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Abstract: A detailed analysis of the electronic structure and decay dynamics in a symmetric system
with three electrons in three linearly aligned binding sites representing quantum dots (QDs) is given.
The two outer A QDs are two-level potentials and can act as (virtual) photon emitters, whereas
the central B QD can be ionized from its one level into a continuum confined on the QD axis upon
absorbing virtual photons in the inter-Coulombic decay (ICD) process. Two scenarios in such an
ABA array are explored. One ICD process is from a singly excited resonance state, whose decay
releasing one virtual photon we find superimposed with resonance energy transfer among both A
QDs. Moreover, the decay-process manifold for a doubly excited (DE) resonance is explored, in
which collective ICD among all three sites and excited ICD among the outer QDs engage. Rates for
all processes are found to be extremely low, although ICD rates with two neighbors are predicted to
double compared to ICD among two sites only. The slowing is caused by Coulomb barriers imposed
from ground or excited state electrons in the A sites. Outliers occur on the one hand at short distances,
where the charge transfer among QDs mixes the possible decay pathways. On the other hand, we
discovered a shape resonance-enhanced DE-ICD pathway, in which an excited and localized B∗ shape
resonance state forms, which is able to decay quickly into the final ICD continuum.

Keywords: interatomic Coulombic decay; electron dynamics; quantum dots; continuum confinement;
Coulomb barrier

1. Introduction

The inter-Coulombic decay process (ICD) transforms energy of an inner valence
excited or ionized atom (A) into kinetic energy of an electron ionized from a nearby other
atom (B) [1]. The initial state is a Feshbach resonance state [2], delocalized over both atoms,
which decays by the two-electron rearrangement. In the past 25 years, ICD was observed
and/or theoretically predicted for many different electronic systems, including noble gas
clusters [3,4], molecular ensembles [1], biomolecules [5], fullerenes [6,7], and quantum
dots (QDs) [8,9], where in the latter the hole level is not necessarily the inner-valence state.

Effectively, ICD is a radiationless energy-transfer (ET) process, which is mediated by
the Coulomb interaction among the two involved partnering sites’ electrons, from which the
ICD rate is deduced. This resembles the Förster resonance energy transfer (FRET) among
chromophores [10], but leads as a surplus not to a final bound but to a final continuum
state. Both processes, nonetheless, can be recast into coupled dipole transitions on either
site. In this sense, they nail down an asymptotic distance dependence of the rate via the
inverse sixth power of the distance between photon donor and acceptor, as was formulated
individually for the specific conditions of FRET [11] and of ICD [12,13].

Scientific intuition and simple rationalization suggest clearly that ICD must depend on
several more characteristics of the full chemical systems rather than only particle distance,
all the more so the less pointlike the acceptor and donor become, as has been compared
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extensively for FRET [14]. For ICD, this effect was studied in the context of geometrical
changes of QDs as ICD partners [15], but also in the context of polarization effects in
adjacent molecules [16]. Moreover, the spatial confinement of the ionization continuum
to two [17] or even one dimension [8] was found to cause significant deviations from the
predicted ICD rate. Finally, neighboring sites may alter the rate already when they form
only a barrier or a temporal electron binding site [18]. A strong rate increase can be observed
when neighbors with virtual orbitals stabilize the wave function when being located at
short distances from the ICD participants allowing for electronic coupling (superexchange
ICD) [19–22]. However, even for well-separated and electronically decoupled neighbors,
it was found that an increasing number (N) of neighbors of either A [23,24] or B [25,26]
type makes ICD at least N times faster [13,27]. The effect depends on the specific geometric
arrangement of the neighbors [26,28,29] as well as on the initially excited state. If, for
example, two sites A are both excited, they may undergo excited ICD (exICD) between each
other [23,30–34] or collective ICD (CICD) together with B, requiring multiple simultaneous
energy-transfer processes to bring up the ionization energy for B [24].

Despite this first characterization of the listed ICD pathways, their occurrence and
interplay is still rather unexplored. If, for example, asymptotic formulae were used for the
prediction of the decay, each possible channel is treated individually [23,24], whereas the
electron dynamics treatment includes the full multitude of decay channels [25,26]. However,
electron dynamics calculations were not yet done for the ABA system, which was more
intensely studied otherwise. Hence, in this paper we target a linearly aligned ABA systems
with an electronic confinement along the alignment direction. Such an example is a model
for quantum dots in a nanowire, as may be encountered in quantum networks. Moreover,
we distinguish two initial resonances states, a singly excited (SE) and a doubly excited
(DE) one and compare which processes occur at what inter-QD distance and how they
contribute ICD.

In Section 2.1 the pathways are introduced via asymptotic equations, and in
Sections 2.2 and 3 the model and the electron dynamics treatment is explained. In the
result Sections 4.2.1 and 4.2.2, the rates are shown for the complete processes and for indi-
vidual subprocesses in comparison in order to explain the unexpected lowering of rates
compared to that of the regular two-site ICD process.

2. Theory
2.1. Pathways of the Inter-Coulombic Decay in a Linear ABA Array

The regular ICD process, an inherent two-electron effect, will occur in its extension by
three electrons on three sites along different pathways simultaneously, depending on the
underlying electronic structure of the model system. Here, we explicitly focus on a system
composed of two two-level sites A and one one-level site B located exactly in their center as
underlying all schematic representations in Figures 1 and 2. The outer sites A are separated
by the distance RAA, whereas the central site B in the coordinate origin is distant from
each of the other sites A by RAB = RAA/2. Owing to this arrangement, every two-electron
subprocess introduced below has an isoenergetic and symmetry-equivalent counterpart.

The two lowest-energy excited states localized in the array are A∗BA and ABA∗, in
which one site A is in its excited state. By design of the energetic model it is a Feshbach
resonance state [2], which is termed the SE resonance state throughout. With the ICD
boundary condition for energies, ∆EA > IPB, imposed, which says that the excitation
energy ∆EA of the A site has to be larger than the ionization potential IPB of the B site,
A∗BA can decay into AB+A via regular ICD among only two of the neighbors participating,
the third one remaining a spectator. This is sketched in the lower panel (b) of Figure 1 (on
the left-hand side) with the relaxing site A being encircled in turquoise and the electron-
emitting site B in brown, according to the persistent color code for this section ignoring for
the moment the inactive black site. As said, the process can happen among the central B
and either of the left- or right-hand side A.
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Figure 1. Overview of decay processes of up to three electrons on three Coulomb-coupled sites ABA
in linear arrangement. The decaying (a) doubly excited (DE) and (b) singly excited resonances are
shown in the center of each panel. To the left in (a) and (b) the standard inter-Coulombic decay (ICD)
among two sites is shown with relaxation (turquoise) of the electron of site A (orange) and ionization
(brown) of the electron from B (green). To the right, the coupled energy-transfer (ET) among the two
sites A (orange electrons) is depicted, resulting in an excited-state ICD (exICD) for the DE resonance
(a) and a Förster-like transfer for the SE resonance (b) not leading to ionization. In the DE case, a
collective ICD (CICD) through two-photon transfer from relaxation of both A (turquoise) can lead to
ionization of the central site B (brown) as shown along the upward direction.

Figure 2. Representation of the three-QD array ABA for a distance RAA = 28 a.u. parametrized
according to Table 1. In the negative energy range the single-electron levels A (turquoise), B (green),
and A∗ (orange) are displayed together with the respective densities |φ|2. Furthermore, the geometric
parameters of the binding potential (Equation (9)) are illustrated.

Table 1. Energies in a.u. of single- (E1e) and three-electron states (E3e), in the latter case for the
minimum and maximum distance, Rmin

AA = 20 a.u. and Rmax
AA = 70 a.u., respectively.

E1e E3e Rmin
AA Rmax

AA

EA∗ −0.196 EA∗BA∗ −0.613 −0.797
EB −0.477 EA∗BA −1.113 −1.295
EA −0.693 EABA −1.613 −1.793

The rate ΓICD for a regular two-site ICD process A∗B→ AB+ + e− in diverse chemical
systems was in the past computed through various types of time-independent [35–40] as
well as time-resolved [8] methods, which prove the validity of a simplified rate equation
derived from the Wigner–Weisskopf theory [12,13]. Therein, one electron is assumed to
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undergo spontaneous radiative decay A∗ → A and the other photoionization B→ B+ + e−.
The respective general golden rule ansatz is

ΓICD ∝ 2π|〈φA
1 φB+

2 |r̂
−1
12 |φ

A∗
1 φB

2 〉|2. (1)

In this spin-free ansatz, one assumes separability of the wave function into a product
of nonoverlapping single-electron orbital functions φ and negligible exchange for the well-
separated electrons enumerated 1 and 2, which we will also anticipate for all following
derivations of this type. The respective decaying state is coupled by the Coulomb interaction
operator r̂−1

12 to a multitude of final continuum states. One core result of Equation (1) for the
distance dependence is ΓICD ∝ R−6

AB, which originates from the coupling of the two dipole
transitions on the two subunits A and B. Another is that the rate increases linearly with the
number N of neighbors [13,27], which will manifest itself in the following discussion.

For the SE decay process, the golden rule ansatz of Equation (1) is extended to three-
orbital wave functions [25]. The final state is clearly φA

1 φB+
2 φA

3 . On the other hand, the
decaying state must be an equal superposition of one excited outer site and one in its
ground state, i.e., 2−1/2(φA∗

1 φB
2 φA

3 + φA
1 φB

2 φA∗
3 ). Considering that the Coulomb interaction

r̂−1
ij always couples only two electrons, it allows the factorization of the rate equation into

ΓICD
SE ∝ 2π|2−1/2〈φA

1 φB+

2 |r̂−1
12 |φ

A∗
1 φB

2 〉〈φA
3 |φA

3 〉

+ 2−1/2〈φB+

2 φA
3 |r̂−1

23 |φ
B
2 φA∗

3 〉〈φA
1 |φA

1 〉|2. (2)

Note that the only terms that are unity are those for which the overlap is kept among
the φi orbitals factorized from the Coulomb integral (rightmost factor). In the absolute
square of the Coulomb integrals (and the prefactors) we identify the two-electron ICD rate
of Equation (1); hence

ΓICD
SE = 2 · ΓICD. (3)

Beyond the interaction among the A and B site, a pathway that involves coupling
of the two outer A sites shall be mentioned. As identical two-level systems, they are
candidates for a Förster resonance energy transfer among the electrons depicted in orange
in Figure 1b, whereas the green one is spectating [14]. This means that while the excitation
on one site decays (turquoise circle), the other site is being excited but not ionized, i.e.,
A∗A → AA∗. An ET-rate equation can be set up in the spirit of the ICD rate equation,
resulting in

ΓET
SE ∝ 2π|2−1/2〈φA∗

1 φA
3 |r̂−1

13 |φ
A
1 φA∗

3 〉〈φB
2 |φB

2 〉
+ 2−1/2〈φA

1 φA∗
3 |r̂−1

13 |φ
A∗
1 φA

3 〉〈φB
2 |φB

2 〉|2. (4)

According to Förster theory it likewise leads to a proportionality ΓET
SE ∝ R−6

AA [14]. ET
is a reversible process in which at any time A∗ levels are populated to a constant amount.
Therefore, ICD is always likewise possible either with the A QD on the one side or the
other. Moreover, ET does not lead to ionization, so that the rate of Equation (4) will not
integrate into an overall decay rate for the three-electron SE system which thus remains
ΓSE = ΓICD

SE following R−6
AB.

In the upper panel (a) of Figure 1, all decay channels of a DE are collected. Given the
single-electron levels available on the three sites, this resonance is A∗BA∗. The regular ICD
process among two sites A and B is available for the SE resonance (to the left); here, keeping
one spectating two-level site in its excited states A∗ thus leads to the symmetry-equivalent
final states A∗B+A and AB+A∗. The rate is given through the Wigner–Weisskopf deriva-
tion [13,25–27] as
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ΓICD
DE ∝ 2π|2−1/2〈φB+

2 φA
3 |r̂−1

23 |φ
B
2 φA∗

3 〉〈φA
1 |φA

1 〉

+ 2−1/2〈φA
1 φB+

2 |r̂−1
12 |φ

A∗
1 φB

2 〉〈φA
3 |φA

3 〉|2

= 2 · ΓICD. (5)

Next, there is also a process based on the Coulomb coupling of the electrons at both
sites A (orange) as shown toward the right-hand side of Figure 1a. It resembles the
resonance energy transfer that had been discussed for the SE decaying state and an ICD
process at the same time. In addition, one excitation decays into its ground state A∗ → A
(turquoise circle). The transferred energy is sufficient to ionize the other site (brown circle)
according to A∗ → A+. The process, which we term here excited ICD to distinguish it from
regular ICD, has been formulated before [23]. The rate equation is set up as

ΓexICD
DE ∝ 2π|2−1/2〈φA+

1 φA
3 |r̂−1

13 |φ
A∗
1 φA∗

3 〉〈φB
2 |φB

2 〉

+ 2−1/2〈φA
1 φA+

3 |r̂−1
13 |φ

A∗
1 φA∗

3 〉〈φB
2 |φB

2 〉|2 (6)

based on the fact that there may be two symmetry-equivalent pathways leading to the two
final states ABA+ and A+BA. In terms of the decay behavior, this does not differ from
any ICD process with lower exited states, i.e., it obeys the same distance behavior R−6

AA as
well as other relations which are deduced from the Wigner–Weisskopf rate equation. Note
that in a collinear arrangement, the maximal distance among both sites A, RAA = 2RAB,
may cause a significantly lower rate ΓexICD << ΓICD nonetheless, whereas some bent
arrangements may cause a closer proximity among both A than among A and B, leading
thus to a very fast exICD.

Note that the creation of a DE initial state is particular here, and can be achieved,
e.g., by a very short [23] or intense pulse [30,31]. There had been a theoretical study on
neon dimers undertaken with the Fano–Stieltjes approach, which considers exICD for
neon distances shorter than the distance where the asymptotic formula might become
valid [23]. It was followed by the derivation of analytical equations of motion for the
electron dynamics combined with nuclear dynamics on the excited state potential energy
surfaces [30] and ultimately confirmed experimentally in neon dimers [31] also for decay
cascades including higher excited neon states in clusters [32]. The exICD was also shown
for helium droplets, where it was found to scale with the number of neighbors [33,34].

Much more unexplored are the collective ICD processes [24], in which all electrons
participate. In a two-photon energy transfer, the central site B is ionized (and excited,
superscript +∗) in that both sites A deexcite simultaneously, as depicted toward the top
in Figure 1a. Note, if B was DE into a bound state, the process would be a special form of
resonance energy transfer called energy pooling [14].

The Wigner–Weisskopf formulation for the CICD three-electron process based on
two-electron interactions uses second-order perturbation theory [24], giving as rate ansatz
for our A∗BA∗ example system

ΓCICD
DE ∝ 2π ∑

t

∣∣∣∣∣∣
〈φA

1 φB+∗
2 φA

3 |r̂
−1
ij |Φt〉〈Φt|r̂−1

ij |φ
A∗
1 φB

2 φA∗
1 〉

EA∗BA∗ − Et

∣∣∣∣∣∣
2

. (7)

Here, the transitions of the three electrons are split into virtual two-photon pro-
cesses with different intermediate configurations t. Those can be either the state resulting
from two A relaxations, 2A∗ → 2A, the state after the B ionization with two photons,
B → B+∗ + e−, or the states after a regular or excited ICD process, i.e., one state out of
ABA, A∗B+∗A∗, 2−1/2(AB+A∗ + A∗B+A) or 2−1/2(AB + BA). No matter which one is
chosen, both Coulomb integrals in our QD formulation give a dependency R−3 for the
dipole–dipole transition in the short-range resonance-energy transfer regime [14] appli-
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cable to the distance and transferred energies encountered in the ABA system. As the
two integrals in Equation (7) multiply and are being squared, the rate for CICD follows
R−12

AA . However, with R−12
AA the rate ΓCICD decreases much more quickly than that of regular

ICD, making CICD generally noncompetitive at long distances. Hence, CICD could only
be seen under rigorous energy constraints excluding regular and excited ICD. This can
be rationalized by being an unlikely three-particle process [23]. Only at short distances
might it dominate other decay channels, but for such cases, Fano–ADC calculations on
Kr2Ar clusters resulted in lower rates than were predicted by the asymptotic formula [24].
Note that in the first work on CICD on Kr2Ar clusters, the authors have assumed one
of the interatomic distances to be as large as the wavelengths of the transferred photon
(approximately 100 nm) and hence one integral obey R−2 [24].

Conclusively, with three contributions, the overall rate for DE-ICD,
ΓDE = ΓICD

DE + ΓexICD + ΓCICD, is richer than for SE, where we can, however, expect a
lowering importance of contributions from left to right. For the dominating rate ΓICD

DE , a
rate doubling is expected with an additional rate increase of the latter terms.

Moreover, any other decay processes can be largely excluded for the underlying model.
The occupation of each few-level site with only a single electron as well as the energetics
within the system exclude the occurrence of an Auger–Meitner process [41,42], to which
ICD has to be compared in core-excited or ionized atoms and molecules. Then, we exclude
any nuclear motion of the atoms forming one site. In cases of the sites being atoms or small
molecules, instead, the nuclear motion was found to lead to fluctuating ICD rates [4,43–47].
For the sites being quantum dots, they would not move with respect to one another but
rather, internally. However, such phonon-mediated dissipation was found to not compete
with ICD unless their distances become very large [48]. Finally, the most straightforward
radiative decay of the excited state A∗ is known to be significantly slower than the discussed
energy-transfer processes for any of the studied ICD materials [8].

2.2. Electron Dynamics in Model Potentials

The purpose of this study is to investigate the interplay of several simultaneously
available ICD and related processes’ channels in the context of fully correlated electron-
dynamics computations. For computational feasibility and for some freedom in designing
a few-level electronic structure, model potentials are used to reflect the three electron-
binding sites ABA. Furthermore, this arrangement allows us to deliberately remove the
spectator electron and its binding site for the discussed two-electron subprocesses, so that
we target the role of the respective spectator electron site with those two, which are active
participators in the process. In particular we can also reformulate the model into a single-
electron picture for the ICD electron, setting up effective potentials imposed by neighboring
sites and electrons, which is another means for interpretation of the full three-electron
dynamics observed.

The specific potentials displayed in Figure 2 are models for quantum dots in a
nanowire [8,25], in which the electronic motion occurs in one dimension along the z
direction only, such that the two other Cartesian coordinates can be omitted [49]. The
respective one-dimensional electronic Hamiltonian in atomic units for N electrons and M
QDs reads

Ĥ =
N

∑
i=1

(
−1

2
∇2

zi
+

M

∑
k=1

V̂QD
k (zi) + V̂CAP(zi) +

N

∑
j<i

r̂−1
ij

)
. (8)

The summands define the kinetic energy, the QD confinement potential for each QD
k, as well as the complex absorbing potential (CAP) for each electron i and the Coulomb
interaction between the two electrons i and j.

The electronic structures of QD conduction bands open to a nanowire environment
are represented by Gaussian potentials shown in Figure 2 and given by

V̂QD
k (zi) = −Dk exp

(
−bk(ẑi − zk)

2
)

. (9)
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Here, bk relates to the widths of the Gaussian potential and is reproducing the QD
extension along the nanowire, and zk marks the position. Throughout this study, the
electron-emitting QD B with one electronic level is placed in the origin of the z axis and
is framed by one or two two-level QDs A at positions −RAB only or ±RAB. RAA is the
distance between the minima of the respective potentials of the A-type QDs. Dk is finally
the depth of the binding potential, and the energetic zero point marks the onset of the
continuum for unconfined electrons.

The last single-electron operator of Equation (8) is a CAP with

V̂CAP(zi) = −i
(

ŴL
z + ŴR

z

)
. (10)

Already anticipating the concepts of electron dynamics introduced below, the CAP
hinders a continuum ICD electron wave packet from backscattering onto the QD system
at the edges of the finite grid by transferring it into the imaginary space. Actually, two
CAP operators

ŴL,R
z = η |z− zL,R|n Θ(±(z− zL,R)). (11)

are placed to the left (L) and the right (R) side of the QD array along the negative and
positive z direction, respectively. They are defined through the strength parameter η, the
order n, the onset position zL,R and the Heaviside step function Θ, which ensures that the
CAP vanishes for |z < zL,R|.

The Coulomb-interaction operator essentially mediating ICD, is by virtue six-dimen-
sional and nonseparable. Because the two interacting particles are in a one-dimensional
model, here an effective Coulomb potential,

V̂(z)ij =

√
π

2
exp

(
z2

ij

2

)
erfc

( zij√
2

)
, (12)

is used [49,50]. It is derived for the case of a wire potential with a strong harmonic oscillator
confinement in x and y directions, the excited states of which are energetically inaccessible
here, such that the wave function can be separated and x and y components integrated.

For analysis reasons, we define an effective potential for the ICD electron j in B [8]. To
this end, the electrons i occupying single-particle bound states φn(zi) with n = A or A∗ of
the two A QDs and their Coulomb repulsion with the B electron are added to the general
binding potential giving

V̂eff(zj) =
M

∑
k=1

V̂QD
k (zi) +

(N−1)

∑
i=1
〈φn(zi)|r−1

ij |φn(zi)〉. (13)

In order to execute electron dynamics simulations, the N-electron wave packet is given
in the antisymmetrized multiconfiguration time-dependent Hartree (MCTDH [51,52]) form

Ψ(z1, . . . , zN , t) =
n1

∑
j1

. . .
nN

∑
jN

Aj1,...,jN (t)
N

∏
κ=1

ϕ
(κ)
jκ (zκ , t). (14)

The antisymmetry in electron exchange is introduced by a condition on the expan-
sion coefficients,

Aj1,...,jl ,...,jk ,...,jN (t) = −Aj1,...,jk ,...,jl ,...,jN (t), (15)

thus realizing a quartet state for three electrons. Furthermore, a number of nκ single-particle
functions (SPFs) ϕ

(κ)
jκ (zκ , t) for each degree of freedom (DOF) κ (each electron here) is used

and expressed in a time-independent basis set as

ϕ
(κ)
jκ (zκ , t) =

Nκ

∑
i1=1

cκ,jκ
iκ (t)χ(κ)

iκ (zκ), (16)
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where cκ,jκ
iκ (t) are the time-dependent expansion coefficients and χ

(κ)
iκ (rκ) is a primitive

basis function. On the basis level, those are ultimately implemented within a discrete
variable representation (DVR) [53–55].

MCTDH approximates the solution of the time-dependent Schrödinger equation by
using the Dirac–Frenkel variational principle to derive equations of motion for the MCTDH
expansion coefficients and SPFs, which are propagated in time.

All desired observables for the interpretation of the dynamical processes of the elec-
trons in the QD systems are obtained from the propagated wave packet. The absolute
square of the projection of the time-dependent wave function Ψ(t) onto the initial wave
function Ψ(0), i.e., the squared autocorrelation function, gives information about the decay
process via the decay rate Γ [8], which is obtained by fitting the exponential slope to

|a(t)|2 = |〈Ψ(0)|Ψ(t)〉|2 = e−Γt. (17)

To analyse the populations of the different single-electron states s, a projection

Ps(t) = N|〈φs|1N |Ψ(t)〉|2 (18)

of the time-dependent N-electron wave function on the respective one-electron wave
function φs with s = A, A∗, B is performed, including a projection on an N-electron identity
matrix 1N . For continuum states, we are reintroducing the continuum contribution into
their population [56].

3. Computational Details

MCTDH calculations are executed with the Heidelberg program [53,57]. A sine DVR in
the interval [−100, 100] with 300 grid points represents the primitive basis. CAPs are placed
at zL,R = ±50 a.u. The CAP order is set to n = 3 and the strength to η = 9.5 · 10−7 a.u.
Furthermore, the effective Coulomb operator (Equation (13)) is brought into a sum-of-
products form by using the potfit subroutine [58].

For block improved relaxations [59,60] in the CAP-free system, which give the eigen-
states with discretized continuum, typically nκ = 48 SPFs are used for each mode. In
rare cases of numerical instabilities during relaxation, the number of SPFs is increased
to at most 80 SPFs. In the propagations nκ = 8 SPFs are sufficient. In both types of
MCTDH calculations, a constant mean fields integrator (CMF) is applied with an accuracy
of 10−2 a.u. or 10−8 a.u. for the relaxation and propagation calculations, respectively. CMF
step sizes are fixed to 0.1 a.u. in relaxations and variable in propagations. The SPFs are
relaxed (propagated) by using the Runge–Kutta method of order 8 with an error tolerance
10−6 (10−8) a.u. and an initial step size of 0.1 a.u. Improved relaxation furthermore requires
a Davidson routine to diagonalize the vector of MCTDH-coefficients, using here a maximal
order of 800 and an accuracy of 10−6 a.u. The one-dimensional initial functions are chosen
as Gaussian functions. Their width is 2.0 a.u. To propagate the vector of MCTDH coeffi-
cients, the short iterative Lanczos algorithm is used with an order of 15 and a step size of
10−8 a.u. The total propagation time is chosen differently for the systems (104–105 a.u.) to
ideally reveal the decay happening at different rates.

The binding potential of the respective QD system is defined in Equation (9), with
either two or three QDs, M = 2, 3. The depth of the respective binding potential is always
D = 1 a.u. and the sizes of the QDs are chosen to be bA = 0.25 a.u. and bB = 1.0 a.u. A scan
over the distance between the outer QDs is performed in the interval RAA = [20, 70] a.u.

4. Results
4.1. Electronic Structure

The present work focuses on the dynamical processes undergone by three electrons
in three linearly aligned QDs. Figure 2 depicts the Gaussian binding potential model for
the QD array which is designed such that the central QD is of B type with one energy
level and the outer two of A type. The corresponding one-electron energy level values are
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listed in the two leftmost columns of Table 1. The model was designed such that the energy
difference between the two levels on site A, ∆EA, is always larger than the ionization energy
of B, IPB. This implies that already only one excited outer electron in a state A∗ suffices to
open the ICD pathway, whereas ET is possible anyway. Likewise, for two excited electrons
in two states A∗ all SE and DE pathways sketched in Figure 1 shall be accessible.

An overview of energies and electron densities |Ψ(0)|2 of the three-electron eigen-
states with respect to increasing distance RAA between the outer QDs is given in Figure 3
and in Table 1 as obtained from MCTDH relaxation calculations. In panels (a) and (c),
corresponding to distances RAA = 20 and 70 a.u., both localized resonance states of interest
can be identified by density inspection. The DE resonance A∗BA∗ depicted as dark green
top line has the highest energy listed (EA∗BA∗ = −0.613 a.u. for RAA = 20 a.u.). Its density
clearly indicates the even distribution of electrons onto the QD. One electron is in QD B
occupying its only state and hence showing a Gaussian-type density, while excited states
A∗ of the other two QDs are occupied such that the local density there has a node centered
on the QD. Upon increase of the distance RAA, the state energy clearly drops due to the
significantly decreasing Coulomb interaction of electrons on each pair of sites A or B.

Figure 3. The energies of the key localized states of the three-electron three-QD system are displayed
as a function of distance RAA (panel (b)). From bottom to top ground state (ABA), first continuum
state of type AB+A, lower of SE resonances A∗BA, first continuum state of type A∗B+A, and DE
resonance A∗BA∗ are displayed. The normalized three-electron densities |Ψ(0)|2 in the left- and
rightmost panel are leveled by the respective state energies at the given distance RAA = 20 a.u. in (a)
and 70 a.u. in (c).

The SE resonance (light green, third from top), which is twofold, degenerates into
ABA∗ and A∗BA serving both as initial states for the two processes presented in Figure 1b
at RAA = 20 a.u. It has with EA∗BA = −1.113 a.u. a lower energy than the DE resonance by
the approximately 0.5 a.u. corresponding to the energy difference among A and A∗, which
likewise applies to all shorter distances as well. The local electron density on the outer QDs
has a broad and flat peak due to the superposition of the A∗ and A density contributions,
whereas the local density contribution on B remains unchanged compared to A∗BA∗. The
other, degenerate state (not shown) has generally the same density profile. The E− RAA
profile (b) follows the same trend as of the DE resonance and likewise does the ground
state. It has three localized electrons ABA and EABA = −1.613 a.u. at RAA = 20 a.u. Both
electrons on the A side occupy the lower state of the two-level system and have a narrow
Gaussian-type density like the electron occupying B (thick black bottom line in Figure 3).
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Energetically in between the ground state and each of the resonances, there are the
onsets of the two series of ICD continua into which the respective DE and SE resonances can
decay. For the SE resonance this continuum sets on at EAB+A = −1.309 a.u. (RAA = 20 a.u.).
It consists of states of type AB+A, meaning that there are two electrons localized in the A
levels of the outer QDs, whereas no electron resides in the central QD. The third electron
establishes density outside the area of the QDs, which is not visible from the representation
in Figure 3, because it particularly spreads beyond z = ±70 a.u. Compared to the localized
states the energy slope (b) is less steep here, because the electron from B has moved toward
the edge of the grid and is basically not contributing to the Coulomb interaction, which is
then mainly composed of interaction of two electrons in both A sites of amount R−1

AA only.
The other series of continuum states resulting from the ICD of the DE resonance

sets has densities revealing the displayed A∗B+A-type (and nearly isoenergetic inverted
AB+A∗-type states, not shown). Again, the B side is not populated, whereas one outer QD
is populated in the excited and one in the ground state. As can be seen on the right-hand
side of the density in panel (c) and on the left-hand side in panel (a), the emitted electron
assembles outside the QD region and also beyond the area shown ([−40, 40] a.u.). Note
that the contribution of the emitted electron in (a) has nodes for z ≤ −15 a.u. and sets
on energetically at EA∗B+A = −0.702 a.u. (RAA = 20 a.u.). As the first continuum states
typically has no nodes, here we have certainly not fully converged the continuum in the
improved block-relaxation computation. This does not affect the intuitive understanding
of the state manifold, but the shape of the E− RAA curve (b), which is not as flat as seen
for the other continuum. The propagation is later executed in another functional basis and
will therefore not suffer from an inaccurate state representation here.

Although the energy difference between the two initial states for ICD is nearly constant
with increasing RAA, the energy difference among them and the onset of their ionization
continuum decreases. The kinetic energy of the ICD electron decreases likewise. Moreover,
for the one-dimensional continuum we have observed effects that depend on the continuum
electron’s energy in conjunction with effective repulsive Coulomb barriers established by
the remaining bound electrons in their final states f [8,17,25,61,62]. The effective poten-
tials (Equation (13)) established for the DE- and the SE-ICD final state are shown in Figure 4
as dark and light green lines relative to the pure binding potential (Equation (9)) in black.

Figure 4. Illustration of the three-QD array ABA potential (black) displayed for RAA = 28 a.u.
within [−0.045, 0.152] a.u. Furthermore, the effective Coulomb barriers resulting from electron
configurations with the electron from B in the continuum, i.e., A∗B+A (dark green), AB+A (light
green) and AB+ (blue), respectively, as well as effective Coulomb barriers resulting from excited ICD
electron configurations, i.e., ABA+ (dashed dark green), are represented.
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The DE final state (dark green) is a superposition state of A∗B+A and AB+A∗ and
shows a maximal barrier height of E f

B = 0.054 a.u. Only when the electron ionized from B
has sufficient kinetic energy to overcome this barrier can the decay process be expected to
occur unhindered, which is the case for all RAB < 17 a.u. (cf. Table 2). Otherwise situations
may occur in which the electron is reflected from the Coulomb barriers and thus might
be trapped in between both QDs or where the rate oscillates as a function of RAB. For
the SE resonance, the barrier height in the final state AB+A is E f

B = 0.070 a.u. It is higher,
because an electron in the A ground level has a larger contribution to the effective potential
compared to an electron in the A∗ excited level. The ICD electron overcomes the barrier for
distances below RAB = 25 a.u. This distance is larger despite the higher barrier, because
the SE resonance is higher above its continuum than the DE resonance (cf. Figure 3). For
comparison the two-electron two-QD setup would establish one effective barrier maximum
at Veff = 0.056 a.u. hindering all electrons with RAB ≥ 15.5 a.u. Finally, one effective
potential is shown for the final state of the exICD of the DE resonance, i.e., ABA+ (dark
green, dashed). Here, the two remaining electrons establish a huge barrier around the B
QD of E f

B = 0.152 a.u., however due to the large kinetic energy of the exICD electron not
leading to its hindrance within the analyzed range of distances (only for RAB > 35.0 a.u.).

Ultimately, all single-electron state energies increase within the effective potential,
whereby a state in the AB+A potential is higher than in the A∗B+A potential, e.g. the
energy of the A level in the DE potential is EA(RAA = 28) = −0.599 a.u. and in the AB+A
potential EA(RAA = 28) = −0.528 a.u.

Table 2. Barrier energies E f
CB and minimal distances R f

AB from which the kinetic energy of electron

B (for exICD A) drops below E f
CB are given for the effective Coulomb barriers resulting from final f

electron configuration of the DE, SE, regular ICD, and exICD process.

DE SE ICD exICD

E f
CB (a.u.) 0.054 0.070 0.056 0.152

R f
AB (a.u.) 17.0 25.0 15.5 > 35.0

4.2. Electron Dynamics

In the following, the electron dynamics of the decays of the DE and SE resonances
is presented in terms of rates Γ computed from the absolute square of the autocorrelation
function (Equation (17)), the norm as function of time, and the transient population of
single-electron states (Equation (18)). In addition to the overall three-electron dynamics, a
comparison with related two-electron dynamics of subprocesses in all three or only two
QD potentials is offered for the DE electron configuration.

Figure 5 collects all decay rates as function of the distance RAA (top abscissa) and RAB
(bottom abscissa) in a double-logarithmic representation. As all processes are considered
extensions to regular ICD among two electrons on two sites (cf. Figure 1, left), the top
Γ− RAB curve (blue crosses) applies to this regular ICD among only two electrons, and
its sketch is displayed right next to the graph. Furthermore, a solid blue line is the fit of
the R−6

AB Wigner–Weisskopf asymptote to the data. The rates follow the general asymptotic
trend, but oscillate, which was observed likewise for slightly modified QD pairs earlier and
can be explained by the Coulomb barrier hindering the free motion of the ICD electron
within the one-dimensional continuum; however, they sometimes allowing for tunneling
(at highest Γ), leading to an effect beyond three orders of magnitude [8,25,61,62]. Here
for paired QDs, the blockade sets on from RAB > 15.5 a.u. (cf. Table 2). Similar to these
former results is the order of magnitude of the average rates, e.g., 10−3 a.u. at RAB ≈ 12 a.u.
and 10−5 a.u. at around twice that distance [8,25,61,62]. Note that the other curves of
Figure 5 are going to be discussed whenever the respective processes are discussed in the
following sections.
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Figure 5. Double-logarithmic representation of the decay rates Γ as function of interdot distance RAB

(top abscissa RAA) for the decay processes arising from the SE and DE initial electron configuration
(light and dark green large dots). The configurations are shown on the right side (bottom) also for
related two-electron processes (above) in the order of their decay rates. On top, the two-QD processes
(blue, dark green crosses) are shown, followed by the two-electron, three-QD processes (blue, dark
green small dots); the empty/removed QD is depicted as a half circle on the right. The asymptotic
regime for regular, SE-, and DE-ICD is indicated by the rates’ least-squares fit to R−6

AB shown as solid
lines in the corresponding color.

4.2.1. Dynamics of the Doubly Excited Resonance

The decay of the three-electron three-QD DE resonance A∗BA∗ into the two symmetry-
equivalent states A∗B+A and AB+A∗ is the topic of this chapter. The most straightforward
means to verify this expected decay is to inspect the level populations Ps(t) in conjunction
with the norm N(t) as a function of time. The ones of RAB = 10 a.u. (Figure 6) exemplify
the behaviour for nearly all distances, for which the only distinguishing feature is the
increasing duration of the process with distance (very few outliers will be discussed later).
After an equilibration time of 300 a.u. for the initial noneigenstate, the decrease of the
norm (solid dark-purple line) during propagation is exponential. It follows the decay of
the squared autocorrelation function used to deduce the decay rate ΓICD

DE (Equation (17)).
The decay comprises the emission of the B-type electron (dotted light-purple lines) and its
absorption by the CAP along with the relaxation of the A∗ electron (decreasing dashed line)
into the A state (increasing dashed-dotted line). The behavior is the same as was observed
for any regular two-electron ICD [8,61].

The rate of the DE resonance decay for all studied distances RAB is displayed as dark
green bold dots in Figure 5. The graph sets on at 4.63 · 10−4 a.u., two orders below that of
regular ICD, and firstly decreases quickly for 10 a.u. ≤ RAB ≤ 14 a.u. by nearly three orders
of magnitude and then establishes its R−6

AB trend within 14 a.u. ≤ RAB ≤ 35 a.u., leading in
this larger range again to a decrease by more than two orders of magnitude. Two major
differences in comparison to the two-electron ICD rate (blue crosses) jump to the eye: on
the one hand, the A∗BA∗ decays neatly, but less systematically, and follows the asymptote
with only few obvious outliers around 25 a.u. and 32 a.u.

On the other hand, counterintuitively, the rates in the R−6
AB regime are all in the range

of ΓDE ≈ 10−7–10−9 a.u. and thus orders of magnitude smaller than the regular two-
electron ICD rates of ΓICD

DE ≈ 10−3.5–10−5.5 a.u. This disproves the original hypothesis
ΓDE = ΓICD

DE + ΓexICD + ΓCICD of Section 2.1 for the one-dimensional continuum model
system (cf. Figure 1), which postulated already a speeding according to ΓICD

DE = 2ΓICD plus
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contributions from the expectedly less relevant exICD and CICD processes. Given the trend
of rates only, we cannot distinguish exICD with its R−6

AA trend from ICD following the same
asymptote. The only process we can exclude is CICD, as no trend R−12

AA , e.g., along a steeper
asymptotic slope, is seen in the asymptotic regime in the data points.

Figure 6. Time propagation of the norm N(t) (dark purple, solid) as well as the single-state pop-
ulations Ps(t) (light purple) of A∗ (dashed), A (dashed-dotted), and B (dotted) in % shown for
RAB = 10 a.u.

For the very low rates, inhibition of the ICD electron by the remaining bound electrons
is of greatest importance. Two main profiles arise depending on the number of electrons
surrounding the ICD electron. In two-electron systems as the one of regular ICD or the
exICD system, the ICD electron populates an outermost QD. The related effective potentials,
blue AB+ and dashed dark green ABA+ in Figure 4, respectively, have side-dependent
barrier heights. By contrast, if the ICD electron is emitted from B in three linearly aligned
QDs, a symmetric barrier is established along both emission directions (dark and light
solid green lines), confining the electron from B. Here, the motion of the B electron is twice
as restricted as in the two-electron systems and asymmetric exICD system. The rates are
three orders lower. The amount of this lowering derives from the oscillations for regular
ICD. The rate maxima (minima) correspond to a decay resulting in the continuum electron
on one side (both sides) [8]. In the latter case, hindered electron tunneling through the
effective barrier causes ICD slowing by two to three orders of magnitude. The emission of
B within the three-electron dynamics involves tunneling through the effective barriers on
both sides to which the B electron is evenly emitted. With the quantified barrier hindrance
effect, the average rates for the DE decay (R−6

AB asymptote in Figure 5) are indeed three
orders lower than that of the averaged regular-ICD rates. Oscillations are flattened out due
to the symmetry of the system. Based on electron dynamics in two-dimensional binding
potentials with two-dimensional continua, in such systems a reduction of rates due to
effective barriers can be expected to be less significant [17], such that in a continuum
fully open in all directions, the asymptotic predictions with even a rate enhancement are
supposedly fulfilled.

Having understood the overall rate trend, open questions remain on the short-distance
behavior, the two additional processes CICD and exICD, and the rate outlier at RAB ≈ 25.0 a.u.
To address the first, all three potential subprocesses are investigated individually, starting
with the regular two-electron ICD process now in a three-QD setting with one empty QD A
placed on the positive z axis. The rate is given as small blue points in Figure 5, compared to
the blue-crossed rate of ICD in two QDs. Over large ranges of RAB ≥ 15.5 a.u., where the
single-electron wave functions obey the asymptotic nonoverlapping condition, the rates
are almost identical. They display the same oscillations known from the two-electron two-
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QD case as caused by the Coulomb barrier of the electron remaining in A and massively
determining the electron emission direction [8]. However, at smaller distances the rates
turn out much lower in the presence of one empty A-type QD. The evolution of the electron
density distribution in Figure 7 can explain this observation. It shows that the electron
density in the initially empty QD A at z = +14 a.u., which should only be a spectator,
increases over time as in this nonasymptotic regime charge transfer (CT) is not excluded.
Density accumulates in its lower A level, and is therefore no more available to ICD. This
means that solely the presence of one nearby potential already slows the decay process. At
the shortest RAB, this CT effect determines the overall rate ΓDE in Figure 5 as here the small
blue points are matching the large dark green ones for the DE decay.

Figure 7. Illustration of the electron density distribution weighted to its maximal value for three
propagation timesteps. The initial wavefunction has electron density corresponding to two electrons
in one A∗ state and in B separated by RAB = 14 a.u., but no density in the other A site.

CICD was already excluded by rationalization, hence, of the other subprocess, exICD,
remains for close investigation. The excited ICD process among the two outer QDs can be
modeled for two electrons both in two and in three QDs. The respective graph symbols
in Figure 5 are dark green crosses and small points. In general, the rates are decreasing
and cover values of about 10−3.5–10−6 a.u. that are nearly identical for large RAB ≥ 16 a.u.
where CT among QDs is excluded. There, rates oscillate with a similar period as those of
regular ICD of A∗B, but with a significantly lower amplitude. This goes back to the fact
that the exICD electron stems from a higher energy state, has therefore a higher kinetic
energy, and is conclusively much less affected by the Coulomb barrier of the remaining
electron (cf. Figure 4, dark green, solid line). The Γ− RAB trend does over long ranges not
follow the asymptotic R−6

AA trend, as was likewise observed for atomic clusters [23,32,34],
but projections PS(t) on the state occupations (not shown) confirm exICD.

Another proof is the density inspection relating to the two-electron AA∗ decay in
Figure 8. Panel (a) reveals that the density strictly shows occupation of the A∗ levels of the
two only QDs A. It actually decreases over time, which is not seen due to renormalization.
The sole observation is a widening of the local densities above both QDs due to the constant
leak out of the continuum electron from both A∗ levels.

As for short distances RAB < 16 a.u. one finds again a discrepancy among the decay
rates for two and three QDs with the difference to regular ICD that here the additional
QD does not slow down the decay process as before, but actually speeds it up (small dark
green dots above crosses in Figure 5). A hint for this behaviour can be gained from the
electron density evolution with an additional empty B QD (Figure 8b). This empty well
allows electron density to transfer into the B state and thus gives rise to regular ICD of A∗B.
As ICD is obviously the faster decay pathway compared to exICD, the rate in the three-QD
system is higher. Conversely, we can state that exICD is accelerated solely by the presence
of one additional empty potential with a virtual B level in the vicinity. The process itself is
not unknown. It was characterized in the context of atoms as superexchange ICD [19–22].
Here, we observe a similar rate increase for the two-electron exICD at shortening distances.
As, moreover, the overall rate for three-electron DE decay at shortest distance increases,
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this presumably has the same origin, because the B level constantly gets unoccupied by
regular ICD and allows for superexchange ICD.

Figure 8. Comparison of the normalized electron density distribution of exICD of a two-electron
A∗A∗ state in two (a) and three QDs (b) for three propagation time-steps and RAA = 28 a.u.

For the larger separations 17 a.u. ≤ RAB ≤ 35 a.u. the R−6
AB Wigner–Weisskopf predic-

tion and the Coulomb barriers dictate the rates. In the remainder of this section, we shall
explicitly analyse the dynamic properties of the processes at distances where rate outliers
occur. Around 31.5 a.u. < RAB < 34 a.u. a few rates deviate from the asymptote. The
detailed analysis of the respective densities, populations, and energies does not, however,
reveal any exceptional behaviour here, so we must assume that at these small rates, the
limit of numerical accuracy is reached.

The most prominent outliers toward extremely large ΓDE are in the range
24.5 a.u. < RAB < 27 a.u. The rates at RAB = 25 and 25.5 a.u. lie almost exactly on
the rate curve for regular two-electron ICD.

In Figure 9a, the level occupations Ps(t) (light-purple lines, dashed for A∗, dashed-
dotted for A, dotted for B), autocorrelation |a(t)|2 with the initial resonance (dark purple),
and the norm (light purple, solid line) are collected for RAB = 25 a.u. As uniform to all
decays studied, the norm decays exponentially on the full time scale of the process. In
almost all other cases (e.g., Figure 6) level populations and squared autocorrelation have
followed this monotonic trend, but in the time close-up of 50 · 103 a.u. in Figure 9a, they
appear to oscillate strongly and periodically, the autocorrelation and the B population
(dotted) in particular by about 50% reduction and rebuild. The population evolution of
the two excited levels in the outer QDs (both dashed with different spacing) largely follow
the autocorrelation in altering by half of the amount (25%), whereas the populations of
the two ground states of the outer two-level QDs (dashed-dotted with different spacing)
oppose. This suggests that a partial inversion of the population occurs in the respective
two-level A sites, during which the energy is transferred to the B electron and exciting
it. The specialty at this exclusive distance is that the B electron then can deexcite again.
However, the three-QD system had been designed to have a single level in the B QD only
and any excitation of the B electron should be into the continuum leading to disappearance
of it into the CAP. Thus the question arises as to which type of state B∗ is excited by.
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Figure 9. The DE decay’s single-state populations Ps(t) (light purple, interrupted), as well as the
norm N(t) (light purple solid) and the squared autocorrelation |a(t)|2 (dark purple solid) as function
of time for RAB = 25 a.u. in (a). The three individual states s examined are A∗ (dashed), A (dashed-
dotted), distinguishable by tight or loose markers for right or left QD, and B (dotted). In (b) the
normalized electron density distribution |Ψ|2/ max(|Ψ|2) is presented for three characteristic time
steps of the propagation.

The electron density distributions in panel (b) for three critical time steps of the
evolution shall give clarification. The initial electron density distribution shows a clear
A∗BA∗ state. At the turning point of minimal A∗ and B of panel (a), i.e., after 15 · 103 a.u.,
the density on the outer QDs is a mixture of A and A∗ density. Further density appears in
between the A-sites centered around the B-level density peak, but filling almost all the area
to the outer QDs. This indicates the excited B electron being trapped between the electrons
in the A QDs. This way, the B electron remains in the QD region and is available to energy
back-transfer to the A sites. And indeed, after another half period of oscillation, the initial
distribution of electron density is almost regained. In the following the oscillations continue
as typical for plain resonance-energy transfer [14].

A look at the effective potential for the final DE configuration at RAB = 25 a.u. and is
associated single-electron B∗ state energy and density shall contribute to the understanding
of why the process becomes so fast in this given setting (Figure 10b). The effective potential
(green line) has two maxima at each side surrounding both A QDs. They are narrow
near their peaks but widen quickly. Above the B side, this causes the formation of a very
wide and flat potential well covering a range of approximately z ∈ [−20; 20] a.u. Above
the B ground state, which energetically locates in the narrow B potential with energy
−0.459 a.u., an excited state B∗ localizes in this wide, upper well at energy 0.030 a.u. such
that the excitation energy is matching the one available through A∗ → A relaxation. This
B∗ state’s electron density piles up left and right of the B site limited to the other side by
the effective potential barriers. Its shape resembles the density contribution discovered
in Figure 9b, which made the wave function available for the oscillatory energy transfer
seen in Figure 9a. In addition B∗ energetically locates where the tunneling barriers are very
narrow. This setting suggests that we found a shape resonance in the effective potential.



Molecules 2022, 27, 8713 17 of 23

Figure 10. Illustration of the density |Ψ|2 of the B∗ single-electron state (thin, grey line) in the
effective potential of the final DE electron configuration (thick, dark green line) for (a) RAB = 10 a.u.,
(b) RAB = 25 a.u., and (c) RAB = 35 a.u.

The localized B∗ state exists within a small range of distances only (where rates are
high, Figure 5). If RAB increases, the effective potential widens and the state’s energy drops
(Figure 10c). The B∗ is there facing wider and relatively high barriers, makes tunneling
less likely and a shape-resonance decay thus significantly slower. On the other hand, if the
distances RAB decrease, the energy of B∗ increases above the effective Coulomb barrier,
which occurs at energies RAB = 15.5 a.u. The associated B∗ density (Figure 10a) becomes
delocalized and effectively that of a true continuum state.

The existence of a resonance state alone cannot lead to a high DE-ICD rate. Ener-
getically, the shape resonance of the effective potential must occur at the energy of the
three-electron final state, i.e., at the kinetic energy of the outgoing B electron, and likewise
of the initial state, which are themselves determined by the geometry of the three-QD
system. In Figure 11a the density of the AB∗A∗ three-electron resonance is shown for
which panel (b) presents the energy (grey) in comparison to the DE decaying state’s en-
ergy (black). Obviously, the crossing is near RAB = 25 a.u., which matches the region of
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the largest DE-ICD rates. In all other regions in which there is no energy matching, the
distance-dependent rates ΓDE align to the R−6

AB asymptote (cf. Figure 5).

Figure 11. (a) Density |Ψ|2 of the three-electron shape-resonance AB∗A∗ (grey) at RAB = 25 a.u. and
(b) its state energy E (grey) compared to the energy of the initial electron DE state A∗BA∗ (black) as
function of RAB.

Therefore, we found here a shape resonance-enhanced pathway to the decay of the
A∗BA∗ state, which is in all other cases a Feshbach resonance decay only. The pathway
can only exist in systems with a continuum confinement and is available for very few
energy settings. During the shape resonance-enhanced decay, the electronic configuration
belonging to the shape resonance is reached quickly (within 15 · 103 a.u., Figure 9). It then
decays efficiently into the final states A∗B+A and AB+A∗, as shape resonances always
decay faster than two-electron Feshbach resonances (e.g. the ICD initial state) [8] .

4.2.2. Dynamics of the Singly Excited Resonance

In the following, we will focus on the dynamical processes of the SE resonance A∗BA,
which include regular ICD among QDs A and B, as well as the Förster-like resonance energy
transfer among the two outer QDs A (cf. Figure 1, bottom), where the latter, however,
should not lead to a decay in competition with ICD. The expectation formulated for the
decay is straightforwardly ΓSE = ΓICD

SE . To recall, the SE resonance is a superposition of the
two symmetry-equivalent eigenstates with a single excitation of either of the outer QDs,
the left (A∗BA) or right (ABA∗). Therefore, every quantitative analysis (e.g., rates) is made
according to this superposition.

Figure 5 shows ΓSE as light green bold dots, revealing it to be the lowest overall
rate at most inter-QD separations. The ΓSE-RAB graph divides into two ranges with
different decay behavior. The rates at the short-distance range RAB ≤ 14.0 a.u., where the
asymptotic equations are not valid, decrease steeply and are nearly equal to the DE rates.
For larger distances RAB ≥ 14 a.u. the SE rates drop below the DE rates and then follow
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the R−6
AB asymptote. Overall outliers toward lower rates in both zones are the process at

RAB = 11 a.u. and those from RAB > 30 a.u. The latter very low rates drop significantly
below the asymptote and are artifact of the numerical limits of the calculations.

To understand the decay behavior, we can benefit from our investigations of DE
processes. In SE processes, neither accelerating nor decelerating short-range CT effects can
be observed. An acceleration effect would require an enhancement of the population of
an A∗B state. In the DE case, this was obtained through CT of the A∗ electron from the
other site to B. Here, the corresponding tunneling would have to be from the lower A
level with narrow density, which is energetically and in terms of overlap not favorable.
Compared to the DE resonance, the SE resonance energy is almost twice as low (Figure 3),
hence there are fewer ionization channels below. In the long-distance region of the ΓSE-RAB
graph, SE dynamics does, like DE dynamics, follow the asymptote R−6

AB without drastic rate
oscillations as known from the regular ICD. The reason for this flatness is the symmetry
of the effective barrier forming the B electron confinement. The rates are even one order
slower as it has a significantly higher effective barrier to tunnel (cf. Figure 4).

As there are neither marked outliers in the behavior of Γ, nor does CT at short distances
apply, the last analysis is directed to the observation of ET among the outer QDs as a
potential side process to ICD. The norm and level populations of the three-electron SE
dynamics are therefore compared for four representative distances (Figure 12). The initial
wave functions for the analyses are obtained from the improved block relaxation and
mostly represent neither a complete superposition nor a pure eigenstate of A∗B+A and
AB+A∗, but actually their linear combinations. An even superposition, where the right
QD is occupied in the A (dashed-dotted) and the A∗ (dashed) level each by 50% arises
for the case RAB = 10 a.u. (Figure 12a, light purple lines). An identical occupation holds
for the left QD (not shown). Over time, the population of the A∗ levels reduces toward
0%, i.e., the A levels’ occupation inverts. At the same time the B population (dotted) and
the overall norm (solid line) both decrease exponentially from 100% according to ΓSE as
depicted in Figure 5. This is in principle the behavior as expected for a regular two-electron
two-QD ICD process [56], but first traces of ET among both A QDs are evident from the
numerical data.

This gets more pronounced and even visible from the propagation, when going to the
larger distances, RAB = 13 a.u. (Figure 12a, dark purple), RAB = 21 a.u. and RAB = 34 a.u.
(light and dark purple in panel (b) with a longer observation time), where the dominance
of ICD decreases. The decay becomes inherently slower, such that the B population and the
norm remain majorly at their initial 100% in the displayed time window. In these scenarios,
the level populations of the outer QDs display dominantly Förster-like ET dynamics by
periodically inverting between A∗ and A of the coupled dipoles over time, and overall
A∗A 
 AA∗. For RAB = 13 a.u. the full inversion is beyond the displayed data in (a), while
the inversion or transfer time is 56 · 103 a.u. for RAB = 21 a.u. and 257 · 103 for RAB = 34 a.u.
By using similar data for further distances we observe the transfer rate, the inverse of
the transfer time, decrease with increasing RAB. This is not surprising, as energy transfer
processes also depend on Coulomb interaction (Equation (4)). Here, ET rates follow an
R−3

AB trend. This indicates that not all assumptions of a dipole–dipole transition are valid in
the present system, because the short-range ET in atomic and molecular systems of typical
electron excitation energies is supposed to be the coupling of dipole transitions leading to
the well-known R−6

AB dependence (Section 2.1). However, in other studies it was shown
that the R dependence is not trivially predictable in significantly altered geometries and
systems [14]. There is intermediate-range transfer with an R−4

AB dependence and long-range
energy transfer with a R−2

AB rate dependence depending on the relation of size of the ET
partners and the wave length of the transferred virtual photon. Besides the plain theory,
distance dependencies of R−3

AB and R−5
AB have also been reported [63].
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Figure 12. Single-state populations PS(t) (interrupted lines) and norm N(t) (solid) in % as function
of the propagation time for the SE decay. In (a) the left ordinate and light purple lines belong
to RAB = 10 a.u., whereas dark purple lines and the right ordinate correspond to RAB = 13 a.u.
In (b) projections corresponding to RAB = 21 a.u. (34. a.u.) are indicated in light (dark) purple. The
five individual states examined are A∗ (dashed), A (dashed-dotted), each tight or loosely for right or
left QD in (a), and B (dotted).

The absolute rates for this ET are all in the range of 10−5 a.u. for the wide range
of distances given. Explicitly, they are 4.78 · 10−5 a.u. > ΓET

SE > 0.39 · 10−5 a.u. within
15.0 a.u. < RAB < 34.0 a.u. If comparing the rates with ΓSE = ΓICD

SE in Figure 5, their
crossing occurs near RAB = 11.0–13.0 a.u., which matches the distance from which on CT of
populations is overlaying ICD (Figure 12).

5. Conclusions

This paper comprises the study of the interparticle Coulombic decay process in an
array of three linearly aligned binding sites with two virtual-photon donors A at the
edges and an electron emitter B in the center. This ABA system design was chosen to
provide a delineation of information to previously studied three-site ICD processes. To
complement this, we investigate two possible excitation scenarios. In the SE scenario, only
one photon donor is initially excited, whereas in the DE process, both A sites are. This
work’s investigations explore the electronic structure of the model system and, moreover,
give a detailed description of the dynamics of three electrons in three linearly aligned QDs.

In a rationalization of possible subprocesses along with the formulation of their
Wigner–Weisskopf rates, we analytically confirm predictions of at least a rate doubling with
doubling of the number of photon emitters in agreement with previous findings. However,
because this rate doubling is not confirmed by highly correlated electron dynamics, but
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rather a strong rate decrease is found, all subprocesses are disentangled and studied
individually. These are namely two-electron regular ICD for both initial states, for the DE
case additionally excited ICD among only to excited photon emitters and collective ICD of
three electrons, and for the SE case resonance energy transfer among the outer sites.

The breakdown into the individual subprocesses in conjunction with geometrical and
energetic analyses revealed that a third, empty, site can affect the rates due to its ability to
bind the electronic wave packet of a nearby neighboring site, which can in cases enhance
(by superexchange ICD), and in others decrease the overall rates, depending on whether
the electrons Coulomb interact more or less as a result of such charge transfer. Furthermore,
linking information on the evolution of state energies and effective Coulomb barriers with
inter-QD distance to dynamic quantities such as decay rates and population analyses
provides insight into rate evolutions and relative speed of subprocesses.

For longer distances, a significant slowdown of the three-electron dynamics occurs
compared to that of two electrons. We attribute this effect to the effective barriers hindering
the ICD electron in the one-dimensional continuum to travel to any direction. In the SE
case, those barriers are higher; hence, a generally more significant rate slowing is observed.
This means that in the asymptotic regime, the decay of the SE or DE resonance would be
overlaid by phonon-mediated dissipation [48] or radiative decay [8], which both have rates
of about 10−6 a.u.

In the DE case, at a certain distance between sites, a synergistic effect of continuum
confinement, energy levels, and Coulomb interaction emerges a shape-resonance pathway
with an extraordinarily large rate. Here the B electron is initially excited into a localized,
but nonetheless extended wave packet above the B site, from where it can decay quickly
into the continuum.
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