voo

v = arctan <
where @, are the entries of the mode shape in x-direction, and ¢,, are the
entries of the mode shape in y-direction. For bending modes, the angle
corresponds to the alignment of the mode shape in the MSS and is accord-
ingly subject to higher uncertainty. The distribution of the direction angle
can be modelled as a Gaussian distribution.

In order to compare the mode shapes identified with BAYOMA and
SSI-CQOV, the complex mode shapes have to be transformed to real mode
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shapes. In the case of closely spaced modes, greater care is required. The
mode shapes are often not on one straight line in the complex plane.
In the case of a nearly axisymmetric structure, a circle was observed in
the complex plane [15]. The measurement was taken at one height at six
different angles in radial direction of the structure to investigate wineglass
modes. To monitor bending modes, in many applications two sensors are
used at one height, which measure at 90° to each other. If measurements
are situated at different heights, two dominant lines are observed — one
for every measurement direction — in the complex plane for each mode
shape in the case of closely spaced modes. This will be shown in more
detail in Chapter 4.

When converting the mode into real space according to Equation 16,
this can lead to an incorrect alignment of the mode. As a result, the
direction angle 7y can be incorrect. When comparing with a mode sub-
space using the S2MAC, the error has no influence. One indicator of the
phenomenon is the MPD. When separate mean phases occur for each
measured spatial direction the MPD increases.

3 Investigated structure

The experiment took place at the Test Centre Support Structures located
at the Leibniz University of Hannover. The investigated prestressed rein-
forced concrete tower consists of 16 conical concrete ring segments
(designated E1 to E16) with a total height of 7.5m and is shown in Figure
4. Each individual segment has a wall thickness of 4 cm and a compressive
strength of 77 MPa. The lowest concrete ring is fixed to the foundation by
a high-strength mortar. A steel cross serves as the upper tower termina-
tion, which is joined to the uppermost concrete ring segment by a steel
insert. To preload the joints, a tendon is used in the tower centre, which is
anchored to the foundation and to the head construction. In addition, the
foundation is attached to the clamping field with four steel anchors. The
pre-tension force applied is about 300 kN per steel anchor.

In this experiment, local joint monitoring at the lowest joint, as well as
global monitoring of tower and tendon dynamics are investigated. Low-
noise IEPE accelerometers with a customised IEPE signal conditioner with
a high-pass filter cut-off frequency of 0.0106 Hz are used to measure the
dynamics of the tower [21]. Two accelerometers are mounted on each
concrete segment in the x and y-direction to investigate the bending modes
of the tower.

To determine the preload, four electrical strain gauges are installed on
the tendon. In addition, 3 acceleration sensors are attached to the steel to
determine the natural frequencies of the tendon.

It is expected, that the highest imperfections of the surface of the dry
joint can be observed between segment E16 and E15 due to the largest joint
surface. Therefore, sensors for local monitoring are installed at the lowest
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structural
element:
El

E4
ES

E6
E7

E8

7,00 m

E9

E10

E11 @ IEPE accelerometer on steel

@ IEPE accelerometer on concrete
[ distance laser

E13 ‘ Strain gauge at E15

* Strain gauge at E16

+ Strain gauge on steel

E12

E14
E15
E16

S
100cm
Fig. 4 Sensor setup attached to the tower. Left: Picture of the tower, center: sketch of the

tower with measuring positions, top right: strain gauge on the tendon, center right: IEPE
accelerometer

joint between segment E16 and E15. The changes in strain distribution in
z-direction over the circumference of the ring segment are recorded by
selectively arranging strain gauges placed in the immediate vicinity of the
joint (blue diamonds in Figure 5) as well as at a distance of 20m from the
joint (red stars in Figure 5). In addition, laser sensors distributed around
the circumference above the strain gauges on segment E16 measure the
change in displacement due to changing preload from 15mm above to
15mm below the joint. The detailed arrangement of the sensor setup at the
segments E15/E16 is shown in Figure 5. It should be noted that at segment
E16, the strain gauge failed at 73 degrees.
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270°

@ IEPE accelerometer
[J distance laser

€ Strain gauge at E15 315°
¥ Strain gauge at E16

292,5°

337,5° 0° 22,5°

Fig. 5 Displacement laser sensors and strain gauges at the joint between segment E15 and
E16. The colour gradient in the right shows the colours for the different sensor positions for
Figure 6.

4 Results

In this section, the influence of preload on the natural frequencies and
mode shapes is investigated in more detail. In the following, a credible
interval encompassing two standard deviations is used for the uncertainties
of the natural frequencies and the direction angle in the figures. This
corresponds approximately to a 95% credible interval, which is used to
display MAC and S2MAC.

For each preload level, 40 data sets are evaluated. The measurement
time for each data set is 10 minutes and the signals were recorded using
a sampling rate of 1000 Hz and a 24bit digital to analogue converter.

4.1 Influence of the preload on the joint

An important parameter for segmented towers is the preload. The preload
F, can be determined from the strain gauges on the tendon

F, p = €meas Esteet Asteel, (23)

where Egee is the Young’s modulus of steel, €,¢45 is the measured strain on
the tendon and Ay is the effective cross-sectional area. The dependence
of the strain on the preload close to the lowest joint and in the middle of
the ring segment E16 is shown in Figure 6.

The strain measurements, shown in Figure 6a, imply that the load
transfer between the joint starts at different preload levels at the differ-
ent measurement points. This is indicative of unevenness in the joint and
is consistent with the results of Klein et al. [23]. The expected linear rela-
tionship sets in at a preload level above 500 kN for all strain gauges. The
strain distribution is more homogeneous in the middle of segment E16
(Figure 6b), which is evident from a linear relationship between strain and
preload at lower preload levels. Nevertheless, there are deviations in the
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Fig. 6 Dependence of strain and displacement in z-direction on the preload

strain distribution over the entire cross-section, which can be caused by
an inhomogeneous material. In addition, it can also be the effect of the
imperfection of the joint. In Figure 6¢c, the laser measurements initially
show large increase in displacement at low preloads, which changes to the
expected linear relationship as the preload increases. The higher increase
in displacement at low preload compared to higher preload mainly occurs
due to the closing of the joint. At higher preload, the linear behaviour
is caused mainly by the straining of the concrete. The deviations of the
displacements, as well as the strain at the joint in Figure 6a, over the
cross-section indicate an imperfection of the joint due to a waviness. Thus,
the strain and displacement sensors, which are mounted shifted by 22.5
degrees, do not show any similar trends in the distribution. The dynam-
ics of the tower are studied at five preload levels (150 kN, 300 kN, 450 kN,
640 kN and 750 kN), which are marked by the black dashed lines in Figure
6. Due to the strain distribution at the joint shown in Figure 6a as well as
the displacement distribution shown in 6¢, it can be assessed that only a
part of the joint surface is involved in the load transfer at the lower three
preload levels.
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4.2 Influence of the preload on the dynamics of the tower

The basics of the dynamics of the tower are initially presented using the
first preload level of 150 kN. For further investigations, all preload levels
are used. The experiments are performed under ambient excitation, which
is mainly caused by machine equipment operating in the laboratory. The
upper part of Figure 7 shows the first two singular values in the spectral
matrix of the acceleration sensors in the frequency range from OHz to
45Hz. The averaged spectrum is not used for the identification but only
for visualisation. In the following, the first two bending mode pairs and the
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Model order

Fig. 7 Top: Two highest singular values (SV) of the averaged spectral matrix. The identi-
fication range of BAYOMA is marked with black lines. Bottom: Stabilisation diagram from
the SSI-COV based on an unaveraged spectral matrix. The data is from a measurement at a
preload level of 150 kN.

first tendon mode are evaluated. The ranges used for identification with
BAYOMA are marked black in the upper diagram of Figure 7. The fre-
quency ranges between 15 Hz and 20 Hz, as well as 30 Hz and 35 Hz are not
considered further, since they belong to modes where mainly the tendon
is moving decoupled from the rest of the structure. The narrow peaks (e.g.
between 24 and 26 Hz) in the spectrum are caused by harmonic excita-
tion from aggregates located in the laboratory. In order to save computing
time, especially when using the SSI, the signals are low-pass filtered and
subsequently downsampled to 125 Hz, as the modes investigated in this
study are below 50 Hz. For identification using the SSI, model orders up to
120 are evaluated. The covariance matrices are formed from the inverse
DET of the spectral matrices. Since BAYOMA always uses an unaveraged
spectrum for the identification, the SSI is applied in the same manner. The
mode selection of the SSI is done by a multi-stage clustering algorithm
[25], which takes eigenvalue, frequency and damping deviation as well as



Influence of system changes on closely spaced modes 17

the MAC as criteria. In contrast to [25] the MPD is not used as a crite-
rion, because of the mean phases divided according to the measurement
direction. An example of an stabilisation diagram is shown in the lower
diagram of Figure 7, where the modes are marked according to the clus-
tering results. In Figure 8 the two investigated bending mode shapes of
the tower with dominant x-direction for a preload of 150 kN identified with
BAYOMA are shown. The mode shapes of the SSI are similar and there-
for not shown. The tendon mode is not shown in this figure due to the
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Fig. 8 Mode shape of the first two bending modes in the x-direction at 150 kN preload
identified with BAYOMA.

low spatial sensor resolution on the tendon.

The influence of the preload on the investigated natural frequencies
is shown in Figure 9. As expected, there is an almost linear relationship
between the preload and the first tendon mode. Thus, the imperfections
have only a minor influence on the tendon mode, so the modes will not
be considered further in the investigations. The situation is different for
the bending modes of the tower structure. At the low preload level, the
bending modes are each well separated in the frequency domain. As the
preload increases, the distance in the frequency domain between the bend-
ing modes decreases. In addition, all natural frequencies increase. This
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Fig. 9 The natural frequencies identified with BAYOMA and the close mode factor as a
dependence on the preload levels.

effect decreases with higher preload levels. The cause of this effect is prob-
ably the imperfections in the joints. With low preload, only parts of the
joint surface participate in the load transfer, which leads to an asymmetric
stiffness in the bending directions. As the preload increases, a larger area
contributes to the load transfer so that the stiffness becomes more sym-
metrical. Therefore the natural frequencies are getting closer. Due to this
effect, it becomes possible to investigate the influence of closely spaced
modes on the same structure for different distances in the frequency
range. Unlike the first pair of bending modes, the closeness of the second
bending modes increases up to a preload of 450kN and then decreases
slightly. This may be due to imperfections, but cannot be said with absolute
certainty. A comparison of the two applied identification methods using
the B1X mode as an example is shown in Figure 10. The natural frequen-
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Fig. 10 Comparison of B1X natural frequency identified with BAYOMA (blue) and SSI-COV

(red). For normalisation, the median of the natural frequency identified with BAYOMA is used
for each preload level.

normalised f

cies are normalised for each preload level to the median of the natural
frequency identified with BAYOMA. The deviation of both identification
methods is less than 0.5 % for all preload levels. Noticeable are the devia-
tions of the lowest preload level. However, these are negligible compared
to the system change. Basically, both identification methods identify simi-
lar natural frequencies, which correspond to the trend of Figure 9, so the
observed effect in natural frequencies does not depend on the identification
method.
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In the following, the mode shapes are examined in more detail. For
this study, the MAC, S2MAC and the direction angle 7 identified with BAY-
OMA are used. The most probable value (MPV) and the uncertainty of
the parameters are determined from the covariance matrices of the mode
shape using a Monte Carlo method with 1000 samples each. A beta distri-
bution is assumed for the MAC and S2MAC, while a normal distribution
is used for the direction angle. The identification results of the first mea-
surement at a preload level of 150 kN serve as the reference mode shapes.
Figure 11 shows the MAC, S2MAC and direction angle for the first bending

200
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Fig. 11 Influence of the preload on the MAC, S2MAC and direction angle 7y of the first
bending mode pair identified with BAYOMA. Red is the B1X, blue the B1Y.

mode pair. As expected, the uncertainty of the MAC as well as of the direc-
tion angle increases with decreasing distance in the frequency domain
and thus increasing preload. However, the uncertainty of the S2MAC stays
nearly constant, while the absolute value decreases slightly. This indicates
a minor change in the MSS, which is slightly larger in the B1Y direc-
tion. This observation supports the theory, that the MSS of closely spaced
modes remains relatively constant for small system changes and the main
change is in the alignment of the mode in the MSS. Since the S2MAC only
indicates changes in the MSS, it remains close to 1. The MAC compares
two mode shapes so that changes in alignment are also noticeable in the
MAC. The results of the modes identified with the SSI are very similar, so
they are not presented.

The most significant changes of the mode shape at different preload
levels is the direction angle 7. The trend of that angle of the mode
shape identified with BAYOMA and the SSI is shown in Figure 12. As the
preload increases, the mode rotates slightly counterclockwise independent
of the identification method. This supports the theoretical considerations
of Brincker et al. [8], which state that a rotation of the mode shapes in the
MSS is observed in the transition from well-separated modes to closely
spaced ones. In this experiment the direction angle is nearly equivalent
to the rotation angle in the MSS. It is also apparent, that the observed
uncertainties are increasing.

Similar results were obtained for the second bending mode pair, as
shown in Figure 13. The smaller the distance in frequency space, the lower
the MPV of the MAC value. Also, the uncertainties of the MAC as well as
of the direction angles increase the closer the modes become. In contrast



20 Influence of system changes on closely spaced modes

150 kN, e=7.2 300 kN, e=2.6 450 kN, e=1.3 640 kN, e=1.1 750 kN, e=0.68
y

BAYOMA .
ssl J e

Fig. 12 Direction angle 7 of the first bending mode pair at different preload levels with the
median of the corresponding close mode factors e calculated from BAYOMA identifications.
Dots are single measured values, lines correspond to the 25-75 percent percentile and the
dashed line to the median. Red is the B1X, blue the B1Y. The upper line represents the
identification with BAYOMA, the lower with the SSI.

~in degree

150 300 450 640 150 300 450 640 150 300 450 640
Preload in kN Preload in kN Preload in kN

Fig. 13 Influence of the preload on the MAC, S2MAC and direction angle y of the second
bending mode pair identified using BAYOMA. Purple is the B2X, yellow the B2Y.

to the first pair of bending modes, the B2X mode is identified more reliably
except for a preload of 450 kN. At this preload level, the MAC and direction
angle scatters very strongly, because in this case the modes are very closely
spaced. Like the first bending mode pair, the bending mode in y-direction
deviates more from the reference MSS than the one in x-direction, which
can be observed with the S2MAC and indicates a change of the MSS.
Due to the change of the MSS compared to the reference MSS at 150kN,
a part of the high alignment uncertainty also affects the S2MAC. Thus,
the S2MAC becomes more uncertain with increasing preload. As with the
first bending mode pair, mode rotation can be observed by changing the
preload, which is shown in Figure 14. In addition, a greater scattering
is also observed for closer modes. In this case, the observed clockwise
rotation of the alignment of the mode correlates with the close mode
factor. For higher preload levels, the median of the direction angles differs
between the two identification algorithms for both bending mode pairs.
Possible reasons are the lower energy level at higher preload levels and
the errors during the transformation of complex modes of the SSI to real
ones due to multiple dominant phases in the complex plane.

Figure 15 shows that the uncertainty of the direction angle is mainly
dependent on the close mode factor. In addition, the standard deviation
of the first bending mode dominating in the x-direction is significantly
higher than in the y-direction. For the second pair of bending modes, the
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Fig. 14 Direction angle 7y of the second bending mode pair at different preload levels with
the median of the the corresponding close mode factors e calculated from BAYOMA identi-
fications. Dots are single measured values, lines correspond to the 25-75 percent percentile
and the dashed line to the median. Purple is the B2X, yellow the B2Y. The upper line repre-
sents the identification with BAYOMA, the lower with the SSI.
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Fig. 15 Standard deviation of the direction angle y of the mode shape as a dependence of
the close mode factor e and the disparity factor d on the modal forces.

standard deviation of the B2Y mode is higher than the one of the B2X
mode. This is consistent with the investigation in Figure 12 and Figure 14.
Au et al. [4] list in their proposed uncertainty laws for closely spaced modes
further influences on the uncertainty of the mode shape within the mode
subspace, e.g. the ratio between the modal power of both modes, modal
damping, and the number of periods in the measurement time. For latter
reason, the angles of the second bending mode pairs can be determined
with less uncertainty than those of the first mode. The difference in the
uncertainties of the x and y-direction occurs due to the different excitation
levels. The more excited mode with a disparity factor greater than 1 has a
lower standard deviation of the direction angle than the less excited mode.
It is important to note that the signal to noise ratio has no influence on
the uncertainty of the mode alignment in the mode subspace, but on the
identification of the mode subspace itself [4].

Theoretically, the identification uncertainty of BAYOMA should be sim-
ilar to the observed uncertainty if all assumptions are satisfied and the
data sets are comparable [2]. However, despite of laboratory conditions,
there are differences in the data sets, such as excitation and small tem-
perature changes, so that the observed and identification uncertainty of
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BAYOMA differ. A comparison of the uncertainty of the direction angle
is shown in Figure 16. Here, the boxplots correspond to the identifica-

Mode B1Y Mode B1X Mode B2Y Mode B2X
10 10 5
+
2l Il % 2 2l g
QL — ssl } 8 Q 118 o] 4 Q R 4
8 sl | 8 sl | Tz 8 15l | + 8 15
) F‘ﬁ 6 s _ 1 -+ 16 S | _ 3 s + 3
° | i‘r u GRS N ’J—‘ L1 ' T = —| o + o
e 10 o 4 £ 10 = 4 c 10 — El 2 g 10 \ 2
S 8 : S aH-Y S =g o L+
5 N 2 5 N 1 5 5 — T L % | 5 B P
§, ES Yo %\ o—a ~ %
— o— o — - o - ©7 + B
= 0 0 0 0 0 o= 0
150 300 450 640 750 150 300 450 640 750 150 300 450 640 750 150 300 450 640 750
Preload in kN Preload in kN Preload in kN Preload in kN

Fig. 16 Comparison of the identification uncertainty of BAYOMA (boxplot) and the observed
uncertainty (BAYOMA: green line, SSI: magenta line) of the direction angle y for different
preload levels. The close mode factor e of identification results of BAYOMA is shown as well.

tion uncertainty of BAYOMA of the individual measurement data sets. The
observed standard deviation of the entire measurement series of the MPV
of BAYOMA is shown in green and of the SSI in magenta. The trend of
the observed and identification uncertainties is the same for the studied
modes. However, the observed uncertainties are often higher. Particularly
large deviations of the uncertainties can be observed for lower close mode
factors. The reasons are temperature as well as excitation changes in the
period under consideration. In addition, assumptions of BAYOMA, espe-
cially of the excitation, may be violated, so that the calculated uncertainties
may be inaccurate. Moreover, the observed uncertainty of the angle of
the SSI is mostly higher than the one of BAYOMA. The reason for the
higher dispersion is probably the effect of the two mean phases of the
complex mode shape in the complex plane separated by the measurement
directions, as shown in Figure 17.

Im(¢)
Im(¢)

Re(s) T Re)

Fig. 17 Illustration of two B1X modes of two different preload levels in the complex plane
separated according to measurement directions. On the left for a mode at a preload level of
150 kN, that the MP is almost identical to the MP in the dominant direction. On the right for
a mode at a preload level of 750 kN, where two lines exist in the complex plane.
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A real mode is necessary for the calculation of the direction angle. Due
to the two dominant phases in the complex plane, an error occurs in the
transformation from the complex to the real mode, which is noticeable
in the alignment of the mode. A measure for the inaccuracy is the mean
phase deviation (MPD), which is shown for the four observed modes in
Figure 18.
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Fig. 18 Distribution of the MPD of the complex mode shape of the SSI as well as the close
mode factor e as a function of the preload levels.

As expected the MPD values correlate with the close mode factor. As
shown in Figure 17, at higher preload levels each measurement direction
has a different mean phase in the complex plane. This leads to high MPD
values and errors in the transformation into the real space. By taking
into account the measurement directions separately, the MPD becomes
significantly lower. This is shown in Figure 19 for the B1X mode. The MPD
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Fig. 19 Distribution of the MPD of the complex mode shape B1X of the SSI as well as the
close mode factor e as a function of the preload levels separated according to measurement
directions.
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values in the dominant x-direction is significantly lower, which supports
the hypothesis of two different phases in the complex plane.

5 Summary and Outlook

This study investigates the influence of small system changes on the modal
parameters of a large-scale experimental prestressed concrete tower with
a total height of 7.5 m. The system changes are introduced by changing the
preload, which changes the influence of the imperfections due to surface
waviness of dry horizontal joints. To monitor the effects of the imperfec-
tions at the joints, a local instrumentation encompassing strain gauges and
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laser sensors was applied to the lowest joint. With increasing preload, a
larger area of the joint surface is likely to contribute to the load trans-
fer. For both bending mode pairs, the respective distance between the
natural frequencies becomes smaller with increasing preload. This effect
makes it possible to experimentally investigate the influences of closely
spaced modes in more detail for the same structure. The known effect
that closer natural frequencies lead to a rotation of the mode shape in
the mode subspace could be demonstrated experimentally using BAYOMA
and SSI-COV. Furthermore, it could be shown that the uncertainty of the
alignment of the mode shape in the MSS increases with the closeness of
the modes. Another influence on the uncertainty is the disparity of the
modal force of the closely spaced modes, which makes the alignment of
the more excited mode significantly more reliable to identify. The S2MAC
metric, which specifically indicates changes of the mode subspace, was
found to be a more reliable quantity than the traditional MAC metric. Even
a slight change in the mode subspace due to the preload change could
be observed using the former metric. A comparison of the observed and
identification uncertainty of BAYOMA of the direction angle shows that
while the trend matches, significant deviations occurred in some cases.
This can be explained on the hand due to changes in excitation, tempera-
ture, etc., which make the data sets not exactly comparable. On the other
hand, BAYOMA's assumptions are almost always violated in reality, so the
uncertainties are a good guide, but one should be aware that they are not
numerically exact. The investigation of the complex mode shapes of closely
spaced modes identified with the SSI-COV indicated different dominating
phases in the complex plane separated by the measurement directions.
This means that greater caution is required when transforming complex
closely spaced modes into the real space. This may lead to higher uncer-
tainties in the alignment of the real mode in the mode subspace compared
to BAYOMA as shown in Figure 16.

The study showed that for structures, which exhibit closely spaced
modes as well as joints, the joint surface imperfections can have a great
influence on the modal parameters. In such cases methods that have modal
parameters as input, like model updating for damage localisation, should
take into account the imperfections. Furthermore, metrics should be used
that are insensitive to the slight changes in mode alignment in the MSS. In
the future, the influence of the imperfections of real wind turbine hybrid
towers should be investigated. Moreover, appropriate data normalisation
methods should be applied in order to reduce the influence of the imper-
fections and environmental and operational conditions, thereby enabling
a reliable damage detection.

In future works on the experiment, the higher modes could be analysed
using additional excitation sources. In addition, the identification uncer-
tainties of the SSI [14] should also be calculated and compared with those
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of BAYOMA, especially for closely spaced modes. The cause of the dif-
ferent mean phases of the complex mode shape of closely space modes
separated by measurement direction identified with the SSI, should also
be investigated in more detail. The experiment will be used in the future
to investigate the dynamic joint opening with a hydraulic actuator.
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