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Abstract: Organometallic approaches are of ongoing interest for the development of novel functional
99mTc radiopharmaceuticals, while the basic organotechnetium chemistry seems frequently to be little
explored. Thus, structural and reactivity studies with the long-lived isotope 99Tc are of permanent
interest as the foundation for further progress in the related radiopharmaceutical research with this
artificial element. Particularly the knowledge about the organometallic chemistry of high-valent
technetium compounds is scarcely developed. Here, phenylimido complexes of technetium(V) with
different isocyanides are introduced. They have been synthesized by ligand-exchange procedures
starting from [Tc(NPh)Cl3(PPh3)2]. Different reactivity patterns and products have been obtained de-
pending on the steric and electronic properties of the individual ligands. This involves the formation
of 1:1 and 1:2 exchange products of Tc(V) with the general formulae [Tc(NPh)Cl3(PPh3)(isocyanide)],
cis- or trans-[Tc(NPh)Cl3(isocyanide)2], but also the reduction in the metal and the formation of
cationic technetium(I) complex of the formula [Tc(isocyanide)6]+ when p-fluorophenyl isocyanide is
used. The products have been studied by single-crystal X-ray diffraction and spectroscopic methods,
including IR and multinuclear NMR spectroscopy. DFT calculations on the different isocyanides
allow the prediction of their reactivity towards electron-rich and electron-deficient metal centers by
means of the empirical SADAP parameter, which has been derived from the potential energy surface
of the electron density on their potentially coordinating carbon atoms.

Keywords: technetium; phenylimides; isocyanides; ligand exchange; reactivity; DFT

1. Introduction

The impressive success story of the 99mTc-Sestamibi (Cardiolite), a cationic
hexakis(isocyanide) complex of technetium(I) with the ether-substituted MIBI ligand shown
in Figure 1, dominates the chemistry of isocyanide complexes of technetium [1–4]. Thus,
many such [Tc(CNR)6]+ complexes have been isolated and tested for their biological behav-
ior [5–7]. 99mTc is a metastable nuclear isomer, which practically emits the exclusively γ

radiation of Eγ = 141 keV. Its short half-life of 6 h and the ready availability via a 99Mo/99mTc
isotope generator make this nuclide the workhorse in diagnostic nuclear medicine, with
some 40 million procedures per year. This accounts for approximately 80% of all nuclear
medical procedures and 85% of diagnostic scans in nuclear medicine worldwide [8].

The concentration of the 99mTcO4
− solutions, which are eluted from commercial

99Mo/99mTc generators, is approximately on a nanomolar level. This is a clear advantage for
the medicinal use of the prepared drugs since classical toxicity problems normally play no
role in such dilute solutions. On the other hand, structural and spectroscopic investigations,
which are important for the development and improvement of drugs, are largely prohibited
by dilution. They are commonly performed using a second isotope of technetium: the
long-lived 99Tc. 99Tc is a weak β− emitter with a low β energy (Eβmax = 0.292 MeV) and
a half-life of 2.1 × 105 years. It is available in macroscopic amounts as one of the major
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products of nuclear fission and is isolated from spent nuclear fuel solutions. Its weak β

radiation allows the handling of 99Tc compounds in milligram amounts in normal glassware,
provided that general radiation protection protocols are applied.

Alkyl and aryl isocyanides are frequently regarded as structural and electronic surro-
gates for carbonyl ligands, even when a tendency is observed to act as stronger σ-donors
and as weaker π-acceptors. Such a general description, however, is merely a rough ap-
proximation, and particularly the π-acceptor properties may be strongly influenced by
the organic substituents of the ligands. Steric effects and the formal oxidation state of the
metal ion will also influence the strength of the resulting metal–carbon bonds. Systematic
studies about this point are rare, which is related to the fact that in many papers about the
coordination chemistry of isocyanides, commercially available and stable ligands such as
tert-butyl or cyclohexyl isocyanides are favorably used [9]. A more detailed assessment
of the influence of electronic factors on the coordination behavior of highly substituted
aryl isocyanides is available for a number of chromium(0) compounds, where a special
role for aryl isocyanides with electron-withdrawing substituents was found [10]. Similar
results were derived very recently for carbonyltechnetium(I) compounds, which react with
differently substituted isocyanides in very different manners (Scheme 1) [11]. It became
evident that simple alkyl isocyanides were not able to replace carbonyl ligands, while this
was readily possible with aryl isocyanides which have a fluorine substituent in 4-position.
Steric factors give control over the degree of the achieved ligand exchange. The influence
of the substituents at the isocyanide ligands in such reactions has been reasoned with the
DFT-derived electrostatic potential at the accessible surface of the corresponding isocyanide
carbon atoms. The corresponding Surface-Averaged Donor Atom Potential (SADAP) pa-
rameter allowed predictions concerning the reactivity of the individual isocyanides with
the regarded d6 systems in a synthetic and operationally convenient way [11]. It would
now be interesting to see if the derived SADAP parameter is also suitable for electron-poor
metal centers such as technetium(V) complexes, where no or almost no back-bonding to
ligand orbitals should be expected.
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Scheme 1. Reactions of carbonyltechnetium(I) complexes with differently substituted iso-
cyanides [11].

There are only a very few examples of Tc(V) isocyanide complexes. Unlike the re-
lated rhenium compounds [12–14], oxotechnetium(V) complexes are readily reduced by
isocyanides, and corresponding complexes could not (yet) be isolated. Thus, there exist
only two nitridotechnetium(V) and phenylimidotechnetium(V) complexes with sterically
encumbered terphenyl isocyanides [15]. Particularly the phenylimido compounds are
interesting for a comparative study since the “NPh2−” ligand is isoelectronic to “O2−” but
not prone to reduction. This may allow a comparison of the reaction behavior of different
isocyanides with the {Tc(NPh)}2− core, but also between technetium and rhenium, given
that comparable rhenium complexes can also be synthesized. For both metals, there exist
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corresponding [M(NPh)Cl3(PPh3)2] complexes as potential starting materials [16,17], and
ligand-exchange procedures starting from [Tc(NPh)Cl3(PPh3)2] have been used to prepare
novel technetium(V) complexes with phosphines, dithiolenes, acetylacetones, or other
ligands [18–22].

2. Results and Discussion
2.1. The Ligands

The results obtained during reactions of tricarbonyltechnetium(I) complexes and other
metal centers with isocyanides strongly indicate that this class of ligands should not be
regarded in the same undifferentiated way as carbonyl surrogates, although a few corre-
lations between the properties of some isocyanides and their highest occupied molecular
orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) have been discussed
in the past [23–26]. It has been found that electronic as well as steric effects strongly
influence their coordination capabilities [10–15,27–35]. The electronic effects can best be
described by a consideration of the electrostatic potentials located at the donor carbon
atoms. Such parameters are generally accepted as tools for an evaluation of the nucle-
ophilicity (electron-richness) or electrophilicity (electron-deficiency) of atoms or fragments
of molecules [36–38]. With the intention to apply such measures also for the estimation of
σ-donor/π-acceptor properties of isocyanides, we modeled several isocyanides by DFT cal-
culations at the B3LYP/6-311++G* level. Details of the calculations are outlined in Ref. [11].
The final self-consistent field densities were used for the construction of mappings of the
electrostatic potentials onto the density isosurfaces (MO = 0.02; ρ = 0.004). They revealed
stunning substitution-dependent differences when normalized to the potential boundaries
[e/Å3] of the intermediate donor CNMe. The corresponding electrostatic potential maps
for the isocyanides discussed in this paper are shown in Figure 1, while corresponding
maps for a large number of other isocyanides are published elsewhere [11].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 18 
 

 

interesting for a comparative study since the “NPh2-“ ligand is isoelectronic to “O2−“ but 
not prone to reduction. This may allow a comparison of the reaction behavior of different 
isocyanides with the {Tc(NPh)}2− core, but also between technetium and rhenium, given 
that comparable rhenium complexes can also be synthesized. For both metals, there exist 
corresponding [M(NPh)Cl3(PPh3)2] complexes as potential starting materials [16,17], and 
ligand-exchange procedures starting from [Tc(NPh)Cl3(PPh3)2] have been used to prepare 
novel technetium(V) complexes with phosphines, dithiolenes, acetylacetones, or other lig-
ands [18–22]. 

2. Results and Discussion 
2.1. The Ligands 

The results obtained during reactions of tricarbonyltechnetium(I) complexes and 
other metal centers with isocyanides strongly indicate that this class of ligands should not 
be regarded in the same undifferentiated way as carbonyl surrogates, although a few cor-
relations between the properties of some isocyanides and their highest occupied molecu-
lar orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) have been dis-
cussed in the past [23–26]. It has been found that electronic as well as steric effects strongly 
influence their coordination capabilities [10–15,27–35]. The electronic effects can best be 
described by a consideration of the electrostatic potentials located at the donor carbon 
atoms. Such parameters are generally accepted as tools for an evaluation of the nucleo-
philicity (electron-richness) or electrophilicity (electron-deficiency) of atoms or fragments 
of molecules [36–38]. With the intention to apply such measures also for the estimation of 
σ-donor/π-acceptor properties of isocyanides, we modeled several isocyanides by DFT 
calculations at the B3LYP/6-311++G* level. Details of the calculations are outlined in Ref. 
[11]. The final self-consistent field densities were used for the construction of mappings 
of the electrostatic potentials onto the density isosurfaces (MO = 0.02; ρ = 0.004). They 
revealed stunning substitution-dependent differences when normalized to the potential 
boundaries [e/Å³] of the intermediate donor CNMe. The corresponding electrostatic po-
tential maps for the isocyanides discussed in this paper are shown in Figure 1, while cor-
responding maps for a large number of other isocyanides are published elsewhere [11]. 

 
Figure 1. Isocyanides discussed in the present paper together with their electrostatic potential map-
ping (MO = 0.02; ρiso = 0.004) normalized to the potential boundaries of CNMe (7.478 × 10−2 [e/Å3]; 
blue = positive, red = negative) [11]. 

Figure 1. Isocyanides discussed in the present paper together with their electrostatic potential map-
ping (MO = 0.02; ρiso = 0.004) normalized to the potential boundaries of CNMe (7.478 × 10−2 [e/Å3];
blue = positive, red = negative) [11].

Electron-deficient regions on the surface of the C ≡ N carbon atom could enable
improved π-back donation (at least when bonded to electron-rich metal ions), while electron-
rich regions on the surface of the same carbon atom would be responsible for a better
σ-donation. Steric restraints on the donor carbon atom can be partially included in such



Molecules 2022, 27, 8546 4 of 17

an approach by averaging the obtained potential energies over the accessible surface of the
potential donor atoms, which means the surface on the VdW boundary of a specific atom but
not in the VdW boundary of another atom. Thus, we calculated the electrostatic and steric
surface properties of the carbon atoms potentially involved in isocyanide-metal binding [38].
The sterically demanding isocyanides expectedly showed a less overall accessible surface
area, while the less encumbered isocyanides had a larger overall accessible carbon surface.
In a similar way, the rather electron-accepting isocyanides (partial π-acceptors) showed an
increased positive surface area at the potential donor carbon atom compared to the rather
σ-donor ligands, which had no positive surface exposure on their isocyanide carbon atom.

The charge distribution on the surface also plays a crucial role in the interplay be-
tween π-acceptance and σ-donation. We introduced a simple descriptor for the overall
donor/acceptor properties of isocyanides using the calculated potential energies (extrema
and averaged values) on the vdW surface of the C ≡ N carbon atom and the exposed VdW
surface area [11]. The resulting Surface-Averaged Donor Atom Potential (SADAP) sum
parameter (SADAP = EPmin+EPmax+AP

ESpos+ESneg
) corresponds to the averaged interaction energy of

the C ≡ N carbon atom with positively and negatively charged moieties over the entire
accessible surface. Table 1 contains the SADAP measures for the isocyanides discussed
in the present paper, together with their components. The corresponding values of many
more isocyanides are given as Supplementary Materials.

Table 1. Calculated electrostatic potential surface properties of the isocyanide carbon atom at the
VdW boundary for structures optimized at the B3LYP/6-311++G** level. Surface properties were
evaluated at ρ = 0.001 level using an electrostatic potential map basis with a grid-point spacing of
0.25. The last column contains the surface-averaged donor atom potential SADAP = (EPmin + EPmax

+ AP)/(ESpos + ESneg) as a combined descriptor of steric and electrostatic properties of the potential
ligands, which allows an estimation of their reactivity (ES: exposed VdW surface, EP: minimum and
maximum potential energy at the VdW surface, AP: averaged potential energy at the VdW surface).

Isocyanide
Exposed VdW Surface,

ES (Å2)
Extrema for Potential Energies
at VdW Surface, EP (kcal/mol)

Average
Potential

Energies at VdW
Surface, AP
(kcal/mol)

SADAP

ESpos ESneg EPmin EPmax APoverall

CNArTripp2 0.00 22.23 −38.01 −9.31 −26.65 −3.33
CNArDipp2 0.00 22.13 −37.64 −8.87 −26.04 −3.28 1

CNPhi-prop2 0.00 25.99 −35.47 −5.16 −21.20 −2.38
CNArMes2 0.00 30.10 −39.20 −7.01 −25.11 −2.37

CNMes 0.00 28.89 −36.79 −6.83 −21.68 −2.26
CNtBu 0.00 31.43 −39.63 −5.86 −22.00 −2.15 1

CNnBu 0.00 31.58 −38.51 −5.52 −21.36 −2.07 1

MIBI 0.02 29.07 −35.96 2.30 −18.65 −1.80
CNH 0.00 31.12 −31.48 −4.62 −16.42 −1.69 1

CNPhp -F 1.67 29.53 −32.02 7.05 −14.10 −1.25 1

CNp-FArDArF2 20.50 6.74 −11.49 69.07 16.88 2.73 1

1 Value taken from Ref. [11].

For the electron-rich (d6) carbonyltechnetium(I) complexes shown in Scheme 1, the cal-
culated SADAP parameters nicely correlate with the observed reactivity of the compounds
(e.g., the ability of certain isocyanides to replace carbonyl ligands) [11]. Isocyanides with
progressively positive overall sum parameters replace CO ligands on the low-valent metal
complexes, while those with negative sum parameters are σ-donors with predominantly
negligible back-bonding properties. Consequently, no, or only a slow exchange of carbonyl
ligands is observed with the latter group of isocyanides. It should, however, be noted that
particularly the π-acceptor behavior of the isocyanides in such complexes (expressed by
the νC ≡ N IR frequencies in the different complexes) is also significantly influenced by the
nature and number of co-ligands [11,39].

In comparison, we found that the HOMO and LUMO energies (or those of the respec-
tive lone-pair at carbon and the π*CN orbitals), as well as the magnitude of the LPC-π*CN
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gaps in the free ligands, do not reflect the reactivity well and, therefore, suggest the
molecular-orbital-derived electrostatic surface potential parameter SADAP as a better
descriptor for the reactivity compared to direct molecular orbital approaches. Since the
above-mentioned considerations are exclusively ‘ligand-based’, we also calculated the
electronic properties of some model complexes of the theoretical high-valent composition
[TcVIIO3(CO/CNR)]+ and the low-valent composition [TcI(CO)5(CO/CNR)]+ (R = PhF5,
Php-F, Ph, tBu, ArDArF2) with some representative isocyanides of considerably different
SADAP parameters. Expectedly, for the fully oxidized technetium(VII) compounds, only
σ–bonds were found; however, the number of electrons shared in the bond decreased in
the non-intuitive order CO < CNPhF5 < CN Php-F < CNPh < CNtBu < CNArDArF2. In
contrast, the technetium atoms in the [TcI(CO)5(CO/CNR)]+ cations show pronounced π-
back donating behavior from two Tc lone-pairs to the two π*CN orbitals with second-order
perturbation energies between 8 and 14 kJ/mol in the order of CO > CNPhF5 > CNArDArF2

> CN PhpF > CNPh > CNtBu, while the ordering of the number of shared electrons in the
σ–bonds is CO > CNPhF5 > CN Php-F > CNPh > CNArDArF2 > CNtBu. It should be noted
that only the second-order perturbation energies somewhat reflect the reactivity predictions
made by SADAP, albeit at much higher computational costs, and common convergence
problems arise—especially for large ligands. The corresponding parameters for the model
compounds and the HOMO/LUMO information of some representative complexes are
given in the Supplementary Materials.

Having in mind the nice correlation between the SADAP measures of Table 1 and the
reactivity of the corresponding isocyanides with carbonyltechnetium(I) compounds [11], it
should be interesting to compare the influence of steric and electronic parameters of the
isocyanide ligands on the coordination to electron-poor metal ions such as the phenylimi-
dotechnetium(V) core of the present study.

2.2. Reactions of [Tc(NPh)Cl3(PPh3)2] with Alkyl and (Alkyl-Substituted) Aryl Isocyanides

[Tc(NPh)Cl3(PPh3)2] (1) has been proven to be a suitable precursor material for the
synthesis of other phenylimido complexes of technetium [18–22]. The compound is suf-
ficiently soluble in solvents such as CHCl3 or CH2Cl2 and is stable enough to resist pro-
longed heating in organic solvents. This is unlike the behavior of the rhenium analog
[Re(NPh)Cl3(PPh3)2], which is practically insoluble in all common organic solvents and
is, thus, only partially suitable as a starting material for ligand exchange reactions [40].
The solubility of such compounds can be increased by the introduction of a fluorine
atom at the imido ligand, as has been demonstrated by the synthesis of [Re{NC6H4(p-
F)}Cl3(PPh3)2], and its use as a precursor for the synthesis of corresponding complexes with
β-diketonates [40,41]. Such an approach is not suitable for related technetium compounds
since the corresponding complexes with the p-substituted {=NC6H4(p-F)}2− or {=NC6H4(p-
CF3)}2− ligands undergo rapid hydrolysis, which is followed by a reduction in the metal
and the formation of the technetium(IV) complex [TcCl4(PPh3)2] [41].

Fortunately, such decompositions are not common for the unsubstituted phenylimido
complex, and [Tc(NPh)Cl3(PPh3)2] (1) reacts readily with alkyl isocyanides (e.g., CNtBu)
and small alkyl-substituted phenyl isocyanides such as CNMes or CNPhi-prop2 under
replacement of one triphenylphosphine ligand and the formation of complexes of type 2.
The reactions proceed already at room temperature in solvents such as CH2Cl2 or CHCl3
(Scheme 2). The use of an excess of the isocyanides or heating does not result in the
formation of products with two or more of such CNR ligands but causes problems during
the isolation of the products in crystalline form by the presence of excess ligand and/or its
decomposition products.
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Scheme 2. Reactions of [Tc(NPh)Cl3(PPh3)2] with alkyl and (alkyl-substituted) aryl isocyanides.

Interestingly, another course of the reaction is observed when [Tc(NPh)Cl3(PPh3)2]
is treated with an excess of the sterically encumbered m-terphenylisocyanides CNArMes2,
CNArDipp2, or CNArTripp2. In such cases, bis–complexes are formed under the replacement
of both PPh3 ligands. These reactions require elevated temperatures, but we found no
evidence for the formation of 1:1 ligand-exchange products under milder conditions or
with the addition of only one equivalent of the terphenylisocyanides.

The observed difference in the reactivity goes along with the electrostatic potentials
located at the carbon donor atoms of the isocyanides (Figure 1) and the clear differences
found for the derived SADAP values calculated for the individual ligands (−3.38 and−3.28
for CNArTripp2 and CNArDipp2 and values between −2.28 and −2.15 for CNtBu, CNMes,
and CNPhi-prop2, Table 1). This means that the electron-rich isocyanides with a pronounced
σ-donor and diminished π-acceptor behavior (such as CNArTripp2 and CNArDipp2) show a
higher tendency for ligand exchange reactions at the electron-poor d2 metal centers of the
technetium(V) complexes of the present study. The domination of the ‘σ-donation’ comes
not completely unexpected and reflects a reversed behavior compared to the carbonyltech-
netium(I) complexes of Scheme 1, where the π-back donation from the electron-rich d6

system and the competition with the good π-acceptor CO plays a major role [11]. Thus,
ligands with a progressively positive overall sum parameter easily and rapidly replace
CO ligands, while those with negative sum parameters have predominantly σ-donating
properties, which rule the ligand-exchange behavior with electron-deficient metal centers
as in phenylimidotechnetium(V) complexes. The absence of π-back donation is also re-
flected by the νCN IR frequencies. They appear in the Tc(V) complexes generally at higher
wavenumbers than in the spectra of the uncoordinated ligands.

The [Tc(NPh)Cl3(PPh3)(isocyanide)] complexes 2 are green crystalline solids, while
the bis–complexes 3a and 4 are yellow-green. Both types of complexes are fairly soluble
in CH2Cl2 or CHCl3 and insoluble in hydrocarbons. As solids, they are indefinitely stable
at ambient temperatures in the air. As d2 systems with a multiply bonded phenylimido
ligand, the novel compounds are diamagnetic and give well-resolved 1H spectra (see
Experimental and Supplementary Materials). Their limited solubility, however, prevents
the measurement of the 13C NMR spectra with sufficient quality.

Single crystals of the complexes suitable for X-ray diffraction were obtained from
CH2Cl2/hydrocarbon mixtures. Ellipsoid plots of the molecular structures are shown in
Figure 2. Table 2 contains some selected bond lengths and angles. The Tc-N10 bond lengths
are between 1.692(5) and 1.725(6) Å, which is clearly in the range of technetium–nitrogen
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double bonds and agreement with the values of other phenylimido complexes of tech-
netium [15–22,41]. The Tc-N10-C11 bonds of the mono-substituted complexes 2 are slightly
bent away from the bulky PPh3 ligand. A similar effect is observed for the bis-substituted
cis-[Tc(NPh)Cl3(CNArMes2)2] (3a), in which the two bulky isocyanide ligands are coordinated
in cis positions to each other, and a slightly bent arrangement of the {NPh}2− ligand lowers
the steric stress at the central part of the molecule.
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Table 2. Selected bond lengths (Å) and angles (◦) for [Tc(NPh)Cl3(PPh3)(CNtBu)] (2a),
[Tc(NPh)Cl3(PPh3)(CNMes)] (2b), [Tc(NPh)Cl3(PPh3)(CNPhi-prop2)] (2c), cis-[Tc(NPh)Cl3(CNArMes2)2]
(3a) and trans-[Tc(NPh)Cl3(CNArTripp2)2] (4b).
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3a 1.699(3) 2.400(1) 2.391(1) 2.3877(8) 2.056(4) 2.034(3) 1.147(4) 1.160(4) 171.7(3) 166.0(1)

4b * 1.714(5)
1.692(5)

2.347(2)
2.361(2)

2.393(2)
2399(2)

2.395(2)
2.417(2)

2.076(5)
2.095(5)

2.095(5)
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1.138(6)
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177.7(2)
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* Values for two independent species.

It is interesting to note that the lower steric bulk of the CNArMes2 ligand allows the
electronically favored cis coordination, while the CNArDipp2 and CNArTripp2 ligands are di-
rected into the trans-conformation in compounds 4a and 4b. Similar findings are reported for
nitridotechnetium(V) and oxidorhenium(V) complexes [14,15]. Notably, for the latter group of
compounds, even the mixed–isocyanide complex [ReOCl3(CNArMes2)(CNArDipp2)]− allows
cis-coordination for the two isocyanides. The lower steric bulk of CNArMes2 might also allow
for the more dynamic behavior of this ligand. Although we only isolated compound 3a in
its cis conformation, the NMR spectra of the corresponding reaction mixtures and solutions
of 3 indicate a kind of fluxional behavior of this complex in solution with the formation of
additional species. This can be regarded as a hint for a potential isomerization but also for
the formation of mono- or tris-isocyanide complexes that cannot completely be excluded.
Sterically, the latter option might also be possible since a corresponding dicarbonylman-
ganese(I) complex, [Mn(CO)2Br(CNArMes2)3] hosts three CNArMes2 ligands in meridional
positions [32].
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2.3. Reactions of [Tc(NPh)Cl3(PPh3)2] with Fluorine-Substituted Aryl Isocyanides

A ligand with particularly interesting properties is CNp-FArDarF2. It combines a
fluorine-substituted central phenyl ring with two bulky bis(trifluoromethyl)phenyl sub-
stituents. It is extremely electron-deficient at the isocyanide carbon atom, which makes it a
good π-acceptor, and even allows for the exchange of carbonyl ligands [11,35]. Unlike the
reactions with the d6 systems in Scheme 1, these properties should be without relevance
for reactions with the electron-deficient technetium(V) complexes. Additionally, during a
ligand exchange reaction with [Tc(NPh)Cl3(PPh3)2], only one CNp-FArDarF2 ligand enters
the coordination sphere of the metal, and pale green crystals of [Tc(NPh)Cl3(PPh3)(CNp-
FArDarF2)] (5) are formed (Scheme 3).
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Scheme 3. Reactions of [Tc(NPh)Cl3(PPh3)2] with CNp-FArDarF2 and CNPhpF.

Attempted reactions with an excess of the ligand did not result in the formation of
technetium complexes with more CNp-FArDarF2 ligands. Since steric reasons seem to be
irrelevant for this result and technetium complexes with up to four CNp-FArDarF2 ligands
in their coordination sphere are known [11,35], we attribute the observed reaction behavior
to electronic reasons. Such an assumption is supported by the SADAP parameter of
CNp-FArDarF2, which is the most positive in Table 1 and suggests a predominantly poor
σ-donor behavior. Nevertheless, the νCN frequency in complex 5 also appears at a higher
wavenumber (2176 cm−1) than in the uncoordinated isocyanide.

Single crystals of [Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5) suitable for X-ray diffraction
were obtained by slow diffusion of n-hexane into a solution of the complex in CH2Cl2.
An ellipsoid representation of the molecular structure of 5 is depicted in Figure 3a, while
Figure 3b,c illustrates the steric bulk caused by the cis-coordinated isocyanide and PPh3
ligands. The bonding situation around the technetium atom of complex 5 is expectedly
very similar to those found for complexes 2a, 2b, and 2c with a Tc-N10 double bond of
1.710(4) Å and a slightly bent N10-Tc-Cl1 axis.

In contrast to the compounds of type 2, solutions of [Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)]
(5) are not infinitely stable. A gradual decomposition of 5 becomes evident when solutions
of the compound are heated. This can be concluded from the appearance of novel 19F NMR
signals in such solutions (see Supplementary Materials).

Even more unstable is the ligand exchange product of [Tc(NPh)Cl3(PPh3)2] with
CNPhpF: [Tc(NPh)Cl3(PPh3)(CNPhpF)] (6). This ligand has been chosen as a sterically
unencumbered mimic for CNp-FArDarF2. The isocyanide carbon atom of CNPhpF is also
extremely electron deficient with only a small negative SADAP parameter of−1.25 (Table 1),
for which a reactivity similar to CNp-FarDarF2 or alkyl or simple aryl isocyanides should be
expected. Indeed, the 1:1 ligand exchange product 6 could be isolated, but the synthesis had
to be performed under mild conditions, and quick precipitation of the product was required
to obtain a pure compound. [Tc(NPh)Cl3(PPh3)(CNPhpF)] is a pale green, microcrystalline
complex that is readily soluble in CH2Cl2. The 1H and 19F NMR spectra of reasonable
quality can be recorded for the pure compound from fresh solutions of the complex in
this solvent (Figure 4). A well-resolved 31P NMR spectrum could not be obtained. Such



Molecules 2022, 27, 8546 9 of 17

a behavior is not unusual for (low-symmetric) phosphine complexes of technetium and
is commonly explained by scalar couplings with the large quadrupole moment of 99Tc
(Q = −0.19 Å × 10−28 m2) [42,43]. Such couplings can cause extreme line-broadenings,
which make the resolution of 31P signals frequently impossible [44–47], which is also
observed for the complexes of type 2. An ongoing decomposition of the compound in the
solution becomes evident by the detection of an increasing number of 19F NMR signals
within one day in the solution. The infrared spectrum of complex 6 shows the νCN band
at 2186 cm−1, which is at a higher wavenumber than that of the uncoordinated ligand
(2129 cm−1) and confirms the assumption that a potential π-acceptor behavior of CNPhpF

is not significant for the phenylimdo complexes of technetium(V).
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A completely unexpected product was found for the reaction of [Tc(NPh)Cl3(PPh3)2] with
an excess of CNPhpF in boiling toluene. The reaction of compound 1 with CNPhpF under such
conditions gives the Tc(I) cation [Tc(CNPhpF)6]+. Such behavior of CNPhpF has been observed
before during reactions with (NBu4)[TcI

2(CO)6Cl3] or [TcI(CO)3(CNtBu)2Cl] [11]. However,
in the latter cases, it could readily be explained by the activity of the fluorine-substituted
ligand as a strong π-acceptor. In the case of the technetium(V) complexes of the present study,
this does not apply. However, having in mind the inherent instability of the 1:1 exchange
product [Tc(NPh)Cl3(PPh3)(CNPhpF)], we regard it as highly probable that in the course of the
reaction, the technetium–nitrogen bond is cleaved, which should result in a rapid reduction in
the metal to low oxidation states. Consequently, the strong π-acceptor CNPhpF will gradually
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dominate the chemistry in the system, and the formation of the stable [Tc(CNPhpF)6]+ cation
becomes unavoidable.

The hexakis complex can be isolated as PF6
− salt in the form of colorless microcrystals.

[Tc(CNPhpF)6](PF6) (7) is infinitely stable in the air. It shows a narrow (ν1/2 = 42 Hz) 99Tc
NMR signal at −1886 ppm, which comes close to the value of [Tc(CNPh)6]+ in CDCl3
(−1889 ppm), but is appreciably de-shielded relative to the values found for hexakistech-
netium(I) cations with alkyl isocyanides (−1914 to −1964 ppm) [45]. The infrared spectrum
of 7 displays the νCN band at 2087 cm−1, which corresponds to a bathochromic shift
of ca. 30 cm−1 relative to the value in uncoordinated CNPhpF and indicates a marked
π-back-donation to the isocyanide ligand in this technetium(I) complex.

3. Materials and Methods

Unless otherwise stated, reagent-grade starting materials were purchased from com-
mercial sources and either used as received or purified by standard procedures. The sol-
vents were dried and deoxygenated according to standard procedures. [Tc(NPh)Cl3(PPh3)2]
(1), CNArTripp2 and [Tc(NPh)Cl3(CNArDipp2)2] (4a) were prepared by procedures in the
literature [10,15,16]. The syntheses of CNp-FArDarF2, CNPhpF, CNMes, and CNPhi-prop2

were performed by modified procedures from the literature [9,11]. The NMR spectra were
recorded with JEOL 400 MHz ECS or ECZ multinuclear spectrometers. The values given
for the 99Tc chemical shifts are referenced to potassium pertechnetate in water. IR spectra
were recorded with a Shimadzu FTIR 8300 spectrometer as KBr pellets. Intensities are
classified as vs. = very strong, s = strong, m = medium, w = weak, vw = very weak, and
sh = shoulder.

3.1. Radiation Precautions
99Tc is a long-lived, weak β− emitter (Emax = 0.292 MeV). Normal glassware provides

adequate protection against weak beta radiation when milligram amounts are used. Sec-
ondary X-rays (bremsstrahlung) play a significant role only when larger amounts of 99Tc
are handled. All manipulations were performed in a laboratory approved for the handling
of radioactive materials.

3.2. Syntheses

The general procedure for the [Tc(NPh)Cl3(PPh3)(CNR)] Complexes 2: [Tc(NPh)Cl3(PPh3)2]
(1) (41 mg, 0.05 mmol) was dissolved in CH2Cl2 (5 mL). The corresponding isocyanide
(0.055 mmol) was added, and the solution was stirred for 10 min at room temperature. Volatiles
were removed under reduced pressure, and the residue was resuspended in Et2O (5 mL) and
filtered. The obtained solid was washed with Et2O (3× 5 mL) and then dried under reduced
pressure. Single crystals suitable for X-ray diffraction were obtained by the slow diffusion of
n-hexane into solutions of the complexes in CH2Cl2. The obtained crystals were filtered, washed
with a small amount of Et2O, and dried under reduced pressure.

[Tc(NPh)Cl3(PPh3)(CNtBu)] (2a): Green needles. Yield: 15 mg, 47%. IR (cm−1): 3057 (w),
2984 (w), 2918 (w), 2207 (s, νC≡N), 1437 (s), 1191 (m), 1092 (m), 749 (m), 695 (s), 525 (s). 1H
NMR (CD2Cl2, ppm): δ = 7.82 (mc, 6H, o-H (PPh3)), 7.65 (t, J = 7.46 Hz, 1H, p-H (arom.
NPh)), 7.46 (mc, 3H, p-H (PPh3)), 7.39 (mc, 6H, m-H (PPh3)), 7.30 (d, J = 7.84 Hz, 2H, o-H
(arom. NPh)), 7.17 (t, J = 7.75 Hz, 2H, m-H (arom. NPh)), 1.38 (s, 9H, (CH3)3).

[Tc(NPh)Cl3(PPh3)(CNMes)] (2b): Green needles. Yield: 10 mg, 28%. IR (cm−1): 3057 (w),
2920 (w), 2187 (s, νC≡N), 1480 (w), 1435 (m), 1310 (w), 1092(m), 747 (m), 693 (s), 523 (s). 1H
NMR (CD2Cl2, ppm): 7.87 (mc, 6H, o-H(PPh3)), 7.66 (t, J = 7.47 Hz, 1H, p-H (arom. NPh)),
7.41–7.31 (m, 11H, m-/p-H(PPh3), o-H (arom. NPh)), 7.18 (t, J = 7.77 Hz, 2H, m-H (arom.
NPh)), 6.87 (s, 2H, m-H (arom. CNMes)), 2.32 (s, 3H, p-CH3 (CNMes)), 1.94 (s, 6H, o-CH3
(CNMes)).

[Tc(NPh)Cl3(PPh3)(CNPhi-prop2)] (2c): Green-yellow, dichroic needles. Yield: 26 mg, 70%. IR
(cm−1): 3055 (w), 2695 (m), 2922 (w), 2183 (s, νC≡N), 1572 (m), 1477 (m), 1433 (s), 980 (w),
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804 (w), 746 (m), 692 (m), 525 (m). 1H NMR (CD2Cl2, ppm): 7.89 (mc, 6H, o-H(PPh3)), 7.69
(t, J = 8.0 Hz, 1H, p-H (arom. NPh)), 7.43–7.29 (m, 12H, m-/p-H (PPh3), H(CNPhi-prop2)),
7.20 (t, J = 8.0 Hz, 2H, m-H (arom. NPh)), 7.14 (d, J = 7.7 Hz, 2H, o-H (arom. NPh)), 2.68 (h,
J = 6.8 Hz, i-prop CH), 0.97 (d, J = 7.0 Hz, i-prop CH3), 0.89 (d, J = 7.0 Hz, i-prop CH3).

Subsequently, cis-[Tc(NPh)Cl3(CNArMes2)2] (3a): [Tc(NPh)Cl3(PPh3)] (1) (82 mg, 0.1 mmol)
was suspended in toluene (5 mL). CNArMes2 (68 mg, 0.2 mmol) was added, and the reaction
mixture was heated under reflux for one hour. It became dark green and homogenous upon
heating. The resultant solution was slowly evaporated at 5 ◦C. After one day, the first crop
of a few yellow-green needles (compound 3a) suitable for X-ray diffraction were obtained
and analyzed by IR spectroscopy. Upon further evaporation of the solvent, more of the
aforementioned needles was obtained along with other green crystals of different shapes,
which were not suitable for X-ray diffraction. They were filtered off and washed with small
amounts of n-pentane and studied by 1H NMR spectroscopy. Three sets of resonances were
observed in the methyl region, suggesting the presence of at least three isomers which
could be cis/trans-[Tc(NPh)Cl3(CNArMes2)2] or cis/trans-[Tc(NPh)Cl3(PPh3)(CNArMes2)].
3a: Yellow-green needles. IR (cm−1): 3058 (w), 2919 (m), 2851 (w), 2178 (s, νC≡N), 1572
(m), 1433 (m), 1308 (w), 1094 (w), 845 (w), 749 (w), 695 (m), 521 (m). The isomeric mixture
was of [Tc(NPh)Cl3(CNArMes2)2] and [Tc(NPh)Cl3(PPh3)(CNArMes2)]: IR (cm−1): 3058 (w),
2919 (m), 2851 (w), 2178 (s, νC≡N), 1572 (m), 1433 (m), 1308 (w), 1094 (w), 845 (w), 749 (w),
695 (m), 521 (m). 1H NMR (CD2Cl2, ppm): 7.78–6.58 (m, aryl), 2.20 (s, CH3), 2.11 (s, CH3),
2.05 (s, CH3), 2.02 (s, CH3), 1.96 (s, CH3), 1.94 (s, CH3).

trans-[Tc(NPh)Cl3(CNArTripp2)2] (4b): [Tc(NPh)Cl3(PPh3)] (1) (41 mg, 0.05 mmol) was sus-
pended in toluene (5 mL). CNArTripp2 (51 mg, 0.1 mmol) was added, and the reaction
mixture was heated under reflux for one hour. It became slightly red and homogenous
upon heating. The resultant solution was slowly evaporated at 5 ◦C. After five days, green-
yellow crystals suitable for X-ray diffraction were obtained. They were filtered off and
washed with small amounts of cold MeOH and n-pentane, and then dried under a reduced
pressure. Yield: 39 mg, 72%. IR (cm−1): 3057 (w), 2957 (s), 2866 (s), 2184 (s, νC≡N), 1607 (m),
1576 (m), 1570 (m), 1461 (s), 1439 (s), 1362 (s), 1316 (m), 1191 (m), 1121 (m), 1071 (w), 943
(w), 874 (s), 807 (m), 722 (m), 697 (s), 543 (s). 1H NMR (CD2Cl2, ppm): 7.73 (t, J = 7.33 Hz,
1H, p-H (arom. NPh)), 7.50 (t, J = 6.8 Hz, 2H, CNArTripp2), 7.41 (d, J = 7.46 Hz, 2H, o-H
(arom. NPh)), 7.26 (d, J = 7.46 Hz, 4H, CNArTripp2), 7.14 (t, J = 6.68 Hz, 2H, m-H (arom.
NPh)), 6.92 (s, 8H, CNArTripp2), 2.83 (h, J = 6.1 Hz, 4H, (i-prop CH)), 2.38 (h, J = 6.3 Hz, 8H,
(i-prop CH)), 1.32 (d, J = 6.52 Hz, 24H, (i-prop CH3)), 1.01 (d, J = 6.0 Hz, 24H, (i-prop CH3)),
0.96 (d, J = 6.0 Hz, 24H, (i-prop CH3)).

[Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5): [Tc(NPh)Cl3(PPh3)2] (1) (41 mg, 0.05 mmol) was
dissolved in CH2Cl2 (5 mL). CNp-FArDarF2 (30 mg, 0.055 mmol) was added, and the
dark green solution was stirred for 20 min at room temperature. A pale green solid
was precipitated by the addition of an excess of n-hexane (approximately 30 mL). The
immediately formed precipitate was washed with pentane and a small amount of diethyl
ether, redissolved in CH2Cl2 (1 mL), and overlayered with n-hexane. Pale green columns
were formed together with brown oil. The crystals were separated and washed with pentane
alongside a small amount of diethyl ether, and the crystallization procedure was repeated
in the described way. The resultant single crystals were suitable for X-ray diffraction. Pale
green needles. Yield: 22 mg, 40%. IR (cm−1): 3057 (w), 2176 (vs, νC≡N), 1482 (w), 1435 (m),
1364 (m), 1279 (s), 1179 (s), 1135 (s), 1092 (m), 905 (w), 743 (m), 701 (m), 693 (m) 520 (m).
1H NMR (CD2Cl2, ppm): 7.90 (s, 4H, CNp-FArDarF2), 7.61 (s, 2H, CNp-FArDarF2), 7.55 (t,
J = 7.1 Hz, 1H, p-H (arom. NPh)), 7.46 (t, J = 8.4 Hz, 6H, o-H (PPh3)), 7.31 (t, J = 6.9 Hz,
3H, p-H (PPh3)), 7.25 (d, J = 7.7 Hz, 2H, m-H (CNp-FArDarF2)), 7.16 (t, J = 6.0 Hz, 6H, m-H
(PPh3)), 6.89 (t, J = 7.2 Hz, 2H, m-H (arom. NPh)), 6.71 (d, J = 6.9 Hz, 2H, o-H (arom.
NPh)). 19F NMR (CD2Cl2, ppm): −65.0 (s, 12F, m,m’-CF3 (CNp-FArDarF2)), −107.9 (s, 1F,
p-F (CNp-FArDarF2)).



Molecules 2022, 27, 8546 12 of 17

[Tc(NPh)Cl3(PPh3)(CNPhF)] (6): 100 µL of a solution prepared from CNPhpF (160 µL) and
toluene (940 µL was added to a suspension of [Tc(NPh)Cl3(PPh3)2] (1) (41 mg, 0.05 mmol)
in CH2Cl2 (5 mL). The mixture was gently heated and held at a temperature of 30 ◦C
until the reaction mixture became homogenous (approximately 2 min). Then, n-hexane
(20 mL) was immediately added, which resulted in the formation of a pale green precipitate.
The obtained solid (pure compound 6 with some incorporated n-hexane) was filtered off,
washed with diethyl ether alongside n-hexane, and then dried under reduced pressure.
Complex 6 is stable as a solid but decomposes at room temperature in solvents such as
dichloromethane or acetone. Yield: 20 mg, 57%. IR (cm−1): 3422 (br), 3058 (w), 2923 (w),
2186 (vs, νC≡N), 1570 (w), 1499 (s), 1435 (m), 1239 (w), 1092 (m), 990 (w), 841 (m), 749 (m),
697 (s), 521 (s). 1H NMR (CD2Cl2, ppm): 7.80 (mc, 6H, o-H(PPh3)), 7.68 (t, J = 8.0 Hz, 1H,
p-H (arom. NPh)), 7.46–7.31 (m, 11H), 7.20 (t, J = 8.0 Hz, 2H, m-H (arom.)), 7.17–7.07 (m,
4H), 1.27 (CH2, 0.2 n-hexane), 0.88 (CH3, 0.2 n-hexane). 19F NMR (CD2Cl2, ppm): −106.5.

[Tc(CNPhpF)6](PF6) (7): [Tc(NPh)Cl3(PPh3)2] (1) (41 mg, 0.05 mmol) was suspended in
toluene (5 mL). CNPhpF (45.9 µL, 0.5 mmol) was added, and the solution was heated under
reflux for one hour. The reaction mixture became homogeneous upon heating and changed
its color to pale yellow within the first ten minutes. Then, a solid started to precipitate.
The reaction mixture was cooled to room temperature and filtered. The obtained solid
was washed with a small amount of toluene and redissolved in MeOH. NH4(PF6) (0.5 g)
was dissolved in a water/MeOH mixture (5 mL, 1:1) which was added. A colorless solid
precipitated, which was filtered off and washed sequentially with water, MeOH, and Et2O.
Yield: 12 mg, 26%. IR (cm−1): 2918 (w), 2087 (s, νC≡N), 1501 (m), 1235 (m), 1154 (m), 836
(m), 558 (w). 1H NMR (CD2Cl2, ppm): 7.46 (mc, 12H, o-H (CNPhpF)), 7.16 (t, J = 8.5 Hz,
12H, m-H (CNPhpF)). 19F NMR (CD2Cl2, ppm): −73.4 (d, 1J (19F-31P) = 670 Hz, 6F, PF6),
−109.2 (s, 6F, (CNPhpF)). 99Tc NMR (CD2Cl2, ppm): −1886 (s, ν1/2 = 42 Hz).

3.3. X-ray Crystallography

The intensities for the X–ray determinations were collected on the STOE IPDS II
instrument with Mo Kα radiation. The space groups were determined by the detection of
systematic absences. Absorption corrections were carried out by multi-scan or integration
methods [48]. The structure solution and refinement were performed with the SHELX
program package [49,50]. Hydrogen atoms were derived from the final Fourier maps and
were refined or placed at calculated positions and treated with the ‘riding model’ option of
SHELXL.

Compound 2c crystallizes in the non-centrosymmetric space group Pca21. The ab-
solute structure has been determined with a Flack parameter of 0.06(6). Compound 3
co-crystallizes with CH2Cl2 molecules in the large voids between the complex molecules.
One molecule of dichloromethane could be located and refined. A sum of 102 e, which
corresponds to another 2.5 molecules of CH2Cl2, has been ‘removed’ from the final Fourier
map by means of a solvent mask of OLEX2 [51]. The positional disorder of isopropyl or CF3
groups has been addressed during the refinement of the crystal structures of compounds 4b
and 5. Details can be inspected in the Supplementary Materials and/or the corresponding
cif files.

The representation of molecular structures was conducted using the program DIA-
MOND 4.2.2 [52].

3.4. Computational Details

DFT calculations were performed on the high-performance computing systems of the
Freie Universität Berlin ZEDAT (Curta) using the program package GAUSSIAN 16 [53,54].
The gas phase geometry optimizations were performed using initial coordinates generated
using GAUSSVIEW and Avogadro [55,56]. The calculations were performed with the
hybrid density functional B3LYP [57–59]. The Stuttgart relativistic small core basis set
with its associated pseudo potential has been used for Tc [60,61]. The 6-311++G** basis
set was used to model all other elements [62–66]. All basis functions, as well as the
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ECPs, were obtained from the EMSL database [67]. The surface properties module of the
multifunctional wave-function analyzer MultiWFN was used for the calculation of the
surface properties [38,68].

4. Conclusions

Using the Tc-phenylimido core, high-oxidation state isocyanide complexes of tech-
netium(V) can be prepared and isolated as stable molecular species. [Tc(NPh)Cl3(PPh3)2]
has been proven to be a suitable starting material for such reactions. One or both of the
PPh3 ligands can be replaced by isocyanides depending on the electronic properties and
the steric bulk of the incoming ligands. A DFT-based sum parameter (SADAP) describing
the electrostatic potential at the isocyanide carbon atom is a good measure to predict the
reactivity of isocyanides with metal ions. In contrast to low-valent technetium complexes,
where electron-deficient isocyanides (less negative or positive SADAP parameters) show
the highest exchange rates, reactions with electron-rich isocyanides such as CNArMes2 or
CNArTripp2 (ligands with very negative SADAP parameters) form bis–complexes with the
d2 systems under study. On the contrary, ligands with a lower electron density located
at the isocyanide carbon atoms prefer the formation of 1:1 complexes. Such a behavior
correlates with the σ-donor and π-acceptor properties of the ligands in the formed com-
plexes in a way that for the complex formation with the electron-poor {TcV(NPh)}3− core,
the σ-donor abilities of the ligands clearly dominate. This is also reflected by the positions
of the νCN bands in the IR spectra of the complexes (Table 3). They are all found at higher
wavenumbers relative to the spectra of the uncoordinated ligands.

Table 3. νCN Frequencies in the complexes under study compared with the values in the uncoordi-
nated ligands.

2a
(CNtBu)

2b
(CNMes)

2c
(CNPhi-prop2)

3a
(CNArMes2)

4a *
(CNArDipp2)

4b
(CNArTripp2)

5
(CNp-FArDarF2)

6
(CNPhpF)

7
(CNPhpF)

2207 2187 2183 2177 2187 2184 2176 2186 2087

Ligand 2135 2114 2113 2120 2124 2114 2119 2129 2129

* Values taken from Ref. [15].

A considerable π-acceptor behavior (also reflected by a bathochromic shift of the
corresponding νCN band) is only observed when the metal ion is reduced as a consequence
of the cleavage of the technetium–nitrogen double bond. Such a reaction pathway has been
observed for CNPhpF.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27238546/s1, Table S1: Crystallographic data and
data collection parameter; Figure S1: Ellipsoid representation of [Tc(NPh)Cl3(PPh3)(CNtBu)] ·
CH2Cl2 (2a). The thermal ellipsoids are set at a 50% probability level. Hydrogen atoms are omitted
for clarity. A number of 42 reflections below thetamin is missing due to the large unit cell and
the data collection with the IPDS T2 measuring routine; Table S2: Selected bond lengths (Å)
and angles (◦) in [Tc(NPh)Cl3(PPh3)(CNtBu)] · CH2Cl2 (2a); Figure S2: Ellipsoid representation
of [Tc(NPh)Cl3(PPh3)(CNMes)] (2b). The thermal ellipsoids are set at a 50% probability level.
Hydrogen atoms are omitted for clarity. A number of 16 reflections below thetamin is missing
due to the large unit cell and the data collection with the IPDS T2 measuring routine; Table S3:
Selected bond lengths (Å) and angles (◦) in [Tc(NPh)Cl3(PPh3)(CNMes)] (2b); Figure S3: Ellipsoid
representation of [Tc(NPh)Cl3(PPh3)(CNPhi-prop2)] · C7H8 (2c). The thermal ellipsoids are set at a
50% probability level. Hydrogen atoms are omitted for clarity. A number of 11 reflections below
thetamin is missing due to the large unit cell and the data collection with the IPDS T2 measur-
ing routine. Flack parameter of the non-centrosymmetric structure: 0.06(6); Table S4: Selected
bond lengths (Å) and angles (◦) in [Tc(NPh)Cl3(PPh3)(CNPhi-prop2)] (2c); Figure S4: Ellipsoid
representation of cis-[Tc(NPh)Cl3(CNArMes2)2]·CH2Cl2 (3). The thermal ellipsoids are set at a
50% probability level. Hydrogen atoms are omitted for clarity. A number of 70 reflections below
thetamin is missing due to the large unit cell and the data collection with the IPDS T2 measuring

https://www.mdpi.com/article/10.3390/molecules27238546/s1
https://www.mdpi.com/article/10.3390/molecules27238546/s1
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routine. Only one molecule of solvent CH2Cl2 could be located. An overall number of 102 e-
has been ‘removed’ from the large. voids, which are contained in the structure, by a solvent
mask using OLEX2 (Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann,
H. (2009), J. Appl. Cryst. 42, 339–341). This corresponds to approximately 2.5 more molecules
of CH2Cl2; Table S5: Selected bond lengths (Å) and angles (◦) in cis-[Tc(NPh)Cl3(CNArMes2)2]
· CH2Cl2 (3); Figure S5: Ellipsoid representation of trans-[Tc(NPh)Cl3(CNArTripp2)2] (4b). The
thermal ellipsoids are set at a 50% probability level. Hydrogen atoms are omitted for clarity.
A number of 70 reflections below thetamin is missing due to the large unit cell and the data
collection with the IPDS T2 measuring routine. One carbon of an isopropyl group has an unusu-
ally large ellipsoid due to an elongation of the distal isopropyl moieties. A solvent-accessible
void is caused by the molecular packing and does not contain any substantial residual electron
density. (b) Visualization of the disorder found for one of the isopropyl groups in the two crys-
tallographically independent species of these large molecules; Table S6: Selected bond lengths
(Å) and angles (◦) in trans-[Tc(NPh)Cl3(CNArTripp2)2] (4b); Figure S6: Ellipsoid representation of
[Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5). The thermal ellipsoids are set at a 50% probability level.
Hydrogen atoms are omitted for clarity. The ratio of unique to observed reflections is too low
leading to a B alert. This is due to the measurement routine of the IPDS 2T; Table S7: Selected
bond lengths (Å) and angles (◦) in trans-[Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5); Figure S7: 1H
NMR spectrum of [Tc(NPh)Cl3(PPh3)(CNtBu)] (2a) in CD2Cl2; Figure S8: IR (KBr) spectrum of
p[Tc(NPh)Cl3(PPh3)(CNtBu)] (2a); Figure S9: 1H NMR spectrum of [Tc(NPh)(PPh3)(CNMes)Cl3]
(2b) in CD2Cl2; Figure S10: 1H,1H COSY NMR spectrum of cis-[Tc(NPh)(PPh3)(CNMes)Cl3]
(2b) in CD2Cl2; Figure S11: IR (KBr) spectrum of [Tc(NPh)(PPh3)(CNMes)Cl3] (2b); Figure S12:
1H NMR spectrum of [Tc(NPh)Cl3(PPh3)(CNPhi-prop2)] (2c) in CD2Cl2; Figure S13: IR (KBr)
spectrum of [Tc(NPh)Cl3(PPh3)(CNPhi-prop2)] (2c); Figure S14: 1H NMR spectrum of isomers of
[Tc(NPh)Cl3(PPh3)(CNArMes2)] (3a) in CD2Cl2; Figure S15: 1H NMR spectrum of trans-[Tc(NPh)Cl3
(CNArTripp2)2] (4b) in CD2Cl2; Figure S16: IR (KBr) spectrum of trans-[Tc(NPh)(CNArTripp2)Cl3]
(4b); Figure S17: 1H NMR spectrum of [Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5) in CD2Cl2;
Figure S18: 19F NMR spectrum of [Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5) in CD2Cl2; Figure
S19: 19F NMR spectra recorded during the reaction of [Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5)
with CNp-FArDarF2 in THF. Spectrum 1 was recorded after the addition of one equivalent of
CNp-FArDarF2 to 5. Spectrum 2 was recorded after heating the previously obtained solution
for 10 min in boiling THF. Spectrum 3 was recorded after heating a solution of complex 5 for
10 min in boiling THF; Figure S20: IR (KBr) spectrum of [Tc(NPh)Cl3(PPh3)(CNp-FArDarF2)] (5);
Figure S21: 1H NMR spectrum of [Tc(NPh)Cl3(PPh3)(CNPhpF)] (6) in CD2Cl2; Figure S22: 19F
NMR spectrum of [Tc(NPh)Cl3(PPh3)(CNPhpF)] (6) in CD2Cl2; Figure S23: 31P{1H} NMR spectrum
of [Tc(NPh)Cl3(PPh3)(CNPhpF)] (6) in CD2Cl2; Figure S24: IR (KBr) spectrum of [Tc(NPh)Cl3(PPh3)
(CNPhpF)] (6); Figure S25: 1H NMR spectrum of [Tc(CNPhp-F)6][PF6] (7) in CD2Cl2; Figure S26:
19F NMR spectrum of [Tc(CNPhp-F)6][PF6] (7) in CD2Cl2; Figure S27: 99Tc NMR spectrum of
[Tc(CNPhpF)6][PF6] (7) in CD2Cl2; Figure S28: IR (KBr) spectrum of [Tc(CNPhp-F)6][PF6] (7); Table
S8: Calculated electrostatic potential surface properties of the isocyanide carbon atom at the Van
der Waals (VdW) boundary for structures optimized at the B3LYP/6-311++G** level. Surface
properties were evaluated at ρ = 0.001 level using an electrostatic potential map basis with a
grid-point spacing of 0.25. The last column contains the Surface-Averaged Donor Atom Potential
SADAP = (EPmin + EPmax + AP)/(ESpos + ESneg) as a combined descriptor of steric and electro-
static properties of the potential ligands, which allows an estimation of their reactivity; Table S9:
LPc/π*CN properties of some representative, free isocyanides, number of donated σCTc electrons
(#e− ; LPc→LP*Tc), and second order perturbation parameters (interaction energy E; energy differ-
ence between the two orbitals Ei-Ej; overlap parameter A) for LPTc→π*CN in the model complexes
[TcO3(CO/CNR)]+ and [Tc(CO)5(CO/CNR)]+ (R = PhF5, Php-F, Ph, tBu, ArDArF2).
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