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Abstract
For an arbitrary rational polyhedron, we consider its
decompositions intoMinkowski summands and, dual to
this, the so-called free extensions of the associated pair of
semigroups. Being free for a pair of semigroups is equiv-
alent to flatness for the corresponding algebras. The
main result is phrased in this dual setup: the category of
free extensions always contains an initial object, which
we describe explicitly. This provides a canonical free
extension of the original pair of semigroups provided by
the given polyhedron. Our motivation comes from the
deformation theory of the associated toric singularity.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3939

1 INTRODUCTION

The present paper deals entirely with objects from discrete mathematics, like semigroups, convex
polyhedra and polyhedral cones, and their relations to lattice points. Nevertheless, most of the
motivation comes from algebraic deformation theory of affine toric varieties.

1.1 The main result and a first example

Ourmain result dealswith rational polyhedra𝑃 and their associated finitely generated semigroups
coneℤ(𝑃)

∨ consisting of all integral linear forms which are non-negative on 𝑃. They contain a
distinguished sub-semigroup ℕ ⊆ coneℤ(𝑃)∨ collecting the affine linear forms having constant
(integral) value on 𝑃. Our main result, Theorem 9.2, states that these pairs of semigroups admit
universal, hence canonical, extensions which can be described in terms of the polyhedra; they are,
in particular, related to the set of Minkowski decompositions of the given 𝑃. Actually, we insist in
so-called free extensions; this notion will be explained in Definition 3.7.
Let us start with a 1-dimensional example, namely, with the line segment 𝑃 = [−1

2
, 1
2
] ⊂ ℝ, a

detailed treatment of which can be found at the end of the paper in Example 11.1. The associated
coneℤ(𝑃)

∨ = {[𝑎, 𝑏] ∈ ℤ2 ∶ 𝑎𝑃 + 𝑏 ⩾ 0} is, as a semigroup, generated by

{[−2, 1], [−1, 1], [0, 1], [1, 1], [2, 1]},

and the sub-semigroup ℕ materializes in the central element 𝑅 = [0, 1]. Both parts are reflected
in the gray gadgets of Figure 1. This example shows that the theory of (free) extensions is richer
than that of Minkowski summands. For a line segment the latter is quite boring, while for the
former we obtain two different free extensions: Both result from doubling the central point, that
is, by replacing 𝑅 by some 𝑅′ and 𝑅′′. However, both ways differ in the behavior of the remain-
ing elements of the semigroup. This is depicted in Figure 1 via using the blue and green color,
respectively. Finally, both ‘1-dimensional’ extensions fit into a common ‘2-dimensional’ one (the
dimension counts refer to the figures in the left gray box of Figure 1), depicted in red. Note that,
in the picture, only the bullets matter; the lines in between are included for a better visualization.
Our theorem is a full generalization of [3, 4], in the sense that no restrictions are imposed on

the polyhedron. We tried to keep our notation and terminology as close as possible to those two
papers. One important exception is that we have decided to use here the terminologywhich seems
to be standard in discrete geometry papers, that is, we use the word recession cone for what was
called tail cone in [3, 4].
Immediate applications of this paper to deformations of toric singularities are gathered in

[1, 9]. There, the construction of a graded component of the versal deformation relies entirely
on the universal object we introduce here.

1.2 Structure of the paper

Before proceeding with the introduction in Section 2, let us summarize briefly the structure of
the paper. In Section 3, we introduce free pairs of semigroups, and present their basic properties.
Section 4 deals with extensions of semigroups, and introduces the category for which we will
construct an initial object.We then proceed by analyzing two special classes of semigroups, which
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3940 ALTMANN et al.

F IGURE 1 The generators of the semigroups, and the way the fit together

are most relevant for toric geometry: The cone setup (Section 5) looks at semigroups which are
polyhedral cones in some finite-dimensional real vector space; The discrete setup (Section 6) deals
with finitely generated semigroups. We give an overview of the relation between the two setups
below, in Subsection 2.3. Section 7 is the key technical part behind both the construction of the
initial object, and for the future applications related to obstructionmaps and versality. In Section 8,
we define the initial object, which will be the pair of semigroups denoted by (𝑇, 𝑆), and prove its
most basic properties: it is an extension and the semigroups are finitely generated. We state and
prove our main result in Section 9. The proof of Theorem 9.2 is by far the longest part of the paper.
Finally, in Section 10, we connect our initial object to Minkowski decompositions and with the
Kodaira–Spencer map.

2 PRELIMINARIES

2.1 Minkowski sums of polyhedra

A central notion of the present paper is theMinkowski sum of two convex polyhedra𝐴, 𝐵 in some
real vector space𝑁ℝ ≅ ℝ𝑑. It is a very classical notion, cf. [17, pp. 28, 198]. It is simply defined as

𝐴 + 𝐵 ∶= {𝑎 + 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

It is easy to see that the result is again a convex polyhedron. In analogy to this, the ambient vector
space is defined as 𝐴 − 𝐴 ∶= {𝑎 − 𝑎′ ∶ 𝑎, 𝑎′ ∈ 𝐴}. Recall that Minkowski decomposition can be
used to write every convex polyhedron 𝑃 as a Minkowski sum of a polytope, that is, a bounded
polyhedron, and a polyhedral cone, namely, its recession cone

recc(𝑃) ∶= {𝑎 ∈ 𝑃 − 𝑃 ∶ 𝑎 + 𝑃 ⊆ 𝑃}.

However, this is exactly the type of situation we will not consider. Instead, for all Minkowski
sums and decompositions in this paper we will assume that all participating polyhedra share the
same recession cone. For example, if this recession cone is 0, then we speak about polytopes. An
advantage of this general assumption is that the Minkowski addition allows cancellation, that is,
𝐴 + 𝐵 = 𝐴′ + 𝐵 implies 𝐴 = 𝐴′.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3941

Starting with a polyhedron 𝑃, one might look at all possibilities of splitting 𝑃 into a Minkowski
sum

𝑃 = 𝑃0 +⋯ + 𝑃𝑘.

Even if one looks only at the most elementary or extreme decompositions, they are far from
being unique. They do rather behave like a non-unique prime factorization. Arguably the most
convincing example is the following.

It is well-known that the set of Minkowski summands of scalar multiples of 𝑃 (see Defini-
tion 5.6) carries the structure of a convex, polyhedral cone 𝐶(𝑃), that is, each 𝜉 ∈ 𝐶(𝑃) represents
a Minkowski summand 𝑃𝜉 [4]. For the previous hexagon example, it is the 4-dimensional cone
over a double tetrahedron. Its vertices, that is, the fundamental rays of the cone, correspond to
the five summands displayed in the figure above.

2.2 Considering families

The concept of studying Minkowski summands of scalar multiples of 𝑃 can be reformulated
into a relative setting. We may look at homomorphisms 𝑝+ ∶ 𝐶 ↠ 𝐶 of polyhedral cones such
that 𝑝−1+ (𝜉 + 𝜉

′) = 𝑝−1+ (𝜉) + 𝑝
−1
+ (𝜉

′) for all 𝜉, 𝜉′ ∈ 𝐶, where the common recession cone of all
the fibers 𝑝−1+ (𝜉) is 𝑝

−1
+ (0). A trivial example of this can be obtained by taking the affine cone

over 𝑃 in 𝑁ℝ ⊕ ℝ (with 𝑃 embedded in height 1) and considering its natural height function
cone(𝑃) → ℝ⩾0. Another example is the projection 𝐶(𝑃) ↠ 𝐶(𝑃) with

𝐶(𝑃) ∶= {(𝜉, 𝑣) ∶ 𝜉 ∈ 𝐶(𝑃), 𝑣 ∈ 𝑃𝜉}.

The latter is even universal, namely, it is the terminal object in the category of all those families
around cone(𝑃) → ℝ⩾0, cf. Proposition 5.8. However, while this might just look like an arming of
language, the striking point consists of the combination of the following two observations.

(i) One may dualize these notions, looking at injections 𝑝∨+ ∶ 𝐶
∨ ↪ 𝐶∨. Then, the property of

Minkowski linearity translates into an interesting property we call freeness, cf. Proposi-
tion 5.4. This property addresses the splitting of 𝐶∨ into a product of 𝐶∨ and a boundary
part.

(ii) The advantage of (i) is that it allows porting the whole setup into the category of finitely
generated semigroups. Doing so, one can again ask for universal (so, after dualizing, initial)
objects of the appropriate categories.

2.3 Extensions of semigroups

We take the observations of Subsection 2.2 as our starting point of the whole paper. We will
begin in Sections 3 and 4 from scratch with developing the appropriate notions in the category
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3942 ALTMANN et al.

of semigroups. Then, insisting on finite generation, the general approach naturally splits into two
different setups. We have called them the cone and the discrete setup, and we will focus on them
in Sections 5 and 6, respectively. While the cone setup will recover the (duals of the) cones 𝐶(𝑃)
and 𝐶(𝑃), the comparison of both setups will lead to a new vector space  (𝑃) together with a lat-
tice ℤ(𝑃) ⊂  (𝑃), and a rational, polyhedral cone +(𝑃) ⊂  (𝑃) generalizing𝐶(𝑃). Studying their
dual level, we obtain a finer structure, that is, there is a (unique) finitely generated sub-semigroup
𝑇 of the dual Abelian group  ∗

ℤ
(𝑃) fulfilling the universal property (ii) above, that is, it is the base

for a universal free extension.
The existence of a universal object in the discrete setup is our main result. It is formulated in

Theorem 9.2, the proof of which occupies the whole of Section 9. It seems to be an interesting
question if the existence and structure of initial extensions is linked to results like [11, Proposition
3.38] addressing unique liftings in log geometry; see the remark after Proposition 4.3. Note that
unique liftings in log geometry were important for producing smoothings in [8, 14], see also
[7, 12, 15].

2.4 Involving a lattice structure

Let us return to Subsection 2.1 and let us assume that we have fixed a lattice structure in our
ambient ℝ-vector space. For instance, let us start with a free Abelian group 𝑁 of rank 𝑑, that is,
𝑁 ≅ ℤ𝑑, and take 𝑁ℝ ∶= 𝑁 ⊗ℤ ℝ ≅ ℝ𝑑 as our ambient vector space. If 𝑃 is a lattice polyhedron,
that is, if all vertices belong to𝑁, then it is a natural question to look for all lattice decompositions,
that is, for those Minkowski decompositions such that the summands 𝑃𝜈 are lattice polytopes,
too. One might expect that those 𝑃𝜈 correspond to special points inside the parameterizing
cone 𝐶(𝑃).
However, in the present paper, we go far beyond lattice polyhedra. Instead, we will deal with

arbitrary rational polyhedra, but we study their interaction with the lattice. In particular, lattice
decompositions do no longer make sense. Instead, in Subsection 10.3, we introduce the weaker
notion of lattice-friendly decompositions, cf. Definition 10.6. Then, it is our second main result
of this paper that the parameters 𝜉 ∈ +(𝑃) ∩ ℤ(𝑃) introduced in Subsection 2.3 correspond to
exactly those Minkowski summands 𝑃𝜉 occurring in lattice-friendly decompositions, cf. Theo-
rem 10.12. Moreover, similarly to the definition of 𝐶(𝑃) in Subsection 2.2, we have combined in
Theorem 10.5 all Minkowski summands 𝑃𝜉 , lattice friendly or not, into a common polyhedral,
so-called tautological cone ̃+(𝑃) fibered over +(𝑃). That is, the lattice  ∗

ℤ
(𝑃) occurs twice in

this paper — as the ambient space of some universal object 𝑇, but also as the right tool to check
Minkowski decompositions for the lattice friendly property.

3 FREE PAIRS OF SEMIGROUPS

3.1 Relative boundaries of semigroups within two different setups

Let𝑇 ⊆ 𝑆 be two commutative and cancellative (𝑎 + 𝑐 = 𝑏 + 𝑐 ⇒ 𝑎 = 𝑏) semigroupswith identity
(0 + 𝑎 = 𝑎 + 0 = 𝑎), satisfying 𝑆 ∩ (−𝑆) = {0}, that is, 𝑆 (and hence 𝑇) is pointed. This situation
gives rise to the following notion of a relative boundary.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3943

F IGURE 2 𝑇 = ℝ⩾0 ⋅ [2, 3] ⊆ 𝑆ℝ

F IGURE 3 𝑇 = spanℕ{[−1, 1], [1, 1]} ⊆ 𝑆

F IGURE 4 𝑇0 = spanℕ{[0, 1]} ⊆ 𝑆

Definition 3.1. The boundary of 𝑆 relative to 𝑇 is defined as

𝜕𝑇𝑆 = {𝑠 ∈ 𝑆 ∶ (𝑠 − 𝑇) ∩ 𝑆 = {𝑠}}.

This setting comes with a natural addition map 𝑎 ∶ 𝜕𝑇𝑆 × 𝑇 → 𝑆.

Example 3.2. In the context of numerical semigroups, that is sub-semigroups of ℕ, the so-called
Apéry sets are relative boundaries with respect to the subgroup generated by the smallest element.

The following examples illustrate that the relative boundary is almost never a semigroup itself.

Example 3.3. Consider the real cone 𝑆ℝ ∶= ℝ⩾0 ⋅ [−2, 1] + ℝ⩾0 ⋅ [2, 1] ⊂ ℝ2, and the finitely gen-
erated semigroup 𝑆 = 𝑆ℝ ∩ ℤ2. In the following, we consider the boundary of 𝑆ℝ with respect to
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3944 ALTMANN et al.

F IGURE 5 𝑇1 = spanℕ{[1, 1]} ⊆ 𝑆

an internal ray, and boundaries of 𝑆 relative to different sub-semigroups; Figures 4 and 5 show
how different embeddings of ℕ in 𝑆 give rise to different boundaries (see also Example 3.5 for
more details).

There are two quite different classes of semigroups we have in mind. Both are, in their own
way, finitely generated.

3.1.1 The cone setup

Here we take for 𝑇 ⊆ 𝑆 polyhedral cones in some finitely dimensional real vector space. These
gadgets are finitely generated by their fundamental rays as ‘ℝ⩾0-modules’, but not at all finitely
generated as semigroups.

Example 3.4. Assume that 𝑇 ⊆ 𝑆 is a ray, that is, 𝑇 = ℝ⩾0 ⋅ 𝑅 for some 𝑅 ∈ 𝑆 ⧵ {0}. Then, there
is unique face 𝐹 = 𝐹(𝑇) ⩽ 𝑆 such that 𝑅 and hence 𝑇 ⧵ {0} is contained in the relative interior
int(𝐹). Then, 𝑆 ⧵ 𝜕𝑇𝑆 = star(𝐹) ∶=

⋃
𝐹⩽𝐺⩽𝑆 int(𝐺). Note that both int(𝑆) and int(𝐹) are parts

of this set, that is, 𝜕𝑇𝑆 ⊆ 𝜕𝑆 ⧵ int(𝐹) with 𝜕𝑆 ∶= 𝑆 ⧵ int(𝑆) denoting the classical topological
boundary.
For the special case 𝑅 ∈ int(𝑆), as in Figure 2, we even have that 𝜕𝑇𝑆 = 𝜕𝑆. In particular, in this

situation the relative boundary does not depend on a further specification of 𝑅.

3.1.2 The discrete setup

Here we suppose that both 𝑇 and 𝑆 are finitely generated as semigroups, that is, as ‘ℕ-modules’.
In this case, the so-called Hilbert basis, consisting of all irreducible elements, provides even a
minimal, hence canonical, finite generating system. A typical example of this situation is the
intersection of a cone setup with an underlying lattice.

Example 3.5. Let 𝑆 ∶= spanℝ⩾0{[−2, 1], [2, 1]} ∩ ℤ
2 as in the three discrete figures of Example 3.3,

and in Figure 10, the Hilbert basis of this semigroup is

𝐻 = {[−2, 1], [−1, 1], [0, 1], [1, 1], [2, 1]}.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3945

The semigroup 𝑆 contains the inner ‘discrete rays’ 𝑇0 = ℕ ⋅ [0, 1] and 𝑇1 = ℕ ⋅ [1, 1], and their
respective relative boundaries are

𝜕𝑇0𝑆 = {[±2𝑏, 𝑏] ∶ 𝑏 ∈ ℕ} ∪ {[±(2𝑏 − 1), 𝑏] ∶ 𝑏 ∈ ℕ⩾1}

and

𝜕𝑇1𝑆 = {[±2𝑏, 𝑏] ∶ 𝑏 ∈ ℕ} ∪ {[−2𝑏 + 1, 𝑏], [−2𝑏 + 2, 𝑏] ∶ 𝑏 ∈ ℕ⩾1}.

That is, while both 𝑇0 and 𝑇1 come from the ‘interior’ of 𝑆, they lead to different relative, discrete
boundaries; see Figures 4 and 5, respectively.

3.2 Freeness

We will use the addition map 𝑎 ∶ 𝜕𝑇𝑆 × 𝑇 → 𝑆 for decomposing elements of the semigroup 𝑆. In
general, that is, if we are in the cone setup (3.1.1) or the discrete setup (3.1.2), the existence of those
decompositions is not a problem. This is established by the following lemma.

Lemma3.6. Assume thatwe are either in the cone or the discrete setup. Then, the canonical addition
map 𝑎 ∶ 𝜕𝑇𝑆 × 𝑇 → 𝑆 is automatically surjective.

Proof. Let 𝑇 = span{𝑡1, … , 𝑡𝑘} and 𝑆 = span{𝑠1, … , 𝑠𝑟}, which we consider either as ℕ−modules,
or as ℝ⩾0−modules. For each 𝑠 ∈ 𝑆 write 𝑠 = 𝑎1𝑠1 +⋯ + 𝑎𝑟𝑠𝑟, and for each 𝑖 = 1, … , 𝑘 write 𝑡𝑖 =
𝑏1𝑠1 +⋯ + 𝑏𝑟𝑠𝑟. By the pointedness assumption, we have that for every 𝑛 ∈ ℕ with 𝑎𝑖 < 𝑛𝑏𝑖 , for
all 𝑖, we get 𝑠 − 𝑛𝑡 ∉ 𝑆. So in both setups, there exists a maximal 𝑛∗ ∈ ℝ⩾0, respectively,∈ ℕ, with
𝑠 − 𝑛∗𝑡 ∈ 𝑆. Continuing this process with all generators of𝑇 eventually leads to an element 𝑠∗ ∈ 𝑆
which cannot be decreased via 𝑇. □

The injectivity of 𝑎 is less common, but, as we will see, very powerful. Therefore, we introduce
the following key terminology.

Definition 3.7. The semigroups 𝑇 ⊆ 𝑆 form a free pair (𝑇, 𝑆) (or 𝜄 ∶ 𝑇 ↪ 𝑆 is called a free
embedding) if the addition map 𝑎 ∶ 𝜕𝑇𝑆 × 𝑇 → 𝑆 is bijective.

Example 3.8. Let 𝑆 ∶= spanℝ⩾0{[−2, 1], [2, 1]} and 𝑇 ∶= spanℝ⩾0{[−1, 1], [1, 1]}. We are thus in
in the cone setup, and 𝜕𝑇𝑆 = 𝜕𝑆 as in the situation at the end of Example 3.4. However, the sur-
jective map 𝑎 ∶ 𝜕𝑇𝑆 × 𝑇 → 𝑆 is not injective. For instance, [0, 0] + [2, 2] = [2, 1] + [0, 1] displays
two different decompositions of [2, 2] ∈ 𝑆. Applying Proposition 3.11 will make this even more
obvious: We obtain𝑀 = ℝ2∕ℝ2 = 0, hence 𝑞 ∶ 𝜕𝑇𝑆 → 𝑀 has no chance to become injective.
Note that literally the same remains true if we intersect everything with the lattice ℤ2. This

yields a non-free example in the discrete setup, too. Alternatively, in Figure 3, where we have
that 𝑇 ∶= spanℕ{[−1, 1], [1, 1]} and 𝑆 ∶= spanℕ{[−2, 1], [−1, 1], [0, 1], [1, 1], [2, 1]}we can take for
a non-unique decomposition [0, 0] + [4, 4] = [4, 2] + [0, 2].

In log-geometry, there is the notion of an integral homomorphism of semigroups. In fact, our
concept of freeness means exactly this. See Subsection 4.3 for a discussion of this relation.
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3946 ALTMANN et al.

3.3 The decomposition operators

By definition, free pairs (𝑇, 𝑆) allow a unique decomposition of every element 𝑠 ∈ 𝑆 into a sum

𝑠 = 𝜕(𝑠) + 𝜆(𝑠) with 𝜕(𝑠) ∈ 𝜕𝑇𝑆 and 𝜆(𝑠) ∈ 𝑇.

In other words, there are retraction maps 𝜕 ∶ 𝑆 ↠ 𝜕𝑇𝑆 and 𝜆 ∶ 𝑆 ↠ 𝑇 with 𝜕 + 𝜆 = id satisfying

𝜕|𝜕𝑇𝑆 = id, 𝜕|𝑇 = 0 and 𝜆|𝜕𝑇𝑆 = 0, 𝜆|𝑇 = id .
Note that 𝜆 is in general not linear, that is, not a semigroup homomorphism. Moreover, for 𝜕,
linearity does not evenmake sense, since the target 𝜕𝑇𝑆 is not a semigroup. Finally, in the discrete
setup, the Hilbert basis𝐻 of 𝑆 hosting a free pair (𝑇, 𝑆) splits into two parts, namely,

𝐻 = (𝐻 ∩ 𝜕𝑇𝑆) ⊔ (𝐻 ∩ 𝑇).

3.4 Rays yield free pairs

While Example 3.8 has shown that freeness is not always satisfied, there is, nevertheless, a
standard situation where this property is guaranteed.

Definition 3.9. In both setups, we call 𝑇 a ray if it is saturated in the ambient Abelian group
𝑆 − 𝑆 and if its canonical poset structure (𝑡 ⩽ 𝑡′ ∶⟺ 𝑡′ − 𝑡 ∈ 𝑇) is a total order.

In the cone setup (3.1.1), this means 𝑇 ≅ ℝ⩾0; in the discrete setup (3.1.2), the ray property
implies that𝑇 ≅ ℕ. In both situations, there exists an𝑅 ∈ 𝑆 such that𝑇 ⊆ 𝑆 consists of all ‘allowed’
multiples of 𝑅, that is, using ℝ⩾0 or ℕ as coefficients, respectively.

Proposition 3.10. If 𝑇 is a ray, then 𝑎 is injective, that is, (𝑇, 𝑆) is a free pair.

Proof. Let 𝑏, 𝑏′ ∈ 𝜕𝑇𝑆 and 𝑡, 𝑡′ ∈ 𝑇with 𝑏 + 𝑡 = 𝑏′ + 𝑡′.Wemay,without loss of generality, assume
that 𝑡 ⩾ 𝑡′. Then, the cancellation property implies that 𝑏 + (𝑡 − 𝑡′) = 𝑏′ ∈ 𝜕𝑇𝑆 with 𝑡 − 𝑡′ ∈ 𝑇.
By definition of the relative boundary, this means that 𝑡 − 𝑡′ = 0, that is, 𝑡 = 𝑡′ and hence
𝑏 = 𝑏′. □

3.5 Involving the ambient Abelian groups

Since 𝑇 ⊆ 𝑆 are both cancellative, we may embed them into their respective linear hulls

𝑊 ∶= 𝑇 − 𝑇 ⊆ 𝑆 − 𝑆 =∶ 𝑉.

These ambient objects𝑊,𝑉 are torsion-free Abelian groups. In the cone or in the discrete setup,
they are finitely generated ℝ-, respectively, ℤ-modules. That is,𝑊 and 𝑉 are finitely dimensional
vector spaces or free Abelian groups of finite rank. We denote by𝑀 ∶= 𝑉∕𝑊 the quotient (which
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3947

might have torsion in the discrete setup). This leads to the quotient map

𝑞 ∶ 𝑆 ↠ 𝑆 ⊆ 𝑀 with 𝑆 ∶= 𝑆∕𝑇 ∶= (𝑆 − 𝑇)∕(𝑇 − 𝑇)

denoting its image. The quotient 𝑆∕𝑇 had been built via the equivalence relation saying that 𝑠 ∼ 𝑠′
if and only if there are 𝑡, 𝑡′ ∈ 𝑇 such that 𝑠 + 𝑡 = 𝑠′ + 𝑡′ in 𝑆. Very often, namely, if 𝑇 contains
‘interior’ points of 𝑆, this semigroup is already a group, that is, it equals 𝑀. The usage of the
ambient groups and their quotient 𝑀 yields the following criterion of freeness in terms of the
injectivity of 𝑞|𝜕𝑆 .
Lemma 3.11. Let (𝑇, 𝑆) be a pair of semigroups such that 𝑎 ∶ 𝜕𝑇𝑆 × 𝑇 → 𝑆 is surjective. We have
the following.

(i) The restriction 𝑞|𝜕𝑆 ∶ 𝜕𝑇𝑆 → 𝑆 is surjective.
(ii) The map 𝑞|𝜕𝑆 ∶ 𝜕𝑇𝑆 → 𝑀 is injective if and only if (𝑇, 𝑆) is free.

Proof.

(i) The surjectivity of 𝑞|𝜕𝑆 is a direct consequence from the surjectivity of the addition map 𝑎.
(ii) The direct implication is obvious. For the converse, assume that (𝑇, 𝑆) is free and that

𝑞(𝑏) = 𝑞(𝑏′) for some 𝑏, 𝑏′ ∈ 𝜕𝑇𝑆. This implies 𝑏 − 𝑏′ ∈ 𝑇 − 𝑇, so there are 𝑡, 𝑡′ ∈ 𝑇 with
𝑏 + 𝑡 = 𝑏′ + 𝑡′. The latter displays two decompositions of the same element into summands
from 𝜕𝑇𝑆 and 𝑇. Hence, freeness implies 𝑏 = 𝑏′. □

4 EXTENDING FREE PAIRS

4.1 Extending semigroups

Starting with a free pair 𝑇 ↪ 𝑆 we are going to consider all possibilities to put this in relation with
other free pairs 𝑇 ↪ 𝑆 having isomorphic boundaries.

Definition 4.1. We call a semigroup homomorphism 𝜋 ∶ 𝑆 → 𝑆 an extension if it has trivial
kernel, that is if ker𝜋 = {�̃� ∈ 𝑆 ∶ 𝜋(�̃�) = 0} = 0, which is equivalent† to

𝜋
(
𝑆 ⧵ {0}

)
⊆ 𝑆 ⧵ {0}.

Let 𝑇 ↪ 𝑆 be a pair of semigroups (not necessary free). A commutative diagram of semigroup
maps

†Note that for semigroup homomorphisms, having a trivial kernel does not imply injectivity.
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3948 ALTMANN et al.

F IGURE 6 𝜋 does not always map boundary to boundary

is an extension of the pair (𝑇, 𝑆) if 𝜋𝑆 (and thus also 𝜋𝑇) is an extension. An extension is called
iso-bounded if the following two conditions are satisfied:

(i) the addition maps 𝑎 and 𝑎 are surjective, and
(ii) 𝜋 induces a bijection on the boundaries: 𝜕𝑇𝑆

∼
⟶ 𝜕𝑇(𝑆).

We will frequently denote both vertical maps simply by 𝜋. Note that the above diagram alone
immediately implies that 𝜋(𝑆 ⧵ 𝜕𝑇𝑆) ⊆ 𝑆 ⧵ 𝜕𝑇𝑆. On the other hand, 𝜋 generally fails to map 𝜕𝑇𝑆
into 𝜕𝑇𝑆, cf. Example 4.2.2.

Example 4.2.

(1) A trivial possibility for extending pairs is to first define 𝑆 ∶= 𝑆 × 𝐹 with 𝐹 any semigroup of
the scenario in question. However, the plain projection pr𝑆 ∶ 𝑆 × 𝐹 ↠ 𝑆 does not meet our
requirements, because its kernel equals 𝐹. This can be corrected by choosing any semigroup
map 𝓁 ∶ 𝐹 → 𝑆 with trivial kernel and defining 𝜋𝓁 ∶= pr𝑆 +𝓁, that is, 𝜋𝓁(𝑠, 𝑓) ∶= 𝑠 + 𝓁(𝑓).
Using this notation, the forbidden plain projection corresponds to the forbidden 𝓁 = 0. To
obtain an extension of the pair, take 𝓁 ∶ 𝐹 → 𝑇 ⊆ 𝑆 with ker𝓁 = 0, and define 𝑇 ∶= 𝑇 × 𝐹.
Note that 𝜕𝑇×𝐹(𝑆 × 𝐹) = 𝜕𝑇(𝑆) × {0}. Hence, the freeness property of (𝑇, 𝑆) is equivalent to the
similar one for (𝑇, 𝑆).

(2) We consider an example in the cone setup (3.1.1). To be able to drawwhat is going on, we inter-
sect both cones 𝑆 and 𝑆 with affine hyperplanes — displaying convex polytopes (the origin of
the cones being behind the screen):
Extending the formula of Example 3.4, we obtain that, in the cone setup,

𝑆 ⧵ 𝜕𝑇𝑆 =
⋃
𝑅∈𝑇
𝑅≠0

(𝑆 ⧵ 𝜕𝑅𝑆) =
⋃
𝑅∈𝑇
𝑅≠0

⎛⎜⎜⎜⎝
⋃
𝑅∈𝐺
𝐺⩽𝑆

int(𝐺)

⎞⎟⎟⎟⎠ =
⋃
𝐺⩽𝑆
𝐺∩𝑇≠0

int(𝐺).

In particular, in Figure 6, we have that 𝜋−1(𝑇) = 𝑇, but 𝜕𝑇𝑆 does not map to 𝜕𝑇𝑆. Note that
the pair (𝑇, 𝑆) is free, but (𝑇, 𝑆) is not.

4.2 Keeping it free

Themain point of the present subsection is to keep track of the freeness property along extensions
of pairs. The next result shows two important consequences of a diagram being iso-bounded, and
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3949

that if the vertical maps are surjective, each of these consequences are also sufficient. Let the
following diagram define an extension of the free pair (𝑇, 𝑆)

with the addition map 𝑎 surjective. Denote by �̃� ∶= (𝑆 − 𝑆)∕(𝑇 − 𝑇) and by𝑀 ∶= (𝑆 − 𝑆)∕(𝑇 −
𝑇). Consider the following three conditions.

(C1) The extension is iso-bounded.
(C2) The pair (𝑇, 𝑆) is free and 𝜋 ∶ �̃� → 𝑀 is an isomorphism.
(C3) For all �̃�1, �̃�2 ∈ 𝑆 with 𝜋(�̃�1) = 𝜋(�̃�2), there exist �̃�1, �̃�2 ∈ 𝑇 such that �̃�1 − �̃�1 = �̃�2 − �̃�2 ∈ 𝑆.

Proposition 4.3.

(i) In the above situation we have the following logical relations:

(ii) If the maps 𝜋𝑆 and 𝜋𝑇 are surjective, then

thus the three conditions are equivalent in this case.

Proof. (C1)⇒ (C2) The decomposability of (𝑇, 𝑆). Assume that 𝑏1 + �̃�1 = 𝑏2 + �̃�2, with 𝑏𝑖 ∈ 𝜕𝑇𝑆
and �̃�𝑖 ∈ 𝑇. Applying 𝜋, we obtain

𝜋(𝑏1) + 𝜋(̃𝑡1) = 𝜋(𝑏2) + 𝜋(̃𝑡2).

By (C1),wehave𝜋(𝑏1), 𝜋(𝑏2) ∈ 𝜕𝑇𝑆, and the diagramcondition implies𝜋(̃𝑡1), 𝜋(̃𝑡2) ∈ 𝑇. So, by the
decomposability of (𝑇, 𝑆), that 𝜋(𝑏1) = 𝜋(𝑏2). Again by (C1), we obtain 𝑏1 = 𝑏2, and thus �̃�1 = �̃�2,
so the decomposition is unique.
The group isomorphism. Since the addition maps are surjective, every element of𝑀 and of �̃�

can be represented by a corresponding boundary element. So, the surjectivity of the restriction
to the boundary implies the surjectivity of the map 𝜋 ∶ �̃� → 𝑀. By Lemma 3.11, we have 𝑞|𝜕𝑆 ∶
𝜕𝑇𝑆

∼
→ 𝑆 ⊆ 𝑀 on both levels, �̃� and𝑀. Hence, 𝜋 ∶ �̃� → 𝑀 is an isomorphism on the images of

𝑆 and 𝑆 in �̃� and𝑀, respectively. Since these images generate the two groups, we are done.
(C2)⇒ (C3) Let �̃�1, �̃�2 ∈ 𝑆 with 𝜋(�̃�1) = 𝜋(�̃�2) in 𝑆, hence in𝑀. Then, the second part of (C2),

that is, the fact that𝜋 is an isomorphism, implies that �̃�1 and �̃�2 become equal in �̃�, that is, 𝑞(�̃�1) =
𝑞(�̃�2). Now, we consider the unique decompositions

�̃�1 = �̃�1
′ + �̃�1 and �̃�2 = �̃�2

′ + �̃�2 within 𝜕𝑇(𝑆) × 𝑇.
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3950 ALTMANN et al.

We still have 𝑞(�̃�1′) = 𝑞(�̃�2′), but now we can use the decomposability of (𝑇, 𝑆) in the way provided
by Lemma 3.11, namely, as the injectivity of 𝑞 ∶ 𝜕𝑇𝑆 → �̃�. This implies �̃�1′ = �̃�2′ =∶ �̃� ′, hence �̃�1 −
�̃�1 = �̃�2 − �̃�2 = �̃�

′ ∈ 𝑆.
(C2)⇒ (C1) Take the following extension with surjective addition maps:

with the second verticalmap being the canonical inclusion. The two pairs on the rows are free, and
even the first projection is surjective. Also, the groups �̃� and𝑀 are both isomorphic to ℤ, and 𝜋𝑆
induces the identity as isomorphism.However, the restriction to the boundary is a strict inclusion.

(C3)⇒ (C2) Take the following extension with surjective addition maps:

with both maps ℝ⩾0 ⟶ ℝ2
⩾0

given by 𝑡 ↦ (𝑡, 𝑡). Even if the two pairs are free and the groups
𝑀 and �̃� are isomorphic to ℝ, the map induced by the vertical one is the zero map, so not
an isomorphism.

(C3)⇒ (C1) if 𝜋𝑆 is surjective. The restriction𝜋𝜕(𝑆) is well-defined.Let 𝑏 ∈ 𝜕𝑇(𝑆) and 𝑏 = 𝜋(𝑏).
Then, 𝑏 admits a unique decomposition into 𝑠 + 𝑡 ∈ 𝜕𝑇(𝑆) × 𝑇 and, by surjectivity, we may lift
both summands to �̃� ∈ 𝑆 and �̃� ∈ 𝑇, respectively. Thus, 𝑏 and �̃� + �̃� have the same image under 𝜋,
and (C3) implies the existence of �̃�1, �̃�2 ∈ 𝑇 with

𝑏 − �̃�1 = �̃� + �̃� − �̃�2 ∈ 𝑆.

The hypothesis 𝑏 ∈ 𝜕𝑇(𝑆) enforces �̃�1 = 0. Hence, 𝑏 = �̃� + �̃� − �̃�2. After applying 𝜋, this means

𝑏 = 𝜋(𝑏) = 𝜋(�̃�) + 𝜋(̃𝑡) − 𝜋(̃𝑡2) = 𝑠 + 𝑡 − 𝜋(̃𝑡2).

Comparing with our original equation 𝑏 = 𝑠 + 𝑡, this implies 𝜋(̃𝑡2) = 0, that is, �̃�2 ∈ ker𝜋𝑇 = {0}.
Hence, �̃� + �̃� = 𝑏 ∈ 𝜕𝑇(𝑆) which again enforces �̃� = 0. Finally, we apply 𝜋 to the equation 𝑏 = �̃�,
leading to 𝑏 = 𝑠 ∈ 𝜕𝑇(𝑆).
Injectivity. Let 𝑏1, 𝑏2 ∈ 𝜕𝑇(𝑆) with 𝜋(𝑏1) = 𝜋(𝑏2). By (C3), we obtain elements �̃�1, �̃�2 ∈ 𝑇 with

𝑏1 − �̃�1 = 𝑏2 − �̃�2 ∈ 𝑆.

Again, the defining property of 𝜕𝑇(𝑆) implies �̃�1 = �̃�2 = 0.
Surjectivity. Let 𝑏 ∈ 𝜕𝑇(𝑆). By the surjectivity of 𝜋𝑆 , this may be lifted to an element 𝑏 = �̃� + �̃� ∈

𝜕𝑇(𝑆) + 𝑇. Applying 𝜋 yields 𝑏 = 𝑠 + 𝑡 ∈ 𝜕𝑇(𝑆) + 𝑇, thus 𝜋(̃𝑡) = 𝑡 = 0. Again we conclude that
�̃� ∈ ker𝜋𝑇 = {0}. □
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3951

4.3 The relation among the notions of being free, integral, and
iso-bounded

In this subsection, we are going to explain relations between the notions defined so far and also
to the classical notion of integrality from log-geometry.

4.3.1 Integrality

There are several notions of integrality among monoids, that is, commutative semigroups with
neutral element, cf. [13], [11, chapter 3]. First of all, such amonoid is called integral if it is cancella-
tive. In a second step, a homomorphism 𝜄 ∶ 𝑇 → 𝑆 of cancellative semigroups is called integral if
for each 𝑇 → 𝑇′ the pushout 𝑆 ⊕𝑇 𝑇′ is cancellative, too.
In [13, Proposition 4.1], it was shown that integrality of 𝜄 ∶ 𝑇 → 𝑆 is equivalent to the following

property: For all 𝑠1, 𝑠2 ∈ 𝑆 and 𝑡1, 𝑡2 ∈ 𝑇 with 𝑠1 + 𝜄(𝑡1) = 𝑠2 + 𝜄(𝑡2) there exist 𝑡′1, 𝑡
′
2
∈ 𝑇 and 𝑠 ∈ 𝑆

such that

𝑠𝑖 = 𝜄(𝑡
′
𝑖 ) + 𝑠 (𝑖 = 1, 2) and 𝑡1 + 𝑡

′
1 = 𝑡2 + 𝑡

′
2.

Moreover, Kato has shown that, for injective 𝜄 (what we always assume), this is also equivalent
to the flatness of ℤ[𝑇] → ℤ[𝑆]. See [10, section 5] for a comprehensive theory of modules over
monoids dealing with related notions.

4.3.2 Freeness

The characterization of integrality of homomorphisms just mentioned gives rise to the following
equivalent description.

Lemma 4.4. If 𝜄 ∶ 𝑇 ↪ 𝑆 is an embedding of cancellative semigroups such that 𝑎 ∶ 𝜕𝑇𝑆 × 𝑇 → 𝑆 is
surjective, then this embedding is integral if and only if 𝜄 is free.

Proof. Since 𝜄 is injective, we will omit this map in the notation.
(⇒) Assume that 𝑠1 + 𝑡1 = 𝑠2 + 𝑡2 with 𝑠𝑖 ∈ 𝜕𝑇𝑆 ⊆ 𝑆 and 𝑡𝑖 ∈ 𝑇 for 𝑖 = 1, 2. By the condition

mentioned in (4.3.1), there exist 𝑡′
1
, 𝑡′
2
∈ 𝑇 and 𝑠 ∈ 𝑆 such that

𝑠𝑖 = 𝑡
′
𝑖 + 𝑠 (𝑖 = 1, 2) and 𝑡1 + 𝑡

′
1 = 𝑡2 + 𝑡

′
2.

However, since 𝑠𝑖 ∈ 𝜕𝑇𝑆 ⊆ 𝑆, this implies 𝑡′𝑖 = 0, hence 𝑠𝑖 = 𝑠, that is, 𝑠1 = 𝑠2.
(⇐) Let 𝑠1, 𝑠2 ∈ 𝑆 and 𝑡1, 𝑡2 ∈ 𝑇 with 𝑠1 + 𝑡1 = 𝑠2 + 𝑡2 as in (4.3.1). We decompose 𝑠𝑖 = 𝑠𝑖 + 𝑡′𝑖

with 𝑠𝑖 ∈ 𝜕𝑇𝑆 and 𝑡′𝑖 ∈ 𝑇 for 𝑖 = 1, 2. Hence,

𝑠1 + 𝑡
′
1 + 𝑡1 = 𝑠2 + 𝑡

′
2 + 𝑡2,

and freeness implies 𝑠1 = 𝑠2. □
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3952 ALTMANN et al.

4.3.3 The notion ‘iso-bounded’ is a relative version of freeness

There is a striking similarity between Condition (C3) of Subsection 4.2 and the definition of
integrality in (4.3.1). This observation can be made precise when considering the following
commutative diagram

where the construction of 𝑆∕𝑇 was discussed in Subsection 3.5. Then, Condition (C3) for this
particular diagram translates as the definition of integrality from (4.3.1). Thus, while this (relative)
notion of integrality for injective homomorphisms 𝑇 → 𝑆 of monoids corresponds to the absolute
notion of freeness of pairs (𝑇, 𝑆), the notion ‘iso-bounded’ becomes the relative version of the
latter via extensions of pairs.

4.3.4 Despite freeness

It could have been that both (𝑇, 𝑆) and (𝑇, 𝑆) are free, but the diagram is not iso-bounded. For
example, take 𝑇 = 𝑇 = 𝑆 = ℝ⩾0 and 𝑆 = ℝ2⩾0 containing 𝑇 as the rayℝ⩾0 ⋅ (1, 1)with 𝜋 =

1

2
(1, 1).

By Proposition 3.10, we know that (𝑇, 𝑆) and (𝑇, 𝑆) are free but𝜋 ∶ �̃� → 𝑀 is not an isomorphism,
that is, even (C2) fails.

4.3.5 Cartesian diagrams

Any iso-bounded diagram is automatically Cartesian, that is, it follows that𝑇 = 𝜋−1
𝑆
(𝑇) ⊆ 𝑆. How-

ever, as it can be seen in Figure 6 of Example 4.2(2), this condition does not suffice. In view of
Lemma 4.6, it might be interesting to know if this, however, does suffice whenever we start with
a surjective extension consisting of free pairs.

4.3.6 Co-Cartesian diagrams

Similarly, we can compare the iso-bounded property with being co-Cartesian, that is, with the
property 𝑆 = 𝑆 ⊕𝑇 𝑇.

Example 4.5. Consider the diagram

with �̃� =
(1 1
0 1

)
. It is iso-bounded, but not co-Cartesian.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3953

However, we have the following positive result.

Lemma 4.6. Suppose the following diagram is an extension among two free pairs.

Then, it is iso-bounded if and only if it is co-Cartesian, that is, if 𝑆 = 𝑆 ⊕𝑇 𝑇.

Proof. (⇐)We assume that 𝑆 = 𝑆 ⊕𝑇 𝑇 andwill first show that 𝜕𝑇𝑆 = (𝜕𝑇𝑆, 0).While the inclusion
⊆ is clear, we start with an element (�̃�, 0) from the right-hand side, that is, with �̃� ∈ 𝜕𝑇𝑆. If there
was a pair (�̃�′, 𝑡) equal to (�̃�, 0) in the pushout with �̃�′ ∈ 𝑆 and 𝑡 ∈ 𝑇 ⧵ {0}, then this would mean
that there are �̃�1, �̃�2 ∈ 𝑇 with

�̃� + �̃�1 = �̃�
′ + �̃�2 and 0 + 𝜋𝑇(̃𝑡2) = 𝑡 + 𝜋𝑇(̃𝑡1).

Hence, since �̃� ∈ 𝜕𝑇𝑆 and (𝑇, 𝑆) is free, there must be a �̃�3 ∈ 𝑇 such that �̃�′ = �̃� + �̃�3 and �̃�1 =
�̃�2 + �̃�3. This implies 𝜋𝑇(̃𝑡2) = 𝑡 + 𝜋𝑇(̃𝑡2) + 𝜋𝑇(̃𝑡3), that is, 𝑡 + 𝜋𝑇(̃𝑡3) = 0. Using 𝑇 ∩ (−𝑇) = 0 and
ker𝜋𝑇 = 0, we obtain 𝑡 = 0 in𝑇 and �̃�3 = 0 in𝑇.Whilewe just need the former, the latter translates
into �̃�′ = �̃�.
It remains to check that the map 𝜋𝑆 ∶ 𝜕𝑇𝑆 → 𝜕𝑇𝑆 is injective. For this, we assume that �̃�, �̃�′ ∈

𝜕𝑇𝑆 give rise to (�̃�, 0) = (�̃�′, 0) in 𝑆 = 𝑆 ⊕𝑇 𝑇. But this leads to the same arguments as before and
ends with �̃�′ = �̃�.
(⇒) This is a special case of Proposition 4.9. □

4.4 Boundary independence

The goal of Section 8 is to construct a universal iso-bounded extension for any free pair. To this
aim, we have to identify the essential structures and concepts that a iso-bounded extension has
to preserve. The first is the concept of independence. This is defined for tuples of elements in the
boundary. The second is a family of special elements in the smaller semigroup (𝑇, respectively, 𝑇)
which can be defined in terms of the boundary, and has to be compatible with the bijection on the
boundary.

Definition 4.7. Let (𝑇, 𝑆) be a free pair of semigroups. A collection of 𝑟 (not necessarily dis-
tinct) boundary elements 𝑏1, … , 𝑏𝑟 ∈ 𝜕𝑇𝑆 is called boundary independent if their sum is still in the
boundary, that is, if

𝑏1 +⋯ + 𝑏𝑟 = 𝜕(𝑏1 +⋯ + 𝑏𝑟).

In contrast, such a collection is called boundary dependent, if it is not boundary independent, and
minimally dependent if it is dependent and every proper subset is independent.
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3954 ALTMANN et al.

Let (𝑇, 𝑆) be a free pair, and (𝑇, 𝑆) be a iso-bounded extension of it. We thus have an induced
bijection 𝜋−1

𝜕
∶ 𝜕𝑇(𝑆)

∼
→ 𝜕𝑇(𝑆), and for every 𝑏 ∈ 𝜕𝑇𝑆 we simply denote

𝑏 ∶= 𝜋−1
𝜕
(𝑏).

Let us denote the retractions upstairs by 𝜕 ∶ 𝑆 ↠ 𝜕𝑇𝑆 and 𝜆 ∶ 𝑆 ↠ 𝑇, respectively.

Proposition 4.8. For any iso-bounded extension 𝜋 ∶ (𝑇, 𝑆)⟶ (𝑇, 𝑆) and for any (not necessarily
distinct) elements 𝑏1, … , 𝑏𝑟 ∈ 𝜕𝑇𝑆 we have

𝜕(𝑏1 +⋯ + 𝑏𝑟) = 𝜋−1
𝜕
(𝜕(𝑏1 +⋯ + 𝑏𝑟))

𝜋𝑇
(
𝜆(𝑏1 +⋯ + 𝑏𝑟)

)
= 𝜆(𝑏1 +⋯ + 𝑏𝑟)

𝑏1, … , 𝑏𝑟 are boundary independent ⟺ 𝑏1,… , 𝑏𝑟 are boundary independent.

In particular,

𝜋−1
𝜕
(𝑏1) +⋯ + 𝜋−1

𝜕
(𝑏𝑟) − 𝜋

−1
𝜕
(𝜕(𝑏1 +⋯ + 𝑏𝑟)) ∈ 𝑇.

Furthermore, if we choose �̃�1, … , �̃�𝑟 ∈ 𝑆 and denote by 𝑠𝑖 ∶= 𝜋(�̃�𝑖), then the first two relations above
still hold.

Proof. From 𝜋(𝑏1 +⋯ + 𝑏𝑟) = 𝑏1 +⋯ + 𝑏𝑟, using the unique boundary decompositions we get

𝜋𝜕
(
𝜕(𝑏1 +⋯ + 𝑏𝑟)

)
+ 𝜋𝑇

(
𝜆(𝑏1 +⋯ + 𝑏𝑟)

)
= 𝜕(𝑏1 +⋯ + 𝑏𝑟) + 𝜆(𝑏1 +⋯ + 𝑏𝑟).

By the uniqueness of the decomposition, by the bijectivity of 𝜋𝜕 and by ker𝜋𝑇 = 0, we
conclude. □

4.5 The category of free extensions of a pair

Assume that (𝑇, 𝑆) is a free pair. Then, the iso-bounded extensions 𝜋 ∶ (𝑇, 𝑆) → (𝑇, 𝑆) form a
category (𝑇,𝑆) where the morphisms are defined in the obvious way. Moreover, we have the fol-
lowing construction imitating base change from algebraic geometry and equipping (𝑇,𝑆) with the
structure of being fibered in groupoids.

Proposition 4.9. Assume that (𝑇, 𝑆) ∈ (𝑇,𝑆) and that𝜋′𝑇 ∶ 𝑇
′ → 𝑇 is another extension of𝑇. Then,

for any semigroup homomorphism 𝑓 ∶ 𝑇 → 𝑇′ over 𝑇, there is a unique extension 𝜋′
𝑆
∶ 𝑆′ → 𝑆 such

that 𝜋′ = (𝜋′
𝑇
, 𝜋′
𝑆
) ∶ (𝑇′, 𝑆′) → (𝑇, 𝑆) belongs to (𝑇,𝑆) and that 𝑓 extends to a morphism (𝑇, 𝑆) →

(𝑇′, 𝑆′) in this category.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3955

Proof. It suffices to prove that the canonicalmap 𝜕𝑇𝑆 × 𝑇′ → 𝑆 ⊕𝑇 𝑇′ is a bijectionwhere the latter
denotes the pushout 𝑆 ⊕𝑇 𝑇′ ∶= (𝑆 × 𝑇′)∕∼ defined by modding out the equivalence relation

(�̃�1, �̃�
′
1) ∼ (�̃�2, �̃�

′
2) ∶⟺ ∃�̃�1, �̃�2 ∈ 𝑇∶ �̃�1 + �̃�2 = �̃�2 + �̃�1 and �̃�′1 + 𝑓(̃𝑡1) = �̃�

′
2 + 𝑓(̃𝑡2).

However, it is straightforward to check that the assignment (�̃�, �̃�′) ↦ (𝜕�̃�, 𝑓(𝜆�̃�) + �̃�′) yields a
correctly defined inverse map 𝑆 ⊕𝑇 𝑇′ → 𝜕𝑇𝑆 × 𝑇′. □

4.6 Initial objects in (𝑻,𝑺)

The main result of this paper is the following.

Theorem 4.10. Le us assume that we are in the discrete setup , cf. Subsection 3.1.2. The category of
iso-bounded extensions of (𝑇, 𝑆) contains an initial object.

Wewill provide a very explicit construction of this universal object in the discrete setup.We start
analyzing first the cone setup in Section 5, where we get a terminal object, cf. Proposition 5.8. Just
to get an impression of what this initial object may look like we provide the following example.

Example 4.11. Let us return to Example 3.5 and Figure 4, that is, 𝑆 = ⟨[−2, 1],
[−1, 1], [0, 1], [1, 1], [2, 1]⟩ with 𝑇 = ℕ ⋅ 𝑅 and 𝑅 = [0, 1]. In Example 6.4 this semigroup
will be understood starting from the 1-dimensional polytope 𝑃 = [−1

2
, 1
2
] ⊂ ℝ; the link between

these two approaches is that the polyhedral cone 𝜎 over 𝑃 × {1} ⊂ ℝ2 is dual to 𝑆ℝ = 𝜎∨ from
Example 3.3 which contains 𝑆 as the set of lattice points. Anyway, in algebraic geometry, this
setup gives rise to the toric singularity 𝑋 = 𝕋𝕍(𝜎) ⊆ 𝔸5

𝑘
which can, alternatively, be understood

as the vanishing set of the six minors encoded by the condition

rank

(
𝑧−2 𝑧−1 𝑧0 𝑧1

𝑧−1 𝑧0 𝑧1 𝑧2

)
⩽ 1.

The elements [𝑘, 1] ∈ 𝑆 can be recovered as the multidegrees of the variables 𝑧𝑖 . In [1], we discuss
the deformation theory of those toric singularities. In this context, the present example became
famous in the last century, because Pinkham detected that the deformation space of 𝑋 admits
two different components. In [1], we recall that this corresponds to two different lattice-friendly
decompositions of 𝑃 as we will meet them here in Section 10, cf. Example 10.10. Finally, it
comes full circle by the fact that these two decompositions correspond to the following two iso-
bounded extensions of (𝑇, 𝑆), which we represent in Figures 7 and 8 only through the generators.
The blue points correspond to 𝑇 and 𝑇, respectively. The semigroups are recovered from the
pictures by taking the cone over the convex hull. Figure 10 in Example 6.4 depicts this explicitly
for 𝑆.
Now, by Theorem 4.10, we know that both extensions can be merged to a common one. This

leads to a 4-dimensional semigroup, that is, to a semigroup filling a 4-dimensional polyhedral
conewhere its 3-dimensional crosscut is depicted in Figure 9. In the introduction, as a preview, we
had presented Figure 1 as an alternative representation of this situation. See Example 7.12 for the
detailed calculations. Note that this establishes a remarkable difference to the algebro-geometric
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3956 ALTMANN et al.

F IGURE 7 The Artin component

F IGURE 8 The qG component

F IGURE 9 The full picture: Artin- and qG-components as projections of the initial object

setup: There, the two deformation components cannot be dominated by a higher dimensional
joint deformation of the same kind, that is, with an irreducible base space. See also Subsection 9.1.

5 THE CONE SETUP

5.1 Dualizing the cone setup

In the present section, we deal exclusively with the situation introduced in (3.1.1). Themain result
is the construction of a terminal object in a certain category (Proposition 5.8). This proposition is
a much easier to prove analog of Theorem 4.10. One of the striking features of the cone setup is
that it allows dualization of both the cones 𝑇 and 𝑆 and their ambient vector spaces𝑉 ∶= 𝑆 − 𝑆 =
spanℝ{𝑆} and 𝑊 ∶= 𝑇 − 𝑇 = spanℝ{𝑇}, respectively. In particular, considering 𝜄 ∶ 𝑊 ↪ 𝑉 with
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3957

𝜄(𝑇) ⊆ 𝑆, there is a dual linear map

𝑝 ∶ 𝑉∗ ↠ 𝑊∗ with 𝑝(𝑆∨) ⊆ 𝑇∨.

While 𝑝 is always surjective on the level of vector spaces, the surjectivity of its restriction 𝑝+ ∶
𝑆∨ → 𝑇∨ to the level of semigroups is equivalent to the property 𝑆 ∩𝑊 = 𝑇. This equivalence
follows since the mutually dual relations

𝑇 ⊆ 𝑆 ∩𝑊 ⟺ 𝑇∨ ⊇ 𝑆∨ + 𝑇⊥

become equalities simultaneously. This is, however, automatically fulfilled for free pairs,
cf. Definition 3.7.

Lemma 5.1. If (𝑇, 𝑆) is free, then 𝑆 ∩ spanℝ{𝑇} = 𝑇.

Proof. If 𝑡1 − 𝑡2 ∈ 𝑆 (with 𝑡𝑖 ∈ 𝑇), then this element can be decomposed into 𝑡1 − 𝑡2 = 𝑏 + 𝑡 with
𝑏 ∈ 𝜕𝑇(𝑆) and 𝑡 ∈ 𝑇. Hence, 0 + 𝑡1 = 𝑏 + (𝑡 + 𝑡2), but this displays two decompositions within
𝑆 = 𝜕𝑇(𝑆) + 𝑇. Thus, 0 = 𝑏, and this means 𝑡1 − 𝑡2 = 0 + 𝑡 ∈ 𝑇. □

5.2 A dual characterization of freeness

In the cone setup, freeness can be characterized by the following enhancement of the surjectivity
of 𝑝+ ∶ 𝑆∨ → 𝑇∨.

Proposition 5.2. The pair (𝑇, 𝑆) is free if and only if 𝑝+ ∶ 𝑆∨ ↠ 𝑇∨ is surjective and maps faces
onto faces.

Proof. Step 1. For each 𝑠 ∈ 𝑆 we define 𝑇𝑠 ∶= (𝑠 + spanℝ{𝑇}) ∩ 𝑆, that is, it is a polyhedron in (a
translate of) spanℝ{𝑇}. Note that, for every 𝑠′ ∈ 𝑇𝑠, one has 𝑇𝑠 = 𝑇𝑠′ . By Lemma 5.1, we may and
will assume that 𝑝+ ∶ 𝑆∨ ↠ 𝑇∨ is surjective. Hence, every 𝜉 ∈ 𝑇∨ is bounded from below on 𝑇𝑠.
This implies that the normal fan (𝑇𝑠) has exactly 𝑇∨ as its support. Dually, this means that all
recession cones equal

recc 𝑇𝑠 = 𝑇,

which is also the content of [6, Lemma 2.3].
Step 2. (𝑇, 𝑆) is free ⟺ 𝑇𝑠 is a cone for all 𝑠 ∈ 𝑆:
(⇒) If 𝑇𝑠 is not a cone, then there exist at least two distinct vertices 𝑠, 𝑠′ ∈ 𝑇𝑠. In particular,

these two elements belong to 𝜕𝑇𝑆. On the other hand, since 𝑇 is a full-dimensional cone within
𝑊 = spanℝ{𝑇}, we have (𝑠 + 𝑇) ∩ (𝑠′ + 𝑇) ≠ ∅. Choosing an element from this intersection leads
to elements 𝑡, 𝑡′ ∈ 𝑇 with

𝑠 + 𝑡 = 𝑠′ + 𝑡′,

that is, we have got a contradiction.
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3958 ALTMANN et al.

(⇐) Any equation 𝑠 + 𝑡 = 𝑠′ + 𝑡′ with 𝑠, 𝑠′ ∈ 𝜕𝑇𝑆 and 𝑡, 𝑡′ ∈ 𝑇 leads to 𝑠 ≡ 𝑠′ mod 𝑊, hence
𝑠, 𝑠′ ∈ 𝑇𝑠. However, if 𝑇𝑠 = 𝑠 + 𝑇, then, unless 𝑠 = 𝑠′ = 𝑠, the elements 𝑠, 𝑠′ ∈ 𝑠 + 𝑇 cannot belong
to the 𝑇-boundary of 𝑆.
Step 3. 𝑇𝑠 is a cone ⟺ (𝑠′, 𝑇𝑠) ⩽ 𝑇

∨ is a face for all 𝑠′ ∈ 𝑇𝑠, where  (𝑠′, 𝑇𝑠) denotes
the normal cone of 𝑇𝑠 in 𝑠′ or, equivalently, in the smallest face 𝑓 ⩽ 𝑇𝑠 containing 𝑠′ as an
interior point.
(⇒) If 𝑇𝑠 is a cone, then its normal fan equals (𝑇𝑠) = 𝑇∨. In particular, its elements are faces

of 𝑇∨.
(⇐) If 𝑇𝑠 is not a cone, then it contains a compact edge 𝑓 ∶= 𝑠𝑠′′. However, the normal cone

 (𝑓, 𝑇𝑠) is not a face of 𝑇∨. And, for any 𝑠′ ∈ int 𝑓, we have (𝑠′, 𝑇𝑠) = (𝑓, 𝑇𝑠).
Step 4. The definition of the normal cones of 𝑠′ ∈ int 𝑓 with 𝑓 ⩽ 𝑇𝑠 is

 (𝑠′, 𝑇𝑠) = (𝑓, 𝑇𝑠) = {𝜉 ∈ 𝑇
∨ ∶ ⟨𝑠′, 𝜉⟩ = min ⟨𝑇𝑠, 𝜉⟩}

where, strictly speaking, the previous description requires the usage of some lift 𝜉 ∈ 𝑉∗ of 𝜉 ∈ 𝑊∗.
Similarly, if 𝐹 ⩽ 𝑆 is a face, then

 (𝐹, 𝑆) = {𝜉 ∈ 𝑆∨ ∶ ⟨𝐹, 𝜉⟩ = 0 = min ⟨𝑆, 𝜉⟩} = 𝑆∨ ∩ 𝐹⊥.
That is, since the ambient polyhedron 𝑆 is a cone (in contrast to the polyhedra 𝑇𝑠), the normal
cones are true faces of 𝑆∨. The surjection 𝑝+ ∶ 𝑆∨ → 𝑇∨ preserves the normal cones, that is, for
each 𝑠 ∈ 𝑆 with 𝑓𝑠 ∶= 𝐹 ∩ 𝑇𝑠 ≠ ∅ we have

𝑝+
(
 (𝐹, 𝑆)

)
⊆ (𝑓𝑠, 𝑇𝑠).

It follows from [6, Lemma 2.5] that for int(𝐹) ∩ 𝑇𝑠 ≠ ∅ these inclusions are actually equalities.
Here, int(∙) denotes the relative interior, and the previous condition does also imply that this non-
empty intersection equals int(𝑓𝑠).
Step 5. Now, we can conclude the proof as follows: If (𝑇, 𝑆) is free, then by Steps 2 and 3, all

normal cones  (𝑠′, 𝑇𝑠) ⩽ 𝑇∨ are faces of 𝑇∨. On the other hand, every face of 𝑆∨ is of the form
𝑆∨ ∩ 𝐹⊥ = (𝐹, 𝑆) for some face 𝐹 ⩽ 𝑆. Hence, choosing some 𝑠 ∈ int 𝐹 ⊆ 𝑆, we obtain that the
image of this face equals 𝑝+( (𝐹, 𝑆)) = (𝑓𝑠, 𝑇𝑠) ⩽ 𝑇

∨ by Step 4.
For the reverse implication, let 𝑠 ∈ 𝑆 and 𝑠′ ∈ 𝑇𝑠. Then, there is a unique 𝐹 ⩽ 𝑆 with 𝑠′ ∈ int 𝐹.

In particular, 𝑠′ ∈ int 𝑓𝑠, and we obtain

 (𝑠′, 𝑇𝑠) = (𝑓𝑠, 𝑇𝑠) = 𝑝+
(
 (𝐹, 𝑆)

)
= 𝑝+

(
𝑆∨ ∩ 𝐹⊥

)
by Step 4. Now, if 𝑝+ sends faces to faces, then this means that all normal cones of 𝑇𝑠 are faces of
𝑇∨. Hence, the claim follows by Steps 2 and 3 again. □

5.3 Freeness andMinkowski linearity

We have already seen that it was important to distinguish between the map 𝑝 ∶ 𝑉∗ → 𝑊∗ on the
level of vector spaces and its restriction 𝑝+ ∶ 𝑆∨ → 𝑇∨. This is particularly relevant when we deal
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3959

with fibers. For an element 𝜉 ∈ 𝑇∨, we will call

𝑝−1+ (𝜉) ∶= 𝑝
−1(𝜉) ∩ 𝑆∨

the positive fiber of 𝜉 (under 𝑝).

Definition 5.3. We call the pair (𝑇, 𝑆)Minkowski linear if 𝑝+ ∶ 𝑆∨ → 𝑇∨ is surjective, and if for
each 𝜉, 𝜉′ ∈ 𝑇∨ we have 𝑝−1+ (𝜉) + 𝑝

−1
+ (𝜉

′) = 𝑝−1+ (𝜉 + 𝜉
′).

Note that the inclusion ‘⊆’ as well as equality on the level of vector spaces, that is, replacing 𝑝+
by 𝑝, is always satisfied. However, the linearity among the positive fibers becomes equivalent to
freeness.

Proposition 5.4. The pair (𝑇, 𝑆) is free if and only if it is Minkowski linear.

Proof. Let us visualize the present situation. Denoting 𝑆 ∶= 𝑞(𝑆) ⊆ 𝑉∕𝑊, we obtain the exact
sequence

where, for an element 𝑠 ∈ 𝑆, the positive fiber 𝑞−1+ (𝑞(𝑠)) ∶= 𝑞
−1(𝑞(𝑠)) ∩ 𝑆 is just another way of

writing𝑇𝑠 from the proof of Proposition 5.2. In particular, for a fixed 𝑠, the linearity of the function

Φ𝑠 ∶ 𝜑 ∈ 𝑉
∗ ↦ min

⟨
𝑞−1+ (𝑞(𝑠)), 𝜑

⟩
is equivalent to the fact that 𝑇𝑠 is a shifted copy of 𝑇. Hence, the linearity of Φ𝑠 for all 𝑠 ∈ 𝑆 is
equivalent to the freeness of the pair (𝑇, 𝑆). On the other hand, the dual picture is

Writing 𝜉 = 𝑝(𝜑) and 𝜉′ = 𝑝(𝜑′), the linearity of

Ψ𝑠 ∶ 𝜑 ↦ min
⟨
𝑠, 𝑝−1+ (𝑝(𝜑))

⟩
means that the polyhedra 𝑝−1+ (𝜉 + 𝜉

′) and 𝑝−1+ (𝜉) + 𝑝
−1
+ (𝜉

′) provide the same values after apply-
ingmin ⟨𝑠, ∙⟩ for all 𝑠 ∈ 𝑆, that is, that both polyhedra coincide. That is, the linearity of Ψ𝑠 for all
𝑠 ∈ 𝑆 is equivalent to the Minkowski linearity of the pair (𝑇, 𝑆).
Finally, startingwith two elements 𝑠 ∈ 𝑆 and𝜑 ∈ 𝑆∨, we obtain from the proof of [2, Proposition

8.5] the equality

min
⟨
𝑞−1+ (𝑞(𝑠)), 𝑝

−1
+ (𝑝(𝜑))

⟩
= 0,
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3960 ALTMANN et al.

or the equivalent version

Φ𝑠(𝜑) + Ψ𝑠(𝜑) = min
⟨
𝑞−1+ (𝑞(𝑠)), 𝜑

⟩
+min

⟨
𝑠, 𝑝−1+ (𝑝(𝜑))

⟩
= ⟨𝑠, 𝜑⟩ .

It follows that the linearity of Φ𝑠 is equivalent to the linearity of Ψ𝑠. □

5.4 The cone of Minkowski summands

Let us assume that (𝑇, 𝑆) is free, meaning that the map 𝑝+ ∶ 𝑆∨ → 𝑇∨ is Minkowski linear and,
in particular, surjective. We fix a ray in the interior of the cone 𝑇∨ ⊆ 𝑊∗, that is we fix a linear
map 𝑒 ∶ ℝ⩾0 ↪ 𝑇∨ such that 𝑒(1) ∈ int 𝑇∨. The preimage 𝑃 ∶= 𝑝−1+ (𝑒(1)) ⊆ 𝑆

∨ can be understood,
well-defined up to some shift, as a polyhedron in𝑊⊥ =∶ 𝑁ℝ. Consequently, the preimage of the
whole ray 𝑒∗(𝑆∨) ∶= 𝑝−1+ (𝑒(ℝ⩾0)) equals 𝜎 ∶= cone(𝑃).

Remark 5.5. In Sections 3 and 4, we had originally denoted 𝑀 = (𝑆 − 𝑆)∕(𝑇 − 𝑇). This fits
perfectly well for the discrete setup: 𝑀 is then a finitely generated Abelian group, and in Sub-
section 4.6 we had denoted by𝑀ℝ ∶= 𝑀 ⊗ℤ ℝ the associated vector space. However, in the cone
setup, (𝑆 − 𝑆)∕(𝑇 − 𝑇) = 𝑉∕𝑊 is already an ℝ-vector space, and it seems appropriate to denote
it by𝑀ℝ instead of𝑀. The same applies for the dual gadgets 𝑁 and 𝑁ℝ, that is, in particular𝑊⊥
becomes 𝑁ℝ.

The recession cone recc(𝑃) = {𝑎 ∈ 𝑁ℝ ∶ 𝑎 + 𝑃 ⊆ 𝑃} equals ker (𝑝+) = 𝑆∨ ∩ 𝑁ℝ = 𝑆
∨
, and,

more general, this is the common recession cone of all other positive fibers 𝑝−1+ (𝜉). In particular,
𝑆 is the common support of their normal fans (𝑝−1+ (𝜉)).

Definition 5.6. A (convex) polyhedron𝑄with recc(𝑄) = recc(𝑃) is called aMinkowski summand
of ℝ⩾0 ⋅ 𝑃 if there is another polyhedron 𝑄′ and a scalar 𝜆 ∈ ℝ⩾0 such that 𝑄 + 𝑄′ = 𝜆 ⋅ 𝑃.

It is well-known fact that 𝑄 is a Minkowski summand of ℝ⩾0 ⋅ 𝑃 if and only if the normal fan
 (𝑃) is a refinement, that is, a subdivision of (𝑄). Exactly this property applies to all positive
fibers 𝑄 = 𝑝−1+ (𝜉). For interior points 𝜉 ∈ int 𝑇

∨, we even have  (𝑝−1+ (𝜉)) = (𝑃). In [4], we
have constructed a linear surjective map of polyhedral cones

𝑝𝐶 ∶ 𝐶(𝑃) ↠ 𝐶(𝑃),

where the elements 𝜉 ∈ 𝐶(𝑃) of the target parameterize the set of (translation classes of)
Minkowski summands 𝑃𝜉 of 𝑃. The summands 𝑃𝜉 are encoded via the associated dilation factors
𝑡𝑖𝑗(𝜉) ∈ ℝ⩾0 of the bounded edges 𝑑𝑖𝑗 = 𝑣𝑗 − 𝑣𝑖 connecting the vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑃. For instance,
𝑡𝑖𝑗(𝜉) = 1 for all 𝑖, 𝑗 leads to 1 ∈ 𝐶(𝑃) with 𝑃1 = 𝑃. In general, the parameters 𝑡𝑖𝑗(𝜉) are sup-
posed to meet the closing conditions

∑
𝑖 𝑡𝑖,𝑖+1(𝜉) ⋅ 𝑑𝑖,𝑖+1 = 0 along the oriented boundaries of all

2-dimensional, compact faces of 𝑃. The source cone of 𝑝𝐶 is the ‘universal Minkowski summand’;
it is defined as

𝐶(𝑃) ∶= {(𝜉, 𝑤) ∶ 𝜉 ∈ 𝐶(𝑃), 𝑤 ∈ 𝑃𝜉}, that is, 𝑝−1𝐶 (𝜉) = {𝜉} × 𝑃𝜉.

While the Minkowski summands are only well-defined up to translation, one can make the pre-
vious definition precise by fixing a vertex 𝑣∗ ∈ 𝑃 and placing all associated vertices (𝑣∗)𝜉 ∈ 𝑃𝜉 in
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3961

the origin. In general, every vertex 𝑣 ∈ 𝑃 provides a linear section 𝑣 ∶ 𝐶(𝑃) ↪ 𝐶(𝑃) of 𝑝𝐶 sending
𝜉 ↦ 𝑣𝜉 . The formula 𝑣

𝑗

𝜉
− 𝑣𝑖

𝜉
= 𝑡𝑖𝑗(𝜉) ⋅ (𝑣

𝑗 − 𝑣𝑖) summarizes the situation.

Remark 5.7.

(i) The special element 1 ∈ 𝐶(𝑃), representing 𝑃 itself, provides a linear embedding 𝑒𝐶 ∶ ℝ⩾0 ↪
𝐶(𝑃). As in the beginning of this subsection, the fiber product, that is, the preimage of this
ray 𝑝−1

𝐶
(𝑒𝐶(ℝ⩾0)) equals 𝜎 = cone(𝑃).

(ii) If 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 is a Minkowski decomposition of 𝑃, then the summands induce elements
[𝑃0], … , [𝑃𝑘] ∈ 𝐶(𝑃), and thus a linear map ℝ𝑚+1⩾0

→ 𝐶(𝑃) sending the 𝑖th unit vector 𝑒𝑖 ↦
[𝑃𝑖]. The fiber product becomes equal to the cone over the so-called Cayley product 𝑃0 ∗ … ∗
𝑃𝑘.

5.5 A terminal object in the cone setup

This subsection is the dual of the cone setup variant of Subsection 4.6. Let 𝑃 be a rational, convex
polyhedron in some ℝ-vector space 𝑁ℝ; for instance, it could arise from the situation in Sub-
section 5.4. Taking the height induces a natural map 𝑅 ∶ cone(𝑃) → ℝ⩾0. Then, the pairs (𝑝+, 𝑒)
consisting of a surjective homomorphism of polyhedral cones 𝑝+ ∶ 𝐶 ↠ 𝐶 and an embedding
𝑒 ∶ ℝ⩾0 ↪ 𝐶 form a category 𝑃. The embedding 𝑒 gives thus an element 𝑒(1) ∈ 𝐶, such that

(i) for 𝜉, 𝜉′ ∈ 𝐶 one has 𝑝−1+ (𝜉) + 𝑝
−1
+ (𝜉

′) = 𝑝−1+ (𝜉 + 𝜉
′) and

(ii) 𝑅 ∶ cone(𝑃) → ℝ⩾0 is obtained from 𝑝+ ∶ 𝐶 ↠ 𝐶 via base change 𝑒 ∶ ℝ⩾0 ↪ 𝐶, that is,
cone(𝑃) = 𝐶 ×𝐶 ℝ⩾0.

The two examples [𝑅 ∶ cone(𝑃) → ℝ⩾0 ∋ 1] and [𝑝𝐶 ∶ 𝐶(𝑃) ↠ 𝐶(𝑃) ∋ 1] yield two objects in 𝑃.
Moreover, if 𝑃 arises from Subsection 5.4, then also [𝑝+ ∶ 𝑆∨ → 𝑇∨ ∋ 𝑒(1)] becomes an object in
𝑃.
By Proposition 5.4, 𝑃 equals the opposite category 

opp
𝑃

of the cone setup variant of 𝑃 = (𝑇,𝑆)
from Subsection 4.6. Amplifying this comparison, the (dual) analog to Proposition 4.9 is just base
change. Moreover, it is clear that [𝑅, 1] ∈ 𝑃 is an initial object. However, the true analog to
Theorem 4.10 (restricted to this setting) is the existence of a terminal object in 𝑃.

Proposition 5.8. The pair [𝑝𝐶, 1] is a terminal object in 𝑃. That is, for any [𝑝+ ∶ 𝐶 ↠ 𝐶 ∋ 𝑒(1)]
in the category 𝑃, there is a unique linear 𝑒′ ∶ 𝐶 → 𝐶(𝑃) such that 𝑝+ is induced from 𝑝𝐶 via 𝑒′
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3962 ALTMANN et al.

and 𝑒𝐶(1) = 1 = (𝑒′ ◦ 𝑒)(1). Moreover, the map 𝐶 → 𝐶(𝑃) is supposed to induce the identity map
id𝑃 ∶ 𝑝

−1
+ (𝑒(1)) → 𝑃1 on the two distinguished fibers.

Proof. Let 𝜉 ∈ 𝐶. Then, since we have that 𝑒(1) is an interior point of 𝐶, there is an 𝑛 ∈ ℕ such
that 𝜉′ ∶= 𝑒(𝑛) − 𝜉 ∈ 𝐶. That is, by Minkowski linearity, the decomposition 𝑒(𝑛) = 𝜉 + 𝜉′ within
𝐶 provides a Minkowski decomposition 𝑛 ⋅ 𝑃 = 𝑝−1+ (𝜉) + 𝑝

−1
+ (𝜉

′), that is, 𝑝−1+ (𝜉) is a Minkowski
summand of a scalar multiple of 𝑃. Now, since the points of 𝐶(𝑃) are in a one-to-one correspon-
dence to the Minkowski summands of scalar multiples of 𝑃, the polyhedron 𝑝−1+ (𝜉) corresponds
to a unique 𝑒′(𝜉) ∈ 𝐶(𝑃). This establishes the map 𝑒′. It is clearly additive, and one easily checks
the remaining properties. □

6 THE DISCRETE SETUP

6.1 The pair of semigroups associated to a polyhedron

Let 𝑁 be a lattice of rank 𝑑, that is a finitely generated free Abelian group 𝑁 ≃ ℤ𝑑, and let 𝑀 =
Homℤ(𝑁,ℤ) be the dual lattice. We denote the ambient real vector spaces by 𝑁ℝ ∶= 𝑁 ⊗ℤ ℝ ≃
ℝ𝑑, respectively, by 𝑀ℝ ∶= 𝑀 ⊗ℤ ℝ. Let 𝑃 ⊂ 𝑁ℝ be a rational polyhedron, which means that 𝑃
is the intersection of finitely many halfspaces defined by linear inequalities with rational coeffi-
cients. Recall from Subsection 2.1 that polyhedra are not necessarily bounded, but we will assume
that they have at least one vertex. Then, they split into a Minkowski sum

𝑃 = 𝑃𝑐 + recc(𝑃),

where 𝑃𝑐 is the (bounded) convex hull of the vertices of 𝑃, and recc(𝑃) is a pointed polyhedral
cone. We associate a cone to the polyhedron 𝑃 by embedding it in the hyperplane of height one of
𝑁ℝ ⊕ ℝ, and taking the (closure of) the cone over it:

𝜎 ∶= cone(𝑃) ⊆ 𝑁ℝ ⊕ ℝ.

The dual cone will be denoted by 𝜎∨ = cone(𝑃)∨ ⊆ 𝑀ℝ ⊕ ℝ. We call 𝑅 the canonical projection
𝑁ℝ ⊕ ℝ ↠ ℝ. Alternatively, we can understand this map as the element 𝑅 = [0, 1] ∈ 𝑀 ⊕ ℤ,
which defines a ray 𝑅 ∶ ℝ⩾0 ↪ 𝜎∨. Note that the intersections 𝜎 ∩ 𝑅⊥ =∶ 𝜎 ∩ [𝑅 = 0] and
𝜎 ∩ [𝑅 = 1] recover recc(𝑃) and 𝑃, respectively. The pair of discrete semigroups associated to 𝑃
is given by

𝑇 ∶= ℕ, 𝑆 ∶= coneℤ(𝑃)
∨ ∶= cone(𝑃)∨ ∩ (𝑀 ⊕ ℤ), and 𝑅 ∶ 𝑇 ↪ 𝑆. (6.1)

By Proposition 3.10, this forms a free pair. One goal of this work is to construct explicitly the
universal iso-bounded extension of 𝑇 ↪ 𝑆 (cf. Theorem 9.2). The inspiration for the constructions
to come was the knowledge of the space of infinitesimal deformations 𝑇1 of the toric singularity
𝕋𝕍(𝜎) = Specℂ[𝑆] in the multidegree −𝑅 ∈ 𝑀.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3963

6.2 The structure of 𝝈∨

We want to understand the relative boundaries of both 𝜎∨ and 𝜎∨ ∩ (𝑀 ⊕ ℤ), with respect to the
rays given by 𝑅. To this aim, we introduce the following.

Definition 6.1. For every linear form 𝑐 ∈ recc(𝑃)∨ ⊆ 𝑀ℝ define

𝜂(𝑐) ∶= −min
𝑣∈𝑃

⟨𝑐, 𝑣⟩ = −min ⟨𝑐, 𝑃⟩ ∈ ℝ,
𝜂ℤ(𝑐) ∶= ⌈𝜂(𝑐)⌉ ∈ ℤ,

where ⌈𝜂⌉ denotes the ceiling, that is, the least integer not smaller than the real number 𝜂. It is
easy to see that the set 𝑓𝑐 ∶= {𝑣 ∈ 𝑃 ∶ −⟨𝑐, 𝑣⟩ = 𝜂(𝑐)} is a face and contains at least one vertex.
We choose and fix one such vertex and denote it by 𝑣(𝑐). So, we have

𝜂(𝑐) = −⟨𝑐, 𝑣(𝑐)⟩ ⩽ 𝜂ℤ(𝑐).
The reason for not taking any 𝑐 ∈ 𝑀ℝ is thatwewant 𝑐 to be bounded belowon𝑃. Obviously, when
𝑃 is compact, recc(𝑃)∨ = 𝑀ℝ. The function 𝜂 is piecewise linear and usually called the support
function of 𝑃. It is the Legendre transform of the 0 function on 𝑃.

Notation6.2. Wedenote the set of all vertices of𝑃 byVert(𝑃).Wewill need to distinguish between
lattice and non-lattice vertices, and for this use the notation

Vert∈ℤ(𝑃) ∶= Vert(𝑃) ∩ 𝑁 Vert∉ℤ(𝑃) ∶= Vert(𝑃) ⧵ Vert∈ℤ(𝑃).

Moreover, for real numbers 𝑧 ∈ ℝ we will use the following notation:

{𝑧} ∶= ⌈𝑧⌉ − 𝑧. (6.2)

For 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀 and 𝑣(𝑐) ∈ Vert∈ℤ(𝑃) we have 𝜂(𝑐) = 𝜂ℤ(𝑐). If 𝜂(𝑐) ∉ ℤ, then the integer
𝜂ℤ(𝑐) equals the value of −⟨𝑐, ∙⟩ at some point sitting on a moving affine 𝑐-hyperplane before it
reaches our polyhedron 𝑃.

Remark 6.3.

(i) If 0 ∈ 𝑃, then 𝜂(𝑐) ⩾ 0.
(ii) The elements [𝑐, 𝜂(𝑐)] form the relative boundary 𝜕(ℝ⩾0𝑅)𝜎

∨ ⊆ 𝜕𝜎∨ (the inclusion is strict if
the recession cone is not trivial). This implies

𝜎∨ = {[𝑐, 𝜂(𝑐)] ∶ 𝑐 ∈ recc(𝑃)∨} + ℝ⩾0 ⋅ [0, 1].

(iii) The semigroup 𝑆 ∶= 𝜎∨ ∩ (𝑀 ⊕ ℤ) is generated by the Hilbert basis of 𝜎∨, which has the
form {

[𝔠1, 𝜂ℤ(𝔠1)], … , [𝔠𝑘, 𝜂ℤ(𝔠𝑘)], [0, 1]
}
,

with uniquely determined elements 𝔠𝑖 ∈ recc(𝑃)∨ ∩ 𝑀. We will use the font ‘𝔠’ only for the
Hilbert basis elements.
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3964 ALTMANN et al.

F IGURE 10 The cone and the semigroups for the 1-dimensional 𝑃 = [−1
2
, 1
2
] ⊂ ℝ

(iv) We defined 𝑇 ∶= ℕ and embedded it in 𝑆 by 1 ↦ [0, 1]. For 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀, the elements
[𝑐, 𝜂ℤ(𝑐)] are always in 𝜕𝑇𝑆, but not in 𝜕(ℝ⩾0𝑅)𝜎

∨ whenever 𝜂(𝑐) ∉ ℤ. Note that the latter
implies that 𝑣(𝑐) does not belong to the lattice, that is, that 𝑣(𝑐) ∈ Vert∉ℤ(𝑃).

Example 6.4. Let 𝑃 = conv(−1
2
, 1
2
) ⊆ ℝ. Then, 𝜎 ⊆ ℝ2 is spanned by the rays ℝ⩾0 ⋅ (−1, 2) and

ℝ⩾0 ⋅ (1, 2). The dual 𝜎∨ is spanned by ℝ⩾0 ⋅ [−2, 1] and ℝ⩾0 ⋅ [2, 1], see Figure 10 continuing the
story of Figure 4 and of Example 4.11. We obtain:

𝑐 … −2 −1 0 1 2 …

𝑣(𝑐) … 𝑣2 𝑣2 𝑣2 or 𝑣1 𝑣1 𝑣1 …

𝜂(𝑐) … 1 1

2
0 1

2
1 …

𝜂ℤ(𝑐) … 1 1 0 1 1 …

6.3 The ambient space of the universal extension

In this section, we will define  (𝑃). The two subgroups which will later give the initial object live
in the dual spaces of  (𝑃) and 𝑁ℝ ×  (𝑃), respectively.

Notation 6.5. The set of compact edges of 𝑃 is Edgec(𝑃) = {𝑑1, … , 𝑑𝑟}. We write 𝑑 = [𝑣𝑖, 𝑣𝑗] for
the edge connecting 𝑣𝑖 and 𝑣𝑗 and we write [𝑣𝑖, 𝑣𝑗) for the half-open edge. We will abuse notation
and denote oriented edges also by 𝑑 ∶= 𝑣𝑗 − 𝑣𝑖 ∈ 𝑁ℝ; in the few ambiguous situations we will
use words to specify which of the two 𝑑 refers to. We also use the convention that round brack-
ets denote vectors: (1, 2, 3) ∈ 𝑁ℝ, square brackets denote linear forms [4, 5, 6] ∈ 𝑀ℝ, and pointed
brackets denote the standard perfect pairing: ⟨[4, 5, 6], (1, 2, 3)⟩ = 32 ∈ ℝ. We will also fix

𝑟 = |Edgec(𝑃)| 𝑚 = |Vert(𝑃)|.
The ℝ-vector space  (𝑃) will be a subspace of ℝ𝑟 ⊕ ℝ𝑚. To describe its equations we need to

introduce the following notions.

Definition 6.6. For every compact 2-dimensional face 𝐹 of 𝑃 let 𝜀𝐹 ∶ Edgec(𝑃)⟶ {−1, 0, 1} be
one of the two functions satisfying

𝜀𝐹(𝑑) ∈ {−1, 1} ⟺ 𝑑 ⊆ 𝐹

{𝜀𝐹(𝑑) ⋅ 𝑑 ∶ 𝑑 ⊆ 𝐹} forms an oriented cycle along 𝜕𝐹.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3965

The last property implies (but is not equivalent to)∑
𝑑∈Edgec(𝑃)

𝜀𝐹(𝑑) ⋅ 𝑑 = 0.

Definition 6.7.

(i) To each half open edge 𝑑 = [𝑣, 𝑤) of 𝑃 we associate the positive integer

g = g(𝑑) ∶= min{g ∈ ℤ⩾1 ∶ the affine line through g𝑣 and g𝑤 contains lattice points}.

(ii) We call 𝑑 = [𝑣, 𝑤) a short half open edge if

|{g ⋅ [𝑣, 𝑤) ∩ 𝑁}| ⩽ g − 1.

If this is the case, then it follows that 𝑣 ∉ 𝑁. Finally, we call 𝑑 a short edge if both [𝑣, 𝑤) and
(𝑤, 𝑣] are short half open edges.

Remark 6.8. If at least one of the half open edges [𝑣, 𝑤) or [𝑤, 𝑣) is short, then 𝓁(𝑤 − 𝑣) < 1,
where 𝓁 denotes the lattice length†. While the property 𝓁(𝑤 − 𝑣) < 1 is responsible for the name
‘short’, 𝓁 < 1 alone does not suffice for shortness. For example 𝑑 = [−1

2
, 1
3
] ⊂ ℝ has lattice length

𝓁 = 5

6
< 1, but still, neither of the two half open edges is short.

Definition 6.9. For each compact edge 𝑑𝑖 = [𝑣𝑗, 𝑣𝑘] of 𝑃 we introduce a parameter which we
denote by 𝑡𝑑𝑖 , 𝑡𝑖 , or 𝑡𝑗𝑘.

‡ We then collect all of these in a vector 𝐭 ∈ ℝ𝑟 and define the linear
subspace

𝐶lin(𝑃) ∶=

{
𝐭 ∈ ℝ𝑟 ∶

∑
𝑑⊂𝐹

𝜀𝐹(𝑑)𝑡𝑑 ⋅ 𝑑 = 0 for all compact 2-faces 𝐹 of 𝑃

}
.

The intersection 𝐶lin(𝑃) ∩ 𝑅𝑟
⩾0
parameterizes the Minkowski summands of positive multiples of

𝑃, cf. [4, (2.2)].

Definition 6.10. For each vertex 𝑣 = 𝑣𝑖 ∈ Vert(𝑃), we introduce a parameter which we denote
by 𝑠𝑣 or 𝑠𝑖 . We then define

 (𝑃) ∶=
{
(𝐭, 𝐬) ∈ 𝐶lin(𝑃) ⊕ ℝ𝑚 ∶ 𝑠𝑖 = 0 if 𝑣𝑖 ∈ 𝑁,

𝑠𝑖 = 𝑠𝑗 if [𝑣𝑖, 𝑣𝑗] ∈ Edgec(𝑃) with [𝑣𝑖, 𝑣𝑗] ∩ 𝑁 = ∅, and
𝑠𝑖 = 𝑡𝑖𝑗 if [𝑣𝑖, 𝑣𝑗) is a half open short edge

}
.

Note that the vector space  (𝑃) contains a distinguished element (1; 1, 0) = [𝑃]which is defined
by 𝑠𝑖 ∶= 0 for 𝑣𝑖 ∈ 𝑁 and 𝑠𝑗 ∶= 1 and 𝑡𝑖𝑗 ∶= 1 for all remaining coordinates, cf. Remark 10.11. In

†Defined as the homogeneous function on 𝑁ℝ such that any primitive element of 𝑁 has lattice length one.
‡Always choosing the most convenient one in the given context.
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3966 ALTMANN et al.

the upcoming sections, we will often deal with the dual vector space  ∗(𝑃). Then, its elements
𝑠𝑖, 𝑡𝑖𝑗 ∈  ∗(𝑃) form a generating set of this space. We could easily omit the elements 𝑠𝑖 = 0 for
𝑣𝑖 ∈ 𝑁. However, while they are just zero, there existence will simplify some formulae.
The role of the parameters 𝑠𝑖 remains mysterious. Their algebraic or geometric meaning is not

clear for us — neither was it, for example, in the deformation theory of cyclic quotient singulari-
ties. From the combinatorial point of view, however, they serve as an instrument forcing some of
the dilation parameters 𝑡𝑖𝑗 to remain unchanged when crossing non-lattice vertices.

6.4 Relation to algebraic geometry, Part I

In Example 4.11, we have already mentioned that our theory of extensions of semigroups has
strong links to deformation theory in algebraic geometry, cf. [1] for addressing this in detail. Nev-
ertheless, we would like to mention here that for a singularity 𝑋 there is the vector space 𝑇1

𝑋
of

so-called infinitesimal deformations. In case of a toric singularity, it is𝑀-graded, and we denote
by 𝑇1

𝑋
(−𝑅) the contribution in multidegree −𝑅.

Proposition 6.11. For 𝑋 = 𝕋𝕍(cone(𝑃)) we obtain that 𝑇1
𝑋
(−𝑅) = ( (𝑃) ⊗ℝ ℂ)∕ℂ ⋅ (1; 1, 0).

Proof. Essentially, this corresponds to [5, Theorem 2.5]. One has just to check that the
equations called 𝐺𝑗𝑘 in [5, (2.6)] coincide with those in the definition of the ℝ-vector space
 (𝑃). □

Example 6.12.

(1) The mother of all examples is 𝑃 = [−1
2
, 1
2
] ⊂ ℝ from Example 4.11. Here we have only one

edge 𝑑 = 𝑃 with g𝑃 = 1. The interval has length one, and it contains exactly one lattice point,
that is, |{𝑃 ∩ 𝑁}| = 1. In particular, it gives rise to two non-short half open edges.

(2) The interval 𝑃 = [−1
2
, 1
3
] ⊂ ℝ has lattice length 𝓁 = 5

6
< 1, but still, neither of the two half

open edges is short.
(3) Since the interval 𝑃 = [1

2
, 3
4
] does not contain any lattice points, but the affine line through 𝑃

does, we obtain that g = 1, and both half open edges are short.
(4) Take 𝑃 ∶= conv{(−1

6
, 1
2
), ( 2

3
, 1
2
)} ⊂ ℝ2. Here we need tomultiply with g = 2 to produce lattice

points on the affine line. The resulting interval g𝑃 = [−1
3
, 4
3
] has length 5

3
< 2 and |{g𝑃 ∩

𝑁}| = 2. That is, neither of the half open edges are short.
(5) At last, we consider 𝑃 ∶= conv{(−1

2
, 1
2
), ( 1

3
, 1
2
)} ⊂ ℝ2. We still have g = 2 and this leads to the

interval g𝑃 = [−1, 2
3
]. In particular, one of the half open edges is short, the opposite one is

not.

See Subsection 9.1 for a sequel of this discussion.

6.5 Understanding  ∨

+
(𝑷)

By definition, we have  (𝑃) ⊆ ℝ𝑟 ⊕ ℝ𝑚, which allows us to define

+(𝑃) ∶=  (𝑃) ∩ (ℝ𝑟
⩾0 ⊕ ℝ

𝑚
⩾0).
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3967

For the construction of the universal object from Section 8 positivity does not play an important
role. However, positivity will be crucial for the correspondence with lattice-friendly Minkowski
decompositions in Section 10. While positivity of the 𝑡-coordinates has a clear meaning, the
necessity of positive 𝑠-coordinates becomes apparent in Example 10.14.
We will denote the dual of ℝ𝑟+𝑚 by the same symbol†: ℝ𝑟+𝑚. Since  (𝑃) ⊆ ℝ𝑟+𝑚, we have a

canonical projection ℝ𝑟+𝑚 ↠  ∗(𝑃) yielding elements 𝑡𝑖𝑗, 𝑠𝑣 ∈  ∗(𝑃) and the equality

 ∗(𝑃) = ℝ𝑟+𝑚
/
 (𝑃)⟂. (6.3)

According to Definition 6.10, the subspace  (𝑃)⟂ ⊆ ℝ𝑟+𝑚 is generated by the following four types
of elements:

𝜒(𝐹) ∶=
∑
𝑑⊂𝐹

𝜀𝐹(𝑑) 𝑡𝑑 ⋅ 𝑑 for all‡ compact 2-faces 𝐹 of 𝑃, (6.4)

𝑠𝑖 for all 𝑣𝑖 ∈ 𝑁. (6.5)

𝑠𝑖 − 𝑠𝑗 for all [𝑣𝑖, 𝑣𝑗] ∈ Edgec(𝑃) with [𝑣𝑖, 𝑣𝑗] ∩ 𝑁 = ∅, and (6.6)

𝑡𝑖𝑗 − 𝑠𝑖 for all short edges [𝑣𝑖, 𝑣𝑗). (6.7)

The relations𝜒(𝐹) enable us to encodeMinkowski summands via edge dilation, cf. Subsection 5.4
and Definition 6.9. Their importance for the extensions of semigroups, however, becomes appar-
ent in the proof of Proposition 7.15. From Equation (6.3), we get that the dual cone of +(𝑃)
is

 ∨

+ (𝑃) = Image(ℝ𝑟+𝑚
⩾0

⟶  ∗(𝑃)) =
ℝ𝑟+𝑚
⩾0

+  (𝑃)⟂

 (𝑃)⟂
.

6.6 The lattice structure in  (𝑷)

We start by defining a subgroup of ℤ(𝑃) ⊂  (𝑃), and then prove that this is a lattice. In the
case in which 𝑃 is a lattice polytope with primitive edges, this lattice is simply ℤ𝑟 ∩ 𝐶lin(𝑃), cf.
Example 6.17.

Definition 6.13. Define the subgroup ℤ(𝑃) ⊂  (𝑃) by

(𝐭, 𝐬) ∈ ℤ(𝑃) ∶⟺

⎧⎪⎨⎪⎩
𝑠𝑖 ∈ ℤ, ∀ 𝑣𝑖 ∈ Vert(𝑃), and

(𝑡𝑖𝑗 − 𝑠𝑖)𝑣
𝑖 − (𝑡𝑖𝑗 − 𝑠𝑗)𝑣

𝑗 ∈ 𝑁, ∀ [𝑣𝑖, 𝑣𝑗] ∈ Edgec(𝑃).

Clearly, ℤ(𝑃) is a subgroup of  (𝑃), thus it is Abelian and torsion-free.

† That is, we will not add a star here.
‡ Actually, these elements are in  (𝑃)⟂ ⊗ 𝑁ℝ and need to be evaluated by some 𝑐 ∈ 𝑀ℝ.
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3968 ALTMANN et al.

Lemma 6.14. The subgroup ℤ(𝑃) is a free Abelian group satisfying

ℤ(𝑃) ⊗ℤ ℝ =  (𝑃).

Proof. We first show that ℤ(𝑃) is a discrete subgroup, that is, that 0 ∈ ℤ(𝑃) is an isolated point.
If (𝐭, 𝐬) ∈ ℤ(𝑃) has sufficiently small coordinates, then the integrality of 𝑠𝑖 implies that 𝑠𝑖 = 0. For
the resulting (𝐭, 0), we thus get

𝑡𝑖𝑗(𝑣
𝑖 − 𝑣𝑗) ∈ 𝑁.

As we have finitely many compact edges, and as 𝑁 is a lattice, thus not divisible, it follows that
sufficiently small 𝑡𝑖𝑗 are forced to be zero as well.
Every rational element of  (𝑃) admits an integral multiple contained in ℤ(𝑃). Together with

the discrete property, this implies that ℤ(𝑃) is an Abelian group satisfying

ℤ(𝑃) ⊗ℤ ℝ =  (𝑃). □
The dual lattice is by definition

 ∗
ℤ
(𝑃) = {𝑓 ∈  ∗(𝑃) ∶ 𝑓(ℤ(𝑃)) ⊆ ℤ}.

Thus, the dual lattice  ∗
ℤ
(𝑃) is generated by

{𝑠𝑣 ∶ 𝑣 ∈ Vert(𝑃)} ∪ {𝐿𝑖𝑗(𝑐) ∶ 𝑐 ∈ recc(𝑃)
∨ ∩ 𝑀}

with 𝐿𝑖𝑗(𝑐) being the evaluations of the 𝐿𝑖𝑗 explained below; see Notation 6.16.
We will regard all the 𝑡𝑖𝑗, 𝑠𝑖, 𝑠𝑗 as coordinate functions, that is as elements of  ∗(𝑃). The two

conditions of Definition 6.13 can be thus rephrased as

𝑠𝑖 ∈  ∗
ℤ
(𝑃),

𝐿𝑖𝑗 ∶= (𝑡𝑖𝑗 − 𝑠𝑖) ⊗ 𝑣
𝑖 − (𝑡𝑖𝑗 − 𝑠𝑗) ⊗ 𝑣

𝑗 ∈  ∗
ℤ
(𝑃) ⊗ℤ 𝑁.

We will often group the summands as: 𝐿𝑖𝑗 = 𝑡𝑖𝑗 ⊗ (𝑣𝑖 − 𝑣𝑗) + 𝑠𝑗 ⊗ 𝑣𝑗 − 𝑠𝑖 ⊗ 𝑣𝑖 .

Remark 6.15. The elements 𝐿𝑖𝑗 , together with 𝑠𝑖 ⊗ 𝑁, generate ℤ(𝑃)∗ ⊗ℤ 𝑁.

Note that 𝑡𝑗𝑖 = 𝑡𝑖𝑗 , but 𝐿𝑗𝑖 = −𝐿𝑖𝑗 . For any oriented compact edge 𝑑 = [𝑣𝑖, 𝑣𝑗] we will write
𝐿𝑑 or 𝐿𝑣𝑖𝑣𝑗 instead of 𝐿𝑖𝑗 when it is more convenient to do so. Finally, let us point out that the
distinguished element (1; 1, 0) =∶ [𝑃] belongs to the lattice.

Notation 6.16. As we are dealing with the tensor product of two linear forms, one on  (𝑃) and
one on 𝑀, it makes sense to apply 𝐿𝑖𝑗 to both types of elements separately. We will denote as
consistently as possible the elements of  (𝑃) by 𝜉 and those of𝑀 by 𝑐. Therefore, we will use the
same notation when we apply 𝐿𝑖𝑗 to either of them:

𝐿𝑖𝑗(𝜉) ∶= 𝑡𝑖𝑗(𝜉) ⋅ (𝑣
𝑖 − 𝑣𝑗) + 𝑠𝑗(𝜉) ⋅ 𝑣

𝑗 − 𝑠𝑖(𝜉) ⋅ 𝑣
𝑖 ∈ 𝑁ℝ, for 𝜉 ∈  (𝑃),

𝐿𝑖𝑗(𝑐) ∶= ⟨𝑐, 𝑣𝑖 − 𝑣𝑗⟩ ⋅ 𝑡𝑖𝑗 + ⟨𝑐, 𝑣𝑗⟩ ⋅ 𝑠𝑗 − ⟨𝑐, 𝑣𝑖⟩ ⋅ 𝑠𝑖 ∈  ∗(𝑃), for 𝑐 ∈ 𝑀.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3969

Example 6.17.

(1) If 𝑃 = [𝑣, 𝑤] ⊂ ℝ is a rational line segment, then we denote by 𝑑(𝑃) ∶= 𝑤 − 𝑣 the length of
𝑃 and by {𝑣} ∶= ⌈𝑣⌉ − 𝑣 and {𝑤} ∶= ⌈𝑤⌉ − 𝑤 the discrepancies for 𝑃 to have integral limits.
Then, besides 𝑠𝑣, 𝑠𝑤 ∈  ∗

ℤ
(𝑃), this lattice is characterized by the incidence

𝑑(𝑃) ⋅ 𝑡 − {𝑣} ⋅ 𝑠𝑣 + {𝑤} ⋅ 𝑠𝑤 ∈  ∗
ℤ
(𝑃)

which has a straightforward geometric interpretation. Indeed, this follows from

𝐿𝑑(𝑃) = −𝑑(𝑃) ⋅ 𝑡 + 𝑤 ⋅ 𝑠𝑤 − 𝑣 ⋅ 𝑠𝑣
= −𝑑(𝑃) ⋅ 𝑡 − {𝑤} ⋅ 𝑠𝑤 + {𝑣} ⋅ 𝑠𝑣 + (𝑤 + {𝑤}) ⋅ 𝑠𝑤 − (𝑣 + {𝑣}) ⋅ 𝑠𝑣,

because the last two coefficients, 𝑤 + {𝑤} and −𝑣 − {𝑣}, are integers.
(2) Whenever 𝑃 is a lattice polyhedron with primitive compact edges, then  (𝑃) = 𝐶lin(𝑃), and

ℤ(𝑃) = 𝐶
lin
ℤ
(𝑃) is determined by the integrality of all 𝑡𝑖𝑗 .

In Section 7, we will lift 𝜂(𝑐) and 𝜂ℤ(𝑐) along the map 𝜋 ∶  ∗ℤ (𝑃) → ℤ (or its rational version),
where 𝑡𝑖𝑗 ↦ 1 for all edges and 𝑠𝑣 ↦ 1 if 𝑣 ∉ 𝑁. This gives the vertical maps in the following
diagram.

In the previous diagram, we have used the symbol

𝛿ℤ𝑣 ∶=

{
𝑣 if 𝑣 ∈ 𝑁
0 if 𝑣 ∈ 𝑁ℝ ⧵ 𝑁.

In particular, 𝐿𝑖𝑗 ∈ ker (𝜋) if 𝑣𝑖, 𝑣𝑗 ∈ Vert∉ℤ(𝑃).

7 LIFTING THE 𝜼 TO  ∗

In this section, we define liftings [𝑐, 𝜂ℤ(𝑐)] ↦ [𝑐, 𝜂ℤ(𝑐)] in the finite dimensional ℝ-vector space
 ∗(𝑃) from Subsection 6.3. The main idea behind constructing the universal extension is to use
these liftings of the relative boundary and define 𝑇 using the relations among them: 𝜂ℤ(𝑐1, … , 𝑐𝓁)
(cf. Definition 7.10). Then, 𝑆 will be the sum of the lifted boundary with 𝑇.

7.1 Lifting the boundary

We start by fixing a reference vertex 𝑣∗ ∈ Vert(𝑃).

Convention 7.1. Whenever 𝑣∗ ∈ 𝑃 belongs to the lattice, we will set 𝑣∗ = 0.
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3970 ALTMANN et al.

As the 𝑐 in [𝑐, 𝜂(𝑐)] will be unchanged when lifting, we will only focus on the 𝜂 part. Let
us state Definition 6.1 of 𝜂(𝑐) from a different point of view. For 𝑐 ∈ recc(𝑃)∨ we choose a path
𝑣∗ = 𝑣

0, 𝑣1, … , 𝑣𝑘 = 𝑣(𝑐) along the compact edges of 𝑃. Then

−𝜂(𝑐) = ⟨𝑐, 𝑣(𝑐)⟩
= ⟨𝑐, 𝑣∗⟩ + ⟨𝑐, 𝑣(𝑐) − 𝑣∗⟩
= ⟨𝑐, 𝑣∗⟩ + 𝑘∑

𝑗=1

⟨𝑐, 𝑣𝑗 − 𝑣𝑗−1⟩.
In complete analogy to this, we define now the lifting 𝜂(𝑐) of 𝜂(𝑐).

Definition 7.2. For every 𝑐 ∈ recc(𝑃)∨, we define 𝜂(𝑐) ∈  ∗(𝑃) as the piecewise linear

𝜂(𝑐) ∶= −⟨𝑐, 𝑣∗⟩ ⋅ 𝑠𝑣∗ − 𝑘∑
𝑗=1

⟨𝑐, 𝑣𝑗 − 𝑣𝑗−1⟩ ⋅ 𝑡𝑗−1, 𝑗.
Lemma 7.3. The definition of 𝜂(𝑐) ∈  ∗(𝑃) depends neither on the choice of the vertex 𝑣(𝑐), nor on
the choice of the path connecting 𝑣∗ and 𝑣(𝑐).

Proof. The independence on the choice of the path follows by the usual argument, namely,
by the presence of the closing relations, that is, the elements 𝜒(𝐹) providing ⟨𝑐, 𝜒(𝐹)⟩ ∈  (𝑃)⟂

mentioned in Subsection 6.5.
For the independence on 𝑣(𝑐), let us choose another candidate 𝑣′(𝑐). Then, ⟨𝑐, 𝑣′(𝑐)⟩ = ⟨𝑐, 𝑣(𝑐)⟩,

andwemay connect both vertices by a pathwithin the level face 𝑓𝑐 = {𝑣 ∈ 𝑃 ∶ ⟨𝑐, 𝑣⟩ = ⟨𝑐, 𝑣(𝑐)⟩},
that is, via edges 𝑑 ∈ 𝑐⊥. Thus, the two paths connecting 𝑣∗ with 𝑣(𝑐) or 𝑣′(𝑐), respectively, can be
chosen to differ only by those edges. In particular, they produce the same result after being paired
with 𝑐. □

Note that 𝜂(𝑐) is always a lifting of 𝜂(𝑐) via the map 𝜋 due to our Convention 7.1, that is, it holds
that

𝜋(𝜂(𝑐)) = 𝜂(𝑐).

Remark 7.4.

(i) Sending a certain point of 𝑃 to 0means to shift the polyhedron by some vector𝑤. This implies
𝜂(𝑐)𝑃−𝑤 = 𝜂(𝑐)𝑃 + ⟨𝑐, 𝑤⟩ ⋅ 𝑠𝑣∗ . In particular, if 𝑣∗ ∈ 𝑁, then shifting by −𝑣∗ to meet our con-
vention does not change 𝜂(𝑐). Actually, when shifting 𝑃, it is the original 𝜂(𝑐)which is altered
in a linear way to meet the property 𝜋(𝜂(𝑐)) = 𝜂(𝑐).

(ii) Besides shifting 𝑃, the functions 𝜂, 𝜂ℤ, 𝜂, and 𝜂ℤ defined below in Definition 7.7 depend all
on the choice of the reference vertex 𝑣∗ ∈ Vert(𝑃). However, this dependence is an easy one,
provided by adding a ℤ-linear map𝑀 →  ∗

ℤ
(𝑃) for both 𝜂 and 𝜂ℤ.

For integrality issues, it is important to express 𝜂(𝑐) in terms of the integral 𝐿𝑖𝑗 ∈ ℤ(𝑃)
∗ ⊗ℤ 𝑁.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3971

Lemma 7.5. For every 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀 and any path 𝑣∗ = 𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑣(𝑐) along the compact
edges of 𝑃 we have

𝜂(𝑐) = 𝜂(𝑐) ⋅ 𝑠𝑣(𝑐) +
𝑘∑
𝑗=1

𝐿𝑗−1,𝑗(𝑐).

Proof. We use the chosen path 𝑣∗ = 𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑣(𝑐) to obtain

−𝜂(𝑐) = ⟨𝑐, 𝑣0⟩ ⋅ 𝑠0 + 𝑘∑
𝑗=1

⟨𝑐, 𝑣𝑗 − 𝑣𝑗−1⟩ ⋅ 𝑡𝑗−1, 𝑗
=

𝑘∑
𝑗=1

(⟨𝑐, 𝑣𝑗 − 𝑣𝑗−1⟩ ⋅ 𝑡𝑗−1, 𝑗 − ⟨𝑐, 𝑣𝑗⟩ ⋅ 𝑠𝑗 + ⟨𝑐, 𝑣𝑗−1⟩ ⋅ 𝑠𝑗−1) + ⟨𝑐, 𝑣𝑘⟩ ⋅ 𝑠𝑘
=

𝑘∑
𝑗=1

𝐿𝑗,𝑗−1(𝑐) + ⟨𝑐, 𝑣(𝑐)⟩ ⋅ 𝑠𝑣(𝑐).
□

Corollary 7.6. For every 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀, we have 𝜂(𝑐) ∈  ∗
ℤ
(𝑃) if and only if 𝜂(𝑐) ∈ ℤ.

Proof. Since 𝜋 ∶  ∗
ℤ
(𝑃) → ℤmaps 𝜂(𝑐) to 𝜂(𝑐), we obtain the first implication. The converse is a

direct consequence of Lemma 7.5 and the integrality of 𝐿𝑖𝑗 . □

For 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀, we recall 𝜂ℤ(𝑐) = ⌈𝜂(𝑐)⌉ ∈ ℤ from Definition 6.1 and, for 𝑧 ∈ ℝ, {𝑧} =⌈𝑧⌉ − 𝑧 fromNotation 6.2. Thus, Lemma 7.5 suggests the following possibility to lift this definition
via 𝜋.

Definition 7.7. For every 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀 we define 𝜂ℤ(𝑐) ∈  ∗
ℤ
(𝑃) as

𝜂ℤ(𝑐) ∶= 𝜂ℤ(𝑐) ⋅ 𝑠𝑣(𝑐) +
𝑘∑
𝑗=1

𝐿𝑗−1,𝑗(𝑐)

= 𝜂(𝑐) + (𝜂ℤ(𝑐) − 𝜂(𝑐)) ⋅ 𝑠𝑣(𝑐)

= 𝜂(𝑐) + {𝜂(𝑐)} ⋅ 𝑠𝑣(𝑐).

Remark 7.8.

(i) By Convention 7.1, we have 𝜋(𝜂(𝑐)) = 𝜂(𝑐). We also have

𝜋(𝜂ℤ(𝑐)) = 𝜂ℤ(𝑐).

In particular, in contrast to 𝜂 and 𝜂, the functions 𝜂ℤ and 𝜂ℤ are no longer piecewise linear.
(ii) The pair [𝑐, 𝜂ℤ(𝑐)] is a quite natural lifting of [𝑐, 𝜂ℤ(𝑐)] from𝑀 × ℕ to𝑀 ×  ∗(𝑃). However,

even when asking for some positivity, it might be not the only lifting — see [3, 3.7] for an
example.

Lemma 7.9. The definition of 𝜂ℤ(𝑐) does not depend on the choice of the vertex 𝑣(𝑐).
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3972 ALTMANN et al.

Proof. As we did in the proof of Lemma 7.3, we may connect 𝑣(𝑐) and 𝑣′(𝑐) by edges 𝑑 = [𝑣𝑖, 𝑣𝑗]
contained in the face 𝑓𝑐 ∶= {𝑝 ∈ 𝑃 ∶ ⟨𝑐, 𝑝⟩ = min ⟨𝑐, 𝑃⟩}. If the shared coefficient of our two
heroes 𝑠𝑣(𝑐) and 𝑠𝑣′(𝑐) matters at all, that is, if 𝜂ℤ(𝑐) − 𝜂(𝑐) ≠ 0, then 𝜂(𝑐) ∉ ℤ, that is, the face
𝑓𝑐 contains no lattice points. That is, any edge 𝑑 = [𝑣𝑖, 𝑣𝑗] on the path between 𝑣(𝑐) and 𝑣′(𝑐)
satisfies the property [𝑣𝑖, 𝑣𝑗] ∩ 𝑁 = ∅. This property occurs in Definition 6.10, and implies 𝑠𝑖 = 𝑠𝑗
as elements of  ∗

ℤ
(𝑃) ⊆  ∗(𝑃). Altogether, it means that 𝑠𝑣(𝑐) = 𝑠𝑣′(𝑐). □

7.2 Relations

Having defined 𝜂(𝑐) as a minimum and 𝜂ℤ(𝑐) = ⌈𝜂(𝑐)⌉ (Definition 6.1), we get ⌈𝜂(𝑐1)⌉ +⋯ +⌈𝜂(𝑐𝓁)⌉ ⩾ ⌈𝜂(𝑐1) +⋯ + 𝜂(𝑐𝓁)⌉ ⩾ ⌈𝜂(𝑐1 +⋯ + 𝑐𝓁)⌉ for any sequence 𝑐1, … , 𝑐𝓁 of not necessarily
distinct elements of recc(𝑃)∨ ∩ 𝑀. This implies:

𝜂ℤ(𝑐1) +⋯ + 𝜂ℤ(𝑐𝓁) ⩾ 𝜂ℤ
(
𝑐1 +⋯ + 𝑐𝓁

)
. (7.1)

Definition 7.10. Let𝓁 ⩾ 2. For each sequence 𝑐1, … , 𝑐𝓁 ∈ recc(𝑃)∨ ∩ 𝑀 of not necessarily distinct
elements, and for each of the symbols 𝜂, 𝜂ℤ, 𝜂, or 𝜂ℤ, whichwe represent bellow by a♢, we define

♢(𝑐1, … , 𝑐𝓁) ∶=

𝓁∑
𝑖=1

♢(𝑐𝑖) − ♢

(
𝓁∑
𝑖=1

𝑐𝑖

)
.

A sequence 𝑐1, … , 𝑐𝓁 is called ♢-independent if ♢(𝑐1, … , 𝑐𝓁) = 0. We use the convention that every
sequence of length one is independent as well†.

This definition does not depend on the order of the 𝑐𝑖 , just on the multiset.

Remark 7.11.

(i) Convention 7.1 and Remark 7.8 extend to:

𝜋
(
𝜂(𝑐1, … , 𝑐𝓁)

)
= 𝜂(𝑐1, … , 𝑐𝓁)

𝜋
(
𝜂ℤ(𝑐1, … , 𝑐𝓁)

)
= 𝜂ℤ(𝑐1, … , 𝑐𝓁).

(ii) The fact that 𝜂(𝑐1, … , 𝑐𝓁) ⩾ 0 is a trivial consequence of 𝜂(𝑐) being defined as some min-
imum. However, for the integral variant 𝜂ℤ(𝑐1, … , 𝑐𝓁) one should keep in mind that this
does not need to be the roundup of 𝜂(𝑐1, … , 𝑐𝓁); even the inequality 𝜂ℤ(𝑐1, 𝑐2) ⩾ 𝜂(𝑐1, 𝑐2)
might fail. Nevertheless, the non-negativity of 𝜂ℤ(𝑐1, … , 𝑐𝓁) is given by the Inequality (7.1),
so 𝜂ℤ(𝑐1, … , 𝑐𝓁) ∈ ℕ.

(iii) For every ♢ ∈ {𝜂, 𝜂ℤ, 𝜂, 𝜂ℤ}, for every 𝑐1, … , 𝑐𝓁 ∈ recc(𝑃)∨ ∩ 𝑀 with 𝓁 ⩾ 2, and for every 𝑖 =
2, … ,𝓁 − 1 we have

♢(𝑐1, … , 𝑐𝓁) = ♢(𝑐1) +⋯ + ♢(𝑐𝑖) − ♢(𝑐1 +⋯ + 𝑐𝑖)

+♢(𝑐1 +⋯ + 𝑐𝑖) + ♢(𝑐𝑖+1) +⋯ + ♢(𝑐𝓁) − ♢(𝑐1 +⋯ + 𝑐𝓁)

= ♢(𝑐1, … , 𝑐𝑖) + ♢(𝑐1 +⋯ + 𝑐𝑖, 𝑐𝑖+1, … , 𝑐𝓁).

† This make sense, as the definition of ♢(𝑐1, … , 𝑐𝓁) would give zero for 𝓁 = 1. However, due to the overlap in notation for
𝓁 = 1, we define ♢(𝑐1, … , 𝑐𝓁) only for 𝓁 ⩾ 2.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3973

(iv) In particular, the above recursive formula gives us the semigroup equality

spanℕ
{
𝜂ℤ(𝑐1, … , 𝑐𝓁) ∶ ∀ 𝓁 ⩾ 2

}
= spanℕ {𝜂ℤ(𝑐1, 𝑐2)},

where the 𝑐𝑖 run through all possible elements of recc(𝑃)∨ ∩ 𝑀.

Example 7.12. Let us continue Example 6.4. Denoting the variables associated to the two non-
lattice vertices −1

2
and 1

2
by 𝑠1 and 𝑠2, respectively, and denoting by 𝑡 the variable referring to the

one and only edge 𝑑 = 𝑃, we obtain the following values:

𝑐 𝜂(𝑐) 𝜂ℤ(𝑐) 𝜂(𝑐) 𝜂ℤ(𝑐)

−2 1 1 −𝑠1 + 2𝑡 −𝑠1 + 2𝑡

−1 1

2
1 −1

2
𝑠1 + 𝑡

1

2
(𝑠2 − 𝑠1) + 𝑡

0 0 0 0 0

1 1

2
1 1

2
𝑠1 𝑠1

2 1 1 𝑠1 𝑠1

Turning to the values for 𝜂ℤ(𝑐1, 𝑐2), this leads to

𝜂ℤ( 1, 1) = 𝑠1 𝜂ℤ(−1,−1) = 𝑠2

𝜂ℤ(−1, 1) = 𝑡 +
1

2
(𝑠1 + 𝑠2) 𝜂ℤ(−2, 2) = 2𝑡

𝜂ℤ(−1, 2) =
1

2
(𝑠2 − 𝑠1) + 𝑡 𝜂ℤ(−2, 1) =

1

2
(𝑠1 − 𝑠2) + 𝑡.

Our main goal in this section is to prove that the notions of 𝜂ℤ-independence and 𝜂ℤ-
independence from Definition 7.10 are equivalent (Proposition 7.15).

Lemma 7.13. The property of 𝜂ℤ-independence is bequeathed to subsequences and to partitioning.
Moreover, the latter is also true for the property of being ‘minimally 𝜂ℤ-dependent’.

Proof. The first part follows from the Equation (7.1) and Remark 7.11(iii). If 𝓁 ⩾ 3 and 𝑐1, … , 𝑐𝓁 is
minimally dependent, then 𝜂ℤ(𝑐1, … , 𝑐𝓁) > 0 and 𝜂ℤ(𝑐1, 𝑐2) = 0, so (𝑐1 + 𝑐2), 𝑐3, … , 𝑐𝓁 is dependent
too. The minimality of this property is clear. □

The next lemma will not be directly applied later on. Its proof, however, can be seen as a warm
up in which some notation is fixed for the proof the main result in this section.

Lemma 7.14. Let 𝑐1, 𝑐2 ∈ recc(𝑃)∨ ∩ 𝑀. If 𝜂(𝑐1, 𝑐2) = 0, then 𝜂(𝑐1, 𝑐2) = 0.

Proof. If 𝑑1
1
, … , 𝑑1

𝑘
and 𝑑2

1
, … , 𝑑2

𝑙
are the oriented edges forming paths leading from 𝑣(𝑐1 + 𝑐2) to

𝑣(𝑐1) and 𝑣(𝑐2) with ⟨𝑐1, 𝑑1𝑖 ⟩, ⟨𝑐2, 𝑑2𝑗 ⟩ ⩽ 0, respectively, we obtain
𝜂(𝑐1, 𝑐2) = −

𝑘∑
𝑖=1

⟨𝑐1, 𝑑1𝑖 ⟩ ⋅ 𝑡𝑑1𝑖 − 𝑙∑
𝑗=1

⟨𝑐2, 𝑑2𝑗 ⟩ ⋅ 𝑡𝑑2𝑗 (7.2)
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3974 ALTMANN et al.

showing non-negative coefficients. This implies that the edges 𝑑1
𝑖
and 𝑑2

𝑗
have to be contained in

𝑐⊥
1
and 𝑐⊥

2
, respectively, because

𝜋(𝜂(𝑐1, 𝑐2)) = −

𝑘∑
𝑖=1

⟨𝑐1, 𝑑1𝑖 ⟩ − 𝑙∑
𝑗=1

⟨𝑐2, 𝑑2𝑗 ⟩ = 𝜂(𝑐1, 𝑐2) = 0.
Thus, ⟨𝑐1, 𝑣(𝑐1)⟩ = ⟨𝑐1, 𝑣(𝑐1 + 𝑐2)⟩ and ⟨𝑐2, 𝑣(𝑐2)⟩ = ⟨𝑐2, 𝑣(𝑐1 + 𝑐2)⟩. This means that we could
have chosen, that is, that we can assume now, that 𝑣(𝑐1) = 𝑣(𝑐1 + 𝑐2) = 𝑣(𝑐2), which implies
𝜂(𝑐1, 𝑐2) = 0. □

The next proposition is a key point for many arguments occurring in the rest of the paper. In
its proof, the generators of  (𝑃)⟂ described in (6.4)–(6.7) play a crucial role.

Proposition 7.15. Being 𝜂ℤ-independent is equivalent to being 𝜂ℤ-independent.

Proof. By Remark 7.11 𝜂ℤ-independence implies 𝜂ℤ-independence. For the other direction we use
induction on the length 𝓁 of the sequence 𝑐1, … , 𝑐𝓁 . The case 𝓁 = 1 is trivial. The essential step
is 𝓁 = 2.
So, let 𝑐1, 𝑐2 ∈ recc(𝑃)∨ ∩ 𝑀 with 𝜂ℤ(𝑐1, 𝑐2) = 0. Note first that we have

{𝜂(𝑐)} = ⌈𝜂(𝑐)⌉ − 𝜂(𝑐) = ⌈−⟨𝑐, 𝑣(𝑐)⟩⌉ − (−⟨𝑐, 𝑣(𝑐)⟩) = ⟨𝑐, 𝑣(𝑐)⟩ − ⌊⟨𝑐, 𝑣(𝑐)⟩⌋.
Combining the above relation with the definition of 𝜂 and with the formula (7.2) for 𝜂(𝑐1, 𝑐2) we
obtain

𝜂ℤ(𝑐1, 𝑐2) = 𝜂(𝑐1, 𝑐2) + {𝜂(𝑐1)} ⋅ 𝑠𝑣(𝑐1) + {𝜂(𝑐2)} ⋅ 𝑠𝑣(𝑐2) − {𝜂(𝑐1 + 𝑐2)} ⋅ 𝑠𝑣(𝑐1+𝑐2)

= −

𝑘∑
𝑖=1

⟨𝑐1, 𝑑1𝑖 ⟩ ⋅ 𝑡𝑑1𝑖 + (⟨𝑐1, 𝑣(𝑐1)⟩ − ⌊⟨𝑐1, 𝑣(𝑐1)⟩⌋) ⋅ 𝑠𝑣(𝑐1) (7.3)

−

𝑙∑
𝑗=1

⟨𝑐2, 𝑑2𝑗 ⟩ ⋅ 𝑡𝑑2𝑗 + (⟨𝑐2, 𝑣(𝑐2)⟩ − ⌊⟨𝑐2, 𝑣(𝑐2)⟩⌋) ⋅ 𝑠𝑣(𝑐2) (7.4)

− (⟨𝑐1 + 𝑐2, 𝑣(𝑐1 + 𝑐2)⟩ − ⌊⟨𝑐1 + 𝑐2, 𝑣(𝑐1 + 𝑐2)⟩⌋) ⋅ 𝑠𝑣(𝑐1+𝑐2),
where the 𝑑1

𝑖
and 𝑑2

𝑗
are just as in the proof of Lemma 7.14. Our goal is to show that, assum-

ing 𝜂ℤ-independence, all the edges above are short. The proof is analogous for both paths, so we
focus only on 𝑑1

1
, … , 𝑑1

𝑘
, and label the vertices with 𝑣(𝑐1 + 𝑐2) = 𝑣0, … , 𝑣𝑘 = 𝑣(𝑐1). From ⟨𝑐1, 𝑑1𝑖 ⟩ =⟨𝑐1, 𝑣𝑖 − 𝑣𝑖−1⟩ ⩽ 0we get that ⟨𝑐1, 𝑣𝑖⟩ ⩽ ⟨𝑐1, 𝑣𝑖−1⟩. Via a suitable choice of 𝑣(𝑐1), we can even insist

on strict inequalities:

⟨𝑐1, 𝑣𝑖⟩ < ⟨𝑐1, 𝑣𝑖−1⟩.
So, the vanishing of 𝜂ℤ(𝑐1, 𝑐2), which is obtained from 𝜂ℤ(𝑐1, 𝑐2) by sending 𝑡∙,∙, 𝑠∙ ↦ 1, means that
all the non-negative coefficients in rows (7.3) and (7.4) added up cancel with the single negative
coefficient: that of 𝑠𝑣(𝑐1+𝑐2), which is contained in the half-open real interval [0,1). In particular,
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3975

the sum of all coefficients of 𝑡∙,∙ and 𝑠∙ below is positive and strictly less than 1:

𝑆1 ∶= −

𝑘∑
𝑖=1

⟨𝑐1, 𝑣𝑖 − 𝑣𝑖−1⟩ ⋅ 𝑡𝑖−1, 𝑖 + (⟨𝑐1, 𝑣(𝑐1)⟩ − ⌊⟨𝑐1, 𝑣(𝑐1)⟩⌋) ⋅ 𝑠𝑣(𝑐1).
We would like to express the coefficient of 𝑠𝑣(𝑐1) in a similar way as the coefficients of 𝑡𝑖−1, 𝑖 . For
this, we choose a 𝑐1-integral point† 𝑣𝑘+1 ∈ 𝑁ℝ such that

⟨𝑐1, 𝑣𝑘+1⟩ = ⌊⟨𝑐1, 𝑣(𝑐1)⟩⌋ ∈ ℤ.
Note that integral points 𝑣 ∈ 𝑁 are always 𝑐1-integral, but the opposite is far from being true.
Moreover, note that, unless 𝜂(𝑐1) ∈ ℤ, the new point 𝑣𝑘+1 cannot be contained in the polyhedron
𝑃. On the other hand, if 𝜂(𝑐1) ∈ ℤ, then we may and will choose 𝑣𝑘+1 ∶= 𝑣𝑘. Anyway, the 𝑠𝑣(𝑐1)-
coefficient of 𝑆1 becomes ⟨𝑐1, 𝑣𝑘 − 𝑣𝑘+1⟩, and we obtain

𝜋(𝑆1) = −

𝑘∑
𝑖=1

⟨𝑐1, 𝑣𝑖 − 𝑣𝑖−1⟩ + ⟨𝑐1, 𝑣𝑘 − 𝑣𝑘+1⟩ = ⟨𝑐1, 𝑣0⟩ − ⟨𝑐1, 𝑣𝑘+1⟩ < 1.
We want to deduce that

𝑠𝑣(𝑐1+𝑐2) = 𝑡0,1 = 𝑠𝑣1 = 𝑡1,2 = ⋯ = 𝑠𝑣𝑘−1 = 𝑡𝑘−1,𝑘 = 𝑠𝑣(𝑐1) in  ∗(𝑃), (7.5)

where the last 𝑠𝑣(𝑐1) = 𝑠𝑣𝑘 has to be omitted if 𝜂(𝑐1) ∈ ℤ. These equalities (together with those for
the analogous 𝑐2-summand) obviously imply that

𝜂ℤ(𝑐1, 𝑐2) = 𝜂ℤ(𝑐1, 𝑐2) ⋅ 𝑠𝑣(𝑐1+𝑐2) = 0.

To obtain (7.5), we show that for 𝑖 = 1, … , 𝑘 the edges [𝑣𝑖−1, 𝑣𝑖] are short edges, cf. Definition 6.7.
Actually, if 𝜂(𝑐1) ∈ ℤ, then only the one half open [𝑣𝑘−1, 𝑣𝑘) is needed to be short for the last
segment. Assume that this fails for one of them. Then, we have

|[g𝑣𝑖−1, g𝑣𝑖) ∩ 𝑁| ⩾ g or |(g𝑣𝑖−1, g𝑣𝑖] ∩ 𝑁| ⩾ g ,

where g ∈ ℕ⩾1 denotes the smallest number such that the line connecting g𝑣𝑖−1 and g𝑣𝑖 contains
lattice points. In the first case, this implies that there are at least (g + 1) 𝑐1-integral points along
our path from g𝑣𝑖−1 to g𝑣𝑘+1, hence, more than ever, from g𝑣0 to g𝑣𝑘+1. In the second case, we
obtain the same, unless 𝑖 = 𝑘 and 𝑣𝑘 = 𝑣𝑘+1— however, this exactly means that we speak about
the half open interval (𝑣𝑘−1, 𝑣𝑘] in the situation where 𝜂(𝑐1) ∈ ℤ, which was excluded before.
Anyway, we do always get

|[g𝑣0, g𝑣𝑘+1] ∩ 𝑁| ⩾ g + 1,

hence, we obtain

g ⋅ 𝜋(𝑆1) = ⟨𝑐1, g𝑣0⟩ − ⟨𝑐1, g𝑣𝑘+1⟩ ⩾ g ,

a contradiction. This concludes the proof for 𝓁 = 2. The inductive step follows from Lemma 7.13
and Remark 7.11(iii). □

†Meaning that ⟨𝑐1, 𝑣𝑘+1⟩ ∈ ℤ.
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3976 ALTMANN et al.

7.3 Liftings and relations of the Hilbert basis

In the last part of this section, we will prepare the proof of the finite generation of
the semigroup of all relations 𝜂ℤ(𝑐1, … , 𝑐𝓁) given in Proposition 8.7. To this aim, let
{[𝔠1, 𝜂ℤ(𝔠1)], … , [𝔠𝑘, 𝜂ℤ(𝔠𝑘)], [0, 1]} be the Hilbert basis of 𝜎∨ ∩ (𝑀 ⊕ ℤ) (cf. subsection 6.2,
Remark 6.3). Multisets supported on {𝔠1, … , 𝔠𝑘} correspond to elements of ℕ𝑘 via the multiplic-
ities of occurrence of each element:𝑚1,… ,𝑚𝑘 ∈ ℕ. We denote them by {𝔠𝑚1

1
, … , 𝔠

𝑚𝑘
𝑘
}. So, we may

speak of 𝜂ℤ-dependent elements𝐦 = (𝑚1,… ,𝑚𝑘) ∈ ℕ𝑘 via this correspondence, and write

𝜂ℤ(𝐦) ∶= 𝜂ℤ
(
𝔠
𝑚1
1
, … , 𝔠

𝑚𝑘
𝑘

)
, ∀ 𝐦 ∈ ℕ.

Lemma 7.16. The number of minimally 𝜂ℤ-dependent elements of ℕ𝑘 finite.

Proof. By Lemma 7.13, the set of dependent sequences supported on 𝔠1, … , 𝔠𝑘 is in order-
preserving correspondence with a subset of ℕ𝑘 representing a monomial ideal Dep𝜂ℤ ⊆
ℤ[𝑡1, … , 𝑡𝑘]. So, the above statement follows from Dickson’s Lemma or simply by the fact that
(for example, monomial) ideals are finitely generated. □

8 THE UNIVERSAL ISO-BOUNDED EXTENSION

The inspiration for the following definition comes from Proposition 4.3, which defines iso-
bounded extensions by isomorphic relative boundaries, and Remark 6.3 which describes the
relative boundary of our given object (ℕ, coneℤ(𝑃)∨), where coneℤ(𝑃)∨ ∶= cone(𝑃)∨ ∩ (𝑀 ⊕ ℤ).
Denote by

̃ ∗
ℤ
(𝑃) ∶= 𝑀 ⊕  ∗

ℤ
(𝑃).

Definition 8.1. For any rational polyhedron 𝑃 ⊆ 𝑁ℝ, define the semigroups 𝑇, 𝑆 ⊂ ̃ ∗
ℤ
(𝑃) as

𝑇 = spanℕ
{
[0, 𝜂ℤ(𝑐1, 𝑐2)] ∶ 𝑐1, 𝑐2 ∈ recc(𝑃)

∨ ∩ 𝑀
}
,

𝑆 = 𝑇 + spanℕ
{
[𝑐, 𝜂ℤ(𝑐)] ∶ 𝑐 ∈ recc(𝑃)

∨ ∩ 𝑀
}
.

By Remark 7.11(iv), we have

𝑇 = spanℕ
{
[0, 𝜂ℤ(𝑐1, … , 𝑐𝓁)] ∶ ∀ 𝓁 ⩾ 2 and ∀ 𝑐1, … , 𝑐𝓁 ∈ recc(𝑃)∨ ∩ 𝑀

}
.

Further on, in Proposition 8.7, we will see that we could have chosen, in the latter version of
defining 𝑇, only those 𝑐 which appear in a Hilbert Basis of coneℤ(𝑃)∨.

8.1 Belonging to the category

In this section, we will check that the semigroups 𝑇 ⊂ 𝑆 form a iso-bounded extension of
(ℕ, coneℤ(𝑃)

∨).
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3977

Proposition 8.2. It holds that

𝜕𝑇𝑆 = {[𝑐, 𝜂ℤ(𝑐)] | 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀}.
Proof. The main consequence of Proposition 7.15 is that ker𝜋𝑇 = 0, from which it follows that
[𝑐, 𝜂ℤ(𝑐)] ∈ 𝜕𝑇𝑆. The other inclusion is obvious. □

Remark 8.3. Since [𝑐, 𝜂ℤ(𝑐)] are natural (but not the only) liftings of [𝑐, 𝜂ℤ(𝑐)] ∈ 𝜕ℕconeℤ(𝑃)∨, it
is quite natural to put these elements in 𝑆. Independently of the shape of 𝑇, the required trivial-
ity of the kernel of 𝜋|𝑇 ∶ 𝑇 → ℕ (cf. Definition 4.1) implies that [𝑐, 𝜂ℤ(𝑐)] ∈ 𝜕𝑇𝑆. By the defining
property of the relative boundary, it follows that

[0, 𝜂ℤ(𝑐1, 𝑐2)] = [𝑐1, 𝜂ℤ(𝑐1)] + [𝑐2, 𝜂ℤ(𝑐2)] − [𝑐1 + 𝑐2, 𝜂ℤ(𝑐1 + 𝑐2)]

has to be contained in 𝑇. Thus, the Definition 8.1 was quite inevitable. At least, it was the
minimal choice.

Proposition 7.15 is also crucial to prove the following.

Proposition 8.4. For every rational polyhedron 𝑃, the diagram

with verticalmaps induced by 𝑡∙,∙, 𝑠𝑣 ↦ 1 for 𝑣 ∉ 𝑁 and 𝑠𝑣 ↦ 0 for 𝑣 ∈ 𝑁, is a iso-bounded extension.
This means that the addition maps are surjective, 𝜋𝑆 induces a bijection on the boundaries, and
ker𝜋𝑇 = ker𝜋𝑆 = 0.

Proof. The addition map downstairs is surjective because the pair is free. The addition map
upstairs is by Proposition 8.2 surjective. The restriction of 𝜋𝑆 to the boundary maps [𝑐, 𝜂ℤ(𝑐)]⟼
[𝑐, 𝜂ℤ(𝑐)], which is obviously bijective.
We have that𝜋𝑇([0, 𝜂ℤ(𝑐1, 𝑐2)]) = 0 ⟺ 𝜂ℤ(𝑐1, 𝑐2) = 0, which by Proposition 7.15 is equivalent

to 𝜂ℤ(𝑐1, 𝑐2) = 0. Since every element �̃� ∈ 𝑆 can be written as �̃� = [𝑐, 𝜂ℤ(𝑐)] + �̃� for some elements
𝑐 ∈ recc(𝑃)∨ ∩ 𝑀 and �̃� ∈ 𝑇, we have that𝜋(�̃�) = 0 implies 𝑐 = 0 and𝜋(̃𝑡) = 0, which implies �̃� = 0
because ker𝜋𝑇 = 0. □

8.2 The 𝒔 and multiples of 𝒕 are in �̃�

The next result shows that the special elements 𝑠𝑖 and some multiples of the 𝑡𝑖𝑗 are always in 𝑇.

Proposition 8.5. For every 𝑣𝑖 ∈ Vert∉ℤ(𝑃) there exist some 𝑐𝑖1, 𝑐
𝑖
2
∈ cone(𝑃)∨ ∩ 𝑀 such that

𝜂ℤ(𝑐
𝑖
1
, 𝑐𝑖
2
) = 𝑠𝑖 , where 𝑠𝑖 = 𝑠𝑣𝑖 is the corresponding coordinate. Furthermore, we can also find for each

𝑡𝑖𝑗 a positive integer 𝑎𝑖𝑗 ∈ ℕ such that 𝑎𝑖𝑗𝑡𝑖𝑗 ∈ 𝑇.

 14697750, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12678 by Freie U

niversitaet B
erlin, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3978 ALTMANN et al.

Proof. Let 𝑣𝑖 ∈ Vert∉ℤ(𝑃). Clearly, there exists a 𝑐 such that 𝑣(𝑐) = 𝑣𝑖 and 𝜂(𝑐) ∉ ℤ. We may
assume that

𝜂(𝑐) = 𝑧 + 𝑞 with 𝑧 ∈ ℤ, 𝑞 ∈ ℚ and 0 < 𝑞 ⩽ 1
2
∶

otherwise we replace 𝑐 by 𝑘𝑐 with 𝑘 being a positive integer such that 𝜂(𝑘𝑐) + 1 − ⌈𝜂(𝑘𝑐)⌉ ⩽ 1

2
.

This brings us to

𝜂ℤ(𝑐, 𝑐) = 𝜂ℤ(𝑐)𝑠𝑖 + 𝜂ℤ(𝑐)𝑠𝑖 − 𝜂ℤ(2𝑐)𝑠𝑖

= (𝑧 + 1)𝑠𝑖 + (𝑧 + 1)𝑠𝑖 − ⌈2𝑧 + 2𝑞⌉𝑠𝑖
= 𝑠𝑖.

For the second part, we look at one edge [𝑣𝑖, 𝑣𝑗]. We can choose 𝑐1, 𝑐2 such that 𝑣(𝑐1) = 𝑣𝑖 , 𝑣(𝑐2) =
𝑣𝑗 and furthermore such that ⟨𝑐2, 𝑣𝑗⟩ < ⟨𝑐2, 𝑣𝑖⟩ and that 𝑣(𝑐1 + 𝑐2) = 𝑣(𝑐1). Finally, we can assume
that all the brackets are integers. By Definition 7.2, we then have

𝜂ℤ(𝑐1, 𝑐2) =
(⟨𝑐2, 𝑣𝑖⟩ − ⟨𝑐2, 𝑣𝑗⟩)𝑡𝑖𝑗

and by our assumptions the coefficient of 𝑡𝑖𝑗 is a positive integer. □

8.3 Finite generation

A consequence of Proposition 7.15 is that lifting the Hilbert basis elements

[𝔠1, 𝜂ℤ(𝔠1)], … , [𝔠𝑘, 𝜂ℤ(𝔠𝑘)],

we obtain generators of 𝑆 as a ‘𝑇-module’:

Corollary 8.6. The following equality holds: 𝑆 = 𝑇 + spanℕ{[𝔠1, 𝜂ℤ(𝔠1)], … , [𝔠𝑘, 𝜂ℤ(𝔠𝑘)]}.

Proof. Let 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀. Our goal is to prove that [𝑐, 𝜂ℤ(𝑐)] ∈ spanℕ{[𝔠𝑖, 𝜂ℤ(𝔠𝑖)] ∶ 𝑖 = 1…𝑘}.
By Remark 6.3 [𝑐, 𝜂ℤ(𝑐)] ∈ 𝜕ℕconeℤ(𝑃)∨, that is [𝑐, 𝜂ℤ(𝑐)] ∈ spanℕ{[𝔠𝑖, 𝜂ℤ(𝔠𝑖)] ∶ 𝑖 = 1…𝑘}. So,
there exists an 𝜂ℤ-independent sequence consisting of 𝔠𝑖s which adds up to 𝑐, and we conclude by
Proposition 7.15. □

Proposition 8.7. The semigroup 𝑇 is finitely generated. A finite set of generators is given by the
minimally dependent sequences supported on 𝔠1, … , 𝔠𝑘 , yielding 𝜂ℤ(𝐦) for certain𝐦 ∈ ℕ𝑘 .

Proof. We start by claiming that for any sequence 𝑐1, … , 𝑐𝓁 of elements from recc(𝑃)∨ ∩ 𝑀, there
exists an𝐦 ∈ ℕ𝑘 such that, with the notation introduced in 7.3, we have

𝜂ℤ(𝑐1, … , 𝑐𝓁) = 𝜂ℤ(𝐦). (8.1)

Indeed, for every 𝑐𝑖 we have

[𝑐𝑖, 𝜂ℤ(𝑐𝑖)] =

𝑘∑
𝑗=1

𝑚𝑖𝑗 [𝔠𝑗, 𝜂ℤ(𝔠𝑗)] =

[
𝑘∑
𝑗=1

𝑚𝑖𝑗𝔠𝑗,

𝑘∑
𝑗=1

𝑚𝑖𝑗𝜂ℤ(𝔠𝑗)

]
,
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3979

so we can choose𝐦 = 𝐦1 +⋯ +𝐦𝓁 ∈ ℕ
𝑘:

𝜂ℤ(𝑐1, … , 𝑐𝓁) = 𝜂ℤ(𝑐1) +⋯ + 𝜂ℤ(𝑐𝓁) − 𝜂ℤ(𝑐1 +⋯ + 𝑐𝓁)

= 𝜂ℤ

(
𝑘∑
𝑗=1

𝑚1𝑗𝔠𝑗

)
+⋯ + 𝜂ℤ

(
𝑘∑
𝑗=1

𝑚𝓁,𝑗𝔠𝑗

)
− 𝜂ℤ

(
𝓁∑
𝑖=1

𝑘∑
𝑗=1

𝑚𝑖𝑗𝔠𝑗

)

=

𝑘∑
𝑗=1

𝑚1𝑗𝜂ℤ(𝔠𝑗) +⋯ +
𝑘∑
𝑗=1

𝑚𝓁,𝑗𝜂ℤ(𝔠𝑗) − 𝜂ℤ

(
𝓁∑
𝑖=1

𝑘∑
𝑗=1

𝑚𝑖𝑗𝔠𝑗

)
= 𝜂ℤ(𝐦),

so (8.1) holds. Furthermore, all the 𝐦𝑖 are independent, but their sum 𝐦 is independent if and
only if 𝑐1, … , 𝑐𝓁 are independent.
Next we claim that for every sequence 𝑐1, … , 𝑐𝓁 ∈ recc(𝑃)∨ ∩ 𝑀 we can even express

𝜂ℤ(𝑐1, … , 𝑐𝓁) using a combination of 𝜂ℤ(∙) with minimally dependent arguments from ℕ𝑘. From
this second claim, we can immediately conclude. To prove this claim we use double induc-
tion: first with respect to 𝜂ℤ(𝑐1, … , 𝑐𝓁) ∈ ℕ, and, inside each induction step we use induction on
deg(𝐦) =

∑
𝑚𝑖𝑗 . The key of the proof is Remark 7.8(iii) adapted to the language involving ℕ𝑘: if

𝐦′ ⩽ 𝐦 component-wise, then

𝜂ℤ(𝐦) = 𝜂ℤ(𝐦
′) + 𝜂ℤ

(
𝑘∑
𝑖=1

𝑚′𝑖 𝔠𝑖, 𝔠
𝑚1−𝑚

′
1

1
, … , 𝔠

𝑚𝑘−𝑚
′
𝑘

𝑘

)
. (8.2)

The case 𝜂ℤ(𝑐1, … , 𝑐𝓁) = 1. If deg(𝐦) = 2 we are trivially done. Otherwise, assume 𝐦 is not
minimally dependent and choose 𝐦′ < 𝐦 which is also dependent. By (8.2), we have 𝜂ℤ(𝐦) =

𝜂ℤ(𝐦
′) = 1 so 𝜂ℤ(

∑𝑘
𝑖=1 𝑚

′
𝑖
𝔠𝑖, 𝔠

𝑚1−𝑚
′
1

1
, … , 𝔠

𝑚𝑘−𝑚
′
𝑘

𝑘
) = 0. By Proposition 7.15 and (8.2), it follows that

𝜂ℤ(𝐦) = 𝜂ℤ(𝐦
′), with deg(𝐦′) < deg(𝐦), so we conclude by induction on deg(𝐦).

The inductive step follows very similarly from (8.2). □

Question 8.8. Now that we know that 𝑇 is a finitely generated semigroup, it might be interest-
ing to ask for the polyhedral cone generated by 𝑇. What are its fundamental rays, and how do its
facets look like? This will be answered partially in [1]. In that paper, we will use different tech-
niques which will provide a new description of the generators of 𝑇 as well as another proof of
Proposition 8.7.

9 THE INITIAL OBJECT PROPERTY

In Proposition 8.4, we showed that (𝑇, 𝑆) belongs to the category of iso-bounded extensions of the
pair ℕ ↪ coneℤ(𝑃)∨. For this, we have utilized the fact that (𝑇, 𝑆) is ‘small enough’, that is, that
the elements of the space  ∗

ℤ
(𝑃) satisfy sufficiently many relations, for example, the short edge

relation, which lead us to Proposition 7.15. This was then crucial to Propositions 8.4 and 8.7. We
are now going to show that (𝑇, 𝑆) is an initial object in this category, so, in a sense, we care about
the opposite: We have to show that all these relations within (𝑇, 𝑆) (or  ∗

ℤ
(𝑃)) are not arbitrarily

but implicitly part of the structure of every other iso-bounded extension. This will allow us to
construct a unique map from (𝑇, 𝑆) to any other iso-bounded extension.
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3980 ALTMANN et al.

Notation 9.1. In contrast to Section 6, we no longer use (𝑇, 𝑆) to denote the starting
pair (ℕ, coneℤ(𝑃)∨). Instead, we assume that (𝑇, 𝑆) is an arbitrary iso-bounded extension of
(ℕ, coneℤ(𝑃)

∨).

Our goal in this section is to define compatible maps 𝓁𝑇 ∶ 𝑇 → 𝑇 and 𝓁𝑆 ∶ 𝑆 → 𝑆 and prove
the following theorem.

Theorem 9.2. The pair (𝑇, 𝑆) is an initial object in the category of iso-bounded extensions of the
pair (ℕ, coneℤ(𝑃)∨). Down to earth, this means that, for any given (𝑇, 𝑆) inducing a diagram as
above, there exists a unique pair (𝓁𝑇,𝓁𝑆) of compatible semigroup homomorphisms 𝓁𝑇 ∶ 𝑇 → 𝑇 and
𝓁𝑆 ∶ 𝑆 → 𝑆.

The proof of this theorem will start in Subsection 9.2, filling the rest of Section 9.

9.1 Relation to algebraic geometry, Part II

We continue with our comments concerning the relations to algebraic geometry from Subsec-
tion 6.4. There, we had started with a polyhedron 𝑃 and gave a description of the infinitesimal
deformation of 𝑋 = 𝕋𝕍(𝜎) in degree −𝑅 with 𝜎 ∶= cone(𝑃) ⊂ 𝑁ℝ ⊕ ℝ and 𝑅 = [0, 1]. On the
other hand, we have just looked at the semigroups ℕ ⋅ 𝑅 and 𝜎∨ ∩ 𝑀 and have studied their iso-
bounded extensions. Theorem 9.2 provides a very special one— it is the pair (𝑇, 𝑆)which we have
constructed in the sections before.
Now it is tempting to expect the associated 𝑓 ∶= Specℂ[𝑆] → Specℂ[𝑇] to be a deformation of

𝑋, but it is not. While it is flat, the problem is that 𝑋 does not occur as the special fiber, but equals
𝑓−1(Specℂ[ℕ ⋅ 𝑅]). Since 𝑓 is a flat extension of the (also flat) map

𝑓 ∶ 𝑋 = Specℂ[coneℤ(𝑃)
∨] → Specℂ[ℕ ⋅ 𝑅] = ℂ1,

the map 𝑓 is a deformation of 𝑍 ∶= 𝑓−1(0) instead. In other words, 𝑓 is a one-parameter defor-
mation of 𝑍, and 𝑓 extends this family in a universal way. However, this does not yield the versal
deformation of 𝑍 at all. For instance, in the situation of Example 10.2, the special fiber 𝑍 equals
the zero set of the ideal

(𝑧2−1, 𝑧0, 𝑧1, 𝑧2) ∩ (𝑧−2, 𝑧−1, 𝑧0, 𝑧
2
1),

that is, it is the transversal union of two double lines. In particular, 𝑇1
𝑍
is infinite-dimensional.

On the other hand, to produce a valid deformation of 𝑋 out of the map Specℂ[𝑆] → Specℂ[𝑇]
or, more general, out of Specℂ[𝑆] → Specℂ[𝑇] for any iso-bounded extension (𝑇, 𝑆), one has to
find a flat map from Specℂ[𝑇] to some pointed space such that Specℂ[ℕ ⋅ 𝑅] becomes the special
fiber. This, however, is not always possible. For instance, looking at Example 4.11, it is possible for
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3981

both components separately — but it fails for the initial extension (𝑇, 𝑆). This is what was meant
with the claim that both deformation components cannot be dominated by a joint one.

9.2 Uniqueness

The fact that both (𝜋𝑇, 𝜋𝑆) and (𝜋𝑇, 𝜋𝑆) are iso-bounded extensions implies that we have vertical
isomorphisms 𝜋𝜕 ∶= 𝜋𝑆|𝜕𝑇(𝑆) and 𝜋𝜕 ∶= 𝜋𝑆|𝜕𝑇(𝑆).

In particular, we are allowed and forced to set

𝓁𝜕 = 𝜋
−1
𝜕

◦𝜋𝜕

whichwill become the unique restriction to 𝜕𝑇(𝑆) of any possible 𝓁𝑆 ∶ 𝑆 → 𝑆. Moreover, it follows
that, like 𝜋𝜕 and 𝜋𝜕 , the map 𝓁𝜕 is bijective too.

Notation 9.3. In this section, 𝑐, 𝑐𝑖 will always denote elements from the semigroup recc(𝑃)∨ ∩ 𝑀.
For every 𝑐, we write

𝓁𝜕(𝑐) ∶= 𝓁𝜕([𝑐, 𝜂ℤ(𝑐)]) = 𝜋
−1
𝜕 ([𝑐, 𝜂ℤ(𝑐)]),

𝓁(𝑐1, 𝑐2) ∶= 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) − 𝓁𝜕(𝑐1 + 𝑐2) ∈ 𝑇 − 𝑇.

So, we can also regard 𝓁𝜕 as a map 𝓁𝜕 ∶ recc(𝑃)∨ ∩ 𝑀 → 𝜕𝑇(𝑆).

Recall that from Remark 6.3 and as a consequence of Proposition 8.4, we have

𝜕ℕ(coneℤ(𝑃)
∨) = {[𝑐, 𝜂ℤ(𝑐)] ∶ 𝑐 ∈ recc(𝑃)

∨ ∩ 𝑀} and

𝜕𝑇𝑆 = {[𝑐, 𝜂ℤ(𝑐)] ∶ 𝑐 ∈ recc(𝑃)
∨ ∩ 𝑀},

with 𝜋𝜕 ∶ [𝑐, 𝜂ℤ(𝑐)] ↦ [𝑐, 𝜂ℤ(𝑐)]. So, 𝑇 is generated by a combination of elements from the
boundary:

[0, 𝜂ℤ(𝑐1, 𝑐2)] = [𝑐1, 𝜂ℤ(𝑐1)] + [𝑐2, 𝜂ℤ(𝑐2)] − [𝑐1 + 𝑐2, 𝜂ℤ(𝑐1 + 𝑐2)].

Thus, since 𝓁𝑆 is supposed to equal the unique 𝓁𝜕 on the summands on the right-hand side, it is
uniquely determined too.

9.3 Defining the maps

There is thus not much choice in defining the maps 𝓁: on the boundary it has to be 𝓁𝜕 = 𝜋−1𝜕 ◦𝜋𝜕
and 𝓁𝑇 it has to satisfy

 14697750, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12678 by Freie U

niversitaet B
erlin, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3982 ALTMANN et al.

𝓁𝑇([0, 𝜂ℤ(𝑐1, 𝑐2)]) = 𝓁𝜕([𝑐1, 𝜂ℤ(𝑐1)]) + 𝓁𝜕([𝑐2, 𝜂ℤ(𝑐2)]) − 𝓁𝜕([𝑐1 + 𝑐2, 𝜂ℤ(𝑐1 + 𝑐2)])

= 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) − 𝓁𝜕(𝑐1 + 𝑐2) = 𝓁(𝑐1, 𝑐2),

where we have used Notation 9.3. We can then define

𝓁𝑆(�̃�) ∶= 𝓁𝜕(𝜕(�̃�)) + 𝓁𝑇(𝜆(�̃�)).

We first have to check that the maps land where they are supposed to. For 𝓁𝜕 this holds by defini-
tion. For 𝓁𝑇 this follows directly from Proposition 4.8. Furthermore, by the same proposition, the
map 𝓁𝜕 is as linear as it may be:

Proposition 9.4. For all 𝑐1, 𝑐2 we have 𝓁𝑇([0, 𝜂ℤ(𝑐1, 𝑐2)]) = 𝓁(𝑐1, 𝑐2) ∈ 𝑇. Moreover, 𝑐1, … , 𝑐𝑟 are
𝜂ℤ-independent if and only if 𝓁𝜕(𝑐1), … ,𝓁𝜕(𝑐𝑟) are boundary independent.

Remark 9.5. If 𝓁𝑇 is a well-defined semigroup homomorphism, then so is 𝓁𝑆 . Being well-defined
follows from the uniqueness of the decomposition �̃� = 𝜕(�̃�) + 𝜆(�̃�). The fact that 𝓁𝑆(�̃�1 + �̃�2) =
𝓁𝑆(�̃�1) + 𝓁𝑆(�̃�2) is a consequence of Proposition 4.8 combined with the easy remark that for any
free pair (𝑇, 𝑆) and any 𝑠1, 𝑠2 ∈ 𝑆 we have

𝜕(𝑠1 + 𝑠2) = 𝜕(𝜕(𝑠1) + 𝜕(𝑠2)), and

𝜆(𝑠1 + 𝑠2) = 𝜆(𝑠1) + 𝜆(𝑠2) + 𝜆(𝜕(𝑠1) + 𝜕(𝑠2)).

The hard part is to show that 𝓁𝑇 is well-defined, that is, that it depends only on the element
𝜂ℤ(𝑐1, 𝑐2) but not on the individual 𝑐1, 𝑐2. This will be a consequence of Lemma 9.12. So, for most
of the remainder of this section we will work toward this goal. We will use the 𝑠 and 𝑡 coordinates
introduced in Subsection 6.3 and prove that there are corresponding elements in 𝑇 as well, and
then show that these corresponding elements satisfy the relations from Definitions 6.9 and 6.10.
The idea is to recover 𝓁𝑇 from a linear map  ∗(𝑃) → (𝑇 − 𝑇) ⊗ℤ ℝ. So, the elements 𝑠𝑣 and 𝑡𝑖𝑗
are important because they generate  ∗(𝑃), and because the relations (such as those arising from
the short edges) are formulated in terms of the elements 𝑠𝑣 and 𝑡𝑖𝑗 . This is the rough idea of the
next sections.

9.4 Recovering the 𝒔-parameters

Recall from Definition 7.2 that the elements 𝜂(𝑐) depend linearly on 𝑐 whenever the vertex 𝑣(𝑐) is
not changing. That means that, fixing some vertex 𝑣 of 𝑃, the map

𝜂(∙) ∶ (𝑣, 𝑃) ⊆ recc(𝑃)∨ →  ∗(𝑃)

is linear on the normal cone (𝑣, 𝑃) ⊆ recc(𝑃)∨ ⊆ 𝑀ℝ; it defines some element 𝜂𝑣 ∈ 𝑁ℝ ⊗  ∗(𝑃).
Let us simplify further the notation introduced in (6.2) by setting

{𝑐} ∶= {𝜂(𝑐)} = 𝜂ℤ(𝑐) − 𝜂(𝑐) ∈ [0, 1) ⊂ ℝ.

Then, Definition 7.2 turns into 𝜂ℤ(𝑐) = 𝜂(𝑐) + {𝑐} ⋅ 𝑠𝑣(𝑐) ∈  ∗
ℤ
(𝑃), and, via 𝜋, this element maps to

𝜂ℤ(𝑐) = 𝜂(𝑐) + {𝑐} ∈ ℤ. In Proposition 8.5, we have used elements 𝑐 with {𝑐} ∈ [
1

2
, 1) to represent
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3983

𝑠𝑣(𝑐) = 𝜂ℤ(𝑐, 𝑐). This generalizes to the fact that

𝜂ℤ(𝑐1, 𝑐2) =

{
𝑠𝑣 if {𝑐1} + {𝑐2} ⩾ 1
0 if {𝑐1} + {𝑐2} < 1,

whenever 𝑐𝑖 ∈ (𝑣, 𝑃) ∩ 𝑀, that is, whenever 𝑣 can be chosen as 𝑣(𝑐𝑖) (𝑖 = 1, 2). Now, the first
step into the direction of establishing the map 𝓁 is that this independence on the special choice
of elements 𝑐𝑖 ∈ (𝑣, 𝑃) remains true in 𝑆.

Proposition 9.6.

(i) Assume that 𝑣 ∈ 𝑃 is a non-lattice vertex. Then, there is an element 𝓁𝑠(𝑣) ∈ 𝑆 such that for all
𝑐1, 𝑐2 ∈ (𝑣, 𝑃) ∩ 𝑀 we have

𝓁(𝑐1, 𝑐2) =

{
𝓁𝑠(𝑣) if {𝑐1} + {𝑐2} ⩾ 1
0 if {𝑐1} + {𝑐2} < 1.

(ii) If 𝑐 ∈ (𝑣, 𝑃)∨ ∩ 𝑀 with 𝑛 ∈ ℕ being the smallest positive integer such that 𝑛 ⋅ {𝑐} ⩾ 1, for
example, if {𝑐} = 1∕𝑛, then we obtain 𝓁𝑠(𝑣) = 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐).

Proof. (i) Step 1. We check first that 𝓁(𝑐1, 𝑐2) = 0 whenever {𝑐1} + {𝑐2} < 1. This inequality is
equivalent to the equality

{𝑐1} + {𝑐2} = {𝑐1 + 𝑐2},

that is, it yields

𝜂ℤ(𝑐1) + 𝜂ℤ(𝑐2) = 𝜂ℤ(𝑐1 + 𝑐2).

Hence, 𝓁(𝑐1, 𝑐2) = 0 follows from Proposition 9.4. Note that the assumption of the just proven
claim is trivially fulfilled if, {𝑐1} = 0, that is, if 𝜂(𝑐1) is an integer. We will use this in the next step.
Step 2.Assume that 𝑐, 𝑐′ ∈ (𝑣, 𝑃) ∩ 𝑀 such that {𝑐} = 1∕𝑛 and that {𝑐′} = (𝑛 − 𝑘)∕𝑛 for some

not necessarily coprime natural numbers 𝑛 ∈ ℕ and 𝑘 ∈ {1, … , 𝑛 − 1}. Then

𝓁(𝑐′, 𝑘 ⋅ 𝑐) = 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐) = 𝓁(𝑎 ⋅ 𝑐, 𝑏 ⋅ 𝑐) for all 𝑎, 𝑏 ∈ ℤ⩾1 with 𝑎 + 𝑏 = 𝑛.

Step 1 immediately implies the second equality. To check the first one, we have to show that

𝓁𝜕(𝑐
′) + 𝓁𝜕(𝑘𝑐) − 𝓁𝜕(𝑐

′ + 𝑘𝑐) = 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐).

Since Step 1 yields 𝓁𝜕(𝑘𝑐) = 𝑘 ⋅ 𝓁𝜕(𝑐), this reduces to the claim

𝓁𝜕(𝑐
′) + 𝓁𝜕(𝑛𝑐) = (𝑛 − 𝑘) ⋅ 𝓁𝜕(𝑐) + 𝓁𝜕(𝑐

′ + 𝑘𝑐).

However, since {𝑛𝑐} = {𝑐′ + 𝑘𝑐} = 0, the expression𝓁𝜕 behaves linearily on both sides, that is, both
sides are equal to 𝓁𝜕(𝑐′ + 𝑛𝑐).
Step 3. Assume that {𝑐1} + {𝑐2} ⩾ 1; in particular, that both summands are positive. For the

present Step 3, we suppose that we have found an element 𝑐 ∈ (𝑣, 𝑃) ∩ 𝑀 such that it sat-
isfies the assumption made in Step 2 with respect to both 𝑐′ ∶= 𝑐1, 𝑐2. That is, {𝑐} = 1∕𝑛 and
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3984 ALTMANN et al.

{𝑐𝑖} = (𝑛 − 𝑘𝑖)∕𝑛 with 𝑘𝑖 ∈ {1, … , 𝑛 − 1} for 𝑖 = 1, 2. This leads to the equalities

𝓁𝜕(𝑐𝑖) + 𝑘𝑖 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑐𝑖 + 𝑘𝑖 ⋅ 𝑐) = 𝓁(𝑐1, 𝑘𝑖 ⋅ 𝑐) = 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐),

hence

𝓁𝜕(𝑐𝑖) = 𝓁𝜕(𝑐𝑖 + 𝑘𝑖 ⋅ 𝑐) + (𝑛 − 𝑘𝑖) ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐).

Alternatively, we could also take 𝑐′ ∶= 𝑐1 + 𝑐2 instead of the single 𝑐𝑖 . Since 𝑘1 + 𝑘2 < 𝑛, we have
to replace the coefficients 𝑘𝑖 by (𝑘1 + 𝑘2). This leads to

𝓁𝜕(𝑐1 + 𝑐2) = 𝓁𝜕(𝑐1 + 𝑐2 + (𝑘1 + 𝑘2) ⋅ 𝑐) + (𝑛 − 𝑘1 − 𝑘2) ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐).

Using these equations, we obtain

𝓁(𝑐1, 𝑐2) = 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) − 𝓁𝜕(𝑐1 + 𝑐2)

= 𝓁𝜕(𝑐1 + 𝑘1 ⋅ 𝑐) + 𝓁𝜕(𝑐2 + 𝑘2 ⋅ 𝑐) − 𝓁𝜕(𝑐1 + 𝑐2 + (𝑘1 + 𝑘2) ⋅ 𝑐) + 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐).

The arguments of the first two summands have the property that {∙} = 0, that is, 𝜂ℤ(∙) = 𝜂(∙). In
particular, since 𝓁𝜕 is linear in this case, their sum cancels with the third summand. Altogether
this yields

𝓁(𝑐1, 𝑐2) = 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐).

Step 4. Since 𝑣 is a rational vertex of 𝑃, we know that the denominators of all 𝜂(𝑐) and hence that
of all fractional parts {𝑐} with 𝑐 ∈ (𝑣, 𝑃) ∩ 𝑀 are bounded. If 𝑛 is the maximal denominator
among them, then we can find a special 𝑐 ∈ (𝑣, 𝑃) ∩ 𝑀 with {𝑐} = 1∕𝑛. We will fix this element
and set

𝓁𝑠(𝑣) ∶= 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐).

And now we can apply Step 3 for any given 𝑐1, 𝑐2 ∈ (𝑣, 𝑃) ∩ 𝑀 and our fixed 𝑐.
(ii) This is a direct consequence of the first part of the proposition and of Proposition 9.4. □

Remark 9.7. The meaning of the elements 𝓁𝑠(𝑣) is that 𝓁𝑇 will map 𝑠𝑣 onto 𝓁𝑠(𝑣). Hence, the
existence of 𝓁𝑠(𝑣) is, on the one hand, a necessary condition for the existence of 𝓁𝑇 , but, on the
other, it will also help to establish 𝓁𝑇 at all.

9.5 Recovering the 𝒔-equations (6.6) for lattice-disjoint edges

In Definition 6.10, we had imposed the equations 𝑠𝑖 = 𝑠𝑗 on the vector space  (𝑃) for compact
edges 𝑑 = [𝑣𝑖, 𝑣𝑗]with [𝑣𝑖, 𝑣𝑗] ∩ 𝑁 = ∅. These impose the equality 𝑠𝑖 = 𝑠𝑗 ∈  ∗(𝑃). Hence, for the
well-definition of the map 𝓁𝑇 ∶ 𝑇 → 𝑇, we have to check that this leads to the equality 𝓁𝑠(𝑣𝑖) =
𝓁𝑠(𝑣

𝑗) inside 𝑇 too.
Recall from Definition 6.7 that g𝑑 ∈ ℤ⩾1 is minimal such that the affine line g𝑑 ⋅ 𝑑 spanned by

g𝑑 ⋅ 𝑑 contains lattice points. If g𝑑 = 1, thenwemay choose some𝑤 ∈ 𝑑 ∩ 𝑁, and for any integral

𝑐 ∈ (𝑑, 𝑃) = (𝑣𝑖, 𝑃) ∩ (𝑣𝑗, 𝑃),
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3985

we obtain that

𝜂(𝑐) = −⟨𝑣𝑖, 𝑐⟩ = −⟨𝑣𝑗, 𝑐⟩ = −⟨𝑤, 𝑐⟩ ∈ ℤ,
that is, that {𝑐} = 0. That means that those 𝑐 do not qualify to determine neither 𝓁𝑠(𝑣𝑖), nor 𝓁𝑠(𝑣𝑗)
via Proposition 9.6(ii). While this is bad news, the point is that the reverse implication works as
well: Assume that g𝑑 ⩾ 2. Considering the projection

𝑁ℝ ↠ 𝑁ℝ∕ℝ(𝑣
𝑗 − 𝑣𝑖) =∶ 𝑁ℝ

the polyhedron 𝑃 maps to a polyhedron 𝑃, and the edge 𝑑 becomes a vertex 𝑑 of 𝑃. Within the
dual setup, the injection 𝑀ℝ ↪ 𝑀ℝ sends  (𝑑, 𝑃) isomorphically to  (𝑑, 𝑃). The assumption
g𝑑 ⩾ 2 means that 𝑑 is not a lattice point in 𝑁ℝ. In particular, there are integral 𝑐 ∈ (𝑑, 𝑃)

∼
→

 (𝑑, 𝑃) such that ⟨𝑑, 𝑐⟩ ∉ ℤ. However, this number equals ⟨𝑐, 𝑣𝑖⟩ = ⟨𝑐, 𝑣𝑗⟩ = −𝜂(𝑐). As a direct
consequence, we obtain the following.

Proposition 9.8. If 𝑑 = [𝑣𝑖, 𝑣𝑗] is an edge with g𝑑 ⩾ 2, then 𝓁𝑠(𝑣
𝑖) = 𝓁𝑠(𝑣

𝑗) inside 𝑇.

Proof. Using the element 𝑐 ∈ (𝑑, 𝑃) ∩ 𝑀 with {𝑐} ≠ 0 constructed right before the proposition,
we denote by 𝑛 ⩾ 2 the smallest positive integer such that 𝑛 ⋅ {𝑐} ⩾ 1. Then, Proposition 9.6(ii)
implies that 𝓁𝑠(𝑣𝑖) = 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐) = 𝓁𝑠(𝑣

𝑗). □

The task mentioned at the beginning of the present subsection is not fulfilled yet — it remains
to show that 𝓁𝑠(𝑣𝑖) = 𝓁𝑠(𝑣

𝑗) for the lattice-disjoint edges 𝑑 = [𝑣𝑖, 𝑣𝑗] with g𝑑 = 1. While we have
already indicated that the method of the proof of Proposition 9.8 does not work here, we are saved
by the fact that, supposed that g𝑑 = 1 and 𝑣𝑖, 𝑣𝑗 ∉ 𝑁, the property 𝑑 ∩ 𝑁 = ∅ is equivalent to 𝑑
being a short edge (see Definition 6.7). Thus, we can and will postpone this case until we have
studied the elements 𝓁(𝑡𝑖𝑗) where 𝑡𝑖𝑗 is the dilation parameter.

9.6 Recovering the 𝒕-parameters

In Subsection 9.4, we have utilized the fact that 𝜂(∙) is linear on the normal cones  (𝑣, 𝑃) for
vertices 𝑣 ∈ 𝑃. In the present subsection, however, we start with an edge 𝑑 = [𝑣1, 𝑣2] leading to
the normal cones

 (𝑑, 𝑃) = (𝑣1, 𝑃) ∩ (𝑣2, 𝑃).

Here, we have to pay attention that the function 𝜂(∙) is linear on each individual (𝑣𝑖, 𝑃), but not
on their union. In particular, the function 𝑐 ↦ {𝑐} ceases to be linear (even mod ℤ) when crossing
the boundaries of normal cones.

Definition 9.9. We call an element 𝑐 ∈ recc(𝑃)∨ super integral if it belongs to 𝑀 and has inte-
gral values on all (rational, but not necessarily integral) vertices of 𝑃. In particular, super integral
elements 𝑐 satisfy 𝜂(𝑐) ∈ ℤ, hence {𝑐} = 0. This notion is additive, that is, the set of super integral
elements form a sublattice𝑀ℤℤ ⊆ 𝑀.

Now, assume that 𝑐𝑖 ∈ (𝑣𝑖, 𝑃) (𝑖 = 1, 2) are super integral such that 𝑐1 + 𝑐2 ∈ (𝑣1, 𝑃) ∪

 (𝑣2, 𝑃). Note that the latter condition is automatic if (𝑣1, 𝑃) ∪ (𝑣2, 𝑃) is convex. Denoting
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3986 ALTMANN et al.

𝑑 ∶= 𝑣2 − 𝑣1, this implies that ⟨𝑐1, 𝑑⟩, ⟨𝑐2, −𝑑⟩ ⩾ 0. In Proposition 8.5, we have related the element
𝜂ℤ(𝑐1, 𝑐2) to the edge parameter 𝑡 = 𝑡12. The exact statement mentioned in the proof generalizes
to the fact that

𝜂ℤ(𝑐1, 𝑐2) = min{⟨𝑐1, 𝑑⟩, ⟨𝑐2, −𝑑⟩} ⋅ 𝑡.
Now, the next step toward establishing the map 𝓁 is that this special dependence on the choice of
elements 𝑐𝑖 ∈ (𝑣𝑖, 𝑃) remains true in 𝑇.

Proposition 9.10. There is an element𝓁𝑡(𝑑) ∈ ℚ>0 ⋅ 𝑇 such that for all super integral 𝑐𝑖 ∈ (𝑣𝑖, 𝑃)

(𝑖 = 1, 2) with 𝑐1 + 𝑐2 ∈ (𝑣1, 𝑃) ∪ (𝑣2, 𝑃) we have 𝓁(𝑐1, 𝑐2) = min{⟨𝑐1, 𝑑⟩, ⟨𝑐2, −𝑑⟩} ⋅ 𝓁𝑡(𝑑).
Proof. Wemay assume that ⟨𝑐1, 𝑑⟩ ⩾ ⟨𝑐2, −𝑑⟩ (⩾ 0). In this case, the claim turns into the equation
𝓁(𝑐1, 𝑐2) = ⟨𝑐2, −𝑑⟩ ⋅ 𝓁𝑡(𝑑).
Step 1: Show that 𝓁(𝑐1, 𝑐2) does indeed not depend on 𝑐1, provided that it does not leave the

range (𝑣1, 𝑃) ∩ [⟨∙, 𝑑⟩ ⩾ ⟨𝑐2, −𝑑⟩]. If 𝑐′1 is another candidate, then we obtain
𝓁(𝑐1, 𝑐2) − 𝓁(𝑐′1, 𝑐2) = 𝓁𝜕(𝑐1) − 𝓁𝜕(𝑐1 + 𝑐2) − 𝓁𝜕(𝑐

′
1) + 𝓁𝜕(𝑐

′
1 + 𝑐2).

Hence, as our goal is 𝓁(𝑐1, 𝑐2) = 𝓁(𝑐′
1
, 𝑐2), we have to show that

𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐
′
1 + 𝑐2) = 𝓁𝜕(𝑐

′
1) + 𝓁𝜕(𝑐1 + 𝑐2).

The inequalities ⟨𝑐1, 𝑑⟩, ⟨𝑐′1, 𝑑⟩ ⩾ ⟨𝑐2, −𝑑⟩ imply that both 𝑐1 + 𝑐2 and 𝑐′1 + 𝑐2 belong to (𝑣1, 𝑃),
that is, to the same normal cone which already contains 𝑐1 and 𝑐′1. In particular, since 𝑐1, 𝑐

′
1
are

super integral, Proposition 9.4 shows that the map 𝓁𝜕 behaves linearly on both sums, that is,
adding up to 𝓁𝜕(𝑐1 + 𝑐′1 + 𝑐2) in both cases.
Step 2: Fix a super integral 𝑐1 ∈ (𝑣1, 𝑃) and show that 𝓁(𝑐1, ∙) is an additive function on

𝐵(𝑐1) ∶= {𝑐2 ∈ (𝑣2, 𝑃) ∶ 𝑐1 + 𝑐2 ∈ (𝑣1, 𝑃) and ⟨𝑐2, 𝑣𝑗⟩ ∈ ℤ for 𝑗 = 1, 2}.
Note that 𝐵(𝑐1) is not a cone. However, if 𝑐2, 𝑐′2 ∈ 𝐵(𝑐1) with 𝑐2 + 𝑐

′
2
∈ 𝐵(𝑐1), then we obtain

𝓁(𝑐1, 𝑐2 + 𝑐
′
2) − 𝓁(𝑐1, 𝑐2) − 𝓁(𝑐1, 𝑐

′
2) = 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2 + 𝑐

′
2) − 𝓁𝜕(𝑐1 + 𝑐2 + 𝑐

′
2) − 𝓁𝜕(𝑐1)

−𝓁𝜕(𝑐2) + 𝓁𝜕(𝑐1 + 𝑐2) − 𝓁𝜕(𝑐1) − 𝓁𝜕(𝑐
′
2) + 𝓁𝜕(𝑐1 + 𝑐

′
2)

= 𝓁𝜕(𝑐1 + 𝑐2) + 𝓁𝜕(𝑐1 + 𝑐
′
2) + 𝓁𝜕(𝑐2 + 𝑐

′
2)

−𝓁𝜕(𝑐1) − 𝓁𝜕(𝑐2) − 𝓁𝜕(𝑐
′
2) − 𝓁𝜕(𝑐1 + 𝑐2 + 𝑐

′
2).

Since 𝑐2, 𝑐′2 ∈ (𝑣2, 𝑃) are super integral, we know that 𝓁𝜕(𝑐2) + 𝓁𝜕(𝑐
′
2
) = 𝓁𝜕(𝑐2 + 𝑐

′
2
). This

transforms the previous expression into

𝓁(𝑐1, 𝑐2 + 𝑐
′
2) − 𝓁(𝑐1, 𝑐2) − 𝓁(𝑐1, 𝑐

′
2) = 𝓁𝜕(𝑐1 + 𝑐2) + 𝓁𝜕(𝑐1 + 𝑐

′
2) − 𝓁𝜕(𝑐1) − 𝓁𝜕(𝑐1 + 𝑐2 + 𝑐

′
2),

and the additivity claim that we want to prove for 𝓁(𝑐1, ∙) is equivalent to the equality

𝓁𝜕(𝑐1 + 𝑐2) + 𝓁𝜕(𝑐1 + 𝑐
′
2) = 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐1 + 𝑐2 + 𝑐

′
2).
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3987

The integrality of ⟨𝑐1 + 𝑐2, 𝑣1⟩ (and similarly for 𝑐′2) implies that the left-hand side equals the
compact expression𝓁𝜕(2𝑐1 + 𝑐2 + 𝑐′2). The same argument applies for the right-hand side, yielding
the same value.
Step 3: Define the map 𝜓 ∶ {𝑐2 ∈ (𝑣2, 𝑃) ∩ 𝑀 ∶ ⟨𝑐2, 𝑣𝑖⟩ ∈ ℤ, 𝑖 = 1, 2}⟶ 𝑇 as

𝜓(𝑐2) ∶= 𝓁(𝑐1, 𝑐2)

under use of any 𝑐1 ∈ (𝑣1, 𝑃) ∩ 𝑀 with ⟨𝑐1, 𝑣𝑖⟩ ∈ ℤ (𝑖 = 1, 2) and 𝑐1 + 𝑐2 ∈ (𝑣1, 𝑃), that is,
such that 𝑐2 ∈ 𝐵(𝑐1) from Step 2.
While it is obvious that those elements 𝑐1 exist, it is a consequence of Step 1 that the defi-

nition of 𝜓(𝑐2) does not depend on their choice. Moreover, for any 𝑐2, 𝑐′2 ∈ (𝑣2, 𝑃) ∩ 𝑀 with⟨𝑐2, 𝑣𝑖⟩, ⟨𝑐′2, 𝑣𝑖⟩ ∈ ℤ (𝑖 = 1, 2), we can find an element 𝑐1 such that 𝑐2, 𝑐′2, 𝑐2 + 𝑐′2 ∈ 𝐵(𝑐1). Hence, it
follows from Step 2, that 𝜓 is an additive function.
By definition, it is clear that 𝑑 ⩽ 0 on (𝑣2, 𝑃), and we may restrict 𝜓 to the 𝑑-face

 (𝑣2, 𝑃) ∩ (𝑑)⊥ =  (𝑑, 𝑃) ⊆  (𝑣1, 𝑃).

That means that both arguments from 𝜓(𝑐2) = 𝓁(𝑐1, 𝑐2) become super integral elements of
 (𝑣1, 𝑃), that is, they satisfy the linearity relation 𝜂ℤ(𝑐1) + 𝜂ℤ(𝑐2) = 𝜂ℤ(𝑐1 + 𝑐2). Thus, Propo-
sition 9.4 implies that 𝓁(𝑐1, 𝑐2) = 0 on (𝑑)⊥. It follows that 𝜓 extends to a linear map

 (𝑣2, 𝑃)∕(𝑑)⊥ → ℚ⩾0 ⋅ 𝑇,

that is, it is of the form 𝜓(𝑐2) = ⟨𝑐2, −𝑑⟩ ⋅ 𝓁𝑡(𝑑) for some element 𝓁𝑡(𝑑) ∈ ℚ⩾0 ⋅ 𝑇. □

9.7 Recovering the 𝒔∕𝒕-equations (6.7) for short edges

Note that the vector 𝑑 = 𝑣2 − 𝑣1 spans the 1-dimensional ℚ-vector space associated to the edge
𝑑 = [𝑣1, 𝑣2]. While the affine line spanned by 𝑑 might lack lattice points (that is, g𝑑 ⩾ 2 from
Definition 6.7), the intersection (ℚ ⋅ 𝑑) ∩ 𝑁 can be identified with ℤ. It is dual to 𝑀∕(𝑑)⊥ = ℤ.
Choose a representative 𝑐+ ∈ 𝑀 lifting 1. Note that, in the case of g𝑑 ⩾ 2, the choice might indeed
matter, cf. Subsection 9.7.3.
We fix an element𝑤 ∈ int (𝑑, 𝑃), meaning that ⟨𝑤, 𝑣1⟩ = ⟨𝑤, 𝑣2⟩ is strictly less than the value

of 𝑤 on all other vertices of 𝑃. We will, additionally, assume that it is super integral 𝑤 ∈ 𝑀ℤℤ,
meaning that it has integral values on all, even on the non-integral, vertices of 𝑃. This allows us
to choose and fix an 𝐴 ≫ 0 leading to elements

𝑐1 ∶= 𝑐+ + 𝐴 ⋅ 𝑤 ∈ (𝑣1, 𝑃) and 𝑐2 ∶= −𝑐+ + 𝐴 ⋅ 𝑤 ∈ (𝑣2, 𝑃).

In particular,

𝑐0 ∶= 𝑐1 + 𝑐2 = 2𝐴 ⋅ 𝑤 ∈ (𝑑, 𝑃).

In contrast to 𝑤, the values of 𝑐+ on 𝑣1, 𝑣2 might be non-integral. Let 𝑛 ∈ g𝑑 ⋅ ℤ⩾1 such that

𝑛 ⋅ ⟨𝑀, 𝑣𝑖⟩ ∈ ℤ (𝑖 = 1, 2).

The idea is now to frequently make use of Proposition 9.4 stating that any linearity from 𝜂ℤ trans-
fers directly to 𝓁𝜕 . On the other hand, when looking for linearity instances of 𝜂ℤ, having 𝑤 (or an
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3988 ALTMANN et al.

integral multiple) as one argument does always help: First, since 𝑤 is contained in (𝑑, 𝑃), the
function 𝜂 acts linear into both regions (𝑣1, 𝑃) and (𝑣2, 𝑃). Second, the integrality assumption
for 𝑤 implies 𝜂ℤ(𝑤) = 𝜂(𝑤).

9.7.1 The first recursion formula

For any ℎ ∈ ℤ⩾0 we consider the differences

𝜂ℤ(ℎ𝑐1, 𝑐1) = 𝜂ℤ(ℎ𝑐1) + 𝜂ℤ(𝑐1) − 𝜂ℤ((ℎ + 1) ⋅ 𝑐1) ∈ ℕ.

Since both arguments sit in the same normal cone, that is, 𝜂 behaves linear, we know
𝜂ℤ(ℎ𝑐1, 𝑐1) ∈ {0, 1}.
Case 1: 𝜂ℤ(ℎ𝑐1, 𝑐1) = 0. Then, Proposition 9.4 implies 𝓁𝜕(ℎ𝑐1) + 𝓁𝜕(𝑐1) = 𝓁𝜕((ℎ + 1) ⋅ 𝑐1).
Case 2: 𝜂ℤ(ℎ𝑐1, 𝑐1) = 1. Now, Proposition 9.6 says that

𝓁(ℎ𝑐1, 𝑐1) = 𝓁𝜕(ℎ𝑐1) + 𝓁𝜕(𝑐1) − 𝓁𝜕((ℎ + 1) ⋅ 𝑐1) = 𝓁𝑠(𝑣
1).

Hence, we can express

𝓁𝜕((ℎ + 1) ⋅ 𝑐1) = 𝓁𝜕(ℎ𝑐1) + 𝓁𝜕(𝑐1) −

{
0 in Case 1
𝓁𝑠(𝑣

1) in Case 2.

Assume that, for ℎ = 0,… , 𝑛 − 1, the Cases 1 and 2 occur (𝑛 − 𝑘) and 𝑘 times, respectively. Then,
since 𝓁𝜕(0 ⋅ 𝑐1) = 0, these recursion formulae add up to 𝓁𝜕(𝑛𝑐1) = 𝑛 ⋅ 𝓁𝜕(𝑐1) − 𝑘 ⋅ 𝓁𝑠(𝑣

1). Analo-
gously, utilizing the corresponding 𝑘2 replacing 𝑘1 ∶= 𝑘, we obtain the same formula for 𝓁𝑠(𝑣2).
Hence,

𝑛 ⋅ 𝓁𝜕(𝑐𝑖) − 𝓁𝜕(𝑛𝑐𝑖) = 𝑘𝑖 ⋅ 𝓁𝑠(𝑣
𝑖) (𝑖 = 1, 2).

Finally, we use Proposition 9.10. Note that 𝑐1, 𝑐2 do not meet the assumptions, but 𝑛𝑐1, 𝑛𝑐2 do.
Hence,

𝓁(𝑛𝑐1, 𝑛𝑐2) = 𝓁𝜕(𝑛𝑐1) + 𝓁𝜕(𝑛𝑐2) − 𝓁𝜕(𝑛𝑐0) = ⟨𝑛𝑐1, 𝑑⟩ ⋅ 𝓁𝑡(𝑑).
9.7.2 The relation between 𝓁𝜕- and 𝜂ℤ-equations

Recall from Subsection 9.2 that we have an additive map 𝜋𝜕 sending 𝓁𝜕(𝑐) ↦ [𝑐, 𝜂ℤ(𝑐)]. Followed
by the projection to ℤ, this becomes 𝓁𝜕(𝑐) ↦ 𝜂ℤ(𝑐). That means that all equations among the
𝓁𝜕(𝑐) ∈ 𝑆 we obtained so far (or in the upcoming text) induce the same equations among the
integers 𝜂ℤ(𝑐). Actually, it is the point of claims as treated in Subsection 9.7.1 to deal with the
reverse direction, that is, lifting certain 𝜂ℤ-relations to 𝓁𝜕-relations.
Nevertheless, when transferring relations, via prℤ ◦𝜋𝜕 , from the elements 𝓁𝜕(𝑐) to the inte-

gers 𝜂ℤ(𝑐), then by Proposition 9.6 and Proposition 9.10 we obtain that 𝓁𝑠(𝑣),𝓁𝑡(𝑑) ↦ 1, provided
that 𝑣 ∉ 𝑁. This fits well with the facts 𝑠𝑣, 𝑡𝑑 ↦ 1 under 𝜋 (cf. section 6.3). In particular, the
equations of Subsection 9.7.1 imply that

𝑘𝑖 = 𝑛 ⋅ 𝜂ℤ(𝑐𝑖) − 𝜂ℤ(𝑛𝑐𝑖) = 𝑛 ⋅ (𝜂ℤ(𝑐𝑖) − 𝜂(𝑐𝑖))
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3989

and

𝜂ℤ(𝑛𝑐1) + 𝜂ℤ(𝑛𝑐2) − 𝜂ℤ(𝑛𝑐0) = ⟨𝑛𝑐1, 𝑑⟩ = ⟨𝑛𝑐2, −𝑑⟩.
Note that 𝑘𝑖 ⩾ 1 if and only if 𝜂(𝑐𝑖) = −⟨𝑐𝑖, 𝑣𝑖⟩ ∉ ℤ, that is, exactly when 𝑣𝑖 ∉ 𝑁. In the case of
𝑣𝑖 ∈ 𝑁, that is, if the parameter 𝑠𝑖 is set to 0, then we proceed with 𝓁𝑠(𝑣

𝑖) in the very same way.

9.7.3 A property of short edges

Here we will show that, whenever 𝑑 is a short edge, then there is a choice of 𝑐+ (lifting
1 ∈ 𝑀∕𝑒⊥) such that the associated special elements 𝑐𝑖 lead to 𝜂ℤ(𝑐1, 𝑐2) = 1, that is, we obtain
𝜂ℤ(𝑐1) + 𝜂ℤ(𝑐2) = 𝜂ℤ(𝑐0) + 1. The special choice of 𝑐+ does only matter for g = g𝑑 ⩾ 2.
Fix an element 𝑝 ∈ 1∕g ⋅𝑁 of the affine line 𝑑 containing the edge 𝑑. That means that

𝑑 − 𝑝 ⊆ ℚ ⋅ 𝑑, inducing a lattice structure on 𝑑 with 𝑝 becoming the origin. Now, the striking
point is that we may and will choose 𝑝 such that ⟨𝑐+, 𝑝⟩ ∈ ℤ. Note that a different choice of the
lifting 𝑐+ ∈ 𝑀 of 1 ∈ 𝑀∕(𝑑)⊥ at the beginning of the present Subsection 9.7 leads to a different 𝑝.
Nowwe canwrite 𝑣𝑖 = 𝑝 + 𝑣𝑖

0
with 𝑣𝑖

0
∈ ℚ ⋅ 𝑑 for 𝑖 = 1, 2. Then, we obtain 𝜂(𝑐𝑖) = −⟨𝑐𝑖, 𝑝 + 𝑣𝑖0⟩

and 𝜂(𝑐1 + 𝑐2) = −⟨𝑐1 + 𝑐2, 𝑝 + 𝑣1∧20 ⟩, where 𝑣1∧2
0

stands to 𝑐1 + 𝑐2 as 𝑣𝑖0 stands to 𝑐𝑖; that is, its shift
by 𝑝 produces the minimum value for −⟨𝑐1 + 𝑐2, ⋅⟩. Since ⟨𝑐+, 𝑝⟩ ∈ ℤ, we obtain that ⟨𝑐𝑖, 𝑝⟩ ∈ ℤ
as well, hence

𝜂ℤ(𝑐1, 𝑐2) = ⌈−⟨𝑐1, 𝑝 + 𝑣10⟩⌉ + ⌈−⟨𝑐2, 𝑝 + 𝑣20⟩⌉ − ⌈−⟨𝑐1 + 𝑐2, 𝑝 + 𝑣1∧20 ⟩⌉
= ⌈−⟨𝑐1, 𝑣10⟩⌉ + ⌈−⟨𝑐2, 𝑣20⟩⌉ − ⌈−⟨𝑐1 + 𝑐2, 𝑣1∧20 ⟩⌉
= ⌈−⟨𝑐+, 𝑣10⟩⌉ + ⌈−⟨−𝑐+, 𝑣20⟩⌉
= ⌈⟨𝑐+, 𝑣20⟩⌉ − ⌊⟨𝑐+, 𝑣10⟩⌋.

If we identify (ℚ ⋅ 𝑑) ∩ 𝑁 with ℤ, thus also ℚ ⋅ 𝑑 with ℚ, then 𝑐+ becomes 1 again, so

𝜂ℤ(𝑐1, 𝑐2) = ⌈𝑣20⌉ − ⌊𝑣10⌋.
Hence, our claim 𝜂ℤ(𝑐1, 𝑐2) = 1 is equivalent to the lack of interior lattice points in 𝑑 (which we
identified with 𝑑 − 𝑝). This is clearly satisfied for short edges with g𝑑 = 1, but we have to take a
closer look at the case of g𝑑 ⩾ 2.
Assume that g𝑑 ⩾ 2. Then, the shortness still implies the lack of interior lattice points on

𝑑 − 𝑝, provided that 𝑝 ∈ (1∕g ⋅𝑁) ∩ 𝑑 is chosen as close as possible to 𝑑. Thus, it remains
to check that any desirable choice of 𝑝 can be realized by a suitable choice of 𝑐+. For this,
we start by choosing coordinates 𝑁

∼
¡¡¡→ ℤ𝑑 such that 𝑑 ⋅ ℚ becomes the first coordinate axis

ℚ × 0𝑑−1 = {(∙, 0)}. The dual picture is ℤ𝑑
∼
¡¡¡→ 𝑀 with (𝑑)⊥ = 0 × ℚ𝑑−1 = {(0, ∙)}. So, the affine

line 𝑑 equals ℚ × {(𝑘2
g
, … ,

𝑘𝑑
g
)} = {(∙,

𝑘2
g
, … ,

𝑘𝑑
g
)} with 𝑘2, … , 𝑘𝑑 ∈ ℤ and gcd(𝑘2, … , 𝑘𝑑, g) = 1.

Thus, if 𝑝 = (𝑝1
g
,
𝑘2
g
, … ,

𝑘𝑑
g
), there are coefficients 𝜆𝑖 ∈ ℤ such that

𝑝1
g

≡

𝑑∑
𝑖=2

𝜆𝑖 ⋅
𝑘𝑖
g

(mod ℤ).

Then, 𝑐+ ∶= (1, −𝜆2, … ,−𝜆𝑑) ∈ ℤ𝑑 = 𝑀 is a suitable initial choice allowing to take this special
point 𝑝 as an origin afterward.
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3990 ALTMANN et al.

9.7.4 The second recursion formula

Here we assume that 𝑑 is a short edge and use Subsection 9.7.3. We will first show that

𝜂ℤ(ℎ𝑐1, 𝑐1) = 1 − 𝜂ℤ((ℎ + 1)𝑐1, 𝑐2)

for all ℎ ∈ ℤ (both positive and negative). This can be seen as follows:

𝜂ℤ(ℎ𝑐1) + 𝜂ℤ(𝑐1) − 𝜂ℤ((ℎ + 1) ⋅ 𝑐1) = 𝜂ℤ(ℎ𝑐1) + (𝜂ℤ(𝑐0) + 1 − 𝜂ℤ(𝑐2)) − 𝜂ℤ((ℎ + 1) ⋅ 𝑐1)

= 1 + (𝜂ℤ(ℎ𝑐1) + 𝜂ℤ(𝑐0)) − 𝜂ℤ(𝑐2) − 𝜂ℤ((ℎ + 1) ⋅ 𝑐1)

= 1 + 𝜂ℤ(ℎ𝑐1 + 𝑐0) − 𝜂ℤ(𝑐2) − 𝜂ℤ((ℎ + 1) ⋅ 𝑐1).

Let us recall Case 2 from Subsection 9.7.1. We had assumed 𝜂ℤ(ℎ𝑐1, 𝑐1) = 1, occurs for (𝑘1 = 𝑘)
values of ℎ ∈ {0, … , 𝑛 − 1}. Using our new relation, this implies 𝜂ℤ((ℎ + 1)𝑐1, 𝑐2) = 0. Hence,
Proposition 9.4 implies that 𝓁𝜕((ℎ + 1)𝑐1) + 𝓁𝜕(𝑐2) = 𝓁𝜕(ℎ𝑐1 + 𝑐0). So, if 𝑘1 ⩾ 1, that is, if Case
2 occurs, then we can express

𝓁𝑠(𝑣
1) = 𝓁𝜕(ℎ𝑐1) + 𝓁𝜕(𝑐1) − 𝓁𝜕((ℎ + 1) ⋅ 𝑐1)

= 𝓁𝜕(ℎ𝑐1) + 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) − 𝓁𝜕(ℎ𝑐1 + 𝑐0)

= 𝓁𝜕(ℎ𝑐1) + 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) − 𝓁𝜕(ℎ𝑐1) − 𝓁𝜕(𝑐0)

= 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) − 𝓁𝜕(𝑐0).

In Subsection 9.7.2, we have seen that 𝑘𝑖 ⩾ 1 if and only if 𝑣𝑖 ∉ 𝑁. In particular, we obtain for these
cases

𝓁𝑠 ∶= 𝓁𝑠(𝑣
𝑖) = 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) − 𝓁𝜕(𝑐0).

If both 𝑣1, 𝑣2 ∉ 𝑁, then this already shows that 𝓁𝑠(𝑣1) = 𝓁𝑠(𝑣
2). Anyways, it remains to compare

𝓁𝑠 with 𝓁𝑡(𝑑). At the end of Subsection 9.7.1, we already got

⟨𝑛𝑐1, 𝑑⟩ ⋅ 𝓁𝑡(𝑑) = 𝓁𝜕(𝑛𝑐1) + 𝓁𝜕(𝑛𝑐2) − 𝓁𝜕(𝑛𝑐0),

which is in the same spirit as the formula before. Applying 𝜋 as explained in Subsection 9.7.2 and
𝜂ℤ(𝑐1, 𝑐2) = 1 from Subsection 9.7.3, this yields

⟨𝑛𝑐1, 𝑒⟩ = 𝜂ℤ(𝑛𝑐1) + 𝜂ℤ(𝑛𝑐2) − 𝜂ℤ(𝑛𝑐0)
= 𝑛 ⋅ 𝜂ℤ(𝑐1) − 𝑘1 + 𝑛 ⋅ 𝜂ℤ(𝑐2) − 𝑘2 − 𝑛 ⋅ 𝜂ℤ(𝑐0)

= 𝑛 − (𝑘1 + 𝑘2).

Adding up the two equations from Subsection 9.7.1: 𝑛 ⋅ 𝓁𝜕(𝑐𝑖) − 𝓁𝜕(𝑛𝑐𝑖) = 𝑘𝑖 ⋅ 𝓁𝑠(𝑣
𝑖), for 𝑖 = 1, 2,

we obtain

𝑛 ⋅ (𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2)) − (𝓁𝜕(𝑛𝑐1) + 𝓁𝜕(𝑛𝑐2)) = (𝑘1 + 𝑘2) ⋅ 𝓁𝑠.

Note that this is even correct if one of the vertices 𝑣𝑖 belongs to 𝑁, that is, if 𝑘𝑖 = 0. Now, we
replace 𝓁𝜕(𝑐1) + 𝓁𝜕(𝑐2) by 𝓁𝜕(𝑐0) + 𝓁𝑠 and 𝓁𝜕(𝑛𝑐1) + 𝓁𝜕(𝑛𝑐2) by 𝓁𝜕(𝑛𝑐0) + (𝑛 − 𝑘1 − 𝑘2) ⋅ 𝓁𝑡(𝑑).
We obtain

𝑛 ⋅ (𝓁𝜕(𝑐0) + 𝓁𝑠) − (𝓁𝜕(𝑛𝑐0) + (𝑛 − 𝑘1 − 𝑘2) ⋅ 𝓁𝑡(𝑑)) = (𝑘1 + 𝑘2) ⋅ 𝓁𝑠.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3991

Reordering, this yields

(𝑛 − 𝑘1 − 𝑘2) ⋅ 𝓁𝑡(𝑑) = (𝑛 − 𝑘1 − 𝑘2) ⋅ 𝓁𝑠,

and it remains to check that 𝑛 − (𝑘1 + 𝑘2) ≠ 0. However, since we have seen before that

𝑛 − (𝑘1 + 𝑘2) = ⟨𝑛𝑐1, 𝑒⟩ = ⟨𝑛𝑐2, −𝑒⟩,
the vanishing of 𝑛 − (𝑘1 + 𝑘2)would imply 𝑣2 − 𝑣1 = ⟨1, 𝑒⟩ = ⟨𝑐+, 𝑒⟩ = ⟨𝑐1, 𝑒⟩ = 0, which leads to
a contradiction.

9.8 Recovering the closing conditions along 2-faces

In Subsection 9.6, we have looked at adjacent vertices 𝑣, 𝑣′ ∈ 𝑃. If their oriented connecting edge
is 𝑑 = 𝑣′ − 𝑣, then we may choose sufficiently integral 𝑐 ∈ (𝑣, 𝑃), 𝑐′ ∈ (𝑣′, 𝑃) in 𝑀 with⟨𝑐 + 𝑐′, 𝑑⟩ = 0, that is, with ⟨𝑐, 𝑑⟩ = −⟨𝑐′, 𝑑⟩ > 0, and 𝑐 + 𝑐′ ∈ (𝑑, 𝑃) = (𝑣, 𝑃) ∩ (𝑣′, 𝑃)

leading to 𝓁(𝑐, 𝑐′) = ⟨𝑐, 𝑑⟩ ⋅ 𝓁𝑡(𝑑) by Proposition 9.10. For the whole subsection we could keep
the assumption of being ‘sufficiently integral’ for all relevant elements from 𝑀 — namely, we
could entirely work within the super integral sublattice 𝑀ℤℤ ⊆ 𝑀. Instead, we replace 𝓁𝜕(𝑐) by
the following stabilized version:

𝓁st(𝑐) ∶=
1

𝐴
⋅ 𝓁𝜕(𝐴 ⋅ 𝑐) for 𝐴 ∈ ℕ with 𝐴 ≫ 0.

In accordance to this, we replace 𝓁(𝑐, 𝑐′) = 𝓁𝜕(𝑐) + 𝓁𝜕(𝑐
′) − 𝓁𝜕(𝑐 + 𝑐

′) by the stabilized version
too: 𝓁st(𝑐, 𝑐′) ∶= 𝓁st(𝑐) + 𝓁st(𝑐′) − 𝓁st(𝑐 + 𝑐′). It extends the validity of the above formula for 𝓁𝑡(𝑑)
to non-integral arguments.
Now we consider a compact 2-dimensional face 𝐹 ⩽ 𝑃. Assume that its vertices and ori-

ented edges are 𝑣𝑖 ∈ 𝑁ℝ and 𝑑𝑖 = 𝑣𝑖+1 − 𝑣𝑖 (𝑖 ∈ ℤ∕𝑛ℤ), respectively. Then, the cones (𝐹, 𝑃) ⊆
 (𝑑𝑖, 𝑃) ⊆ (𝑣𝑖, 𝑃) are part of the inner normal fan  (𝑃). Projecting them down to the 2-
dimensional vector space𝑀ℝ∕𝐹⊥ =∶ 𝐹∗ (dual to the vector space 𝐹 − 𝐹 accompanying the affine
space spanned by 𝐹) yields a 2-dimensional complete fan  𝐹 within 𝐹∗. We denote the image
cones by

0 =  (𝐹, 𝑃) ⊆  (𝑑𝑖, 𝑃) ⊆  (𝑣𝑖, 𝑃) ⊆ 𝐹∗.

The cones  (𝑑𝑖, 𝑃) form the rays, and their linear hull is (𝑑𝑖)⊥∕𝐹⊥. The 2-dimensional cones
 (𝑣𝑖, 𝑃) are spanned by the rays (𝑑𝑖−1, 𝑃) and (𝑑𝑖, 𝑃) (Figure 11).

Proposition 9.11. Corresponding to (6.4), in 𝑇 ⊗ℤ 𝑁ℝ we have the equation
∑
𝑖∈ℤ∕𝑛ℤ 𝓁𝑡(𝑑𝑖) ⊗

𝑑𝑖 = 0.

Proof. We choose elements 𝑎𝑖 ∈ int (𝑑𝑖, 𝑃) mapping to points 𝑎𝑖 on the rays  (𝑑𝑖, 𝑃). Since
𝑑𝑖 ⊆ 𝐹 − 𝐹, we know that ⟨𝐹⊥, 𝑑𝑖⟩ = 0, that is, we may write ⟨𝑎𝑗, 𝑑𝑖⟩ = ⟨𝑎𝑗, 𝑑𝑖⟩. This yields

⟨𝑎𝑖−1, 𝑑𝑖⟩ > 0, ⟨𝑎𝑖, 𝑑𝑖⟩ = 0, ⟨𝑎𝑖+1, 𝑑𝑖⟩ < 0.
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3992 ALTMANN et al.

F IGURE 11 The normal fan of a 2-face with four edges

For a fixed 𝑖 ∈ ℤ∕𝑛ℤ and some 𝐴 ≫ 0, we will use

𝑐 ∶=
1⟨𝑎𝑖−1, 𝑑𝑖⟩ ⋅ 𝑎𝑖−1 + 𝐴 ⋅ 𝑎𝑖 and 𝑐′ ∶=

−1⟨𝑎𝑖+1, 𝑑𝑖⟩ ⋅ 𝑎𝑖+1 + 𝐴 ⋅ 𝑎𝑖

for which we have ⟨𝑐′, 𝑑𝑖⟩ = −⟨𝑐, 𝑑𝑖⟩. Hence, we obtain that 𝑐 + 𝑐′ ∈ 𝑑⊥𝑖 and, if𝐴 is large enough,
even 𝑐 + 𝑐′ ∈ (𝑑𝑖, 𝑃). Thus, with 𝑣 ∶= 𝑣𝑖 , 𝑣′ ∶= 𝑣𝑖+1, and 𝑑 = 𝑑𝑖 we are exactly in the situation
of the begin of this subsection. That is,

𝓁𝑡(𝑑𝑖) = 𝓁st(𝑐) + 𝓁st(𝑐′) − 𝓁st(𝑐 + 𝑐′).

This equation remains valid if we alter 𝓁st(𝑐) by a function that is linear in 𝑐. Thus, we may and
will assume that𝓁st vanishes on (𝐹, 𝑃). This implies that𝓁st descends to awell-defined function
𝓁st ∶ 𝐹∗ → (𝑆 − 𝑆) ⊗ℤ ℚ. It is linear on the cones of 𝐹 , and we still have

𝓁𝑡(𝑑𝑖) = 𝓁st(𝑐) + 𝓁st(𝑐′) − 𝓁st(𝑐 + 𝑐′)

= 𝓁st
(

1⟨𝑎𝑖−1, 𝑑𝑖⟩ ⋅ 𝑎𝑖−1 + 𝐴 ⋅ 𝑎𝑖

)
+ 𝓁st

(
−1⟨𝑎𝑖+1, 𝑑𝑖⟩ ⋅ 𝑎𝑖+1 + 𝐴 ⋅ 𝑎𝑖

)
−𝓁st

(
1⟨𝑎𝑖−1, 𝑑𝑖⟩ ⋅ 𝑎𝑖−1 − 1⟨𝑎𝑖+1, 𝑑𝑖⟩ ⋅ 𝑎𝑖+1 + 2𝐴 ⋅ 𝑎𝑖

)
=

1⟨𝑎𝑖−1, 𝑑𝑖⟩ 𝓁st(𝑎𝑖−1) + 𝐴 𝓁st(𝑎𝑖) −
1⟨𝑎𝑖+1, 𝑑𝑖⟩ 𝓁st(𝑎𝑖+1) + 𝐴 𝓁st(𝑎𝑖) − (𝛽𝑖 + 2𝐴)𝓁

st(𝑎𝑖)

=
1⟨𝑎𝑖−1, 𝑑𝑖⟩ 𝓁st(𝑎𝑖−1) − 1⟨𝑎𝑖+1, 𝑑𝑖⟩ 𝓁st(𝑎𝑖+1) − 𝛽𝑖 𝓁st(𝑎𝑖),

where 𝛽𝑖 ∈ ℝ is defined by the equality

1⟨𝑎𝑖−1, 𝑑𝑖⟩ ⋅ 𝑎𝑖−1 −
1⟨𝑎𝑖+1, 𝑑𝑖⟩ ⋅ 𝑎𝑖+1 − 𝛽𝑖 ⋅ 𝑎𝑖 = 0.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3993

Now, we consider

∑
𝑖

𝓁𝑡(𝑑𝑖) ⊗ 𝑑𝑖 =
∑

𝑖∈ℤ∕𝑛ℤ

(
1⟨𝑎𝑖−1, 𝑑𝑖⟩ 𝓁st(𝑎𝑖−1) − 1⟨𝑎𝑖+1, 𝑑𝑖⟩ 𝓁st(𝑎𝑖+1) − 𝛽𝑖 𝓁st(𝑎𝑖)

)
⊗ 𝑑𝑖

=
∑

𝑖∈ℤ∕𝑛ℤ

𝓁st(𝑎𝑖) ⊗
(

1⟨𝑎𝑖, 𝑑𝑖+1⟩ 𝑑𝑖+1 − 1⟨𝑎𝑖, 𝑑𝑖−1⟩𝑑𝑖−1 − 𝛽𝑖 𝑑𝑖
)

and check that all of the second factors vanish. This will be done in the following quick and dirty
way via choosing coordinates, that is, fixing some isomorphism (𝐹 − 𝐹)

∼
¡¡¡→ ℝ2 which determines

a dual isomorphismℝ2
∼
¡¡¡→ 𝐹∗ too.While the vectors 𝑑𝑖 ∈ (𝐹 − 𝐹) = ℝ2 are given by the choice of

𝐹 ⩽ 𝑃, we have some freedom in choosing the 𝑎𝑖 ∈ 𝐹∗ = ℝ2— one has just to ensure that 𝑎𝑖⊥𝑑𝑖
and that they have the right orientation. This can be obtained by

𝑎𝑖 ∶=

(
0 −1

1 0

)
⋅ 𝑑𝑖.

Doing so, the 𝑎𝑖 satisfy the same linear relations as the 𝑑𝑖 do, that is, we obtain

1⟨𝑎𝑖−1, 𝑑𝑖⟩ ⋅ 𝑑𝑖−1 −
1⟨𝑎𝑖+1, 𝑑𝑖⟩ ⋅ 𝑑𝑖+1 − 𝛽𝑖 ⋅ 𝑑𝑖 = 0.

Thus, the claim follows from the equalities ⟨𝑎𝑖, 𝑑𝑖−1⟩ = −⟨𝑎𝑖−1, 𝑑𝑖⟩ for all indices 𝑖 ∈ ℤ∕𝑛ℤ and
our special choices of 𝑎𝑖 ∈ ℝ2. □

9.9 Concluding the proof of the existence of 𝓵

One might think that we are already done with the construction of the map 𝓁 — but it requires
the following, seemingly paranoid conclusion of the proof. What do we have so far? First, we
have well-defined elements 𝓁𝜕(𝑐) ∈ 𝜕𝑇(𝑆)which have to become the images of [𝑐, 𝜂ℤ(𝑐)] ∈ 𝜕𝑇(𝑆).
Second, we have constructed the following elements.

(i) If 𝑣 ∈ 𝑃 is a vertex, then there is a well-defined 𝓁𝑠(𝑣) ∈ 𝑇 planned to become the image 𝓁(𝑠𝑣),
cf. Proposition 9.6 in Subsection 9.4.

(ii) For each compact edge 𝑑 ⩽ 𝑃 there is a well-defined 𝓁𝑡(𝑑) ∈ ℚ>0 ⋅ 𝑇 planned to become the
image 𝓁(𝑡𝑑), cf. Proposition 9.10 in Subsection 9.6.

In the Subsections 9.5, 9.7, and 9.8, we have shown that the new elements 𝓁𝑠(𝑣) and 𝓁𝑡(𝑑) satisfy
the same linear relations as the original elements 𝑠𝑣 and 𝑡𝑑. This gives rise to a well-defined linear
map

𝜑 ∶  ∗(𝑃) = (𝑇 − 𝑇) ⊗ℤ ℚ → (𝑇 − 𝑇) ⊗ℤ ℚ

with 𝜑(𝑠𝑣) = 𝓁𝑠(𝑣) and 𝜑(𝑡𝑑) = 𝓁𝑡(𝑑).

Lemma 9.12. For 𝑐1, 𝑐2 ∈ recc(𝑃)∨ ∩ 𝑀, we have 𝜑(𝜂ℤ(𝑐1, 𝑐2)) = 𝓁(𝑐1, 𝑐2).
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3994 ALTMANN et al.

Proof. Step 1. First, by Proposition 9.6 and the preceding remarks in Subsection 9.4, the claim of
the lemma follows for those pairs (𝑐1, 𝑐2) where 𝑐1, 𝑐2 are contained in a common normal cone
 (𝑣, 𝑃) for some vertex 𝑣 ∈ 𝑃. Second, by Proposition 9.10 and the preceding remarks in Subsec-
tion 9.6 the claim of the lemma does also follow for super integral 𝑐1, 𝑐2 ∈ 𝑀ℤℤ being contained
in two adjacent normal cones (𝑣1, 𝑃) and (𝑣2, 𝑃), respectively. (That is, 𝑣1 and 𝑣2 have to be
connected by an edge, and one has to suppose that 𝑐1 + 𝑐2 belongs to the union of these normal
cones).
Step 2. If 𝑐 ∈ 𝑀 and 𝑛 ∈ ℕ, then we know from Subsection 9.4 that 𝑛 ⋅ 𝜂ℤ(𝑐) − 𝜂ℤ(𝑛𝑐) =

(𝑛 𝜂ℤ(𝑐) − 𝜂ℤ(𝑛𝑐)) ⋅ 𝑠𝑣(𝑐) and 𝑛 ⋅ 𝓁𝜕(𝑐) − 𝓁𝜕(𝑛𝑐) = (𝑛 𝜂ℤ(𝑐) − 𝜂ℤ(𝑛𝑐)) ⋅ 𝓁𝑠(𝑣(𝑐)). Hence, for 𝑐1, 𝑐2 ∈
𝑀 we obtain that 𝑛 ⋅ 𝜂ℤ(𝑐1, 𝑐2) − 𝜂ℤ(𝑛𝑐1, 𝑛𝑐2) maps, via 𝜑, to 𝑛 ⋅ 𝓁(𝑐1, 𝑐2) − 𝓁(𝑛𝑐1, 𝑛𝑐2). Conse-
quently, the fact that 𝜑(𝜂ℤ(𝑐1, 𝑐2)) = 𝓁(𝑐1, 𝑐2) is equivalent to 𝜑(𝜂ℤ(𝑛𝑐1, 𝑛𝑐2)) = 𝓁(𝑛𝑐1, 𝑛𝑐2). This
means that it remains to show the claim for super integral (but not necessarily from adjacent
cones) 𝑐1, 𝑐2 ∈ 𝑀ℤℤ.
Step 3.We are going to use the inhomogeneous description of group cohomology, cf. [16, VII.3].

Both 𝜂ℤ(∙, ∙) and𝓁(∙, ∙) are 2-coboundaries.Hence, themap 𝑏 ∶ 𝑀ℤℤ ×𝑀ℤℤ → (𝑇 − 𝑇) ⋅ ℚ defined
as

𝑏(∙, ∙) ∶= 𝜑(𝜂ℤ(∙, ∙)) − 𝓁(∙, ∙)

is still a 2-cocyle forH∙(𝑀ℤℤ, (𝑇 − 𝑇) ⋅ ℚ). Since (𝑇 − 𝑇) ⋅ ℚ is a divisible group, hence an injective
ℤ-module, we know that H2(𝑀ℤℤ, (𝑇 − 𝑇) ⋅ ℚ) = 0. Thus, 𝑏 is a 2-coboundary, that is, there is a
map

𝑏𝜕 ∶ 𝑀ℤℤ → (𝑇 − 𝑇) ⋅ ℚ with 𝑏(𝑐1, 𝑐2) = 𝑏𝜕(𝑐1) + 𝑏𝜕(𝑐2) − 𝑏𝜕(𝑐1 + 𝑐2).

From Step 1 we know that 𝑏𝜕 is linear on the full-dimensional normal cones (𝑣, 𝑃) or even on
the union of adjacent ones (𝑣1, 𝑃) and (𝑣2, 𝑃) – provided that 𝑐1 + 𝑐2 belongs to this union.
But this means that 𝑏𝜕 is globally linear, that is, 𝑏 = 0. □

So, 𝓁𝑇 ∶ 𝑇⟶ 𝑇 is a well-defined linear map, and we conclude the existence part of
Theorem 9.2 by Remark 9.5.

10 MINKOWSKI DECOMPOSITIONS REVISITED

10.1 Review of the case of lattice polytopes with primitive edges

In [4], we had treated a special case of the scenario described in Subsection 6.1. There it was
assumed that 𝑃 is a lattice polytope with primitive edges, that is, the edges did not contain any lat-
tice points other than the vertices. In algebro-geometric terms, thismeans that𝑋 = 𝕋𝕍(cone(𝑃)) =
Specℂ[𝑆] is Gorenstein and it is smooth in codimension two. Let us summarize the main results
from [4] for this special case.

(i) If 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 is Minkowski decomposition, then this corresponds to a decomposition
1 = 𝜉0 +⋯ + 𝜉𝑘 within the cone 𝐶(𝑃). The summands 𝑃𝜈 are lattice polytopes if and only if
the corresponding 𝜉𝜈 belong to the lattice𝐶linℤ (𝑃)within the vector space𝐶lin(𝑃) ∶= 𝐶(𝑃) −
𝐶(𝑃). This lattice is defined by the integrality of all coordinates 𝑡𝑖𝑗(𝜉).
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3995

(ii) Since the coordinates 𝑡𝑖𝑗 are supposed to be non-negative on 𝐶(𝑃), they become elements of
the dual cone 𝑡𝑖𝑗 ∈ 𝐶(𝑃)∨. The sub-semigroup generated by these elements provides the base
of the initial object from Theorem 9.2. That is, the present special case of a discrete setup
shows tight parallels to the cone setup displayed in Proposition 5.8.

(iii) Translated to the framework of algebraic geometry, lattice decompositions of 𝑃 as in (i) cor-
respond to components of the versal deformation of 𝑋 = 𝕋𝕍(cone(𝑃)) in degree −𝑅. The
complexification of the vector space 𝐶lin(𝑃)∕1 ⋅ ℝ equals the space of infinitesimal defor-
mations 𝑇1

𝑋
(−𝑅) of 𝑋 in degree −𝑅. Finally, the sub-semigroup spanℕ{𝑡𝑖𝑗} ⊆ 𝐶(𝑃)∨ of (ii)

encodes the versal deformation itself, which is a much finer information than just its linear
ambient space 𝑇1

𝑋
(−𝑅).

Remark 10.1. In the Gorenstein case, that is, when 𝑃 was a lattice polytope, then the smoothness
of 𝑋 in codimension two could be easily expressed by the primitivity of its lattice edges. In [3],
we already got rid of the Gorenstein assumption, but we heavily depended on the assumption of
smoothness in codimension two. In the non-Gorenstein case, this condition can still be expressed
in the combinatorial language. It says that, for each bounded edge [𝑣𝑖, 𝑣𝑗] of 𝑃 ⊆ 𝑁ℝ, the polyhe-
dral cone generated from (𝑣𝑖, 1), (𝑣𝑗, 1) ∈ 𝑁ℝ ⊕ ℝ⩾0 is ℤ-linearly (!) isomorphic to the ordinary
upper orthant ℝ2

⩾0
.

Now, returning to the general discrete setup established in Subsection (6.1) and taking the
points (i)–(iii) above as a guideline, we no longer assume that 𝑃 is bounded, that is, 𝑃 may have
a non-trivial recession cone. More important, however, is that we do not require 𝑃 to be a lattice
polyhedron anymore, nor do we ask for any further restrictions (on the edges or anything else).

Example 10.2. Let us return to Example 4.11. In this case, we have 𝐶lin(𝑃) = ℝ, which shows
that (10.1) (iii) is no longer valid in this case. Moreover, neither the lattice 𝐶lin

ℤ
(𝑃), nor lattice

decompositions 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 from Subsection 10.1 (i) make any sense here. So, these notions
need to be replaced: 𝐶lin

ℤ
(𝑃) by +ℤ and lattice decompositions by lattice friendly decompositions

(cf. Subsection 10.3).

10.2 The universal Minkowski summand

We start by fixing a reference vertex 𝑣∗ ∈ Vert(𝑃), and recall from Subsection 6.3 that

+(𝑃) ∶=  (𝑃) ∩ (ℝ𝑟
⩾0 ⊕ ℝ

𝑚
⩾0).

For 𝜉 = (𝑡, 𝑠) ∈ +(𝑃), we construct 𝑃𝜉 by defining a map 𝜓𝑣∗(𝜉) ∶ Vert(𝑃)⟶ 𝑁ℝ as. For the
reference vertex, we set

𝜓𝑣∗(𝜉, 𝑣∗) ∶= 𝑠𝑣∗(𝜉) ⋅ 𝑣∗.

Note that this definition implies that 𝜓𝑣∗(𝜉, 𝑣∗) = 0 if 𝑣∗ ∈ 𝑁. For every other 𝑣 ∈ Vert(𝑃), choose
a path 𝑣∗ = 𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑣 along the compact edges of 𝑃. Denoting 𝑑𝑖 ∶= 𝑣𝑖 − 𝑣𝑖−1, we define

𝜓𝑣∗(𝜉, 𝑣) = 𝜓𝑣∗(𝜉, 𝑣∗) +

𝑘∑
𝑖=1

𝑡𝑖(𝜉) ⋅ 𝑑𝑖.
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3996 ALTMANN et al.

It is a direct consequence of the closing conditions in the definition of 𝐶lin(𝑃) and hence of  (𝑃)
in Subsection 6.3 that 𝜓𝑣∗(𝜉, 𝑣) does not depend on the special choice of the path, cf. (10.2.1). Now,
we obtain the Minkowski summand associated to 𝜉 ∈ +(𝑃) as

𝑃𝜉 ∶= 𝜓𝑣∗(𝜉, 𝑃) ∶= conv{𝜓𝑣∗(𝜉, 𝑣) ∶ 𝑣 ∈ Vert(𝑃)} + recc(𝑃).

Note that one can avoid the usage of the 𝑠-variables when there exists a lattice vertex in 𝑃 to
be chosen as 𝑣∗. However, even then the 𝑠-coordinates will play an important role in (10.2.2).
Similarly to Subsection 5.4, we proceed with the following.

Definition 10.3. We define the universal Minkowski summand or the tautological cone as

̃
𝑣∗
+ (𝑃) ∶= {(𝜉, 𝑤) ∶ 𝜉 ∈ +(𝑃), 𝑤 ∈ 𝜓𝑣∗(𝜉, 𝑃)} ⊆ +(𝑃) × 𝑁ℝ.

It comes with the natural projection 𝑝+ ∶ ̃
𝑣∗
+ (𝑃) → +(𝑃) onto the first factor.

Now we check that, up to consistent lattice translations in𝑁, the previous definitions are inde-
pendent of all choices, that is, that we may indeed call our Minkowski summands 𝑃𝜉 and denote
the tautological cone by ̃+(𝑃). In more detail, if 𝜉 ∈ +(𝑃) ∩ ℤ(𝑃), then the following (10.2.1)
and (10.2.2) will imply that, for all 𝑣∗, 𝑣′∗, the polyhedron 𝜓𝑣∗(𝜉, 𝑃) is obtained from 𝜓𝑣′∗(𝜉, 𝑃) via
a lattice isomorphism linearly depending on 𝜉.

10.2.1 Independence on the path along the edges

This is a direct consequence of the closure conditions along the compact 2-faces 𝐹 ⩽ 𝑃 which
define 𝐶lin(𝑃) or  (𝑃), cf. Definition 6.10. Here, we are literally in the same situation as in [4].

10.2.2 Independence on the reference vertex

Assume that 𝑣∗ and 𝑣′∗ are two different vertices of 𝑃 which are connected by an (oriented) edge
𝑑 = 𝑣′∗ − 𝑣∗. Recall fromDefinition 6.13 that this situation gives rise to an element𝐿𝑑 ∈ ℤ(𝑃)

∗ ⊗ℤ
𝑁. Again, we have to compare theMinkowski summands with respect to the same vertex, say 𝑣∗:

𝜓𝑣′∗(𝜉, 𝑣∗) − 𝜓𝑣∗(𝜉, 𝑣∗) = 𝑠𝑣′∗(𝜉) ⋅ 𝑣
′
∗ − 𝑡𝑑(𝜉) ⋅ (𝑣

′
∗ − 𝑣∗) − 𝑠𝑣∗(𝜉) ⋅ 𝑣∗

hence,

𝜓𝑣′∗(𝑣∗) − 𝜓𝑣∗(𝑣∗) = 𝑠𝑣′∗ ⊗ 𝑣
′
∗ − 𝑡𝑑 ⊗ (𝑣

′
∗ − 𝑣∗) − 𝑠𝑣∗ ⊗ 𝑣∗

= (𝑡𝑑 − 𝑠𝑣∗) ⊗ 𝑣∗ − (𝑡𝑑 − 𝑠𝑣′∗) ⊗ 𝑣
′
∗ = 𝐿𝑑 ∈  ∗

ℤ
(𝑃) ⊗ℤ 𝑁.

That is the two tautological cones differ via translation by an integral, linear section of 𝑝.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3997

Convention 10.4. Unless 𝑃 has at least one lattice vertex, we cannot assume that the reference
vertex 𝑣∗ is 0. Nevertheless, we will write ̃+(𝑃) for ̃

𝑣∗
+ (𝑃) and keep in mind the dependence on

𝑣∗ via† the shift by the 𝑝-section 𝜓𝑣′∗ − 𝜓𝑣∗ = 𝐿𝑣∗𝑣′∗ and via ̃
𝑣′∗0

+ (𝑃) = ̃
𝑣∗0
+ (𝑃) + 𝐿𝑣∗𝑣′∗ .

Theorem 10.5. The universal Minkowski summand ̃+(𝑃) is a convex, polyhedral cone.

Proof. This follows because 𝜉(𝑣∗) ∶= 𝜓(𝜉, 𝑣∗) and hence 𝑣𝜉 = 𝜉(𝑣) ∶= 𝜓(𝜉, 𝑣) depend, for every
vertex 𝑣 ∈ 𝑃, linearly on 𝜉. □

10.3 Lattice-friendly Minkowski decompositions

In the situation of Subsection 10.1(i), each decomposition of a lattice polytope 𝑃 into a sum of
lattice polytopes 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 was encoding a component of the versal deformation. Indepen-
dently on this interpretation, the lattice condition for the summands𝑃𝑖 was a discrete requirement
reducing the number of admissible decompositions drastically; in particular, it becomes finite. In
the general setup, however, that is, when 𝑃 is no longer a lattice polytope, then lattice decompo-
sitions cannot exist at all. Inspired by [5, (3.2)], we nevertheless save this concept by defining the
following weaker version.

Definition 10.6. A Minkowski decomposition 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 is called lattice friendly if all
summands share the same recession cone, and if, for every 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀, there is an index
𝜇 = 𝜇(𝑐) such that all face(𝑃𝑖, 𝑐) ⩽ 𝑃𝑖 with 𝑖 ∈ {0, … , 𝑘} ⧵ {𝜇} contain lattice points.

Recall that face(𝑃𝑖, 𝑐) ∶= {𝑎 ∈ 𝑃𝑖 ∶ ⟨𝑐, 𝑎⟩ = min ⟨𝑐, 𝑃𝑖⟩} is the face of𝑃𝑖 where 𝑐 attains itsmin-
imum. It suffices to check the condition of the previous definition for generic 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀,
that is, for those where face(𝑃, 𝑐) is a vertex of 𝑃. Since

face(𝑃, 𝑐) = face(𝑃0, 𝑐) +⋯ + face(𝑃𝑘, 𝑐),

this implies that face(𝑃𝑖, 𝑐) ⩽ 𝑃𝑖 are vertices, too. Hence, in this generic case, the above definition
asks for

face(𝑃0, 𝑐), … , face(𝑃𝑘, 𝑐) ∈ 𝑁

to be lattice vertices — with at most one exception, namely, for face(𝑃𝜇, 𝑐). This means that

(i) any failure face(𝑃, 𝑐) ∉ 𝑁 stems from one single summand face(𝑃𝜇, 𝑐) ∉ 𝑁 where 𝜇 depends
on the choice of the generic 𝑐, that is, on the choice of the vertex face(𝑃, 𝑐), and

(ii) if face(𝑃, 𝑐) ∈ 𝑁, then all summands face(𝑃𝑖, 𝑐) are lattice vertices, without any exception.

In particular, if 𝑃 were a lattice polyhedron as in Subsection 10.1(i), then being lattice friendly
just means being a lattice decomposition, that is, all summands 𝑃𝑖 must be lattice polyhedra with
recc(𝑃𝑖) = recc(𝑃).

† This is not true literally. It maps (𝜉, 𝑤) ↦ (𝜉, 𝑤 + 𝐿𝑣∗𝑣′∗ ).
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3998 ALTMANN et al.

10.4 The Kodaira–Spencer map

Assume that 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 is anyMinkowski decompositionwith recc(𝑃𝑖) = recc(𝑃). For each
vertex 𝑤 = face(𝑃, 𝑐) of 𝑃 we will denote the corresponding vertex face(𝑃𝑖, 𝑐) by 𝑤(𝑃𝑖) = 𝑤𝑖 ∈
𝑃𝑖 . Note that it depends on 𝑤 alone, that is, not on the special choice of 𝑐 ∈ recc(𝑃)∨. Actually,
the associated normal cones, that is, the regions of those 𝑐 providing the desired vertex, satisfy
 (𝑤, 𝑃) ⊆ (𝑤𝑖, 𝑃𝑖) and

 (𝑤, 𝑃) = (𝑤0, 𝑃0) ∩ … ∩ (𝑤𝑘, 𝑃𝑘).

In accordance with Notation 6.5, we write Vert(𝑃) = {𝑣1 … , 𝑣𝑚} and Edgec(𝑃) ∶= {𝑑1, … , 𝑑𝑟},
which gives rise to the ℝ-vector space ℝ𝑟 ⊕ ℝ𝑚 with coordinates (𝐭, 𝐬). We will define an
evaluation 𝜌 ∶ {0, … , 𝑘} → ℝ𝑟

⩾0
⊕ ℝ𝑚 of the Minkowski summands.

Definition 10.7. Let 𝑄 with recc(𝑄) = recc(𝑃) be a Minkowski summand of 𝑃. The Kodaira–
Spencer evaluation 𝜌(𝑄) = (𝑡(𝑄), 𝑠(𝑄)) ∈ ℝ𝑟

⩾0
⊕ ℝ𝑚 is defined by

𝑡𝑑(𝑄) ∶= (the dilation factor of the edge 𝑑 inside 𝑄) ∈ [0, 1] ⊂ ℝ

𝑠𝑣(𝑄) ∶=

{
0 if 𝑣(𝑄) ∈ 𝑁
1 if 𝑣(𝑄) ∉ 𝑁

for any vertex 𝑣 ∈ 𝑃.

Recall from Subsection 5.4 that the dilation factor means the non-negative scalar transforming
an edge of 𝑃 into the associated edge of 𝑄, that is, satisfying 𝑣𝑗(𝑄) − 𝑣𝑖(𝑄) = 𝑡𝑖𝑗(𝑄) ⋅ (𝑣𝑗 − 𝑣𝑖) for
vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑃. Note that the values collected in 𝑠(𝑄) ∈ ℝ𝑚 do heavily depend on the position
of 𝑄, that is, in general, they do change after shifting 𝑄 along a vector from𝑁ℝ ⧵ 𝑁. In particular,
the Kodaira–Spencer map 𝜌 is, in general, neither Minkowski-additive, nor is its image contained
in the subspace  (𝑃) ⊆ ℝ𝑟 ⊕ ℝ𝑚 fromDefinition 6.10. Nevertheless, we have 𝜌(0) = 0 and 𝜌(𝑃) =
(1; 1, 0) = [𝑃] ∈  (𝑃) where the latter still denotes the distinguished element defined by 𝑠𝑖 ∶= 0
for 𝑣𝑖 ∈ 𝑁 and 𝑠𝑗 ∶= 1 and 𝑡𝑖𝑗 ∶= 1 for all remaining coordinates.

Example 10.8. Take 𝑃 = [1
2
, 3
4
] from Example 6.12.3. and decompose it as

𝑃0 + 𝑃1 =
[
0,
1

4

]
+

[
1

2
,
1

2

]
.

Using the coordinates (𝑡; 𝑠1, 𝑠2) of ℝ3, the Kodaira–Spencer map yields

𝜌(𝑃) = (1; 1, 1), 𝜌(𝑃0) = (1; 0, 1), and 𝜌(𝑃1) = (0; 1, 1).

While this is clearly not additive, both summands 𝜌(𝑃𝑖) do also miss  (𝑃): Since both half open
edges induced from 𝑃 are short, the equations for 𝜌(𝑃𝑖) involve 𝑠1 = 𝑡 = 𝑠2, which is not satisfied.

10.5 The Kodaira–Spencer map for lattice-friendly decompositions

While the Kodaira–Spencer map 𝜌 = (𝐭, 𝐬) behaves rather wildly for general Minkowski decom-
positions, it turns out to be the right tool to reflect lattice-friendly decompositions.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 3999

Theorem 10.9. Let 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 be a Minkowski decomposition with recc(𝑃𝑖) = recc(𝑃).
Then, this decomposition is lattice friendly if and only if

𝜌(𝑃) = (1; 1, 0) = 𝜌(𝑃0) +⋯ + 𝜌(𝑃𝑘),

and this is a decomposition inside ℤ(𝑃), that is, for all summands we have 𝜌(𝑃𝑖) ∈ ℤ(𝑃) ⊂ ℝ
𝑟 ⊕

ℝ𝑚.

Proof. (⇐) For each vertex𝑤 ∈ 𝑃, we obtain a decomposition 𝑠𝑤(𝑃) = 𝑠𝑤(𝑃0) +⋯ + 𝑠𝑤(𝑃𝑘) inside
ℕ. Since 𝑠𝑤(𝑃) ∈ {0, 1}, this means that there is at most one index 𝜇 = 𝜇(𝑤) such that 𝑠𝑤(𝑃𝜇) = 1.
All remaining summands vanish, and this translates directly into the condition of Definition 10.6.
(⇒) Assume that the decomposition 𝑃 = 𝑃0 +⋯ + 𝑃𝑘 is lattice friendly.
Step 1. Since there is never a problem with the dilation factors, let us focus on the 𝑠-parameters.

If 𝑤 ∈ 𝑃 is a vertex, then there is at most one index 𝜇 = 𝜇(𝑤) such that 𝑠𝑤(𝑃𝜇) ≠ 0. Moreover, we
know that

𝑠𝑤(𝑃𝜇) = 1 ⟺ 𝑠𝑤(𝑃𝜇) ≠ 0 ⟹ 𝑤 ∉ 𝑁 ⟺ 𝑠𝑤(𝑃) ≠ 0 ⟺ 𝑠𝑤(𝑃) = 1.

This shows the formula 𝜌(𝑃) =
∑𝑘
𝑖=0 𝜌(𝑃𝑖). Moreover, the integrality of the 𝑠𝑤(𝑃𝑖) is clear, too.

Step 2. Assume that [𝑣, 𝑤] ⩽ 𝑃 is a compact edge with [𝑣, 𝑤] ∩ 𝑁 = ∅. We may choose an
element 𝑐 ∈ recc(𝑃)∨ ∩ 𝑀 such that [𝑣, 𝑤] = face(𝑃, 𝑐). Since

face(𝑃, 𝑐) = face(𝑃0, 𝑐) +⋯ + face(𝑃𝑘, 𝑐),

there is at least one summand face(𝑃𝜇, 𝑐) lacking lattice points, too. In particular, 𝑣(𝑃𝜇), 𝑤(𝑃𝜇) ∉
𝑁, and since the decomposition of 𝑃 is lattice friendly, 𝑃𝜇 is the only summand with 𝑣(𝑃𝜇) ∉ 𝑁
or 𝑤(𝑃𝜇) ∉ 𝑁. Hence,

𝑠𝑣(𝑃𝜇) = 1 = 𝑠𝑤(𝑃𝜇) and 𝑠𝑣(𝑃𝑖) = 0 = 𝑠𝑤(𝑃𝑖) for 𝑖 ≠ 𝜇.

That is, the equation 𝑠𝑣 = 𝑠𝑤 from the definition of  (𝑃) is satisfied for all Minkowski summands.
Step 3. Assume that [𝑣, 𝑤) is a short half open edge of 𝑃. We are supposed to check the equality

𝑠𝑣 = 𝑡 ∶= 𝑡𝑣𝑤 for all Minkowski summands. Since 𝑣 ∉ 𝑁, we know that 𝑠𝑣(𝑃) = 1, that is, there is
exactly one index 𝜇 = 𝜇(𝑣) such that 𝑠𝑣(𝑃𝜇) = 1. Since this means 𝑠𝑣(𝑃𝑖) = 0 for 𝑖 ≠ 𝜇, it remains
to show that 𝑡(𝑃𝑖) = 0 for these indices; the equality 𝑡(𝑃𝜇) = 1 follows then automatically. If we
had 𝑡(𝑃𝑖) > 0, then the equality

𝑤(𝑃𝑖) − 𝑣(𝑃𝑖) = 𝑡(𝑃𝑖) ⋅ (𝑤 − 𝑣) ≠ 0

would imply that𝑤(𝑃𝑖) ≠ 𝑣(𝑃𝑖). On the other hand, both vertices𝑤(𝑃𝑖) and 𝑣(𝑃𝑖) are lattice points.
While this is clear for 𝑣(𝑃𝑖), we have to provide an extra argument for 𝑤(𝑃𝑖): If 𝑤 ∈ 𝑁, then it is
clear; if 𝑤 ∉ 𝑁, then it follows from the shortness of [𝑣, 𝑤) that [𝑣, 𝑤] ∩ 𝑁 = ∅. Hence, we can
use the equation 𝑠𝑣 = 𝑠𝑤 obtained in Step 2. Now, since we know that 𝑤(𝑃𝑖), 𝑣(𝑃𝑖) ∈ 𝑁 do not
coincide, we get a lower bound for the lattice lengths

𝓁(𝑤 − 𝑣) ⩾ 𝓁(𝑤(𝑃𝑖) − 𝑣(𝑃𝑖)) ⩾ 1,

which, by Remark 6.8, is not possible for short half open edges.
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4000 ALTMANN et al.

Step 4. So far, we have seen that 𝜌(𝑃𝑖) ∈  (𝑃). To show that 𝜌(𝑃𝑖) is integral, that is, that 𝜌(𝑃𝑖) ∈
ℤ(𝑃), we are supposed to check, for all 𝑖 = 0, … , 𝑘, that

𝐿𝑣𝑤(𝑃𝑖) = 𝑡(𝑃𝑖) ⋅ (𝑣 − 𝑤) − 𝑠𝑣(𝑃𝑖) ⋅ 𝑣 + 𝑠𝑤(𝑃𝑖) ⋅ 𝑤 ∈ 𝑁.

For this, we rewrite

𝐿𝑣𝑤(𝑃𝑖) = (𝑣(𝑃𝑖) − 𝑠𝑣(𝑃𝑖) ⋅ 𝑣) − (𝑤(𝑃𝑖) − 𝑠𝑤(𝑃𝑖) ⋅ 𝑤)

and analyze the membership of 𝑁 for both summands separately. If 𝑣 ∈ 𝑁, then 𝑣(𝑃𝑖) ∈ 𝑁 and
𝑠𝑣(𝑃𝑖) = 0, hence,

𝑣(𝑃𝑖) − 𝑠𝑣(𝑃𝑖) ⋅ 𝑣 ∈ 𝑁.

If 𝑣 ∉ 𝑁, then we denote by 𝜇 = 𝜇(𝑣) the unique index with 𝑣(𝑃𝜇) ∉ 𝑁, and the previous
argument survives for 𝑖 ≠ 𝜇. On the other hand, since 𝑠𝑣(𝑃𝜇) = 1,

𝑣(𝑃𝜇) − 𝑠𝑣(𝑃𝜇) ⋅ 𝑣 = 𝑣(𝑃𝜇) − 𝑣 = −
∑
𝑖≠𝜇

𝑣(𝑃𝑖) ∈ 𝑁.

The proof for the 𝑤-summand is the same, with a possibly different index 𝜇 = 𝜇(𝑤). □

Example 10.10. Let us continue our main example. The interval 𝑃 = [−1
2
, 1
2
] ⊂ ℝ allows two

non-trivial, lattice-friendly decompositions, namely,[
−
1

2
,
1

2

]
=

[
−
1

2
, 0
]
+

[
0,
1

2

]
=

[
−
1

2
,−
1

2

]
+ [0, 1].

Applying the Kodaira–Spencer map 𝜌, this decomposition looks like

(1, 1, 1) =
(
1

2
, 1, 0

)
+

(
1

2
, 0, 1

)
= (0, 1, 1) + (1, 0, 0) inside ℤ(𝑃).

According to Subsection 10.7, we can understand these two decompositions, for 𝑖 = 1, 2, as two
linear maps 𝜌𝑖 ∶ ℤ2 → ℤ(𝑃); the dual maps 𝜌∗𝑖 ∶ 

∗
ℤ
(𝑃) → ℤ2 are given by the matrices

( 1

2
1 0

1

2
0 1

)
,

(
0 1 1

1 0 0

)
.

The integrality of the target can be checked when 𝜌∗
𝑖
are applied to the generators of 𝑇:

𝑠1, 𝑠2, 𝐴 = 𝑡 +
1

2
𝑠1 −

1

2
𝑠2, 𝐵 = 𝑡 +

1

2
𝑠2 −

1

2
𝑠1.

Then, 𝜌∗
𝑖
yield two integral (2 × 4)-matrices mapping from ℤ𝑠1 ⊕ ℤ𝑠2 ⊕ ℤ𝐴⊕ ℤ𝐵 to ℤ2:

𝜌∗1 =

(
1 0 1 0

0 1 0 1

)
, 𝜌∗2 =

(
1 1 0 0

0 0 1 1

)
.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 4001

10.6 lattice-friendly decompositions and the map 𝝍

In Subsection 10.2, we have defined for every 𝜉 ∈ +(𝑃) an associated Minkowski summand
𝑃𝜉 = 𝜓(𝜉, 𝑃). While this construction depends on the choice of a reference vertex 𝑣∗, we have
seen in (10.2.2) that, for integral 𝜉 ∈ ℤ(𝑃), this dependence involves only lattice translations.
Furthermore, 𝜓 is linear in 𝜉, that is, for 𝜉, 𝜉′ ∈ +(𝑃) we have

𝑃𝜉 + 𝑃𝜉′ = 𝑃𝜉+𝜉′ .

Remark 10.11. We do not always have the equality 𝜓𝑣∗((1; 1, 0), 𝑃) = 𝑃, but we can be very precise
about this:

𝑃(1;1,0) ≠ 𝑃 ⟺ 𝑣∗ ∈ 𝑁 ⧵ {0}.

This issue can again be solved by a lattice translation of 𝑃. Hence, in accordance with
Convention 10.4, we can and will assume that 𝑣∗ is chosen such that 𝑃(1;1,0) = 𝑃.

In Theorem 10.9, we have seen how the Kodaira–Spencer map 𝜌 can detect whether a
Minkowski decomposition is lattice friendly or not. The next result shows how the map 𝜓(∙, 𝑃) =
𝑃∙ fits into this relation.

Theorem 10.12. Let 𝜉0, … , 𝜉𝑘 ∈ +(𝑃) with 𝜉0 +⋯ + 𝜉𝑘 = (1; 1, 0). Then, the following three
conditions are equivalent:

(i) 𝜉0, … , 𝜉𝑘 ∈ ℤ(𝑃),
(ii) for each vertex 𝑤 ∈ 𝑃 and index 𝑖 ∈ {0, … , 𝑘}, we have

𝑤(𝑃𝑖) ∉ 𝑁 ⟺ 𝑤 ∉ 𝑁 and 𝑠𝑤(𝑃𝜉𝑖 ) = 1, and

(iii) the decomposition 𝑃𝜉0 +⋯ + 𝑃𝜉𝑘 = 𝑃 is lattice friendly with 𝜌(𝑃𝜉𝑖 ) = 𝜉𝑖 for 𝑖 = 0, … , 𝑘.

Proof. (i)⇒ (ii): Let 𝑣 ∈ 𝑃 be a vertex and choose a path 𝑣∗ = 𝑣0, 𝑣1, … , 𝑣𝑘 = 𝑣 along the compact
edges of 𝑃. Denoting 𝑑𝑖 ∶= 𝑣𝑖 − 𝑣𝑖−1, we know from Subsection 10.2 that for each 𝜉 ∈ +(𝑃)

𝜓𝑣∗(𝜉, 𝑣) = 𝑠𝑣∗(𝜉) ⋅ 𝑣∗ +
𝑘∑
𝑖=1

𝑡𝑖(𝜉) ⋅ 𝑑𝑖 =
𝑘∑
𝑖=1

𝐿𝑖, 𝑖−1(𝜉) + 𝑠𝑣(𝜉) ⋅ 𝑣.

As 𝜉 ∈ ℤ(𝑃) implies 𝐿𝑖, 𝑖−1(𝜉) ∈ 𝑁 for every 𝑖, the equivalence in (ii) becomes evident.
(ii) ⇒ (iii): Since 𝑃(1;1,0) = 𝑃, we obtain a Minkowski decomposition 𝑃𝜉0 +⋯ + 𝑃𝜉𝑘 = 𝑃. To

check that it is lattice friendly, it suffices to check that for every vertex 𝑤 ∈ 𝑃 we have at most
one index 𝜇 ∈ {0, … , 𝑘}with𝑤(𝜉𝜇) ∉ 𝑁. However, this follows directly from 𝑠𝑤(𝜉 ∈ ℤ) ∈ ℕ, from
𝜉0 +⋯ + 𝜉𝑘 = (1; 1, 0), hence from 𝑠𝑤(𝜉0) +⋯ + 𝑠𝑤(𝜉𝑘) = 1 and (ii).
Finally, the 𝑡-coordinates of 𝜌(𝑃𝜉) and 𝜉 are equal by definition. For the equality of the

𝑠-coordinates we use again 𝜉0 +⋯ + 𝜉𝑘 = (1; 1, 0) and (ii) in a straightforward manner.
(iii)⇒ (i): This follows from the direction (⇒) in Theorem 10.9. □

Remark 10.13.

(i) On the one hand, since there are many non-lattice choices for 𝜉 which produce the same
polyhedron 𝑃𝜉 , we cannot expect that 𝜉 can be recovered from 𝑃𝜉 . In particular, the equality
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4002 ALTMANN et al.

𝜌(𝑃𝜉) = 𝜉 cannot be true in general. Hence, it is not possible to erase the phrase ‘with 𝜌(𝑃𝜉) =
𝜉’ from (iii) of the previous theorem.

(ii) On the other hand, every lattice shift of a Minkowski summand produces the same value of
𝜌. So, we cannot expect to obtain 𝑄 = 𝑃𝜌(𝑄) in general, either.

(iii) Despite the negative claims above, we can consider the following two sets:

𝐴 ∶= {polyhedra 𝑄 ⊆ 𝑁ℝ with recc(𝑄) = recc(𝑃) such that there is a polyhedron 𝑄′

providing a lattice-friendly decomposition 𝑃 = 𝑄 + 𝑄′} and
𝐵 ∶= {𝜉 ∈ +(𝑃) ∩ ℤ(𝑃) ∶ (1; 1, 0) − 𝜉 ∈ +(𝑃)}.

Then, dividing out integral translations, it follows from the theorems 10.9 and 10.12 that the
two maps 𝜌 ∶ 𝐴∕𝑁 → 𝐵 and 𝜓 ∶ 𝐵 → 𝐴∕𝑁 are mutually inverse.

Example 10.14. While the construction 𝜉 ↦ 𝑃𝜉 from Subsection 10.2 does not make use of the
non-negativity of 𝑠 in 𝜉 = (𝑡, 𝑠), the assumption 𝜉 ∈ +(𝑃) becomes really important for Theo-
rem 10.12. To illustrate this, take 𝑃 = [−1

3
, 1
4
]with 𝑣1 = −

1

3
and 𝑣2 =

1

4
. So, this is not a short edge

(none of the two half-open edges is), and the lattice conditions for 𝜉 = (𝑡, 𝑠1, 𝑠2) are

𝑠1, 𝑠2 ∈ ℤ and 7

12
𝑡 −
1

3
𝑠1 −

1

4
𝑠2 ∈ ℤ.

Choose 𝑣∗ = 𝑣1 and consider

𝜉 =
(
1

7
, 1, −1

)
, 𝜉′ =

(
6

7
, 0, 2

)
.

We see that 𝜉, 𝜉′ ∈ ℤ(𝑃) with 𝜉 + 𝜉′ = (1, 1, 1), but

𝑃𝜉 =
[
−
1

3
,−
1

4

]
and 𝑃𝜉′ =

[
0,
1

2

]
,

provides a non-lattice-friendly Minkowski decomposition of 𝑃.

10.7 The Kodaira–Spencer map revisited

In Definition 10.6, we have introduced the notion of lattice-friendly decomposition 𝑃 = 𝑃0 +⋯ +
𝑃𝑘. In [5, (3.2)], this notion was used to construct a 𝑘-parameter family, that is, a deformation
𝑋 → 𝔸𝑘

𝑘
of the associated toric singularity 𝑋. Its total space was built from the Cayley product

mentioned in Remark 5.7(ii). Actually, similarly to 𝑋 = 𝕋𝕍(𝜎), one defines it as 𝑋 = 𝕋𝕍(�̃�) with
�̃� ∶= cone(𝑃0 ∗ … ∗ 𝑃𝑘).
In [5, (3.3) and (3.4)], it was shown that the Kodaira–Spencermap of this construction is exactly

the map 𝜌 we have defined in Subsection 10.4 — this is why we have called it like this even in the
purely discrete, that is, non-algebraic setup. In [1, Proposition 4.3], we will connect the notion of
a free pair to flatness, from which it follows that the corresponding inclusion ℕ𝑘+1 ↪ �̃�∨ ∩ (𝑀 ⊕
ℕ𝑘+1) is a iso-bounded extension ofℕ ↪ 𝜎∨ ∩ (𝑀 ⊕ ℕ). In particular, denoting by (𝑇, 𝑆) the initial
extension fromTheorem9.2, then this is induced froma semigroup homomorphism  ∗

ℤ
(𝑃) ⊇ 𝑇 →

ℕ𝑘+1. The dual map ℤ𝑘+1 → ℤ(𝑃) equals 𝜌, and the fact that its target is ℤ(𝑃) ⊂  (𝑃) illustrates
Theorem 10.9.
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 4003

F IGURE 1 2 The cone and the semigroups for the 1-dimensional 𝑃 = [−1
2
, 1
2
] ⊂ ℝ

11 EXAMPLES

For the convenience of the reader, we repeat the example of the cone over the −4-curve, which
is scattered through the previous sections, and add a new example of a lattice polytope with non-
primitive edges. We also repeat Figure 9, with a few details added, and Figure 10.

Example 11.1. Consider the semigroup 𝑆 = spanℕ{[−2, 1], [−1, 1], [0, 1], [1, 1], [2, 1]} with the
sub-semigroup 𝑇 = ℕ ⋅ [0, 1]. Let us first note that the relative boundary is

𝜕𝑇𝑆 = {[±2𝑏, 𝑏] ∶ 𝑏 ∈ ℕ} ∪ {[±(2𝑏 − 1), 𝑏] ∶ 𝑏 ∈ ℕ⩾1}.

The semigroup 𝑆 is obtained from the 1-dimensional polytope 𝑃 = [−1
2
, 1
2
] ⊂ ℝ by taking the the

polyhedral cone 𝜎 over 𝑃 × {1} ⊂ ℝ2, dualizing it and taking the set of lattice points (Figure 12).
In algebraic geometry, this setup gives rise to the toric singularity 𝑋 = 𝕋𝕍(𝜎) ⊆ 𝔸5

𝑘
which can,

alternatively, be understood as the vanishing set of the six minors encoded by the condition

rank

(
𝑧−2 𝑧−1 𝑧0 𝑧1

𝑧−1 𝑧0 𝑧1 𝑧2

)
⩽ 1.

The elements [𝑘, 1] ∈ 𝑆 can be recovered as the multidegrees of the variables 𝑧𝑖 . In [1] we discuss
the deformation theory of those toric singularities.
We will focus now on the universal extension of this semigroup pair. As we shall see, this leads

to a 4-dimensional semigroup, that is, to a semigroup filling a 4-dimensional polyhedral cone
where its 3-dimensional crosscut is depicted in Figure 13. In the introduction, as a preview, we
had presented Figure 1 as an alternative representation of this situation. Note that this establishes
a remarkable difference to the algebro-geometric setup: There, the two deformation components
cannot be dominated by a higher dimensional joint deformation of the same kind, that is, with an
irreducible base space. See also Subsection 9.1.
We label the vertices of 𝑃 as 𝑣1 = −

1

2
and 𝑣2 =

1

2
, and associate the variables 𝑠1 and 𝑠2 to

them. We denote by 𝑡 the variable referring to the only edge 𝑑 = 𝑃, with g𝑃 = 1. The interval has
length one, and it contains exactly one lattice point, that is, |{𝑃 ∩ 𝑁}| = 1. In particular, it gives
rise to two non-short half open edges (cf. Definition 6.7) so there are no relations among 𝑠1, 𝑠2,
and 𝑡.
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4004 ALTMANN et al.

F IGURE 13 The full picture: Artin- and qG-components as projections of the initial object. In the
3-dimensional body, we have: = [0, 𝑠1], = [0, 𝑠2], =[0, 𝐴], =[0, 𝐵]

For the computation of 𝜂 we choose 𝑣∗ = 𝑣1. As the first entries of the elements of the Hilbert
Basis range from −2 to 2, it is enough to compute the 𝜂s and 𝜂s for them. We obtain:

𝑐 𝑣(𝑐) 𝜂(𝑐) 𝜂ℤ(𝑐) 𝜂(𝑐) 𝜂ℤ(𝑐)

𝔠5 2 𝑣1 1 1 𝑠1 𝑠1

𝔠4 1 𝑣1
1

2
1 1

2
𝑠1 𝑠1

𝔠3 0 𝑣1 or 𝑣2 0 0 0 0

𝔠2 −1 𝑣2
1

2
1 −1

2
𝑠1 + 𝑡

1

2
(𝑠2 − 𝑠1) + 𝑡

𝔠1 −2 𝑣2 1 1 −𝑠1 + 2𝑡 −𝑠1 + 2𝑡

The elements [𝑐, 𝜂ℤ(𝑐)] and [𝑐, 𝜂ℤ(𝑐)]will be in the boundaries 𝜕𝑇𝑆 and 𝜕𝑇𝑆, respectively. They
correspond to the red dots ( ) in Figure 13. The key step is to determine the generators of 𝑇, that is
the dots ( ) in the 3-dimensional object of Figure 13. To this aim, there are two strategies.

(i) Compute 𝜂ℤ(𝑐1, 𝑐2) for various 𝑐1, 𝑐2 until a pattern emerges.
(ii) Compute {(𝑚1, … ,𝑚5) ∈ ℕ5 ∶ 𝜂ℤ(𝑚1𝔠1, … ,𝑚5𝔠5) ≠ 0}, where(𝔠𝑖, 𝜂ℤ(𝔠𝑖)) are the Hilbert basis

elements.

The latter is more systematic, as it boils down to determining monomial ideal by identifying the
elements of ℕ5 with exponents. This ideal has a finite minimal set of generators, and the corre-
sponding 𝜂ℤ(𝑚1𝔠1, … ,𝑚5𝔠5) will then generate 𝑇. Describing this ideal and its relation with 𝑇 is
also an interesting problem, but we do not study the general case here. For this specific example,
the six minimal generators of the monomial ideal from Lemma 7.16 correspond to the exponent
vectors:

(0, 0, 0, 2, 0) (0, 2, 0, 0, 0)

(0, 1, 0, 1, 0) (1, 0, 0, 0, 1)

(0, 1, 0, 0, 1) (1, 0, 0, 1, 0),
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POLYHEDRA, LATTICE STRUCTURES, AND EXTENSIONS OF SEMIGROUPS 4005

where the first entry is the number of copies of 𝔠1 = −2, and so on. For instance, (0,0,1,2,3)
corresponds to 𝜂ℤ(0, 1, 1, 2, 2, 2). So, the above exponents give us the finite generating set of 𝑇:

𝜂ℤ( 1, 1) = 𝑠1 𝜂ℤ(−1,−1) = 𝑠2

𝜂ℤ(−1, 1) = 𝑡 +
1

2
(𝑠1 + 𝑠2) 𝜂ℤ(−2, 2) = 2𝑡

𝜂ℤ(−1, 2) =
1

2
(𝑠2 − 𝑠1) + 𝑡 𝜂ℤ(−2, 1) =

1

2
(𝑠1 − 𝑠2) + 𝑡.

However, this is not a minimal generating set of 𝑇, as only four of them are needed:

𝑠1, 𝑠2, 𝐴 = 𝑡 +
1

2
𝑠1 −

1

2
𝑠2, 𝐵 = 𝑡 +

1

2
𝑠2 −

1

2
𝑠1.

The two projections from the 3-dimensional object in Figure 13 𝜌∗
𝑖
∶  ∗

ℤ
(𝑃) → ℤ2 are given by the

matrices

𝜌∗1 =

( 1

2
1 0

1

2
0 1

)
, 𝜌∗2 =

(
0 1 1

1 0 0

)
.

The first one, 𝜌∗
1
projects to the Artin component, and 𝜌∗

2
projects to the q-G component. They

correspond to the two non-trivial lattice-friendly decompositions of the interval 𝑃 = [−1
2
, 1
2
] ⊂ ℝ,

namely, [
−
1

2
,
1

2

]
=

[
−
1

2
, 0
]
+

[
0,
1

2

]
=

[
−
1

2
,−
1

2

]
+ [0, 1].

Applying the Kodaira–Spencer map 𝜌, this decomposition looks like

(1, 1, 1) =
(
1

2
, 1, 0

)
+

(
1

2
, 0, 1

)
= (0, 1, 1) + (1, 0, 0) inside ℤ(𝑃).

According to Subsection 10.7, we can understand these two decompositions, for 𝑖 = 1, 2, as two
linear maps 𝜌𝑖 ∶ ℤ2 → ℤ(𝑃); the dual maps 𝜌∗𝑖 ∶ 

∗
ℤ
(𝑃) → ℤ2 being given above. The integrality

of the target can be checkedwhen 𝜌∗
𝑖
are applied to the generators of𝑇: 𝑠1, 𝑠2, 𝐴, and 𝐵. This yields

two integral (2 × 4)-matrices mapping from ℤ𝑠1 ⊕ ℤ𝑠2 ⊕ ℤ𝐴⊕ ℤ𝐵 to ℤ2:(
1 0 1 0

0 1 0 1

)
,

(
1 1 0 0

0 0 1 1

)
.

Example 11.2. This second example is motivated by Gorenstein toric singularities which are not
smooth in codimension two. These correspond to lattice polytopes whose edges are not necessar-
ily primitive. This more general situation is not significantly different from the one with primitive
edges which was treated in [4]: there are only 𝑡-parameters which correspond to edges and these
encode Minkowski summands as dilation factors. The lattice structure changes, as rational dila-
tion factors may still produce lattice polytopes. The most significant difference is that the map
𝑇⟶ 𝑇, which is obtained by mapping the 𝑡𝑖 to 1, may fail to be surjective. We illustrate all these
claims here with one simple example.
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4006 ALTMANN et al.

We consider the lattice rectangle:

The dual cone 𝜎∨ = (cone(𝑃))∨ has ray generators: [1, 0, 0], [0, 1, 0], [−1, 0, 3], [0, −1, 2]. So, the
Hilbert basis, that is, the generating set of the semigroup 𝜎∨ ∩ ℤ3, is

[1, 0, 0], [0, 1, 0], [0, 0, 1], [−1, 0, 3], [0, −1, 2].

The sub-semigroup is thus 𝑇 = spanℕ{[0, 0, 1]}. To compute the relative boundary 𝜕𝑇𝑆 we have
to compute 𝜂ℤ(𝑐) for all 𝑐 ∈ ℤ2. As 𝑃 is a lattice polytope, 𝜂ℤ(𝑐) = 𝜂(𝑐) for all 𝑐 ∈ ℤ2. The nor-
mal fan of 𝑃 has four cones: the four quadrants in ℝ2. Starting with the positive quadrant and
going counter clockwise, the corresponding 𝑣(𝑐) are 𝑣1, 𝑣2, 𝑣3, 𝑣4. In other words, we have for
𝑐 = (𝑎, 𝑏) ∈ ℤ2:

𝜂((𝑎, 𝑏)) =

⎧⎪⎪⎨⎪⎪⎩

0, if 𝑎, 𝑏 ⩾ 0,
3𝑎, if 𝑎 ⩽ 0, 𝑏 ⩾ 0,
3𝑎 + 2𝑏, if 𝑎, 𝑏 ⩽ 0,
2𝑏, if 𝑎 ⩾ 0, 𝑏 ⩽ 0.

The ambient space of the cone of Minkowski summands and the lattice inside it are

 (𝑃) = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ
4 ∶ 𝑥1 ⋅ (3, 0) + 𝑥2 ⋅ (0, 2) + 𝑥3 ⋅ (−3, 0) + 𝑥4 ⋅ (0, −2) = (0, 0)}

= {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ ℝ
4 ∶ 𝑥1 = 𝑥3, 𝑥2 = 𝑥4}.

ℤ(𝑃) =
{(𝑧1
3
,
𝑧2
2
,
𝑧1
3
,
𝑧2
2

)
∈ ℝ4 ∶ 𝑧1, 𝑧2 ∈ ℤ

}
.

Its dual space and lattice are

 ∗(𝑃) = spanℝ {𝑡1, 𝑡2, 𝑡3, 𝑡4}∕ spanℝ {𝑡1 − 𝑡3, 𝑡2 − 𝑡4}.

 ∗
ℤ
(𝑃) = spanℤ {3𝑡1, 2𝑡2}.

To lift the boundary 𝜕𝑇𝑆 to the boundary of 𝜕𝑇𝑆, we compute the 𝜂ℤ, which are again equal to the
𝜂, because 𝑃 is a lattice polytope. We have for 𝑐 = (𝑎, 𝑏) ∈ ℤ2:

𝜂((𝑎, 𝑏)) =

⎧⎪⎪⎨⎪⎪⎩

0, if 𝑎, 𝑏 ⩾ 0,
3𝑎 ⋅ 𝑡1, if 𝑎 ⩽ 0, 𝑏 ⩾ 0,
3𝑎 ⋅ 𝑡1 + 2𝑏 ⋅ 𝑡2, if 𝑎, 𝑏 ⩽ 0,
2𝑏 ⋅ 𝑡2, if 𝑎 ⩾ 0, 𝑏 ⩽ 0.

A quick computation shows that 𝑇 is generated by [0, 0, 3𝑡1] and [0, 0, 2𝑡2]. This brings us to the
main difference from the Gorenstein-smooth-in-codimension-two case: the map 𝑇⟶ 𝑇, which
is obtained by mapping the 𝑡𝑖 to 1, is not always surjective. To summarize, the generators of the
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semigroups in the universal extension of 𝑇 ⊆ 𝑆 are

The non-trivial lattice-friendly Minkowski decomposition of 𝑃 is in this case

which corresponds to the lattice decomposition in ℤ(𝑃):

(1, 1, 1, 1) = 2 ⋅
(
0,
1

2
, 0,
1

2

)
+ 3 ⋅

(
1

3
, 0,
1

3
, 0
)
.
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