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Abstract

The proper design of protective measurements against �oods related to heavy pre-
cipitation has long been a question of interest in many �elds of study. A crucial
component for such design is the analysis of extreme historical rainfall using Extreme
Value Theory (EVT) methods, which provide information about the frequency and
magnitude of possible future events. Characterizing an entire basin or geographical
catchment requires the extension of univariate EVT methods to capture the spatial
variability of the data. This extension requires that the similarity of the data for
nearby stations be included in the model, resulting in more e�cient use of the data.

This dissertation focuses on using statistical models incorporating spatial depen-
dence for modeling annual rainfall maxima. Additionally, we present ways of adapting
the models to capture the dependence between rainfall of di�erent time scales. These
models are used in order to pursue two aims. The �rst aim is to improve our under-
standing of the mechanisms that lead to dependence on extreme rainfall. The second
aim is to improve the resulting estimates when incorporating the dependence into the
models.

Two published studies make up the main �ndings of this dissertation. The models
used in both studies involve the use of Brown-Resnick max-stable processes, allowing
the models to explicitly account for the dependence on either the temporal or the
spatial domain. These conditional models are compared for both cases to a model
that ignores the dependence, allowing us to determine the impact of the dependence in
both situations. Contributions to three other studies using the concept of dependence
are also summarized.

In the �rst study, we assess the impact of including the dependence between
rainfall series of di�erent aggregation durations when estimating Intensity-Duration-
Frequency curves. This assessment was done in a case study for the Wupper catchment
in Germany. This study found that including the dependence in the model had a pos-
itive e�ect on the prediction accuracy when focusing on rainfall with short durations
(d ≤ 10 h) and large probabilities of non-exceedance. Therefore, we recommend using
max-stable processes when a study focuses on short-duration rainfall.

In the second study, we investigate how the spatial dependence of extreme rainfall
in Berlin-Brandenburg changes seasonally and how this change could impact the es-
timates from a max-stable model that includes this dependence. The seasonality was
determined by estimating the parameters of a summer and winter semi-annual block
maxima model. The results from this study showed that, for the summer maxima, the
dependence structure was adequately captured by an isotropic Brown-Resnick model.
On the contrary, the same model performed poorly for the winter maxima, suggesting
that a change in the assumptions is needed when dealing with typical winter events,
typically frontal or stratiform for this region. These results show that accounting for
the meteorological properties of the rainfall-generating processes can provide useful
information for the design of the models.

Overall, our �ndings show that including meteorological knowledge in statistical
models can improve their resulting estimations. In particular, we �nd that, under
certain conditions, using statistical dependence to incorporate knowledge about the
di�erences in temporal and spatial scales of rainfall-generating mechanisms can lead
to a positive impact in the models.
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Zusammenfassung

Die richtige Auslegung von Schutzmaÿnahmen gegen Überschwemmungen im Zusam-
menhang mit Starkniederschlägen ist seit langem eine Frage, die in vielen Studienbere-
ichen von Interesse ist. Eine entscheidende Komponente für eine solche Planung ist die
Analyse extremer historischer Niederschläge mit Methoden der Extremwertstatistik,
die Informationen über die Häu�gkeit und das Ausmaÿ möglicher künftiger Ereignisse
liefern. Die Charakterisierung eines ganzen Einzugsgebiets oder einer geogra�schen
Einheit erfordert die Erweiterung der univariaten Extremwerstatistik-Methoden, um
die räumliche Variabilität der Daten zu erfassen. Diese Erweiterung erfordert, dass
die Ähnlichkeit der Daten für nahe gelegene Stationen in das Modell einbezogen wird,
was zu einer e�zienteren Nutzung der Daten führt.

Diese Dissertation konzentriert sich auf die Verwendung statistischer Modelle, die
die räumliche Abhängigkeit bei der Modellierung von jährlichen Niederschlagsmaxima
berücksichtigen. Darüber hinaus werden Möglichkeiten zur Anpassung der Modelle
vorgestellt, um die Abhängigkeit zwischen Niederschlägen auf verschiedenen Zeitskalen
zu erfassen. Diese Modelle werden zur Verfolgung zweier Ziele eingesetzt. Das erste
Ziel besteht darin, unser Verständnis der Mechanismen zu verbessern, die zur Ab-
hängigkeit von extremen Niederschlägen führen. Das zweite Ziel besteht darin, die
resultierenden Schätzungen zu verbessern, wenn die Abhängigkeit in die Modelle ein-
bezogen wird.

Zwei verö�entlichte Studien bilden die wichtigsten Ergebnisse dieser Disserta-
tion. Die in beiden Studien verwendeten Modelle basieren auf max-stabilen Brown-
Resnick-Prozessen, die es den Modellen ermöglichen, die Abhängigkeit entweder auf
der zeitlichen oder auf der räumlichen Ebene ausdrücklich zu berücksichtigen. Diese
bedingten Modelle werden für beide Fälle mit einem Modell verglichen, das die Ab-
hängigkeit ignoriert, so dass wir die Auswirkungen der Abhängigkeit in beiden Situa-
tionen bestimmen können. Es werden auch Beiträge zu drei anderen Studien zusam-
mengefasst, die das Konzept der Abhängigkeit verwenden.

In der ersten Studie bewerten wir die Auswirkungen der Einbeziehung der Ab-
hängigkeit zwischen Niederschlagsreihen unterschiedlicher Aggregationsdauern bei der
Schätzung von Intensitäts-Dauer-Frequenz-Kurven. Diese Bewertung wurde in einer
Fallstudie für das Einzugsgebiet der Wupper in Deutschland durchgeführt. Diese
Studie ergab, dass sich die Einbeziehung der Abhängigkeit in das Modell positiv auf die
Vorhersagegenauigkeit auswirkt, wenn man sich auf Niederschläge mit kurzen Dauern
(d ≤ 10 h) und groÿer Nichtüberschreitungwahrscheinlichkeit konzentriert. Daher
empfehlen wir die Verwendung von max-stabilen Prozessen, wenn sich eine Studie auf
Regenfälle von kurzer Dauer konzentriert.

In der zweiten Studie untersuchen wir, wie sich die räumliche Abhängigkeit von
Extremniederschlägen in Berlin-Brandenburg saisonal verändert und wie sich diese
Veränderung auf die Schätzungen eines max-stabilen Modells auswirken könnte, das
diese Abhängigkeit berücksichtigt. Die Saisonalität wurde durch die Schätzung der Pa-
rameter eines halbjährlichen Sommer- und Winter-Blockmaxima-Modells bestimmt.
Die Ergebnisse dieser Studie zeigten, dass die Abhängigkeitsstruktur für die Som-
mermaxima durch ein isotropes Brown-Resnick-Modell angemessen erfasst wurde. Im
Gegensatz dazu zeigte dasselbe Modell eine schlechte Leistung für die Wintermaxima,
was darauf hindeutet, dass eine Änderung der Annahmen erforderlich ist, wenn es um
typische Winterereignisse geht, die in dieser Region typischerweise frontal oder strat-
iförmig sind. Diese Ergebnisse zeigen, dass die Berücksichtigung der meteorologischen
Eigenschaften der Niederschlagsprozesse nützliche Informationen für die Gestaltung
der Modelle liefern kann.
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Insgesamt zeigen unsere Ergebnisse, dass die Einbeziehung von meteorologischem
Wissen in statistische Modelle die daraus resultierenden Schätzungen verbessern kann.
Insbesondere stellen wir fest, dass unter bestimmten Bedingungen die Nutzung der
statistischen Abhängigkeit zur Einbeziehung von Wissen über die Unterschiede in
den zeitlichen und räumlichen Skalen der regenerzeugenden Mechanismen zu einer
positiven Wirkung in den Modellen führen kann.
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1
Introduction

In the decade 2010-2019, the reported monetary losses resulting from disasters associ-
ated with extreme weather events were, on average, US$ 383 million per day (World
Meteorological Organization, 2021). These staggering losses were compounded by the
loss of human life, reported to be 185,000 deaths for the same decade. Of all the dif-
ferent weather extremes (e.g., hot extremes on land and in the ocean, drought, wind
storms, �re weather, among others), the overwhelming bulk of damages and human
loss was reported for precipitation events, which include droughts, tropical cyclones,
and �oods. Figure 1.1 shows that �ooding due to heavy precipitation (excluding tropi-
cal cyclones) accounted for 44% of reported weather-related disasters, 16% of reported
deaths, and 31% of worldwide economic losses due to extreme weather from 1970-2019
(World Meteorological Organization, 2021). Moreover, climate change has increased
the likelihood and severity of extreme weather events causing impactful �oods and
droughts (IPCC, 2022; Caretta et al., 2022).

Given the high societal and environmental impact posed worldwide by heavy pre-
cipitation events, a considerable scienti�c and engineering endeavor has been under-
taken in the past decades to understand better the risks and impacts of extreme
precipitation and to design adaptation measures against such events. These measures
have contributed to a signi�cant decrease in reported deaths related to �oods through-
out the decades, even as the total number of events has increased steadily in the same
period (World Meteorological Organization, 2021).

One of the greatest challenges in designing adaptation measures against heavy
precipitation events is predicting the magnitude and frequency of expected events.
This dissertation focuses on how a particular type of statistical models can provide
valuable predictions for the design of the previously mentioned infrastructure.

In the following section, an explanation of the connection between adaptation mea-
sures against heavy precipitation and statistical modeling is explored. Furthermore,
several aspects of what is considered to be extreme rainfall are explored before moving
on to the statistical section. Afterward, the aims and goals of this dissertation, as
well as the structure will be described.

1.1 Relevance of rainfall modeling for adaptation mea-

sures

Flood protection measures can be broadly cataloged as either hard infrastructure
measures or soft measures. Hard infrastructure measures physically control water
�ow through streams to prevent water levels from over�owing. Examples include
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Figure 1.1: Proportion of �ood-associated (left) number of disasters, (middle) number
of deaths, and (right) economic losses globally for 1970-2019. Figure adapted from World
Meteorological Organization (2021).

dams, levees, dikes, storm drains, and �ood control gates. On the other hand, soft
measures are human actions that generate and increase the awareness of �oods,
resulting in higher resilience. Examples of soft measures include proper city planning,
management, and strong community support in preparation for a �ooding event.

Of the two types of adaptation measures, the most common ones are hard in-
frastructure measures for �ood protection (Andrew et al., 2017). Therefore, properly
designing these infrastructure projects is crucial to avoid maladaptation. Typically,
the design of hydrological infrastructure is done in order to protect against a �ooding
event of a certain critical level: if this level is exceeded within the structure's life-
time, then the structure's failure is expected to occur (Vogel et al., 2017). Therefore,
hydrological structures are commonly designed to withstand events with very low oc-
currence probabilities during the structure's lifetime. Here we encounter a trade-o�
when choosing the level of protection: as the level of protection increases, the price
of construction and maintenance grows signi�cantly. However, choosing a level that
is too low may result in heavy economic losses. Therefore, an equilibrium is required
between choosing a level of protection that is neither too low nor too high. This design
choice is the basis of hydrological design.

The design of hydrological infrastructure to protect against �ooding due to heavy
precipitation requires the knowledge of what magnitude of heavy precipitation events
are to be expected and their frequency. Furthermore, this information needs to be
known well in advance before the occurrence of the extreme event, as the construction
of said infrastructure typically lasts in a timespan that ranges from years to decades.
Therefore, the use of deterministic weather forecasting tools, like Numerical Weather
Predictions, which have a relatively short lead time before the event, does not provide
the necessary information with the required anticipation time. Thus, what is needed is
a way of using previous knowledge about past events in order to predict how possible
events will look in the future.

A way to predict possible future extreme events is to look back at previous events
to get an idea of what is likely to occur. In principle, if we had a long continuous
series of past rainfall extremes for a given location, we could estimate the stochastical
behavior of these processes from which we could estimate the probability of events that
are more extreme than any that have been observed. However, two problems arise in
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that case: the �rst one is that extreme events are, by de�nition, rare, so the amount of
data available for characterizing the process is somewhat limited. Secondly, we could
be interested in predicting events for locations where no previous records exist. In
the following chapters, extreme value theory and spatial extremes will be introduced,
which o�er solutions to both problems. First, nevertheless, a more detailed de�nition
of what is considered to be extreme rainfall is introduced.

1.2 Extreme rainfall

Precipitation is any form of water (liquid or solid) that falls from a cloud and reaches
the ground. Of the di�erent types of precipitation (e.g., hail, snow, sleet), the focus
of this work falls exclusively on the liquid component, typically known as rainfall.
Rainfall occurs when a series of complex processes result in cloud water droplets
growing large enough1 to overcome the upward forces of motion that otherwise would
keep them aloft in the form of what we know as clouds.

This dissertation focuses on modeling of extreme rainfall regardless of its phys-
ical cause. However, an early problem arises when talking about extremes in rainfall
events: In contrast to other meteorological extreme events like heat waves or tornados,
there is no �xed de�nition of what exactly constitutes extreme rainfall. From a logical
point of view, it is clear that rainfall events that lead to unusually severe and costly
�ooding should be considered extreme events. However, many di�erent factors can
in�uence the impact of any given rainfall event. For example:

� the duration of the rainfall event;

� the overall intensity;

� the spatial extent of the rainfall �eld;

� the physical properties of the geographical catchment where the event occurred;
or

� the existing hydrological infrastructure and human settlements.

De�ning whether a rainfall event can be classi�ed as extreme can then depend on
the context. Furthermore, events considered extreme in the past could be no longer
extreme in the future, as climate change likely increases the frequency and magnitude
of such events.

An important consideration of rainfall events is that their respective rainfall gen-
eration process can lead to di�erent durations/time-scales, which in turn, leads to
signi�cant di�erences in the impact in the hydrological infrastructure. For context,
an analysis following the methodology of Bohnenstengel et al. (2011) of 10 measur-
ing stations in Berlin containing hourly precipitation height from the DWD revealed
that events that last longer than 9 hours correspond to only 10% of the total count of
events, but account for 47% of the total precipitation amount. In contrast, events that
were shorter than 1 hour accounted for 30% percent of all events, but only contained
2% of the total precipitation. This imbalance further highlights the importance of
distinguishing between types of rainfall-generating processes when modeling them.

For this dissertation, we focus on two types of rainfall-processes typically linked to
extremes: convective and frontal/stratiform events. Fronts are de�ned in Glickman
(2000) as the interface or transition zone between two air masses of di�erent density.

1For context, a typical cloud droplet is 100 times smaller than a typical raindrop.
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Furthermore, Lackmann (2011) indicates that not all airmass boundaries should be
classi�ed as fronts on surface analysis; the analyst should rather account for additional
variations in variables like density, potential temperature or surface charts. A critical
aspect of frontal zones is that they are long and narrow: along-front they present
synoptic scales of 1000 km, while cross-front they have mesoscale scales of 100 Km.
Rainfall events are usually generated on the along-front section, resulting in long and
narrow rainfall events.

On the other hand, convective systems are a result of regional atmospheric insta-
bility that leads to upward movement of an air mass, resulting in cloud development
and eventually, in localized storms that lead to heavy precipitation. The atmospheric
instability is typically a result of strong temperature di�erences, which is common in
summer, when the surface is heated by strong solar irradiation. Compared to frontal
events, convective events have a much smaller spatial scale of around 10-20 km and
a shorter time scale of minutes to hours. However, the resulting storms from these
events are capable of causing the most extensive damage of all severe weather events.

Two types of methods exist to de�ne a rainfall event as extreme. The �rst one is
by using so-called climate indices, which are based on basic statistics from past ob-
served events. These indices are helpful when studying and classifying past or recently
forecasted events. However, the indices are exclusively derived from observations that
have been observed; they provide no information about possible large events that have
never been observed. For this, it is required to use the distribution of past rainfall
extremes (for example, by looking at the distribution of the largest rainfall event from
every year). Rainfall events that fall in the far-right of such a distribution would then
be considered extreme events. This approach to de�ning (and modeling) events is
given by Extreme Value Theory (EVT), which will be detailed in chapter 5.

This dissertation will examine extreme rainfall events from the extreme value
theory point of view. That is, we will consider a rainfall event as extreme when it falls
in the far-right tail of the empirical distribution of rainfall maxima obtained from
the existing records in that location. This de�nition means that events considered
extreme in one location could be considered non-extreme in locations with di�erent
rainfall distributions. However, a big focus of this thesis is the idea that nearby
locations share many properties, so the threshold to denote an event as extreme is
typically similar for neighboring locations.

1.2.1 Example of an extreme rainfall event

An example of what can be considered an extreme event from an EVT point of view
is given by the rainfall event that occurred in the region of Berlin on the 29-30th of
July 2017, as detailed in the report of Berghäuser et al. (2021). This event resulted
from the collision of two low-pressure areas: the one known as Rasmund II, which
formed over the Czech Republic and extended over Poland to Berlin, and another
low-pressure system that approached from southern Germany. This collision resulted
in a widespread rain area of long-lasting convective rainfall.

Figure 1.2 shows the 24-hour accumulated precipitation sum derived from the
RADKLIM data provided by the German Weather Service (DWD). This �gure shows
that most rainfall fell in a circular region centered around the Tegel station. Around
this area, precipitation height values of up to 170 mm can be observed (in fact, this is
likely an underestimation of the approximated radar value, as ground-based stations
reported 24-hour accumulated height values of up to 197 mm (Gebauer et al., 2017)).
Most of the damages reported were con�ned to the area near the storm's center, as
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Figure 1.2: 24-hour precipitation sums derived from radar data for the event of 29-30th of
July 2017. Image reproduced from Berghäuser et al. (2021) with permission of the authors.

seen by the geographical distribution of emergency calls made during/afterward the
event (see Fig. 5 of Berghäuser et al. (2021)).

To investigate if the 2017 rainfall event in Berlin could be classi�ed as an extreme
event, Berghäuser et al. (2021) used the EVT approach mentioned in the last section
to calculate the annual probability of non-exceedance for di�erent amounts of precip-
itation. Their report found that in the vicinity of the point with the highest recorded
rainfall, the aggregated 24-hour precipitation depth could be classi�ed as an extreme
event, with a probability p < 0.005 of happening in any given year. In contrast, when
looking at lower aggregation durations, like one or 3 hours, the event could no longer
be classi�ed as extreme, as the measured value had a probability of occurrence in any
given year in the range of 25% ≤ p ≤ 50%. Furthermore, Fig. 1.2 shows that this
event had considerable spatial heterogeneity: some points merely 10 km away from
the center of the storm reported much lower rainfall. For example, the amount of
rainfall recorded in station Tempelhof had a relatively large probability of occurrence
for all aggregation durations. All of this points to the fact that de�ning a rainfall
event as extreme depends on many considerations.

1.3 Aims and relevance of this dissertation

There are two primary aims of this dissertation:

� To improve our understanding of the mechanisms that lead to statistical depen-
dence in extreme rainfall datasets.

� To improve the extreme rainfall estimates made from models by incorporating
the dependence in a meaningful way.

To ful�ll these aims, this dissertation contains two novel studies, as well as contri-
butions made to two other collaborative studies:
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� In the �rst study, presented in chapter 4, a novel method used to integrate
statistical dependence between rainfall maxima of di�erent aggregation dura-
tions is evaluated to determine its impact in the �nal estimates. This evaluation
required the proposal of a logarithm distance to measure how �close-by� di�er-
ent durations were: this so-called log-distance was found to overperform over
the existing euclidean distance. This study �nds that the dependence structure
for this dataset is rather complex and that, under certain conditions, it can
be ignored for certain modeling purposes. Moreover, the results and methods
developed for this study were essential for the other two studies described in
ch. 6.

� The second study, presented in chapter 5, changed the focus from the depen-
dence between durations to the spatial dependence of rainfall maxima. This
novel study investigates how di�erent regimes of rainfall-generating mechanisms
can lead to di�erent dependence structures. Moreover, the study develops a
method to determine the impact of the di�erences in the dependence structure
for estimates originating from the same model. This study �nds that convective
and stratiform/frontal events show di�erent dependence structures. Therefore,
information about the dominating rainfall-generating regime needs to be inte-
grated into the design of models that include spatial dependence.

� Finally, in chapter 6, the contributions made to other three studies performed
in the context of this dissertation are presented. The �rst of these studies took
direct advantage of the results seen from ch. 4, which justi�ed some of the
modeling choices made for the study. Additionally, the methods developed in
ch. 4 are shown to be an essential part of another study, where they formed
the basis for coverage analysis. On the whole, this chapter shows how the topic
of dependence can be generalized to improve the understanding of other topics
related to statistical modeling of extreme rainfall.

The importance and originality of this study are that it explores a novel interpre-
tation of already existing statistical methods for incorporating dependence in stochas-
tical models from a meteorological perspective. These relatively recent methods were
developed in mathematics, without focusing deeply on meteorology. Therefore, this
dissertation o�ers some important insights into the applicability and caveats of adapt-
ing such statistical methods for modeling extreme rainfall. An example is the proposal
of the log-distance in ch. 4, which comes from scaling considerations of rainfall pro-
cesses for di�erent durations. Another example comes from ch. 5, where the physical
characteristics of di�erent rainfall processes are the starting point for studying how
the spatial dependence structure changes seasonally. To our knowledge, very little
research has been done on this latter topic; therefore, our study makes a major con-
tribution and a great starting point for further research.

1.3.1 Structure of this dissertation

This dissertation is organized as follows: First, the theoretical framework behind the
studies mentioned above is detailed in chs. 2 and 3. Chapter 2 encompasses a primer
on statistical modeling, introducing the basis for the models used in the subsequent
studies. Chapter 3 builds upon this introduction by describing the state-of-the-art
behind current multivariate methods for models that include dependence structures.
Chapters 4 - 6 comprise the published studies developed during the course of this
dissertation, which use the methods described in the �rst chapters. Finally, the ch. 7
o�ers an overview, summary, and outlook on the topic.
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Part I

Theoretical Framework
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2
Statistical Modeling

The last chapter introduced some of the societal impacts posed by extreme rainfall
events and their adaptation measures. These measures against extreme rainfall re-
quire information about their characteristics like frequency, magnitude, and extent.
Deriving this information from past observations requires using a special tool: the sta-
tistical model. This chapter will provide an overview of statistical models and their
steps. The methods described in this chapter are very general; a particular extension
for extreme rainfall will be provided in the next chapter.

2.1 Overview of statistical models

Statistical models are mathematical constructions used to describe data that shows
some random component. As such, they contain an element of randomness, which dif-
fers from deterministic models. As their primary goal, these kinds of models attempt
to represent what is called the data-generating process. Knowing more about this
process can answer several questions of interest for an analyst. Some applications
where these models give solutions include predictions of unseen data, extraction of
causal information, and description of the stochastic structure in the data.

This work mainly focuses on using statistical models to predict unseen values from
the existing observations. That is, it does not attempt to use statistical models to
identify causal relationships. The task of identifying causal relationships from models
di�ers greatly from prediction, and as such, it has its own specialized procedure,
which is out of scope for this dissertation. In general, statistical models with the goal
of prediction follow the following overarching steps:

1. Identify the data relevant to the research question.

2. Specify a model that adequately describes the data-generating process for the
data coming from the last step.

3. Calibrate the model so that it can represent the data.

4. Verify the assumptions used for creating the model.

5. Obtain predictions from the model.

6. Validate the predictions made from the model.

The procedure detailed above is not entirely rigid; in fact, sometimes it is necessary
to perform some steps in disorder or repeat others to reach a model that the analyst is
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satis�ed with. In particular, the last four steps are commonly iterative, as sometimes
it is necessary to recalibrate the model to improve the resulting predictions from the
model.

In the �rst step, identifying the relevant data, it is also necessary to explore how
the data is structured and identify what variables are to be predicted and which ones
could work as predictors, helping to explain the variability in the data. This step,
naturally, is preceded by the actual collection of data, which is a complete topic in
and of itself. Furthermore, it is important in this step to de�ne the data's scale and
identify if we are dealing with a discrete, continuous, or categorical variable.

For the second step, a statistical model that describes a possible data-generating
process is selected. This selection typically requires exploratory data analysis and
domain expertise for the particular problem. Typically, the chosen model comes from
an already existing parametric family; however, this model is not yet calibrated for
the speci�c data identi�ed in the �rst step. Calibrating the model to describe the
speci�c data is done by �nding values of quantities known as model parameters. The
next step in the modeling process is using the data to �nd proper values for these
parameters. It should be noted that the random nature of statistical models makes
�nding the exact true value of the parameters usually unattainable, so uncertainty
about their value will always exist.

Every statistical model makes certain assumptions about the data and its gen-
erating process. Therefore, after �nding and calibrating the model, the next step is
always to check the assumptions. This check ensures that the model is consistent with
its own logical rules; however, it does not say how well the model describes the actual
data-generating process. Unfortunately, �nding whether a model is a realistic descrip-
tion of the data-generating process is usually unfeasible without additional tools to
study causality, a topic that, for this thesis, is out of scope. In any case, we want a
model that is at least logically consistent with its own assumptions.

The �nal two steps are to obtain predictions from the model and to check how good
the predictions are. The last step depends on the goal set for the model predictions.
In light of this, there is no single de�nition of what constitutes a perfect prediction.
For the studies described in this thesis, the goal is to get predictions that are good
representations of unobserved values. As we will see below, getting good predictions
for unobserved values requires that the model does not learn too much from what was
observed already. This is done, for example, by penalizing models that learn too much
from the data, using quantities known as Information Criteria. The ultimate goal of
these kind of methods is to avoid the phenomenon known as over�tting, as over�tted
models typically provide very poor estimates of unobserved future values.

In this chapter, every one of the steps mentioned earlier will be explained in more
detail, except for the �rst step, which is skipped. I begin with the process of identifying
a model to describe the data, for which I also de�ne what a model is in more detail.
The rest of the chapter will more or less cover the other steps point by point, �nishing
with a summary of them all.

2.2 Model Speci�cation

The goal of statistical modeling is not only to summarize what has already been ob-
served but additionally, to infer the characteristics of the process that generated the
data. However, several di�culties need to be overcome to achieve this goal: Firstly, it
may not be easy to infer what we want to know from the observed data. Additionally,
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observations from real-world phenomena virtually always contain some random vari-
ability; thus, if the data-gathering process were repeated several times, di�erent data
would be obtained for each replication. The randomness in the observations creates
what, at �rst glance, looks like an insurmountable problem: We typically only have
access to a single set of data, but due to the random variability, any conclusions drawn
from this sample could potentially not be valid for all possible samples. Statistical
models counteract this problem by incorporating a random component whose proper-
ties can be adjusted to end up with a model that describes how the data might have
been generated.

A statistical model is a simpli�ed description of the data-generating process that
produced the observations. These models are simply mathematical formulas that char-
acterize the trends and spread in the data and include a stochastic component that can
reproduce the variability of the observations. These models combine known informa-
tion (observations and predictors) with unknown information (stochastic component).
The stochastic component of models makes them incredibly useful for describing many
natural processes that can be seen as random. However, no single �universal� model
that can explain every observed phenomenon exists. In reality, many di�erent sta-
tistical models can usually describe the same observed data. Therefore, statistical
modeling aims to �nd the model that gives the most credible description of the data.

Let Y represent the measured quantity, from which the actual individual measure-
ments are denoted as y. The measurements y are assumed to be random, which in this
context means that for every measurement of Y , we obtain a di�erent y value, where
some values are more likely than others. Without going now into much mathematical
rigor, a statistical model is essentially a function that assigns a probability to events
associated with Y . The speci�cs of the function depend on whether Y is discrete or
continuous. For a discrete Y , the model f takes the form of a probability mass

function f(x) = Pr[X = x]. In contrast, when Y is continuous, the model is given
as the probability distribution function F (x) = Pr[X ≤ x]. The distribution
function can be di�erentiated to obtain the probability density function.

For both the discrete and continuous cases, the model's formula contains quan-
tities, called parameters, that determine the exact shape of the resulting function.
The parameters of a model are typically denoted by the greek letter θ. The models
can then be written as f(x|θ) or F (x|θ). The formulas used for the models almost
always come from already existing families of models, which have helped describe to
describe di�erent kinds of processes.

An essential assumption for modeling is that every measurement y from the vari-
able Y comes from the same data-generating process. This assumption implies that
the model is an accurate description for every observed y. In statistical jargon, one
would say that the data are identically distributed. Additionally, a common assump-
tion is that every y does not depend on previous or future realizations of Y (i.e., that
they are independent). If both assumptions are made, the data is said to be indepen-
dent and identically distributed, or i.i.d., in short. The latter assumption can be
relaxed for many statistical models, as seen in the next chapter, where the addition
of dependence is explored for di�erent types of models.

We can then distinguish two di�erent components for a statistical model:

� The mathematical formula of the model, which describes the general shape and
behavior. For example, consider the Gaussian distribution (also known as the
normal distribution), which is a model that has a well-known bell-shaped func-
tion and is very often used to describe data.
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� The parameters θ that control di�erent aspects of the �nal shape given by the
formula. For example, the Gaussian distribution mentioned above contains two
parameters: the mean and the standard deviation. The Gaussian distribution
always has the same bell shape, but the two parameters determine precisely how
wide the bell is and where in the real line it will be centered.

When designing a model, the model parameters θ are always initially unknown
(albeit a prior idea of their value sometimes exists). Di�erent values of θ will lead to
di�erent data-generation processes being simulated. Thus, the goal is to �nd values of
θ that result in a data-generation process capable of reproducing the observed data.
The resulting value of the parameters can then be used to answer questions of interest
about the data-generating process of Y . In other words, a statistical model is a recipe
by which Y might have been generated, given appropriate values for θ (Wood, 2015).

Statistical models can range from very simple, containing only one or two param-
eters, to highly complex, containing hundreds to thousands of parameters. All things
considered, there are two main desiderata that statistical models should possess. The
�rst is that the formula of the model should be understandable, with a meaningful
and interpretable number of parameters 1. The most commonly used models, like the
Gaussian distribution, have well-de�ned formulas with parameters that are easy to
identify. The second desideratum for a model is that the resulting function should be
similar to the data; after all, a model that cannot reproduce the data used to create
it is rather useless.

Example of a statistical model

Let Y represent the mean annual 2 m air temperature in a speci�c location measured
for 30 years. In this case, yi would represent the mean annual temperature for the
year i. Our goal is to �nd a model that can both describe the random variability of
Y and provide information about the data-generating process.

First, we assume that the observations yi are i.i.d. Then, we propose that a
Gaussian distribution can replicate the data-generating process for the observations.
This statement can be formulated as:

Y ∼ N(µ, σ2), (2.1)

where µ and σ represent the unknown parameters θ of the model. The Gaussian dis-
tribution has a well-known mathematical formula for the probability density function,
which for a single observation yi is given by:

f(yi|θ) =
1√
2πσ

exp

(
−(yi − µ)2

2σ2

)
. (2.2)

For the expression above we can see how the two parameters, µ and σ, control the
resulting shape of the distribution. Thus, after choosing a distribution, the goal is to
�nd values of the parameters that result in a model that resembles the data.

2.2.1 Generalized Linear Models

The model for the mean annual temperature shown in eq. (2.1) is relatively simple
in that it does not incorporate any other information that could have been measured
simultaneously as Y . For example, it is well known that mean annual temperature

1This desideratum could be no longer true in the age of Neural Networks.
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Table 2.1: Some of the exponential family distributions.

Distribution Type Typical link function

Gaussian continuous identity
Gamma continuous negative inverse
Exponential continuous negative inverse
Poisson discrete log
Binomial discrete logit
Bernoulli discrete logit

has been increasing due to climate change, which is information that is not accounted
for in the simple model above. This additional information is typically denoted as
the predictors xi. Incorporating additional information in the form of the predictor
matrixX can be done straightforwardly usingGeneralized Linear Models (GLMs).

For a simple extension of the Gaussian model, we assume that the mean parameter
µ is now a linear function of some measured predictor xi. In that case, we can rewrite
the model of eq. (2.1) as:

yi ∼ N(µi, σ) (2.3)

µi = α+ βxi. (2.4)

Note that this model has the additional parameters α and β. This kind of model, where
the location parameter of the distribution is modeled using a linear combination of
predictor variables, is known as a Generalized Linear Model.

The model in eq. (2.4) is more �exible than the model of eq. (2.1), as it can
incorporate the information from the predictor xi. The price to pay is the additional
parameters that need to be estimated, but in return, new predictions can be made
from previously unobserved predictors.

The GLM formulated in eq. (2.4) is one of the most widely used models. However,
the outcome Y does not necessarily need to follow a Gaussian distribution. In fact,
any distribution from the exponential family can be used to generate a GLM. For
example, assume that Y is now an indicator variable that there was rain or no rain
for a particular day. This time y represents the count outcome of rainy days within
n days. In this case, the best model is no longer Gaussian, but instead the binomial
distribution. For the binomial distribution, a possible GLM is then given by

yi ∼ Binomial(n, pi)

f(pi) = α+ βxi.

For this model, the parameter to be estimated is the probability p of having a rainy
day. Because p is a probability, it must be a number between 0 and 1. However,
the linear function α + βxi in the second line can return values outside this range.
To ensure that the resulting p is inside the proper range, the link function f(·) is
introduced in the model. For the GLM depicted above, a widely used link function is
the logit function.
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To summarize, GLMs have the following form:

yi ∼ EF(µi, φ) (2.5)

f(µi) = β0 +

k∑
i=1

βixi, (2.6)

where EF denotes some exponential family distribution with mean µi and other (scale,
shape, etc.) parameters φ and f(·) is the link function. Some members of the ex-
ponential family distributions and their typical link functions can be found in table
2.1.

The formulation for GLMs given in eq. 2.6 is an incredibly powerful one. However,
GLMs are not applicable when one desires to use a model not from the exponential
family or when one wants to model a parameter other than the location parameter.
To achieve this, Yee (2015) introduced an extension known as Vector Generalized
Linear Models (VGLMs). VGLMs allow the use of non-exponential distributions
like the GEV distribution introduced in the next chapter; furthermore, they allow
the analyst to model not only the location parameter, but all of the parameters si-
multaneously. VGLMs will be one of the main tools for modeling used in the studies
described in this thesis.

This section has attempted to provide a summary of statistical models, which
are mathematical constructs that explain the variability of the data. These models
always include parameters, which are quantities that control how the model assigns
probabilities to di�erent outcomes. Therefore, the task of statistical modeling can be
seen as two-pronged: �rst, one needs to identify a proper model to describe the data;
then, appropriate values for the parameters should be selected. Information about
the data is then contained inside the parameters.

2.3 Statistical Inference

Once an adequate mathematical model to describe the overall random behavior of
some experiment has been found (e.g., a certain distribution or a stochastic process),
the next step is to arrange the properties of the model in a speci�c way that it is a
good description of the data we have observed. As indicated above, the properties that
control statistical models are known as the model parameters, typically denoted by
the letter θ. Di�erent models contain di�erent amounts and types of parameters; for
example, the Gaussian distribution N(θ) is described by the two parameters θ = (µ, σ),
where µ is the location and σ is the scale parameter. In contrast, the exponential
distribution Exponential(θ) contains only the parameter θ = λ. Once a model has
been selected, the task of statistical modeling is reduced to �nding adequate values
of θ so that the model not only properly describes the sample we have observed but
also gives us information about the population that the sample stems from.

Statistical inference is the process of �nding values for the model parameters
θ using the observed sample in such a way that the resulting model is considered to
be adequate2 description for the population of the sample. The result of the inference
process is some estimate of the parameters, either as a single number (i.e., a point
estimate, denoted by θ̂) or as a probability distribution.

The methods for statistical inference can be divided into several paradigms. For
this work, we describe the two most common ones: the frequentist and the Bayesian
paradigm. The main di�erence between these two approaches is in how uncertainty

2The exact de�nition of what is adequate depends on the technique used to do the inference.
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is handled, and in a more philosophical context, in the meaning of probability. In
practical terms, both approaches commonly give similar results, but their interpreta-
tion is profoundly di�erent. The following sections describe the background of both
approaches and the primary methods for inference that exist for each approach.

2.3.1 Frequentist inference

Frequentist inference is based on the frequentist interpretation of probability, which
de�nes the probability of an event as the limit (or long-run) of its relative frequency
after performing many trials. As this value is utterly devoid of opinions, it is known
as the objective interpretation of probability. Most of the ideas behind frequentist
inference were developed in the early 20th century and constitute most of the methods
used for statistical analyses today.

Inference for frequentist methods can be divided into parametric or nonparametric
methods. Parametric methods assume that the model for the data contains a �nite
number of parameters θ for a well-known parametric probability distribution. Non-
parametric methods are used when the stochastic process cannot be described with
either a �nite number of parameters or with a well-known parametric distribution.
For this thesis, only parametric methods will be considered.

A cornerstone idea within the frequentist paradigm is that the parameters θ are
seen as �xed states of nature. Therefore, the parameters are unknown quantities, with
no room for uncertainty: we either know their true value or we do not; parameters are
inherent properties of a population, from which we commonly can only take samples.
The samples are used to estimate the true value of the parameters. This estimate is
commonly denoted as θ̂.

This idea gives way to the sampling distribution. When dealing with di�erent sam-
ples of the same population, it is almost always the case that each sample will show
some variability from the other. Thus, estimates or statistics computed from these
di�erent samples will also show some variability. The so-called sampling distribu-

tion describes this variability between estimates of di�erent samples. To construct
this distribution, one must �rst de�ne the �cloud� of all possible sample outcomes,
which is a function of the assumed model, the sampling procedure employed, and the
given sample size.

The sampling distribution provides a probability model that describes the relative
frequencies for each possible value within the cloud of possible outcomes given �xed
values of the parameters θ. The sampling distribution can be denoted as p(Dθ,I |θ, I),
whereDθ,I is the data within the cloud of outcomes that should be observed (assuming
that the chosen underlying model is true), θ is the di�erent parameter values and I is
the stopping and testing intention. For the same experiment, I could di�er between
analysts, so that the resulting cloud of possible outcomes would be di�erent.

In summary, the sampling distribution describes the probabilities of possible data
if we run an experiment many times given a particular model with �xed parameter
values. It does not, however, give information about the probability of the param-
eter values given the data (that is, it does not provide information about p(θ|D)).
Within the frequentist framework, the sampling distribution can be used to estimate
parameter values, to obtain inference about the uncertainty of estimated parameter
values or statistics (e.g., con�dence intervals) and to perform tests to assess if certain
parameter values can be �rejected� because they are deemed too improbable within
the cloud of all possible outcomes (e.g., null hypothesis signi�cance testing).
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Maximum Likelihood Estimation

We now come back to the original question of frequentist parametric inference:

� Given a model with parameters θ and some data D, what are reasonable guesses
for the values θ̂ that are consistent with the assumed data generating process of
D?

Within the frequentist paradigm, several approaches exist to answer this question.
These include the method of moments, the least squares method, and maximum like-
lihood estimation (MLE). The latter one stands out in terms of its practical utility
and theoretical properties, making it particularly useful for extremes.

In a nutshell, maximum likelihood estimation methods �nd the values of the
parameters θ that maximize the probability of having observed D. We know that
di�erent values of θ lead to di�erences in the probability assigned from the model
to each possible outcome. Therefore, a reasonable idea is to �nd parameter values
for which the observed data D has a relatively high probability. We assume that
parameter values that make the observed D highly probable are likely more correct
than parameter values that make the observed D improbable. This assumption is the
main idea behind MLE methods, which holds exceptionally well for many situations.

The probability of having observed D given a speci�c model with parameters θ
is given by the likelihood function p(D|θ). For n i.i.d. data points, the likelihood
function can be written as:

L(θ|D) = p(D|θ) =
n∏
i=1

p(Di|θ). (2.7)

In this case, L(θ|D) is a function of the parameters while the data is �xed, and
as such, it does not constitute a probability density function over the parameter
values. Therefore, the likelihood function L(θ|D) should not be confused with p(θ|D).
To obtain this latter term, the probability of di�erent parameter values given the
observations, we require an application of Bayes' rule, as explained in the next section.

To get the maximum likelihood estimator θ̂, one needs to �nd the parameter values
that maximize L(θ | D). However, from eq. (2.7), we can see that this would imply
working with the product of many potentially minuscule quantities, which can lead to
numerical instability. Therefore, it is more common to work with the log-likelihood
given by

l(θ | D) = log(L(θ | D)) =

n∑
i=1

log(p(Di | θ)). (2.8)

Because the log-likelihood uses sums instead of products, it becomes much easier to
handle. The logarithm is a monotonically increasing function, so that the maximum
value of this function occurs at the same point as the original likelihood function.

Given the log-likelihood, the maximum likelihood estimate of θ is then given by

θ̂ = arg max
θ

l(θ | D). (2.9)

Figure 2.1 shows an example of �nding the value of the θ parameter for a Bernoulli
distribution. This is a classical optimization problem, and as such, many di�erent
optimization algorithms exist to solve it. Some examples include the BFGS algorithm
(Broyden, Fletcher, Goldfarb, and Shanno, 1970), the CG algorithm (Fletcher and
Reeves, 1964), and the L-BGFS-B algorithm of Byrd et al. (1995). These algorithms
can be easily implemented using the optim function in R.
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Figure 2.1: Graphical depiction of how MLE methods work. The plots in the top row show
the pmf of the Bernoulli distribution for di�erent values of θ, with the red cross showing
the actual observed number of successes for 10 trials. The bottom plot shows the likelihood
function for the Bernoulli distribution. MLE �nds the value of θ for which the likelihood is
maximum, which in this case is θ = 0.7.

The MLE estimate θ̂ is not only intuitive, but it also possesses some nice theo-
retical properties. When dealing with the sampling distribution of θ̂ (known as the
estimator), we would expect to have di�erent values of the estimated values for each
sample. Under some mild regularity conditions, it can be shown that the MLE esti-
mator is asymptotically unbiased (i.e., E[θ̂] = θ), and additionally, that its variance
can be modeled with

θ̂ ∼ N(θ,I−1), (2.10)

where I denotes the Fisher information matrix. Furthermore, it can be shown
that MLE estimators are usually consistent, that is, that as the sample size tends to
in�nity, θ̂ → θ. These theoretical properties have made MLE estimation a reliable
and popular method for the estimation of parameter values in recent years.

2.3.2 Bayesian inference

Bayesian inference (or statistics) is a branch of statistics that assigns probabilities or
distributions to events and parameters based on previous knowledge before experimen-
tation and data collection and that applies Bayes' Theorem to revise the probabilities
and distributions after obtaining experimental data. Under this paradigm, probabil-
ity is considered to represent the degree of belief that a certain outcome from a pool
of possible outcomes will occur. This interpretation is also known as the subjective
interpretation of probability, as di�erent people can have di�erent degrees of belief
for the same outcome. These degrees of belief are mathematically equal to frequentist
probabilities, as they share the same axioms.

From the subjective probability point of view, Bayesian inference amounts to �the
reallocation of credibility across a space of candidate possibilities� (Kruschke, 2014).
This idea can be illustrated brie�y by the following example: Imagine that a person
comes outside to �nd that the ground is wet. They want to know the most probable
explanation for the ground being wet. Many possible explanations could reasonably
explain this: it rained earlier, someone was washing their car nearby, a water pipe
burst, someone dropped a water cup, etc. Initially, the person only knows that some
part of the ground is wet, and without extra information, they can only assign di�erent
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degrees of belief to each possibility based on their previous knowledge and experience.
Crucially, however, the person can make additional observations to reallocate some
credibility: for example, if they observe that the sky is very cloudy and everything
around them is wet, their belief that it rained will increase. This increased belief
comes at the expense of lowering belief in other possibilities, like that someone was
washing their car. On the other hand, if the person observes that only the ground
around a shiny-looking car is wet, their belief that someone washed their car will
increase, while their belief that it rained will decrease.

The process described in the example above of [previous belief - observation -
updated belief] can be repeated ad in�nitum until only one of the possibilities has
a signi�cant degree of belief assigned to it. This idea is the basis behind Bayesian
inference3. The operation described above can be summarized in the expression known
as Bayes' Rule:

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)
, (2.11)

where A and B are two events from the same sample space.
Bayes' Rule as formulated in 2.11 is an incredibly powerful tool for many applica-

tions of discrete problems, like estimating the chance someone has a disease given a
positive test result. However, it is not immediately clear how to adapt it to use for
estimating parameter values that are essentially continuous, as they can take virtu-
ally any value within some interval. When dealing with statistical models, the idea
of Bayesian inference is to reallocate belief toward the parameter values θ that are
consistent with the data and away from parameter values that are inconsistent with
the data. This requires the expression given in 2.11 to be transformed to

p(θ|D) =
p(D | θ)p(θ)

p(D)
, (2.12)

which replaces probabilities for probability density, and where D represents the ob-
served data and θ the model parameters.

Each term of eq. (2.12) has its own name and explanation. On the left-hand side of
eq. (2.12), p(θ|D) represents the probability assigned to each parameter value given
the data (i.e., how much belief we assign to each parameter value after seeing the
data). As this quantity is derived after seeing the data, it is commonly known as
the posterior distribution. The posterior distribution represents what we typically
want to know from the application of a statistical model. On the right-hand side, the
term p(D | θ) represents the probability of particular data values given the model's
structure and parameter values. This term is known as the likelihood, mathemati-
cally identical to the frequentist one described by eq. (2.7). The additional term p(θ)
in the right-hand numerator represents the probability distribution for the model pa-
rameters before seeing the data, and its typically known as the prior distribution.
The prior distribution encodes the previous knowledge about the problem, and it is
central to Bayesian inference. Finally, the right-hand denominator p(D), sometimes
known as the marginal likelihood, is the overall probability of the data according
to the model, determined by averaging across all possible parameter values weighted
by the probability of each parameter value. The marginal likelihood is merely a nu-
merical constant that ensures that the integral of the resulting posterior is equal to
one.

3Indeed, Sherlock Holmes was applying Bayesian inference when he famously claimed �When you
have eliminated the impossible, all that remains, no matter how improbable, must be the truth�
(Doyle 1890, chap. 6).
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For the continuous case the marginal likelihood is calculated by p(D) =
∫
p(D |

θ)p(θ)dθ. Therefore, eq. (2.12) can be rewritten in terms of the likelihood and prior
as:

p(θ|D) =
p(D | θ)p(θ)∫
p(D | θ)p(θ)dθ

. (2.13)

This latter equation is the most commonly used form of Bayes' rule for performing
parameter estimation.

Steps of Bayesian inference

Bayesian inference involves using eq. (2.13) to �nd the posterior distribution of pa-
rameter values given the observations. In a nutshell, Bayesian inference requires the
following steps:

1. De�ne an appropriate model that describes the variability of a phenomenon that
can be seen as a stochastic process.

2. Identify the parameters θ that characterize the model, and propose the prior
distribution p(θ) that assigns a probability to each parameter value before seeing
the data (i.e., based on previous knowledge).

3. Recollect the observed data D and calculate the probability of having seen the
particular values of D with parameter values θ, that is, the likelihood p(D | θ).

4. Use Bayes' theorem (Eq. (2.12)) to combine the likelihood and the prior to
obtain the posterior probability distribution of θ, given the data (p(θ|D)).

5. Use the posterior distribution to make inferences about the most probable values
of θ, as desired.

Note that for step 4, it is necessary to deal with the integral in the denomina-
tor of eq. (2.13). This can be very challenging, as most of these integrals do not
have analytical solutions. An initial alternative could be to use numerical approxima-
tions; however, from eq. (2.13), we can see that this integral is performed in the joint
parameter space, which involves the combination of all parameter values. Within
most real-world applications, the number of parameters θ is in the order of dozens to
hundreds, meaning that the resulting combination has an enormous number of dimen-
sions. Therefore, most, if not all, numerical approximations are infeasible to solving
this integral for many real-world applications.

Historically, the computational challenge posed by the integral in eq. (2.13) lim-
ited the use of Bayesian inference to a small group of well-known problems where
the integral could be simpli�ed. In recent years, however, several methods have been
developed to avoid computing this integral by instead using a large number of sam-
ples that contain representative combinations of the posterior distribution. These
developments have brought over an explosion in the applications of Bayesian infer-
ence, cementing it as a powerful and modern tool for statistical inference today. The
work done in this dissertation uses one of the most commonly used sampling meth-
ods, known as Markov Chain Monte Carlo (MCMC). MCMC methods are incredibly
powerful, but have a high computational cost. They will now be described in detail.

Bayesian inference using MCMC

As mentioned above, the main challenge in applying Bayesian inference to real-world
applications is dealing with the integral in the denominator of eq. (2.13), which is
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Figure 2.2: Change of the posterior according to the used prior. The top row uses a prior
whose density is concentrated towards larger values of θ, while the bottom row uses a prior
whose density is concentrated towards lower values. The resulting posterior is then shifted
towards di�erent locations. Notice that the likelihood used for both examples is the same: a
Bernoulli distribution for 7 out of 10 observed successes.

usually intractable. However, it turns out that this integral is merely a multiplicative
constant of proportionality so that we can rewrite Bayes' rule as

p(θ|D) ∝ p(θ, D)

∝ p(D | θ)p(θ).

In other words: the posterior is proportional to the likelihood times the prior. Figure
2.2 shows how two di�erent prior distributions can change the resulting posterior.
In order to approximate the posterior, we would only need to �nd a way to sample
from p(θ, D) with the observed data values plugged in for D. Once enough samples
are taken, the resulting histogram can be used to approximate the distribution of
the posterior. The problem then reduces to �nding a way to sample e�ectively from
p(D | θ)p(θ).

Markov Chain Monte Carlo (MCMC) methods are a general family of sam-
pling schemes for arbitrary distributions known up to a multiplicative constant. In
principle, MCMC methods only require that the expression for p(D | θ) and p(θ) can
be computed for any speci�ed values of D and θ. MCMC methods then return an
approximation of p(θ|D) in the form of a large number of values from θ sampled from
that distribution. These samples can then be used to get several descriptive statistics
of θ: for example, the values with the largest probability density (mode) or intervals
of speci�c probability values (credibility intervals).

Under the hood, MCMC algorithms search for a Markov Chain with a stationary
distribution equal to the posterior distribution in eq. (2.13). Let {X1,X2, ...} be a
sequence of random vectors. This sequence constitutes a �rst-order Markov chain

if, for any j,
p(xj | xj−1,xj−2, ...,x1) = p(xj | xj−1). (2.14)

In short, this means that the probability of X having a certain value in the current
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Figure 2.3: Top row: Comparison of the posterior distribution for the example shown
in Fig. 2.2 obtained analytically (left) with the distribution obtained by multiplying the
likelihood with the prior (right). Notice that the shape of both distributions is identical,
but that the y-axis changes. The bottom row shows an approximation to the posterior using
samples from a MCMC sampling scheme. The left plot uses 500 samples, and the right plot
5000 samples.

state j depends only on the value it had at the previous step xj−1. Markov chains
can be expressed in terms of the transition probabilities from one state to the next,
usually denoted as the transition matrix P , whose individual components contain
transitions such as p(xj−1 → xj). Under certain conditions of irreducibility, the
transition probabilities after advancing many steps (i.e., the long-run probabilities)
will converge to a stationary distribution π(xj), such that

π(xj) = πP . (2.15)

The idea of MCMC methods is then to get enough samples from a Markov Chain
whose stationary distribution π is equal to p(θ | D), where we know this posterior
up to a proportionality constant (p(θ | D) ∝ p(D | θ)p(θ)). This requires that
the constructed Markov Chain is irreducible, meaning that regardless of the starting
position there is a positive probability of visiting all possible values ofX. Additionally,
MCMC methods require that the Markov chain is recurrent, meaning that in the long-
run the chain will visit any non-negligible set of values an in�nite number of times.
For an irreducible and recurrent chain, a good approximation of the posterior can be
obtained if enough samples are recorded. The bottom row of Figure 2.3 shows how
the resulting histogram of the samples converges to the posterior as the number of
samples grows. However, it is not trivial to determine how many samples are enough
to ensure that the resulting distribution has converged to the desired one.

Theoretically, one needs only to construct an irreducible and recurrent Markov
Chain with the correct stationary distribution to get samples from the posterior dis-
tribution. The question is now how exactly to construct such a chain. To design
such a Markov chain, di�erent algorithms exist. One of the most simple but e�ective
ones is the Metropolis-Hastings algorithm (Hastings, 1970), a special case of the
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Metropolis algorithm developed by Metropolis et al. (1953). The Metropolis-Hastings
algorithm has the following steps:

1. Pick a starting position of θj−1 such that p(θj−1|D) is non-zero.

2. Create a proposal distribution p(θj | θj−1) from which a candidate value
θproposed can be formulated.

3. Generate a value for θproposed.

4. Compute the probability pmove to accept or reject θproposed according to the
expression

pmove = min

(
p(D | θproposed)p(θproposed)
p(D | θcurrent)p(θcurrent)

, 1

)
.

5. Accept or reject the proposed move by sampling from a uniform distribution
over [0, 1]. If the sampled value is between 0 and pmove, accept the proposal by
setting θj = θproposed. Otherwise, reject the proposal and set θj = θj−1

6. Increment j and iterate from step 2. Repeat until a su�cient number of samples
have been reached.

The key to the Metropolis-Hastings algorithm is in how to choose the proposal
distribution of step 2. Metropolis-Hastings uses a multivariate Gaussian distribution
centered on the current value of θ with a standard deviation set by the user. While
this algorithm ensures that the resulting Markov chain will converge to the posterior
distribution, it can take many samples before doing so. Therefore, di�erent algorithms
(e.g., Gibbs sampling) that use more clever proposal distributions have been developed
in recent decades. These algorithms are more e�cient when sampling, requiring fewer
samples to reach convergence of the posterior.

In order to use Metropolis-Hastings (or any other MCMC sampling scheme, for
that matter), the following conditions must be met:

� We must be able to generate random values from the proposal distribution to
obtain as many θproposed as needed.

� Both p(D | θ) and p(θ) must be able to be computed for any valid value of
θproposed.

� We must be able to sample a random value from a uniform distribution to decide
whether to accept or reject pmove.

At this point, the reader may ask why all these steps are needed to approximate
the posterior if we already know its shape and other properties from multiplying the
likelihood times the prior (e.g., Figure 2.2). The answer is that real-world applications
typically contain dozens, if not hundreds, of parameters, in which case the posterior
is a high-dimensional distribution. In this case, obtaining information about a single
parameter would require marginalizing (i.e., integrating) over the entire distribution,
which requires that the integral in eq. (2.13) be solved anyway. The great advantage
of MCMC methods is that they operate under any number of dimensions, so obtaining
information about the posterior of any given parameter requires only the histogram
of the resulting MCMC samples for a such parameter.
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Hamiltonian Monte Carlo

Of the di�erent MCMC algorithms that exist today, one of the most e�cient ones is
the so-called Hamiltonian Monte Carlo (HMC) algorithm, which has been coded
for general use as part of the software Stan. HMC is based on the Metropolis al-
gorithm, but the way it chooses the proposal distribution is very di�erent from the
other algorithms, such as Gibbs sampling or Metropolis-Hastings. For HMC, instead
of using a �xed proposal distribution with a symmetrical shape for each step, the
distribution adapts according to the current position of the parameter within the
distribution. This adaptation is made in such a way as to maximize the chance of
accepting the following proposal so that HMC typically requires much fewer steps
than other algorithms to converge to the posterior. This adaptation, however, comes
at a greater computational cost.

The basic idea for choosing a proposal distribution in HMC is �rst to use the
negative logarithm of the posterior to create a �surface.� Then, random momentum is
given to a marble in a certain initial position, which then �rolls� on the surface for some
predetermined number of steps. The position where the marble ends up is recorded,
and the whole procedure is repeated many times until a distribution of end positions
for the marble is obtained. This is the new proposal distribution from which the
proposal move is taken. The trajectory of the marble is computed using the gradient
of the likelihood with the Hamiltonian equations of motion (thus the �Hamiltonian�
part of the name). Since the marble typically moves towards downhill positions in
the negative logarithm of the posterior (i.e., the marble moves towards larger density
values of the posterior), the proposals are almost always accepted, making this method
more e�cient than other Metropolis algorithms.

When designing a particular HMC algorithm, several choices have to be made.
First of all, the initial momentum given to the marble has to be carefully chosen.
Typically, this momentum comes from a zero-centered Gaussian distribution with a
speci�ed standard deviation. As the standard deviation grows, the proposal distri-
bution grows with it. Thus, �nding a standard deviation that is neither too small
nor too large is necessary to explore all the space in the distribution properly. The
second and third choices are the total number of steps per proposal and the length of
these steps in discrete space. These two parameters can tune the HMC sampling to
have a proper acceptance rate, typically desired to be 65%. Stan incorporates several
adaptative steps to choose the values of these parameters correctly. To do this, a
so-called warmup phase is necessary, for which the resulting samples are not repre-
sentative of the posterior but instead used to choose the parameters of the algorithm.
The warmup samples are always discarded and typically make up 20-40% of the total
number of samples used for any particular MCMC sampling using Stan.

In order to use HMC sampling with Stan, in addition to the conditions needed to
use MCMC, the following conditions must be met:

� The product of the prior times the likelihood must have an analytically-derived
gradient at any value of θ, computed by Stan using autodi�.

� The posterior must be continuous, as the gradient for discrete distributions
cannot be computed.

MCMC sampling was applied exclusively using HMC with Stan for all Bayesian
studies in this dissertation. This implementation was accomplished by using the R-
plugin of Stan, rstan (Stan Development Team, n.d.), which o�ers a convenient and
easy-to-use interface between both languages. In addition, the package brms was used
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for the distributional models described in sec. 5.2.3. The brms package is a convenient
extension of rstan to automatize the use of Bayesian inference for linear models.

MCMC diagnostics

Once an MCMC algorithm has been designed to sample from the posterior of a partic-
ular study, an important step is to ensure that the number of samples was enough for
the resulting distribution to have converged to the posterior. Remember that MCMC
methods ensure that the distribution eventually converges to the posterior, but they
say nothing about how fast this will happen. Fortunately, several diagnostics exist
to check when the samples have not yet converged properly (there are, however, no
diagnostics to know if the distribution has already converged). A part of any modern
Bayesian study that uses MCMC sampling always includes checking and reporting the
value of these diagnostics to discard any severe issues with the samples.

Most MCMC diagnostics are based on a method similar to ensemble forecasting:
Several chains are initialized for sampling the same posterior but using di�erent
initial values. The di�erent chains are then run until the required number of samples
(including warmup) are obtained. Theoretically, if a su�cient number of samples is
reached for each chain, every chain should arrive at the same posterior distribution.
However, when the di�erent chains show di�erent posterior distributions, it is a sign
that the samples have not yet converged to the posterior and that more samples are
needed. Therefore, two di�erent diagnostics are used to determine how similar the
chains are: The trace plot and the R̂ diagnostic.

The trace plot is a graphical representation of every step in sequential order
from every chain in the MCMC sampling. An example of a trace plot is shown in
Fig. 2.4. Good chains should show three properties in the trace plot: (i) stationarity,
(ii) good mixing, and (iii) convergence. Stationarity means that the path of each
chain stays more or less in the same high probability region of the posterior (that is,
the chain should not wander too much around the parameter space). Good mixing
occurs when the chain rapidly explores the entire region of the posterior: this can be
seen as each chain having a zig-zag path centered around a particular median value.
Finally, convergence means that the di�erent chains are all concentrated in the same
high-probability region of the posterior; this is seen in the trace plot when the chains
are superimposed on top of each other, looking like a �fuzzy caterpillar.� The trace
plots in the left column of Fig. 2.4 are an example of trace plots for good chains, while
those in the right are examples of bad chains.

A numerical complement to trace plots is a numerical diagnostic known as the
R̂ convergence diagnostic (pronounced �er-hat�), also known as the Gelman-Rubin

statistic (Gelman et al., 1992; Vehtari et al., 2021). The R̂ measures how much vari-
ance there is between chains relative to how much variance is within chains. The idea
is that after convergence, the chains should show the same between-chain variance as
within-chain variance, as the samples supposedly come from the same distribution.
When a chain is stuck in a di�erent region of the posterior, the between-chain vari-
ance increases its value relative to the within-chain variance. For chains that have
converged, R̂ ∈ [1, 1.1]. Values of R̂ greater than 1.1 typically signal a grave issue with
the MCMC samples and should always be suspected before using for the analysis.

The �nal standard diagnostic for MCMC chains is the E�ective Sample Size

(ESS). Typically, samples from MCMC show a high degree of autocorrelation, due
to the underlying Markov Chain used to construct the samples. The problem is that
autocorrelation decreases the new information given by each new sample: samples with
really high autocorrelation will contain very little new information about the posterior.
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Figure 2.4: Standard diagnostics for evaluating MCMC samples. The left column shows
samples from a 3-parameter model that shows good signs of stationarity, proper mixing, and
convergence. The right column shows samples from the same model but with chains that
show poor diagnostics. The warmup period samples were not included in the plots.

The ESS was created to get an idea of how much information is in the samples; it is
computed by dividing the actual sample size by the amount of autocorrelation. This
number is always lower than the total number of samples. The �proper� number of
ESS depends on the goal of the analysis: If the goal of the study is only to know
the posterior's median, relatively low values of ESS are acceptable. If, however, the
goal is to estimate the posterior's tails to create 95% credible intervals, a large ESS
is needed. A commonly used rule of thumb is that when estimating 95% credible
intervals, an ESS of 10,000 is required. Note that low sample sizes are typically not
an issue when using Stan, as HMC methods are typically much less autocorrelated
than other MCMC schemes.

To summarize, the common heuristic to check that the resulting MCMC samples
of the posterior distribution are representative is the following:

1. Run the MCMC sampling for 3 or 4 chains.

2. Check the trace plot for stationarity, good mixing, and convergence.

3. Check that the value of R̂ < 1.1.

4. Check that the ESS is su�ciently large, based on the goal of the analysis.

Finally, Stan contains a �nal diagnostic not present in the other MCMC schemes
based on the conservation of energy when solving the Hamiltonian equations of motion.
When the sampling is done in a very challenging/degenerate region of the posterior,
the energy will sometimes not be conserved. This is known in Stan as a Divergent
transition and will be reported in the �nal results of the sampling. Posterior distri-
butions that showed divergent transitions should be handled with care, as the samples
could have skipped parts of the posterior that should have been sampled. Strategies
to deal with divergent transitions can be found in Stan Development Team (2022).
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2.4 Uncertainty estimation

The statistical models described in the last section combine observations with ran-
domness to gain knowledge about a particular process. This newfound knowledge,
however, comes at a cost: The random component used in the model is inherently
uncertain, which, in turn, makes every component of the model, from the parameters
to the predictions, uncertain. This uncertainty does not mean that statistical models
are useless for real-world applications. On the contrary, �all models are wrong, but
some are useful� (George Box) Therefore, a crucial step in the modeling process is to
get an idea of the degree of uncertainty from the model. Then, we can judge how
valuable a particular model can be based on the particular application.

In speci�c terms, uncertainty in statistical models typically consists of three parts:

� Uncertainty in the measuring of the observations,

� uncertainty in the value of the model's parameters, and

� uncertainty in the model's predictions.

The �rst source of uncertainty, associated with the measurements, is a relevant
but often ignored4 source of uncertainty in the models. Ignoring the uncertainty of the
measurements is common due to the complexity of incorporating such uncertainty in
the models, although Bayesian inference has relatively straightforward ways of doing
so. The next source of uncertainty, that of the estimated values for the parameters
θ, is a result of using (inevitably) incomplete information when performing inference.
Lots of observations for a model typically result in less uncertainty for the estimated
parameters, but the information will never be perfect, always leading to some uncer-
tainty remaining. Moreover, in the case of Bayesian inference, previous knowledge
can also add (or subtract) uncertainty to the estimated parameters, depending on the
used prior. Finally, the last source, the uncertainty of the prediction made from the
models, stems from the �propagation� of uncertainty from the model parameters to
the model predictions. In this section, the last two sources of uncertainty are explored,
as well as some typical ways of presenting them.

Uncertainty is an inevitable part of statistical models, but what exactly is uncer-
tainty? This question has (surprisingly) many di�erent answers, highly related to the
respective analyst's de�nition of probability. The two most relevant interpretations of
uncertainty are the frequentist and the Bayesian interpretations of uncertainty. For
the frequentist approach, the true value of θ is �xed, and therefore, it has no un-
certainty. Instead, what is uncertain is the variability of the estimator that comes
from using di�erent samples from the same population (as depicted by the sampling
distribution). Under this paradigm, uncertainty cannot be expressed for one single
event; instead, it exists for a series of (imaginary) repeated experiments. In contrast,
for the Bayesian approach there is no true value of θ, so the uncertainty represents the
di�erent degrees of belief that the analyst has on every speci�c value of the parame-
ters. Each approach has a di�erent way of conveying uncertainty as a mathematical
expression, which we explore below.

2.4.1 Representing uncertainty: CIs

The uncertainty about the value of the model parameters or its predictions is typically
denoted using numerical intervals around some pointwise estimate. These intervals

4Alas, as it happens, we also ignore the uncertainty of the measurements in this thesis.
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Figure 2.5: 95% Con�dence intervals constructed from 100 simulated samples for the esti-
mate of the location parameter µ of a Gumbel distribution. The dashed line shows the true
value of the Gumbel distribution used to get the samples. The red intervals highlight those
that do not contain the true value inside.

are known as con�dence intervals for frequentist statistics and credibility inter-

vals for Bayesian statistics5. At a basic conceptual level, the width of CIs can be used
to judge how uncertain an estimate is: the larger the width of a CI, the more uncer-
tain the value is. However, the frequentist and Bayesian approaches di�er greatly in
interpreting such values. Thus, explaining what CIs in both approaches do and do
not represent is essential.

Con�dence intervals

Following the logic used to build the sampling distribution, we expect that there will
be some variability from sample to sample when estimating the point estimate θ̂.
Con�dence intervals construct a certain interval [θ̂±Z] such that, in the long run, the
true value of θ will be contained in (1− α) · 100% of cases, where α denotes the level
of con�dence. For example, a CI with α = 95 will be an interval that contains, in the
long run, the true value of the parameter for 95 samples out of 100 total samples.

Con�dence intervals cannot say anything about the probability of θ being inside
a single particular interval: For any given interval, the true value is either inside or
outside. Thus, the question �what is the probability that the true value of θ is inside
the CI?� is ill-posed, as it makes no sense in this context. Instead, an (1− α) · 100%
con�dence interval means that if sampling from the same population is repeated many
times, we expect that (1− α) · 100% of CIs contain the true parameter value for the
population. Figure 2.5 shows an example of 100 estimated sample location parameters
from the same population, where a 95% con�dence interval was constructed for each
estimate. Here, it can be seen that 95 intervals out of the total 100 contain the
true value, as expected. Also important to note is that con�dence intervals are not
probability distributions, meaning that the values around the center of the interval
are not more likely to be the true parameter than the values near the limits of the
intervals.

The width of con�dence intervals is mainly in�uenced by sample variability and
sample size. When the samples from the population are very di�erent, the resulting
estimates will vary greatly, increasing the width of the interval. This variability is

5This naming standard is rather unfortunate, as both con�dence and credibility intervals use the
same acronym CI. However, context usually dictates what kind of CI the analyst refers to. Most CIs
seen �in the wild� are frequentist con�dence intervals.
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usually out of the analyst's control, as it comes from the inherent variability in the
observed process. As for sample size, bigger samples almost always result in shorter
con�dence intervals. This occurs because adding more information reduces the uncer-
tainty of the estimated parameter values. Therefore, a straightforward way of reducing
uncertainty is to increase the sample size or, at least, use the existing observations
to extract more information from them. This latter approach is the one used for the
spatial methods explained in the next chapter.

The construction procedure of con�dence intervals is usually based on asymptotical
methods. These methods work in the large-sample setting, where it is assumed that
the θ̂ estimates will be distributed according to a Gaussian distribution, as per the
central limit theorem. In fact, for unbiased estimators like the MLE under the large-
sample setting, the estimates are Gaussian distributed (eq. (2.10)), with a variance
given by the Fisher information matrix. Con�dence intervals are then constructed
by �nding the corresponding range of parameters where the α probability level of
this Gaussian distribution is contained. Asymptotical methods can also propagate
the uncertainty from the parameters to the predictions. For an example see the
delta method, which also assumes asymptotical normality of scalar functions g(θ̂) to
construct con�dence intervals.

Constructing con�dence intervals using asymptotical methods requires making sev-
eral assumptions that do not always hold when using data. Therefore, a way of as-
sessing con�dence intervals helps check the assumptions. This assessment is given by
the coverage probability of con�dence intervals. The coverage probability is the
probability of the true value being inside the con�dence intervals. In this case, the
nominal coverage is the desired theoretical coverage of the intervals, usually taken to
be 95%. In contrast, the empirical coverage is the one actually shown by the con-
structed intervals. The di�erence between the nominal and empirical coverage can
be large when either the asymptotical assumptions are violated, or the model is mis-
speci�ed. The calculation of coverage probabilities is done using simulations: A large
number of n-samples from a population with a known parameter value θ is obtained,
from which n-con�dence intervals are constructed. The empirical coverage is then the
proportion of intervals containing the parameter's true value (Schall, 2012).

Credibility intervals

In contrast to the frequentist approach, the Bayesian approach assumes that the
parameters θ and the observations are uncertain. This contrast is re�ected by the
fact that in Bayesian inference, every parameter has its own probability distribution
given by the prior and the posterior. The uncertainty of the parameter value is then
given directly by the resulting distribution of each parameter; no extra computation
is needed.

After performing inference with Bayes' rule, the uncertainty of the parameter's
value is given by the posterior distribution p(θ | D). From the posterior, credibility
intervals with a probability level of α can be constructed as the equal-tailed region
of the distribution where α · 100% of the density is concentrated. For example, a
50% credible interval is the equal-tailed region that contains 50% of the density of the
posterior. Similar to con�dence intervals, it is common to use levels of 90% and 95%
for constructing credible intervals.

An alternative to credible intervals is given by the Highest Density Interval

(HDI), which is constructed similarly but is not always equal-tailed. The di�erence
between CIs and HDIs is seen chie�y for non-unimodal posterior distributions. Figure
2.6 shows the credible intervals and the HDI for the example in Fig. 3.9.
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Figure 2.6: 95% HDI and equi-tailed credibility interval for the posterior distribution from
the example seen in the bottom right plot of Fig. 3.9. Notice that the HDI and the CI di�er
by a little amount.

In contrast to con�dence intervals, the interpretation of credible intervals is more
intuitive. Credibility intervals (or HDIs, for that matter) answer the question, �given
the observations and our previous knowledge, what is the probability that the true
value of the parameter will be inside the interval?�. Thus, if one has a 95% credible
interval, it is correct to say that any value inside of the interval has a probability of 95%
being the true value, given the previous assumptions. Note that the interpretation of
credible intervals always includes previous knowledge, as the choice of prior has an
important in�uence on the resulting credible intervals.

Credibility intervals and HDIs are merely summaries of the posterior distribution
and, therefore, do not represent distributions. Thus, when given only a credible
interval, it is generally not possible to know if the values in the middle of the interval
are more probable than values near the boundaries of the interval. This information
is given only by the full posterior distribution, and as such, it is always recommended
to report the full posterior when performing Bayesian inference.

2.5 Model predictions

Once a statistical model for the random variable Y has been chosen, and its parameters
θ have been estimated with the methods of the last section, the next step is to obtain
predictions from the model. Predicting from a statistical model involves �nding what
values of Y are likely to occur in di�erent contexts. For example, we could be interested
in:

� �nding what value of Y is the most likely for a particular value of a predictor x,

� �nding the most likely value of Y that has a 0.95 probability of not being
exceeded,

� �nding how likely it is that a certain value of Y is exceeded,

� �nding 1000 values of Y , distributed according to the data-generating process,

� among other aspects.

All of the above are examples of prediction using statistical models. These proce-
dures require knowing the model's probability mass function (for discrete variables) or
the probability density function (for continuous variables). However, a problem arises
when considering that the parameters entirely determine the shape of the resulting
mass/density function: as we have seen in the last section, the value of the estimated
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parameters is uncertain. As every parameter value leads to a di�erent function, the
resulting probability mass/density functions are also uncertain.

In this section, we will tackle the problem of propagating uncertainty from the pa-
rameters to the predictions made from a model. The speci�cs of how to get predictions
from an extreme-valued function will be seen in the next chapter, after introducing
the GEV distribution.

2.5.1 Uncertainty propagation

As discussed in the last section, all statistical models always possess an element of
uncertainty. Because the value of the parameters can never be known with complete
certainty, this always means that the predictions from a model will also contain some
uncertainty. After all, every possible parameter value will eventually lead to di�erent
predictions, so if the parameter values are uncertain, so are the predictions.

Calculating the uncertainty of the predictions made by a model is done by �propa-
gating� the uncertainty from the parameter values to the predictions. As uncertainty
is handled very di�erently by the frequentist and Bayesian paradigms, this propa-
gation is also very di�erent for each approach. We now explore the main ways of
propagation for the frequentist and Bayesian approaches.

Frequentist propagation of uncertainty

Propagation of uncertainty for frequentist methods is done via two main approaches:
asymptotical methods and resampling methods. The former approach, using asymp-
totical methods, is, in essence, the same as the asymptotical methods used to construct
the con�dence intervals in the �rst place. The di�erence is that instead of using the
approximate normality of θ̂ to construct the CIs, the approximate normality of a
scalar function of the estimator g(θ̂) is used to construct the CIs. The usual way
of performing this approximation is the delta method, explained in more detail by
Coles (2001). The delta method is, however, not the only asymptotical method that
exists to propagate uncertainty. Other methods include the deviance function or the
pro�le likelihood functions.

The other approach to uncertainty propagation, resampling methods, is performed
by creating many arti�cial samples from the original dataset. For each of these sam-
ples, an estimate of the parameter is obtained, which is then used to get a prediction.
In the end, all the predictions from the many samples are collected, from which the de-
sired CI can be obtained by simply taking the corresponding empirical quantiles. The
most widely used resampling method is known as the bootstrap. A comprehensive
introduction to the bootstrap method is given by Davison et al. (1997).

Bayesian propagation of uncertainty

The result of Bayesian inference is a distribution of the parameters θ conditional on
the observations (that is, the posterior distribution p(θ | D)). From the posterior,
information about the uncertainty of parameter values is given as credibility intervals.
However, for prediction studies, we also desire to know the uncertainty of predicted
values, denoted by ypred. Thus, a way to propagate the uncertainty from the param-
eters to the predictions is needed.

Take as an example a model used for precipitation intensity. This model uses
a Gamma distribution to describe the intensity (a choice justi�ed in Wilks (2011)).
We �x the value of the β parameter to be constant to simplify the example. Using
very broad priors for the α parameter of the Gamma distribution, we arrive at the
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posterior distribution p(α | D). From this posterior, we extract the 95% credibility
intervals [2.99, 4.38], which represent the interval where the value of α has a 95%
probability of being located, according to our previous assumptions. The question is
now: what is the distribution of possible rainfall intensity values given this distribution
of parameters? Remember that for every possible value of α and β, there will be a
corresponding distribution of intensity values.

A �rst approach is to take the value of p(α | D) with the highest density (e.g., the
mode) and use this single value as the pointwise estimate of α. However, by doing
this, the resulting distribution of predictions will be overly con�dent, as it has ignored
all the uncertainty in α.

To overcome this issue, instead of taking a single value, we can marginalize the
predictions ypred out of the posterior by integrating over all the values of θ. In math-
ematical terms,

p(ypred | D) =

∫
θ
p(ypred | θ, D)p(θ | D)dθ. (2.16)

In practical terms, this integral can be seen as a weighted average of all the possible
distributions given by θ, where the weight is given by the probability of each param-
eter value given by the posterior. This idea is illustrated in Fig. 2.7. The resulting
distribution from this integration is known as the posterior predictive distribu-

tion. From the posterior predictive distribution, credible intervals can describe the
uncertainty of the predicted ypred.

The integral of eq. (2.16) could be challenging to solve. Fortunately, for MCMC
samples it is su�cient to sample a value from the distribution given by each sample;
the resulting distribution of the sampled values will be equivalent to p(ypred | D).
This avoids the need to actually perform the integral.

2.6 Model validation

Statistical inference gives us values of the model parameters θ that align with our
assumptions about the model and the data. The question is then to determine how
good the resulting models are. However, there is no single universal de�nition of what
a �good� model is, as this is determined by the ultimate goals for the model. When
the goal is to make predictions about unobserved events, good models should have
the following characteristics:

� The model should be a self-consistent logical representation of the observed data.

� The model should make predictions close to the unobserved data's true values.

The �rst point, model consistency with the assumptions, can be performed using
what is sometimes known asmodel diagnostics. It is important to remember that a
model with perfect logical consistency does not assure that the model will be at all a
good representation of the real world. Nevertheless, a model should always (at least!)
be consistent with the logic used to create it.

The second point, related to the accuracy of the predictions, is a much more
complex topic. The main issue is that the true value of the unobserved data is unknown
so it is impossible to check how good the model was at predicting them directly.
Nevertheless, several techniques use the observed data in clever ways to get an idea of
how good a model is in predicting unobserved values (i.e., the out-of-sample accuracy).
These methods include cross-validation and information criteria.
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Figure 2.7: Example of a posterior predictive distribution for the Gamma distribution
model. The top plot shows the distribution of possible values for the shape parameter α of
a standard gamma distribution. The middle plot shows �ve standard gamma distributions
resulting from using the α values marked in the posterior with dots. The line width is
proportional to the probability density of each α in the posterior. The bottom plot shows the
resulting distribution of samples after applying the weighted average described by eq. (2.16).

Figure 2.8: Model diagnostics for the GEV model �tted in Fig. 3.9. The plots shown here
were generated with the evd package (Stephenson, 2002).
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The next section will �rst explore the primary tools used to check the assumptions
and self-consistency of statistical models, which are mainly graphical. Then, the two
main methods to check model predictions will be explored.

2.6.1 Checking model assumptions

Every statistical model contains background assumptions about the underlying data-
generating process and the data itself. These assumptions include, for example, as-
suming that the data follows a certain distribution or that the sample is representative
of the population. When the assumptions made for a model are incompatible with
the observed data, the model will not be a good representation. Thus, it is crucial to
check that the model is a good representation of the data used to estimate it. This
check is accomplished via a series of methods known asmodel diagnostics. I present
here four graphical types of diagnostics, which are used in the studies presented later.

The �rst graphical method is to superpose the probability density given by the
�tted model with either the histogram or the estimated density of the data (bottom
left plot of Fig. 2.8). The resulting plot is sometimes known as the density plot. The
density given by the model should be similar to that of the observations; signi�cant
di�erences between them signal that the model is not a good representation. This
method is possibly the easiest one to interpret, but it is also the most unreliable: It
is hard to judge di�erences in the tails from a simple visual analysis. Therefore, the
density plot is a useful �rst approximation but must always be followed by another
diagnostic plot.

The next two diagnostic plots are based on the empirical distribution function.
Let {x1 ≤ x2 ≤ · · · ≤ xn} represent an ordered sample of independent observations.
Following Coles (2001), the empirical distribution function F is de�ned by

F̃ (x) =
i

n+ 1
forxi ≤ x < xi+1. (2.17)

From this formulation, it is apparent that for any xi, exactly i of the n observations
have a value less than or equal to xi. Therefore, an estimate of the probability of an
observation being less or equal to xi is given by F̃ (xi). The great advantage of F̃ (x)
is that it is a model-free estimate of the actual distribution function F . As such, it
can be used to judge how appropriate a certain model F̂ (x) is: If F̂ (x) represents
an appropriate model to describe the data, then F̂ (x) should be similar to F̃ (xi):
deviations from the model to the empirical distribution indicate problems with the
background assumptions. Two graphical models exist to compare F̂ (x) with F̃ (xi):
probability-probability plots and quantile-quantile plots.

Probability plots, also known as PP plots, consist of a simple scatter plot com-
paring F̂ (x) and F̃ (xi). For F̂ (x) to be considered a good model for the data, the
dots should lie close to the unit diagonal. An example of a PP plot is shown in the
upper left panel of Fig. 2.8.

The probability-probability plot compares the full support of both the empirical
and theoretical distribution. Thus, this plot focuses on the central region of the
distributions, making a comparison of the tails very di�cult. When the analysis aims
to focus on the tails of a distribution we need to transform the visualization to focus
on this region. This is done via the quantile-quantile plot, also known as the QQ
plot. The QQ plot is also a scatter plot, but in contrast to the PP plot, the QQ
plot plots F̂−1(x) vs. xi. The inverse of the distribution function F−1 is commonly
referred to as the quantile function, from which the name QQ plot stems. As before,
the model F̂ (x) is considered a good representation of the data when the points lie
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Figure 2.9: Example of a posterior predictive check using the posterior predictive distribu-
tion from Fig. 2.7. The estimated density for the observed data (black line) is superposed
with 10 samples from the posterior predictive distribution. In this case, the simulated data
is more or less capable of replicating the observed data, a positive sign for this model.

close to the unit diagonal. The QQ plot is handy for diagnosing the extreme-valued
models explored in the next chapter. An example is given in the upper right panel of
Fig. 2.8.

Another diagnostic plot used in this thesis is the return level plot. A more precise
de�nition of return levels is given in the next chapter, but in a nutshell, they represent
the magnitude of the random value for a certain �xed probability of non-exceedance.
An example is seen in the bottom right of Fig 2.8. As before, an model is appropriate
when the values lie close to the diagonal line.

The previously described diagnostic plots are valid for both the frequentist and
Bayesian approaches. However, in the case of the Bayesian approach, those plots
are mainly based on a pointwise estimate of the parameter values, commonly taken
as the posterior distribution's median. An alternative that uses the full posterior
distribution is based on the posterior predictive distribution. The PPD is useful to
getting the uncertainty of ypred and as a model diagnostic. For the diagnostic, the
distribution of the observations is plotted simultaneously with the posterior predictive
distribution. The reasoning is that we should expect the model to be able to predict
the observations used to �t it; a model whose predictions were very di�erent from
the observations should be cast as highly suspicious. An example of this procedure,
known as the posterior predictive check, is seen in the rainfall intensity example
in Fig. 2.9.

2.6.2 Checking model predictions

A crucial step in prediction using statistical models is to determine just how accurate
the predictions are for unobserved values. This evaluation is known as the out-of-
sample prediction accuracy. This problem is not trivial; by de�nition, we do not
have access to unobserved values. Furthermore, we �rst need to �nd a measure of
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accuracy for our model, that is, a measure of the distance between a model and some
target. This last problem requires a detour in the �eld of information theory to arrive
at the concept of deviance.

Information Theory: entropy and divergence

In order to know how accurate our model is, we need to �nd a measure of distance
between the model and our target. In the context of statistical modeling, both the
model and the target are statistical distributions. Thus, we need to �nd a measure of
distance between two distributions. This measure is given by the �eld of information
theory, developed in the 1940s. The basic concept is that of information, which is
de�ned as �the reduction in uncertainty when an outcome is learned.� Information

entropy gives the measure of this uncertainty for any probability distribution. For
a random variable X with n di�erent possible mutually exclusive and collectively
exhaustive events, where each event i has probability pi the information entropy is
de�ned as:

H(X) = −E[log(pi)] =
n∑
i=1

pi log(pi). (2.18)

By themselves, the values of H(X) for any given distribution do not have much
meaning other than larger values being somewhat associated with higher uncertainty.
Instead, entropy becomes interesting when it is used to compare several distributions,
as it can be used to build the measure of accuracy we need.

Assume that we have two di�erent distributions, p and q, where p represents the
true target distribution of the data, and q represents the distribution assigned as the
model. We want to �nd a measure of how much uncertainty is added when using
the model q to describe the true probability of the events given by p. This added
uncertainty is given by the cross-entropy of (p, q), de�ned as:

H(p, q) = −
n∑
i=1

pi log(qi). (2.19)

Therefore, a measure of the accuracy of the model q can be derived by calculating
how much additional uncertainty was added by using q to describe the events of
p (given by H(p, q)) compared to the initial uncertainty of p (given by H(p)). In
mathematical terms:

DKL(p, q) = H(p, q)−H(p) =
n∑
i=1

pi(log(pi)− log(qi)). (2.20)

This quantity is known as the Kullback-Leibler divergence or simply the KL
divergence. When p = q, the KL divergence is DKL = 0. A perfect model would have
zero KL divergence; the bigger the divergence, the more distant our model is from the
target. Note that the KL divergence is not symmetrical, as H(p, q) 6= H(q, p). From
eq. (2.20), it can be seen that the KL divergence is merely the average di�erence in
log probability between the target (p) and the model (q).

The KL divergence has a deep connection with all methods for statistical infer-
ence. For example, it can be proven that �nding the MLE estimator θ̂ described in
section 2.3.1 is asymptotically equivalent (for large n) to �nding a parameter θ̂ for a
probability distribution that minimizes the KL divergence with the true distribution
from which the data was generated. For Bayesian inference, KL Divergence can be
seen as how much uncertainty was added when going from the prior to the posterior.
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This helps in �nding priors that maximize the entropy of the problem, which lead to
posteriors that maximize the information.

The fact that KL divergence increases as the model is more di�erent than the
target can be used to compare between di�erent models: If we had to choose between
two candidate models, q and r, the one with the least KL divergence would be the
best choice. The di�erence between both divergence values is given by:

DKL(p, q)−DKL(p, r) =
n∑
i=1

pi(log(pi)− log(qi))−
n∑
i=1

pi(log(pi)− log(ri))

=
n∑
i=1

pi(log(pi)− log(qi)− log(pi) + log(ri))

=
n∑
i=1

pi(log(qi)− log(ri))

= E[log(q)]− E[log(r)].

As can be seen, most terms with the true probability of the target (p) cancel out. This
is desired, as usually we do not know what p is. As long as we can �nd the model's
average log-probability E[log(q)], we can get a clear picture of which one is closer to
the target. Furthermore, while the p term inside the expectation is unknown, it turns
out that simply taking the sum of the log-probabilities is a good approximation of the
average log-probability:

E[log(q)] ≈ S(q) =

n∑
i=1

log(qi). (2.21)

Therefore, an approximation of the di�erence in the KL divergence between the two
models can be given as

∑
log(qi) −

∑
log(ri). The absolute value of either S(q) or

S(r) has no meaning; only the di�erence between them gives us information about the
accuracy of the model. The quantity S(q) is sometimes known as the log-probability
score, as it can be used to compare between models. The quantity −2S(q) is some-
times known as theDeviance, another commonly used score used to compare between
models.

When working with Bayesian inference, direct use of both the log-probability score
and the Deviance can be challenging, as every event i has a distribution of possible
values of pi. The �rst approach would be to simply get the median probability for every
pi in the posterior. However, by doing this, we are wasting most of the information
contained in the posterior. Thus, �nding the logarithm of the average probability for
each i is better, where the average is taken over the entire posterior distribution. The
result of this operation is known as the log-pointwise-predictive-density (lppd).
In mathematical terms:

lppd(x,G(θ)) =
∑
i

log
1

N

∑
n

p(xi | θn), (2.22)

where x represents the observed data, G(θ) is the posterior distribution, θn is the
n-th sample from the posterior distribution, and N is the number of MCMC samples.
The lppd is the Bayesian analog of the Deviance.

To summarize, this section addressed two problems that arise when estimating the
predictive accuracy of a statistical model, namely:
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Figure 2.10: Graphical depiction of how K−fold CV works. A dataset is divided into K-
folds, from which the model is �tted using K − 1 folds. The remaining one is used as the
validation set. This process is iterated until every fold is used as the validation one.

� How to construct a measure of the distance between a model q and the target
distribution q (the KL Divergence), and

� how to estimate this distance to compare two models q and p with the informa-
tion at hand (the Deviance and lppd).

From predictions to out-of-sample model accuracy

So far, we have seen that the KL Divergence can be used to judge between two models
under the precept that a model that is closer to the target distribution is better. How-
ever, a not-so-surprising result arises when using only the Deviance/lppd/log-score as
a measure of accuracy: More complex models always lead to better score values 6.
This is a problem because models with a lot of parameters (relative to the number
of data points) always lead to over�tting. Over�tting simply means that the model
has learned too much from the data and, as a result, cannot make good predictions
for data it has not observed before. The contrary phenomenon, under�tting, occurs
when the model learns too little and thus cannot predict observed or unobserved data.
Thus, we want to construct a way of using the accuracy scores such that it avoids both
under- and over�tting. This is accomplished in two di�erent ways: cross-validation
and information criteria.

Cross-validation is one of the simplest and most commonly used methods to
estimate the out-of-sample model accuracy. The idea is to split the data into a training
and a validation set, where the training set is used to do inference on the model
parameters, and the validation set is used to compute the accuracy of the predictions.
However, because throwing away data for the validation is undesirable, the data is
�rst split into K-chunks (typically known as folds). Each of the K−folds is then used
as the validation set, using the other folds for the training. This means that all the
data is used to train and validate the model, avoiding waste. This procedure, known
as K−fold cross-validation, can be graphically seen in �gure 2.10.

An important design choice when performing Cross-Validation is the number of
folds (K). A typical choice isK = 10, which has been justi�ed as a good default choice
by several authors (Hastie et al., 2009). 10-Fold cross-validation is the default for the
veri�cation section of the work done in this thesis. An alternative is to use as many
folds as there are data points: this is known as Leave-One-Out-Cross-Validation
(LOOCV).

6Complexity in this context means adding parameters to the model
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By itself, cross-validation is a very general method to estimate out-of-sample model
accuracy. It is not exclusively used to determine the out-of-sample divergence. For
example, many di�erent metrics can be used with cross-validation, such as RMSE
or the Quantile Score. Let K : {1, ..., N} → {1, ...,K} be an indexing function that
denotes the fold to which the randomization assigns the observation i. The �tted
model is then q−k, where the kth part of the data was removed when training the
model. The cross-validated estimate of the out-of-sample accuracy is then

CV(p) =
1

N

N∑
i=1

S(yi, q
−k(i)), (2.23)

where S(·) represents the scoring function used, and k = 1, ...,K.
Depending on the number of folds, K−fold cross-validation is a simple way to

estimate the out-of-sample accuracy for our model p. Common examples of scor-
ing functions include the root mean square error (RMSE) or the mean average error
(MAE). For the studies described in this thesis, two di�erent score functions S(·) are
used: the Quantile Score and the Deviance (or lppd in the Bayesian case). The Quan-
tile Score is used to measure the accuracy of the predictions for the �nal model, while
the Deviance/lppd was used to guide the choice of model. The speci�c formulation of
the Quantile Score is given in sections 5.2.4 and 4.2.2.

The method described in eq. (2.23) requires that the model be �tted K-times,
which in the case of large K can be quite demanding. The most extreme case, LOO-
CV, is challenging for Bayesian inference, as it would require K posterior distribu-
tions to be sampled. For example, if we had 100 observations, we would have to
compute 100 posterior distributions (which depending on the model, could take a
couple of days per posterior). To circumvent this, Vehtari et al. (2017a) developed
a method to approximate the LOO deviance without having to �t the model many
times. This handy method, called the Pareto-Smoothed importance sampling

cross-validation (PSIS), is based on the so-called importance sampling, where each
observation is weighted according to how common it is. The weights are calculated
in the background using the Generalized Pareto Distribution, which compares how
extreme each observation was compared to what was expected. See Vehtari et al.
(2017b) for more information on PSIS and how to use it to estimate the LOO-CV
deviance. For the Bayesian sections of this dissertation, the LOO-CV deviance was
estimated using PSIS.

An alternative to cross-validation is Information Criteria, where instead of
�brute-forcing� the estimate by reusing the data, a theoretical estimate of the rela-
tive out-of-sample KL divergence is constructed. The most famous (and commonly
used) example of information criteria is the Akaike Information Criterion (AIC)
[pronounced a-ka-e-ke]. The AIC has the following formula:

AIC = Dtrain + 2p = −2lppd + 2p. (2.24)

Here D represents the deviance of the training sample, which is approximated by the
lppd. The p represents the number of parameters present in the model. Because of
the −2 present in the �rst term, the preferred model is the one with the lowest AIC.
From eq. (2.24), it is apparent that the more parameters in the model, the more the
AIC will grow, due to the term 2p acting as a penalty term to avoid over�tting.

Just as the other derivated measures of relative KL divergence, AIC (and, in fact,
all information criteria) do not provide any information about the absolute accuracy
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of a model. They can only be interpreted in the context of comparing several mod-
els. After choosing a model with information criteria, the predictions should still be
checked for out-of-sample accuracy using a method like cross-validation.

The AIC is an e�ective tool for model selection, used in many publications. How-
ever, it makes rather strict assumptions about the model - for example, it assumes
that the sample size N is much larger than the number of parameters; furthermore,
for the Bayesian approach the AIC assumes a very �at prior over the parameters and
that the posterior distribution is multivariate Gaussian. To counteract this, newer
approximations with less restrictive assumptions have been developed, which have
surpassed the AIC in almost every aspect. For the Bayesian paradigm Watanabe
et al. (2010) developed the Widely Applicable Information Criterion (WAIC),
which is an ideal alternative to AIC as it makes no assumptions about the shape of
the posterior. The WAIC is calculated as

WAIC(x,G(θ)) = −2

(
lppd−

∑
i

varθ log p(xi | θ)

)
. (2.25)

This time the penalty term is
∑

varθ log p(xi | θ), which is proportional to the variance
of the posterior predictions. The WAIC is computed pointwise (i.e., individually for
each observation), so every observation has its own penalty score. Just as with the
AIC, the model with the lowest WAIC value should be preferred.

Before explaining how these out-of-sample accuracy measures work in practice,
it is important to point out some of their limitations. First, by design, information
criteria like AIC or WAIC will not always point to the �true� model; in statistical
jargon, it means that information criteria are inconsistent for model identi�cation.
The inconsistency of information criteria arises because, in many situations, the model
with the best predictions will have either biased parameter values or a di�erent number
of parameters than the true model. As a sidenote, this identi�cation problem is part of
why causal analysis is a very di�erent problem from prediction, and thus, the chosen
parameters of a model from Information Criteria should not be used to infer causal
relationships.

Finally, it is worth mentioning that an interesting relationship arises between
WAIC/AIC and the PSIS-LOO-CV. First, both PSIS-LOO and WAIC are pointwise,
so each observation gets its own accuracy value. More importantly, it turns out that
when the number of observations is really large, the value of LOO-CV and WAIC/AIC
converge (in fact, this convergence can already be seen for moderately large data
samples). Based on this, Watanabe postulated the following rule-of-thumb: If the
PSIS-LOO and the WAIC for a certain model are very dissimilar, one (or both) of the
two scores is probably unreliable.

2.6.3 Model validation in practice

This section began by describing the issue of measuring the accuracy of models and
arguing that KL divergence is the measure that tells us which model is closer to the
target. It went on to explain how to construct an estimate of this quantity, especially
for the out-of-sample accuracy, using either resampling methods (cross-validation) or
a theoretical approximation (information criteria). But how is this applied in practice
in the context of a study where prediction with a statistical model is the goal?. This
is usually done with the following steps:

1. If deciding between two or more models to use for the data, use information cri-
teria like AIC or WAIC to choose the one with the best out-of-sample accuracy.
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2. Check that the �tted model properly represents the data using model diagnostics
like the PP or QQ-plots. In the case of Bayesian inference, check additionally
that the model can generate the data using a posterior predictive check.

3. Get an estimate of the out-of-sample prediction accuracy using a cross-validated
metric like the RMSE or the Quantile Score.

If performance is not what was expected in any of these steps, the model should
be revised. The results for this validation were reported for all the studies included
in this thesis.

It is important to remember that even a model that passes all steps can still be
a poor representation of the actual data-generating process. A statistical model that
has good out-of-sample prediction accuracy can still catastrophically fail when used
in a di�erent setting or when trying to explain causality.

2.7 Summary

In this section, we have seen an overview of the steps required to use a statistical
model. The �rst step is to choose an appropriate model to represent a process that
can be seen as stochastic. This model is a mathematical formula whose behavior is
controlled by quantities known as parameters. In order to propose values of the pa-
rameters, inference is performed by using the data to �nd parameter values that result
in a model that is able to properly capture the variability seen in the observations.
However, the stochastical nature of these estimates always results in uncertainty about
the value of the parameters, and in turn, also in uncertainty about the predictions
made by the models. In this chapter, several methods of estimation were explored,
which can be broadly classi�ed as frequentist or Bayesian. Additionally, this chapter
explored how to get predictions from a model, which required a way of propagating
the uncertainty from the parameter values to the predictions. Finally, several aspects
of model validation were explored, which are used to check that the predictions are in
line with what is expected from the data.



41

3
Stochastic models for Rainfall Extremes

In this chapter, the tools presented for statistical modeling in the last chapter are
extended to handle spatial data from extreme rainfall events. This extension �rst
requires the introduction of univariate extreme value theory, which is combined with
spatial statistics to arrive at the methods englobed by so-called spatial extremes.

3.1 Statistical dependence of extreme rainfall

One of the goals of this thesis is to take advantage of the existing statistical dependence
on an extreme rainfall series to improve and reduce the uncertainties of statistical
models' estimates. The base assumption here, of course, is that such a statistical
dependence exists in the datasets we used.

This section explores why extreme rainfall datasets, comprised of records for sev-
eral rain gauges in the same geographical catchment, virtually always show some level
of spatial dependence. We will discuss how this is ultimately the result of the prevail-
ing meteorological processes in the region. Additionally, we will show another type of
dependence present in rainfall maxima of di�erent durations; this �temporal� depen-
dence can be modeled with the same methods used to deal with spatial dependence,
also allowing the analyst to improve the estimates.

This section discusses the statistical properties of datasets made up of rainfall
maxima. For clari�cation, we consider these datasets to be comprised of the annual
or semi-annual maxima of precipitation height for each year in the observation record.
The reasoning for this choice is explained in section 3.3.1.

3.1.1 Spatial dependence

Many of the methods described in this work for the statistical modeling of extreme
rainfall take advantage of the spatial dependence in annual rainfall maxima for rain
gauges located in nearby locations. Later in this chapter, we will see more about
the concept of spatial dependence and how to include it in models. However, an
important question should be answered before delving into the mathematical details:
why do extreme rainfall observations typically show so-called spatial dependence?

The simplest answer to the above question is that extreme rainfall events are
sometimes large enough to impact several rain gauges simultaneously. For example,
the upper panel of Fig 3.1 shows an example of an extreme event where the spatial
extent was such that several stations were a�ected simultaneously. When computing
the station-wise annual maxima for this kind of dataset, the magnitude values in any
given year for the stations that were hit simultaneously by the same event will likely
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Figure 3.1: Upper panel: Map of Berlin-Brandenburg showing the accumulated 24-hour
daily precipitation for the 2017 extreme rainfall event (data source: RADOLAN, DWD).
Dots represent rain gauges from the DWD. Lower panel: Time series of the recorded daily
precipitation of the 45 gauges shown in the map above for 2017. The blue dashed line denotes
the day of the event denoted in the above map; the red dots indicate when the corresponding
annual maxima were recorded.
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Figure 3.2: Maps of Berlin-Brandenburg showing the magnitude (area) and month (color)
of the annual maxima registered in 1992, 2010, and 2017 for the 53 rain gauges described in
section 5.2.1.

be similar. For example, the lower panel of Fig 3.1 shows that for most of the stations
where the annual maxima are taken from this particular day, the measured rainfall is
between 50 and 100 mm. This similarity between stations is likely repeated for several
years, inducing a statistical dependence.

The explanation above helps to explain why it is common to �nd spatial depen-
dence in annual maxima for gauges of the same geographical catchment. However, it is
important not to be misled by thinking only about individual events: annual maxima
are taken over all the events that occur during one year, meaning that one cannot
ensure that the maxima came from the same event for any given year. For example, a
quick look at the lower panel of Fig 3.1 reveals that, while most of the maxima come
from the 29.06 event, the rest is distributed from June to August. In fact, we will see
later from Fig. 5.9 that for the same region (with an extent of around 250× 250km),
the number of unique convective-based extreme rainfall events that result in annual
maxima of 53 stations is, on average, around 12 per year.

Another example can be seen in Fig. 3.2, where the di�erent colors indicate the
date from which the annual maxima were registered. In 1992 and 2017, many di�erent
months can be seen, where clusters of nearby stations tend to have the same color.
In contrast, 2010 shows that most of the annual maxima came from an event in
July. Additionally, the �gure shows that nearby stations also have similar magnitudes,
represented by the size of the circle. It is the repeated occurrence of these patterns
that eventually lead to the existence of a spatial dependence structure in block maxima
data.

The examples above can be summarized by saying that the spatial heterogeneity of
individual events makes it so that nearby stations could have yearly maxima stemming
from di�erent events of the same year. However, given a long-enough record, we
expect, on average, to see similar magnitude values for nearby stations. Ultimately,
each individual event's geometry is what determines how much dependence will exist in
the dataset. Luckily, this geometry is not random: as explained above, each rainfall-
generating process can be associated with di�erent geometrical patterns with well-
de�ned scales.

To better understand this idea, Fig. 3.3 shows the magnitude of block maxima for
three years; however, in contrast with the last �gure, here, the maxima were taken
over two di�erent seasons: winter and summer, resulting in semi-annual instead of
annual block maxima. The reasoning behind this choice is that di�erent types of
rainfall processes dominate in winter and summer (this idea is explored in depth in
ch. 5). For the summer of 2005, the magnitudes of the semi-annual maxima can be
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Figure 3.3: Maps of Berlin-Brandenburg showing the magnitude (area) of the semi-annual
maxima registered in 2005, 2010, and 2020 for the 53 rain gauges described in section 5.2.1.
The upper panel shows the semi-annual summer maxima, while the lower panel shows the
semi-annual winter maxima.

seen to be making small clusters of several stations; this changes in the winter of the
same year, where the geometry of similar magnitudes changes substantially to have a
kind of barrier in the middle. This example helps to see that the dependence structure
is ultimately a function of the prevailing rainfall-generating process regime.

3.1.2 Temporal dependence

Another type of dependence commonly encountered within the context of statistical
extreme rainfall modeling is the one that exists between rainfall records of di�erent
time scales. To understand this, consider a rain gauge that measures precipitation
height every hour, which is then hit by a storm that lasts for 6 hours. The amount of
rainfall that is measured every hour (i.e., the rainfall intensity, commonly measured
in [mm/h] or [mm/day]) changes during this interval so that at some hours, there is
more rainfall than at others. An example of such an event can be seen in Fig. 3.4.
We can summarize the event by getting an average intensity over the 6-hour interval;
in fact, we can get the average intensity for any arbitrary duration, as seen in the left
panel of Fig. 3.4.

A common strategy for studying rainfall in di�erent time scales (i.e., di�erent du-
rations) is to take a rolling average of intensity for di�erent durations. This operation
is seen in the right panel of Fig. 3.4, where the initial window in the left panel is moved
to the next available timestep. This operation can be repeated until all the recorded
timesteps are covered, generating a time series of aggregated rainfall intensity values
for di�erent durations (i.e., time scales).

Once aggregated series of di�erent durations have been generated, they can be
used to study extreme rainfall events with di�erent time scales: a possibility to do
this is to take the annual maxima of intensity values for each duration. Figure 3.5
shows the resulting annual maxima for di�erent aggregation durations for the com-
plete data series used to generate Fig. 3.4. Notice that, in general, an increase in
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Figure 3.4: Time series showing hourly rainfall height (mm) for a timespan of approx.
3 days. The red intervals show increasing aggregation intervals where average intensity is
calculated. Notice how typically intensity decreases with increasing duration. Data source:
DWD

Figure 3.5: Time series of annual maxima for 7 aggregation durations. Data source: DWD

aggregation duration results in a decrease in intensity, with the lower durations show-
ing the largest average intensity values. An extreme value distribution could then
be �tted individually to each series to obtain the statistical properties of events with
di�erent durations. However, as we will explore later in this thesis, a certain model,
known as the d-GEV, is capable of englobing the information of all durations into a
single model, optimizing the use of information.

Figure 3.5 also shows an additional feature of this kind of maxima that is partic-
ularly relevant for this work. Notice that the line for the one and 3-hour aggregation
duration have similar behaviors: when the intensity increases for the 1-hour intensity
around 2007, it also increases for the 3-hour intensity of the same year. This simi-
lar behavior can be seen for durations that are �close by.�1 Most importantly, this
similarity decreases when two durations are �far� from each other: the line for 1-hour
intensity behaves much more di�erently than the line for 48-hour intensity. We can
conclude from this example that annual maxima of rainfall aggregated from di�erent
durations presents what could be called a temporal dependence, which is strongest
for similar durations.

The existence of a dependence structure for this kind of dataset follows from a very

1in a temporal sense
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Figure 3.6: Correlogram for the aggregated intensity series for the durations shown in
Fig. 3.5. The upper part shows the estimated bivariate density, and the lower part the
scatterplot. Data source: DWD

logical idea: given a rainfall event with duration k, all the average intensity values
with durations up to k (with the average taken over the time of the event) will be very
similar to each other. Thus, if we have a period with a lot of short-lasting events, the
short durations will have strong dependence; in contrast, if we have a period with only
long events, the longer durations will tend to have a stronger dependence. Ultimately,
series from short durations will tend to be similar to series from short durations; the
same can be said for long durations. This idea can be seen in the correlogram of
Fig. 3.6, where it can be seen that for close-by durations, a dependence structure
exists.

The dependence between aggregated rainfall for di�erent durations has been de-
scribed in the literature before, commonly as a complement to the concept of �ordered
random variables� (Nadarajah et al., 2019). A typical design choice for EVT mod-
els including di�erent time scales is to ignore this dependence (Ulrich et al., 2020;
Fauer et al., 2021), but recently, some studies have successfully incorporated it into
the models (Tyralis et al., 2019). In a similar vein to that of spatial dependence, it
could be that ignoring the dependence between durations results in estimates with
underestimated uncertainties. Before this thesis, this e�ect was largely unknown, as
the work of Tyralis et al. (2019) did not include an analysis of the impact on the
model estimates or their uncertainty. In this thesis, the study presented in ch 4 ex-
plores in depth the impact that including this dependence has on the �nal model, thus
extending the results of Tyralis et al. (2019).
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Now that the two types of dependence present in the extreme rainfall datasets
have been detailed, we move to the models used to represent it.

3.2 Basic probability concepts

The statistical modeling of phenomena such as extreme rainfall, temperature, or air
quality entails using randomness to learn and predict properties from their behavior.
However, using randomness in this form requires the assumption that these variables
possess certain well-de�ned mathematical properties. Therefore, before delving into
the speci�cs of how to model such environmental variables stochastically, it is impor-
tant to �rst look at the concept of random variables and the extensions to random
vectors and stochastic processes.

3.2.1 Random variables, vectors, and processes

The concepts of random variables, vectors, and �elds require de�ning a probability
space, which is a mathematical construct denoted by the three elements (Ω,F ,P).
In general terms, these three elements are:

� The sample space Ω, that denotes the set of all possible outcomes from the
experiment, which can be �nite or in�nite,

� the σ-algebra F that contains a subset of possible outcomes in the sample space,
and

� the probability measure P that assigns a probability to each event in the event
space.

In the case of environmental modeling, most sample spaces Ω are continuous (i.e.,
in�nite). Uncountable sample spaces can create issues when choosing the σ-algebra
F , as one can show that including all possible subsets of Ω in F leads to the probability
measure being unde�ned for uncountable Ω. The most common workaround for this
problem is to restrict the subsets included in F to be the smallest possible σ-algebra
that contains all open sets. Such a construction is known as the Borel σ-algebra. For
the remainder of this thesis, we assume that the event space F is a Borel σ-algebra.

We can now think of some environmental phenomenon (e.g., rainfall depth or
air temperature records) as a random experiment modeled by a probability space
(Ω,F ,P). A random variable (r.v.) is then de�ned as a function ζ : Ω → R which
is measurable (i.e., for every Borel set B ⊂ R, it holds that ζ−1(B) ∈ F). Denoting as
ω the outcomes of the random experiment, ζ(ω) represents the value of the r.v. for the
outcome ω (i.e., ζ(ω) is the data that was observed). Thus, every value ζ(ω) of a r.v.
can be assigned some probability measure P. The function that assigns a probability
measure to the set of all possible values of a r.v. is known as the distribution of the
random variable. Distributions were already mentioned in the last chapter.

Stochastic processes extend the concept of random variables from a single func-
tion to a collection of many random variables X = {X1, X2, ...}. Consider the prob-
ability space (Ω,F ,P) and an arbitrary set T called the index set. Every r.v. in X
must be uniquely associated with an element in T for it to be a valid index set. The
collection of random variables X = {X(t) : t ∈ T } de�ned on (Ω,F ,P) is then called
a stochastic process with index set T . Therefore, for every element t in the index
set T , there corresponds a random variable Xt : Ω → R from which every outcome
leads to ω → Xt(ω). In this case, the function t→ Xt(ω) is called the sample path
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of the stochastic process X corresponding to the outcome ω. Stochastic processes
are commonly denoted as {X(t)}, but depending on the context, they can be written
simply as X(t).

The choice of the index set T can lead to speci�c cases of well-known stochastic
processes. For example, choosing an index set T with only one element leads to the
stochastic process being reduced to a single random variable (meaning that random
variables are a speci�c case of stochastic processes). Moreover, if one chooses T
to be a �nite set with n-elements, the stochastic process reduces to the collection
X = {X1, X2, ..., Xn} de�ned on a common probability space, which is typically
denoted as a random vector. Of particular interest for this thesis is the choice of
T = Rd, where d ≥ 2. This last stochastic process is known as a random �eld.
From both of these examples, it is clear that stochastic processes are a generalization
of random variables, vectors, and �elds.

Stochastic processes can be seen as descriptions of systems that change randomly
in time, space, or a combination of both. Therefore, a noteworthy application of
stochastic processes is the modeling of environmental phenomena that seems to behave
randomly. For example, consider the spatial distribution of rainfall in a particular
region. The amount of rainfall in every single location can be seen as a realization of
a random variable. In turn, repeated measurements in time from each location result
in a random vector. Additionally, the collection of rainfall values for all locations could
be considered realizations of a random �eld. On the whole, these are all di�erent types
of stochastic processes.

The studies described in this thesis focus on the use of two types of stochastic
processes for modeling extreme rainfall in space. The �rst one is the Gaussian process,
commonly used in classical geostatistics. GPs work very well with spatial data, but as
will be discussed later, they do not extend well to directly using extreme-valued data.
The second process of interest is the max-stable process, which extends the concept of
unidimensional modeling of extreme values to in�nite dimensions. In the next section,
we will explore Gaussian processes and their connection to spatial modeling. This is
followed by an introduction to modeling extreme events in the univariate setting.

3.2.2 Gaussian Processes

Of all the existing stochastic processes, the Gaussian process stands out as one of
the most useful and widely applicable for stochastic modeling. A Gaussian process is
a stochastic process {G(t) : t ∈ T ; T ⊂ Rd}, where the joint distribution of any �nite-
number combination of random variables Gt is multivariate Gaussian-distributed.
That is, if f represents any possible linear combination of the G = {G1, G2, ..., Gd}
random variables, a Gaussian process must ful�ll the following:

f ∼ MVN(µ,K). (3.1)

Here µ denotes a vector of means for each G, andK denotes the covariance matrix

(also known as the kernel). The covariance matrix gives the covariance for every two
points (t, t′):

Kij = cov(G(t), G(t′)).

The entriesKij of the covariance matrix can sometimes be computed by the covariance
function C(t, t′). The covariance function gives information about the similarity of
two random variables (G(t), G(t′)), and can have many parametric forms. Covariance
functions are explored in more detail in section 3.5.
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Figure 3.7: 15 realizations of a Gaussian Process {X(t) : t ∈ T ; T ⊂ R}. The code used to
create this example was taken from Betancourt (2020)

Figure 3.8: 15 realizations of a Gaussian Process {X(t) : t ∈ T ; T ⊂ R} using three di�erent
covariance functions. The code used to create this example was modi�ed from Betancourt
(2020)

An essential property of Gaussian processes is that every GP can be decomposed
as the sum of a mean function with a zero-mean Gaussian process. Thus, if α(t) = µ
denotes the mean function, we can write a GP as:

G(t) + α(t) ∼ GP(µ,K) (3.2)

G(t) ∼ GP(0,K). (3.3)

Most applications that use GPs use this decomposition to facilitate the analysis. This
is because working with zero-mean GPs shifts the focus of the characterization of the
stochastic process to �nding an appropriate covariance function.

Figure 3.7 shows an example of 15 realizations of a zero-mean Gaussian Process
over a one-dimensional domain T . Theoretically, the Gaussian process operates on
all the in�nite values of t, but in reality, we can only work with �nite-dimensional
spaces. Thus, in the plot of Fig. 3.7, the values of t were constrained to a grid, where
the �lines� are actually an interpolation between neighboring points of t. Note that,
on average, the resulting lines hover around the expected value of zero, but that does
not mean that each line necessarily hovers around zero.

Gaussian processes can sometimes be seen as a distribution over functions. That
is, for every point t ∈ T , the Gaussian process can be seen as returning a certain
function f(t). This is already apparent from looking at Fig. 3.7. In this �gure, we
can think of each line as a di�erent function that hovers around a particular mean
µ given for each t. Furthermore, the covariance matrix K gives the overall shape
of the functions. The covariance function used for creating Fig. 3.7 was from the
exponentiated quadratic family. Figure 3.8 shows examples of realizations from GPs
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using three di�erent covariance functions, where each family had the same magnitude
and length scale parameters. Note how the covariance function completely determines
how the lines behave in each case.

The properties of Gaussian Processes described above make them excellent candi-
dates among stochastic processes for modeling environmental variables. The former
is particularly true in a spatial setting, where the problem expands to in�nite dimen-
sions.

3.3 Modeling extremes

The studies described in this thesis involve modeling exceedingly rare (i.e., extreme)
rainfall events. By de�nition, these events occur very infrequently, and thus, the
available observations are very few. The goal in modeling these events is typically
to infer more about the possible frequency and magnitude of future events � this
information can then be used to design infrastructure or make decisions. Extreme
events are not limited to meteorological ones; in fact, the theory was �rst developed
by the insurance sector and is typically used by the �nancial sector.

The question then reduces to �nding appropriate statistical models (of the kind
described in section 2.2) that allow us to infer properties about extreme events that
have not yet occurred. Statistical models that handle extremes are given by Extreme

Value Theory (EVT), a branch of statistics dealing with this very question. A
cornerstone of EVT is a limit theorem that states a limiting distribution for sampled
maxima of i.i.d. random variables as the sample size goes to in�nity. This theorem
is analog to the central limit theorem, except that it operates for maxima instead
of averages. The limiting distribution is always one of two families of distributions.
The family depends on the approach used to de�ne an event as extreme: for the
approach known as �block maxima,� the data converges to theGeneralized Extreme

Value distribution; for the one known as �Point-Over-Threshold,� it converges to the
Generalized Pareto Distribution. In any case, the result for both approaches is a
distribution whose parameters θ are inferred using the techniques described in section
(2.3).

What follows is an overview of the univariate EVT approach used throughout this
thesis: block maxima. This is followed by a description of the GEV distribution and
one of its application-speci�c derivatives, known as the d-GEV. An explanation of the
multivariate EVT approach needed for the spatial extremes is left for a later section
of this chapter. Point-over-Threshold and the GPD distribution will not be covered,
as they were not used for this thesis; for more information about PoT methods, the
reader is referred to (Coles, 2001) and (Ribatet et al., 2016).

3.3.1 Block Maxima and their limiting distribution

The �rst approach to de�ne extreme events is to take the observation with the largest
magnitude (i.e., the maxima) over a certain �xed time length. This is then repeated
without sampling from the same timestep more than once for every time interval with
the same length. The di�erent time intervals are known as blocks � this is why the
approach is known as block maxima. Let X1, ..., Xn be a sequence of i.i.d. random
variables that follow a common distribution F . Each Xi represents the values of the
observed quantity measured at a regular interval for n timesteps. For example, if Xi

represents the sea-level depth measured daily, n = 30 would correspond to a block
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Figure 3.9: Top: Example of yearly block maxima for a daily-measured rainfall series. The
dashed lines represent each block (n = 1 year), and the red dots indicate the value of the
maxima for the given block. Bottom: Histogram of the resulting Mn block maxima from
the example above, with the �tted GEV distribution superposed as a red curve. The MLE-
estimated values of the GEV parameters are also indicated. Data source: (CLICOM-SMN,
2018)

size of a month. The block maxima Mn is then obtained via

Mn = max{X1, ..., Xn}. (3.4)

From this equation, we can see that the choice of n will result in di�erent sizes of the
blocks used for block maxima. Furthermore, it is easy to show that Pr[Mn ≤ z] = Fn.

For convenience, it is common to name the block maxima according to the block
size used. For example, yearly block maxima correspond to blocks spanning a year2.
The top section of Fig. 3.9 shows the resulting yearly block maxima (red dots) for
accumulated daily precipitation in Mexico City. Note that the actual number of
elements used in each block depends on the time resolution of the observations, while
the resulting maxima inMn are a function only of the length of the complete series and
the block size n. The applications with rainfall extremes described in later chapters
work exclusively with yearly and monthly block maxima.

Once the Mn block maxima have been constructed, the goal of EVT is to �nd an
appropriate distribution to describe Mn. Finding such a distribution is non-trivial, as
estimating the exact distribution F (and by consequence, Fn) from data is typically
unachievable for extreme data. However, it is possible to approximate Fn by �nding
a parametrical distribution G that approximates it when using the extreme data.
Finding such a distribution is done by considering the limiting distribution of the
adequately rescaled maxima Mn as the block size n tends to in�nity, analog to the
central limit theorem, but for maxima.

2Yearly and monthly block maxima do not always have the same length, as some years/months
have di�ering amounts of days. However, this di�erence is usually too small to make a di�erence in
the resulting distribution, so it is ignored.
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Figure 3.10: In�uence of the GEV parameters in the resulting probability density function.
Each plot shows how the change in one of the parameters changes the distribution shape.

The limiting distribution G of Mn is given by the theorem known as the Fisher-
Tippett-Gnedenko theorem. This theorem states that if there exists a sequence
of constants an > 0 and bn ∈ R such that

lim
n→∞

Pr

{
Mn − bn

an
≤ z
}

= G(z) (3.5)

where G is non-degenerate, then the only possible limiting distribution G, up to
location-scale transformation, is the Generalized Extreme Value (GEV) distribu-
tion.

Following Coles (2001), the GEV distribution with location µ, scale σ, and shape
ξ parameters has the following distribution function:

Pr[Mn ≤ z] = G(x | θ) =

{
exp

{
−
[
1 + ξ

(x−µ
σ

)]−1/ξ

+

}
ξ 6= 0,

exp
(
−x−µ

σ

)
ξ = 0

(3.6)

where x+ = max(x, 0), and θ = (µ, σ, ξ). These parameters are restricted to µ ∈
R, σ > 0 and ξ ∈ R. The GEV distribution encompasses three families of distributions,
controlled by the shape parameter ξ. The Gumbel distribution occurs when limξ→0,
the Fréchet distribution when ξ > 0, and the Weibull distribution when ξ < 0. Each
of the three distribution families has historical developments and applications. An
example of the GEV �tted to block maxima is given in the bottom part of Fig. 3.9

The GEV has the following density function (Dipak et al., 2016) (obtained by
derivating eq. (3.6)):

f(x) =
1

σ
tξ+1(x) exp[−t(x)], (3.7)

where

t(x) =

{[
1 + ξ

(x−µ
σ

)]−1/ξ

+
ξ 6= 0,

exp
(x−µ

σ

)
ξ = 0.

The three parameters of the GEV distribution control di�erent aspects of the
resulting distribution, as seen in Fig. 3.10. The location parameter µ controls the
position in the real line where the bulk of probability is located; the scale parameter
σ controls how wide it is. For modeling purposes, the most important one is the
shape parameter ξ (also known as the Extreme Value Index), which controls how the
tails behave. For our stated goal of �nding out the magnitude and frequency of future
extreme events, the region of interest of the GEV distribution is the far-right side of the
distribution's tail. This region is highly in�uenced by ξ, so �nding an appropriate value
for this parameter is crucial for any EVT application. Unfortunately, this parameter
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Figure 3.11: Resulting CDF and PDF from the �tted GEV distribution shown in Fig. 3.9.
The color lines show the (0.98,0.99,0.995) probabilities of non-exceedance and their corre-
sponding return levels. Data source: (CLICOM-SMN, 2018)

is also the hardest to model, as it is highly sensitive to the design of the inference
method (Dipak et al., 2016).

Max-stability property

An essential consequence of the Fisher-Tippet-Gnedenko is the property known as
max-stability. Following Coles (2001), a distribution G is said to be max-stable if,
for every n = 2, 3, ..., there are constants αn ≥ 0 and βn such that

Gn(αnz + βn) = G(z). (3.8)

However, we know that Gn is the distribution of Mn = max{X1, ..., Xn}, where Mn

is composed of several random variables, each with distribution G. Therefore, for Mn

maxima that follow the distribution G, the max-stability property implies that the
sample maxima of Mn will also be G distributed, albeit with a change in scale and
location. For the univariate case, it turns out that the GEV distribution is always
max-stable.

The max-stable property is particularly important for multivariate extremes, where
it will be the basis for a special stochastic process used to model extremes: the max-
stable process. In a nutshell, the max-stability property is a desirable property for
any model that deals with extreme-valued data.

3.3.2 Predictions from the GEV distribution

The goal of the studies described in this thesis is to �nd an appropriate statisti-
cal model for extreme rainfall events. We have seen that the GEV distribution is
a theoretically-sound model for modeling the distribution of rainfall block maxima,
which represent what we consider as extreme events. This means that once a precipi-
tation series with enough records has been observed, the modeling problem is reduced
to estimating values for the parameters (µ, σ, ξ) of the GEV distribution that best
describe the observations. This estimation can accomplished by using the inference
methods like MLE of Bayesian inference described in section 2.3. Other methods, like
L-moments or the method of moments are also possible, but they will not be explored
in this thesis. See Hosking et al. (1997) for an example of the L-moment method used
for �tting the GEV distribution.

After �tting the parameters of the GEV distribution, the interest is to get in-
formation about what magnitude of the events to expect with certain probabilities
in the future. Such information about possible future events based on the previous
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observations is given by the inverse of the distribution function in eq. (3.6), which is
known as the quantile function:

Q(u) =

{
µ+ σ

ξ [(− log u)−ξ − 1] ξ 6= 0,

µ− σ log(− log u) ξ = 0.
(3.9)

For this equation, it is enough to plug in the estimated values of (µ, σ, ξ) with the
desired probability of non-exceedance p to get back the expected magnitude (typically
in mm). This amount is commonly known as the return level, which has a probability
of being exceeded of (1− p). An example of the procedure used to get return levels is
seen in the color lines of Fig. 3.11: one starts on the Y-axis of the CDF (by choosing a
probability of non-exceedance) and then notes the point in the X-axis where the CDF
intersects the probability p. The resulting values of the x-axis are the return levels.
This procedure is summarized by using the quantile function.

EVT studies are typically interested in very high non-exceedance probabilities
(e.g., 0.9, 0.95, 0.99) located in a region of the distribution where (mostly) no obser-
vations exist. In other words, we want to extend the information from the magnitude
and frequency of observed events to make assertions about the previously unobserved
magnitude and frequency of future events. This is di�erent from other branches of
statistics, where the interest is in the central tendencies of the distribution. Because of
this, EVT studies entail a �leap of faith� of sorts, where it is assumed that information
from the bulk of the distribution is su�cient to get accurate information about the
(unobserved) behavior of the far-right tail of the distribution. There is no theoretical
justi�cation for this assumption, but no more credible alternative has been proposed.

If the block size for Mn is of one year per block, p is then the probability that
the magnitude zp will (in the long run) not be exceeded every year 3. This idea has
given way to the creation of the quantity known as return periods. A return period
is a conceptual device used to simplify the communication of probabilities of non-
exceedance and return levels to a more general audience, but have been criticized for
being easy to misinterpret and manipulate in recent years (Serinaldi, 2015). Return
periods are obtained using the following expression:

RP(zp) =
1

ω(1− p)
, (3.10)

where zp is the return level at probability of non-exceedance p, and ω is the sampling
frequency of the data (for yearly block maxima, ω = 1). Return periods are given
in years, so that one can talk about the �1-in-RP year event�. For example, the
corresponding return period for p = 0.99 is 1/(1 − 0.99) = 100 years. Therefore,
the corresponding return level zp=0.99 can be said to have a 100-year return period,
meaning that, on average, it is expected that the zp=0.99 level is exceeded at least
once in 100 years. This does not mean, however, that the return level zp=0.99 will
be exceeded only once every 100 years nor that after exceeding the level, the next
event will occur exactly in 100 years. Furthermore, return periods are valid only
when assuming stationarity, an assumption that no longer holds in the age of climate
change. Therefore, we avoid using return periods as much as possible in this thesis,
opting instead for return levels with probabilities of non-exceedance.

3This statement assumes that the distribution is stationary, a claim that is in several studies
increasingly disputed (Ganguli et al., 2017).
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3.3.3 Special topics for EVT

Several special topics from EVT needed for this thesis are now described. First, a
description is given of the duration-dependent GEV used in speci�c applications when
the duration of rainfall is of interest. Then, an overview of using Bayesian methods
for EVT will be discussed.

The duration-dependent GEV distribution and IDF curves

The societal impact of extreme rainfall is a function not only of magnitude, but also
of duration. This is because hydrological infrastructure like storm drains or levees
respond di�erently to events of di�erent durations. For example, a typical storm drain
should be able to handle 10 mm of rainfall that falls over 1 hour with no di�culty,
but it would likely fail if 10 mm falls in 10 minutes. Therefore, di�erent probabilities
of non-exceedance correspond to di�erent rainfall durations for the same amount of
rainfall.

Depending on the speci�c application, rainfall can be expressed in either depth or
intensity. Depth is simply the absolute amount of rainfall, measured in mm. On the
other hand, intensity is the relative amount of rainfall over a certain period: commonly
used periods are hour (mm h−1) or day (mm day−1). For example, 10 mm of rainfall
measured in 10 minutes would have a depth of 10 mm and an intensity of 60 mm h−1.
The transformation between the two values is straightforward so that no information
loss occurs when using one or the other. For this thesis, I will exclusively use intensity
in mm h−1.

From the de�nition of the GEV distribution in eq. (3.6), it can be seen that no
information about the duration of extreme rainfall is included. However, extending
the expression to account for the di�erences in the probability of non-exceedance for
di�erent durations would be a signi�cant improvement for hydrological applications.
This extension to the GEV model requires the speci�cation of a relationship between
intensity (or depth) and duration, as this information would allow us to include the
duration d as an extra �random variable� of sorts in the GEV formulation. In his
famous work, Koutsoyiannis et al. (1998) proposed the following relationship between
intensity i and duration d:

i =
ω

(d+ ν)η
, (3.11)

where ω,ν,η are non-negative coe�cients. For any two return levels zp1 and zp2, where
p1 < p2, there exists the additional restrictions: ν1 = ν2 = ν = 0, 0 < η1 = η2 = η < 1,
and ω1 > ω2 > 0. These restrictions ensure that the return levels will not intersect,
meaning that the resulting intensity values are consistent.

Using the relationship between duration and intensity in eq. (3.11), Ritschel et
al. (2017) and Ulrich et al. (2020) developed the duration-dependent GEV dis-

tribution (d-GEV). This distribution incorporates the restrictions mentioned above.
The d-GEV is used to model the intensity i(d) for a certain duration d and has the
following distribution function:

G(x | θ) = exp

[
−
(

1 + ξ

(
x

σ(d)
− µ̃

))−1/ξ
]
, (3.12)

where σ(d) = σ0/(d + ν)η is the duration-dependent scale parameter, and µ̃ =
µ(d)/σ(d) is the modi�ed location parameter. In this case θ = (µ(d), σ(d), ξ, η, ν),
where now µ and σ are functions of the duration (µ(d), σ(d)). The shape parameter
is held constant across all durations.
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The distribution function for the d-GEV in (3.12) requires block maxima x that
come from di�erent durations. Typically, rainfall data provided by weather services
come only as rainfall depth measured in 1-minute, 1-hour, or 24-hour intervals. There-
fore, a transformation of those rainfall series to di�erent durations is required to use
the d-GEV. This transformation is done by aggregating the initial series from their
measurement frequency d = T to longer durations d = nT . Given the measured aver-
age hourly intensity ζd=T,t for the given time resolution of d = T at time t, the n-hour
aggregated series ζd=n is obtained using

ζd=n,t =
1

n

n−1∑
i=0

ζd=T,t−i, (3.13)

which can be seen as a moving average with a time window of n time-units. Using
eq. (3.13) allows us to get the aggregated intensity of any desired duration d, as long
as this duration is a multiple of the measuring frequency. In practice, hydrological
studies use an upper limit for d of 120 h. Most real-world applications are limited
to shorter durations, typically from the range of 1 h to 24 h. After the aggregation
process, the d-GEV requires block maxima to be taken from the aggregated intensity
series ζd=n. The aggregation process was automatized in the R-package IDF (Ulrich
et al., 2020).

After aggregating the rainfall data, taking the block maxima and using it to es-
timate the (µ(d), σ(d), ξ) d-GEV parameters, it is straightforward to calculate the
return level zd,T for any arbitrary duration using

zd,T = µ(d) +
σ(d)

ξ

[(
− log

(
1− 1

T

))−ξ
− 1

]
. (3.14)

A common strategy is to use eq. (3.14) to estimate the return level for a range of
durations with three or four �xed non-exceedance probabilities. The resulting return
levels are then plotted simultaneously using a log-log scale, drawing a curve that goes
over return levels with the same p. Each curve is known as a Intensity-Duration-
Frequency curve, or IDF for short. IDF curves are commonly-used hydrological
tools, especially for hydrological engineering. An example of an IDF curve is seen in
Fig. 4.4.

Bayesian inference for the GEV distribution

As stated before, the problem of univariate EVT modeling is typically reduced to
inferring appropriate values for the GEV distribution from the observations. MLE
estimation provides a robust and theoretically-sound method for estimating the pa-
rameters. Unfortunately, the very nature of EVT models can lead to well-known
computational issues with MLE estimates, especially when ξ < −0.5. Furthermore,
the propagation of uncertainty from the parameters to the estimated return levels re-
lies mainly in asymptotic assumptions that do not always hold (for more information
on this subject, see Coles (2001)). It is thus desirable to explore other methods that
are also based on the likelihood but possibly avoid the common pitfalls from MLE.

A valid alternative for estimating the GEV parameters is Bayesian inference, which
avoids some computational pitfalls of MLE and gives a straightforward way to prop-
agate the uncertainty to the return levels. For the Bayesian approach, the likelihood
term p(D | θ) from Bayes' Rule is given by the GEV density (eq. (3.3.1)). Addition-
ally, a prior distribution has to be given for the θ parameters. A bene�t of using prior
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distributions is that it decreases the uncertainty inherent when using small datasets by
incorporating previous knowledge. However, the prior acts as a double-edged sword,
as models using small datasets may be very sensitive to the choice of prior.

A typical design choice for Bayesian models is to use prior distributions p(θ) that
have either an enormous variance (for example, Normal(0, 10000)) or are completely
�at (e.g., Uniform(−10000, 10000)). These priors are commonly known as noninfor-
mative priors and are seen as an �objective�4 way of doing Bayesian inference. This
choice is especially relevant when dealing with large datasets; in this case the choice
of p(θ) tends to be inconsequential, as the likelihood overwhelms the prior. For EVT
models, however, the datasets are commonly too small for the likelihood to overwhelm
the prior, so a careful choice of p(θ) is required.

Prior distributions can either be constructed by using previous knowledge before
seeing the observations, or by using the observations to make a more informed prior.
From a strictly Bayesian point of view, the latter approach is strictly invalid, as the
prior must be set before seeing the observations. However, using data-driven priors
has yielded positive results in many real-world applications. Some examples of the
data-driven approach include the use of Je�reys' prior (based on Fisher's information
matrix) and the maximal data information (MDI) prior. Je�reys' prior and the MDI
are valid priors for the GEV parameters, as long as an adjustment is made to avoid
problems with the shape parameter. On the other hand, using previous knowledge to
build a prior is done via the process known as prior elicitation. Elicitation entails
that the previous knowledge is expressed in the form of a proper distribution function;
Many resources exist in the literature for this procedure (Mikkola et al., 2021).

The simplest prior elicitation for the GEV model is to assume that the parameters
(µ, σ, ξ) are independent and assign a distribution with a large variance to each of
them, using previous knowledge for the location hyperparameter of each distribution.
This approach is used for the priors in the second study described in this thesis. Other
approaches include using quantiles to approximate priors for the GEV parameters. For
more information on this topic, see Stephenson (2016).

After choosing a prior, Bayesian inference for the GEV parameters requires dealing
with the integral of Bayes' rule. This is typically solved by approximating the posterior
distribution using the MCMC methods described in section 2.3.2. Fortunately, it has
been seen that MCMC-based inference works just as well for the parameters of the
GEV distribution as for other distributions. The second study of this thesis makes
use of MCMC methods for inference of the GEV parameters.

3.4 Setting of the spatial modeling problem

Spatial data typically consists of a collection of measurements in several locations
X(si), where si denotes the location of one of N -observations inside the domain S.
For the classical setting, there is only one observation x in each location, but each
location could also contain many observations. Figure 3.12 shows an example of an
imaginary spatial dataset. When modeling rainfall, the positions si represent the
location of the rain gauges, which can be seen as �xed in time and space. A distance
measure h can be de�ned for the di�erent si locations, typically taken to be the
euclidean distance.

Two main questions typically arise from this dataset:

4I am of the opinion that no true objective experiment-design exists. Not only is the choice of a
non-informative prior a subjective decision, but most importantly, the choice of a likelihood model
is a subjective choice, with much larger repercussions than the choice of prior.
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Figure 3.12: Typical data setting for a spatial problem.

� What are the possible X values for some unobserved location s inside the do-
main? and

� What are the possible future values of X in observed locations si?.

The �rst question, predicting unobserved locations, involves using information from
existing stations to interpolate. This interpolation results in estimates for unobserved
locations that ideally should share some properties from the observed locations. The
second question, predicting future values, is the same as the one discussed in section
2.5. In practice, we could just use univariate statistical methods to get individual
predictions for each observed location. However, in this case, we would like to somehow
pool the information from all observed locations in a way that improves the resulting
estimates. Both problems can be solved by applying Tobler's famous �rst law of
geography:

�Everything is related to everything else, but near things are more related
than distant things.� -Tobler, 1970

What this means to our particular problem is that we expect to see a high similarity
for the observations between two locations (s, s′) when the distance is (relatively)
short. The opposite is also true: when the distance between the locations is large,
we expect to see less similarity. The idea is then to use this similarity to improve the
model estimates: we want to �nd a family of models that gives similar estimates to
nearby locations.

The �rst step towards this goal is to de�ne what similarity means and how to
measure it. De�ning similarity in space is achieved using the covariance, a measure
of how much two random variables change together. For two random variables, X and
Y , the covariance is the di�erence between the expected product and the product of
the expectations: cov(X,Y ) = E(XY )− E(X)E(Y ). The resulting sign of cov(X,Y )
indicates the direction of the linear relationship between the variables: a positive
sign means that if X increases, Y also increases; a negative sign means that if X
increases, Y decreases. To interpret the magnitude of the covariance it is necessary to
normalize it; the normalized covariance is known as the linear correlation coe�cient.
The variance can be seen as a particular case of covariance, as var(X) = cov(X,X) =
E(X2)− E(X)2.

To apply the �rst law of geography to our model, we need to design a function that
returns the value of the covariance for any given two locations inside the domain. This
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function is known as the covariance function C(X,Y ). This function essentially
encodes the notion of nearness and similarity for our model. The following section
explores the branch of statistics known as geostatistics, which proposes models to
characterize X(s) in terms of its mean and covariance function. Once a covariance
function has been found, geostatistical methods can solve the questions posed earlier
in this section.

3.5 Classical Geostatistics

Initially developed 70 years ago for the mining industry, geostatistics encompasses a
collection of statistical models and methods that focus on spatial and spatiotemporal
datasets like the one described in Fig. 3.12. The main goal of geostatistics is to perform
interpolation in a spatial domain using Tobler's �rst law of geography; e�ectively,
the idea is to pool information in space to �borrow the strength� from the spatial
dependence shown by the data.

A basic geostatistical model claims that for every location s in the domain S, the
observed X(s) can be formulated as

X(s) = α(s) + e(s), (3.15)

where α(s) denotes the mean value of X at location s, and {e(s)} is a zero-mean
stochastic process {e(s) : s ∈ S}. Note that for this simple model, X(s) contains only
one observation per location. The �rst term represents the large-scale variability of
X(s). The second term represents the local/small-scale variability of X(s). The idea
of spatial similarity/nearness enter into the model in the second term, and as such,
{e(s)} is sometimes denoted as the spatial dependence. A useful analogy can be
made thinking about the distinction between climate and weather: The mean α(s)
acts as the �climate� component, which varies in space but at very large scales, and the
stochastic component {e(s)} is the �weather,� composed by many local events which
induce dependence for points that are near each other.

A common strategy to model the mean component α(s) is to use the regression
model

α(s) = A(s)β. (3.16)

HereA(s) represents the matrix of covariates unique for each location s, and β denotes
the vector of regression coe�cients. In eq. (3.16) many di�erent spatial covariates
could be used. For example, if A(s) is set to be the latitude, longitude, and altitude
for each location, the resulting regression model is obtained:

α(s) = β0 + β1lat + β2lon + β3alt. (3.17)

In geostatistics, a model like this one that uses only spatial coordinates for regression of
the mean is known as the response surface model. The studies described later make
exclusive use of response surfaces. However, the choice of covariates is not restricted
to be only coordinates. For example, one could also choose as covariates the distance
of a point to the nearest coast, mean decadal temperature at each position, etc.

As mentioned before, the stochastic process {e(s) : s ∈ S} in eq. (3.15) accounts
for the spatial variability that is not explained by the mean α. The notion of pooling
information in space enters the process {e(s)} via the covariance function. Given
the stochastic process {e(s)}, the covariance function is de�ned for two locations s
and s′ as

C(s, s′) ≡ cov(e(s), e(s′)). (3.18)
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Figure 3.13: Example variogram for each of the �ve main families. For all variograms the
following parameters where used: (Nugget = 0, Sill = 1, Range = 1). The Matérn variogram
uses k = 0.2

For the simple model de�ned in eq. (3.15), two assumptions are widely made for
the covariance function of the zero-mean process {e(s)}. These are the second-order
stationarity and isotropy.

The assumption of second-order stationarity for the covariance function implies
that the covariance does not depend on the location. That is, given any distance h,

C(s, s′) = C(s+ h, s+ h′) = cov(e(s+ h), e(s′ + h)).

The other assumption, isotropy, implies that covariance is a function of the dis-
tance h between locations (i.e., it is not a function of the direction). Isotropy then
implies that

C(s, s+ h) = C(h) = cov(e(s), e(s+ h)).

While this assumption can be unrealistic for many rainfall �elds, it is common to
assume isotropy as a �rst approach.

The second-order stationary and isotropic zero-mean stochastic process {e(s) : s ∈
S} can be fully characterized by its covariance function C(h). Note that second-order
stationary covariance functions always decrease with increasing distance. The most
common model in geostatistics to incorporate second-order stationary and isotropic
stochastic process is to assume that e(s) is a zero-mean Gaussian process. From
eq. (3.3) it becomes apparent that doing so would mean that X(s) is also a Gaussian
process with mean α(s). We will see later that kriging, the main interpolation tool of
geostatistics, is simply the application of this Gaussian process approach.

3.5.1 The (semi-)variogram

For environmental modeling, second-order stationarity can be rather strict. Thus, it
is also common to assume intrinsic stationarity, a more relaxed assumption than
second-order stationarity. Under this assumption, the variance (not the covariance!)
of two di�erent locations depends only on the distance h and not the location. In this
case, the covariance function C(·, ·) is not de�ned; instead, similarity in space is given
by the (semi-)variogram5. The (semi-)variogram γ(h) is de�ned as

γ(h) =
1

2
var [e(s+ h)− e(s)] , (s, s+ h) ∈ X . (3.19)

5The notation surrounding the term variogram/semivariogram is complicated. Some authors
denote expression (3.19) as the semivariogram due to the 1/2 term in the formula. On the other
hand, some authors call γ(h) simply as the variogram (Bachmaier et al., 2011). For this thesis, I will
exclusively use the term variogram, as de�ned in eq. (3.19).
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Figure 3.14: Example parametric variogram showing the three main characteristics:
Nugget, Sill, and Range. For this particular variogram of the spherical family, nugget =
0.2, sill = 1, range = 1.

The quantity 1/2 · var [e(s+ h)− e(s)] is sometimes known as semivariance, al-
though some authors have objected to this term, preferring the term gammavariance
(Bachmaier et al., 2011).

In the second-order stationary case, the variogram can be transformed into the
covariance function via

γ(h) = C(0)− C(h),

where C(0) = var(e(s)) represents an upper bound to the variogram. However, for the
intrinsic stationary case, the covariance function does not exist; only the variogram
does. This restriction means that transforming from the covariance function to the
variogram is always possible, but not the inverse.

For statistical inference purposes, the variogram function can be expressed as
di�erent parametric families with well-de�ned parameters. These parametric fami-
lies were designed to meet the necessary conditions to be valid covariance/variogram
functions � just as parametric distributions were designed to be valid probability dis-
tributions. These functions are known as the theoretical variogram. Figure 3.13
shows the �ve most commonly used families of theoretical variograms (Spherical, Ex-
ponential, Gaussian, Matérn, and Power), described in Gelfand et al. (2010).

Figure 3.14 shows an example of a theoretical variogram with its three de�ning
characteristics: the nugget, range, and sill. The nugget represents the variability
inherent to X(s) that is too small to be represented by the sampling interval (e.g. the
measurement error of the device). The range, typically denoted by ρ, is the distance
where the model ��attens out�. This can be seen as a sort of measure of the distance
at which spatial dependence is still relevant. Lastly, the sill is the upper limit of
γ(h) reached when the distance equals the range. The sill exists only for second-order
stationary conditions, as the upper bound of the variogram is only de�ned for that
case.

Once an appropiate parametric family for the theoretical variogram has been cho-
sen for the problem at hand, the next step is to �nd the values of the variogram
parameters that best describes the observed semivariance. Given a spatial dataset
like the one described in section 3.4, the �rst step is to compute the semivariance for
all (N(N − 1))/2 possible pairs of X(si). The resulting plot of all the semivariances
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Figure 3.15: Example of a variogram cloud (black dots) and the empirical variogram (red
dots). Data for this example was a dataset of 24 weather stations with hourly 2m temperature
values in Mexico City (Source: aire.cdmx.gob.mx)

according to the distance h between locations is known as the variogram cloud.
Figure 3.15 shows an example of a variogram cloud. The variogram cloud is an useful
tool for initial exploration, but it commonly is too spread out to be able to be used
to discern a theoretical model. This is why the cloud is then separated into bins
according to h; an average value of the semivariance is then computed for each bin.
The plot of the resulting binned means of the semivariance is known as the empir-

ical variogram. Note that the operation of taking binned means assumes that γ is
isotropic. The empirical variogram is the spatial analog of the histogram, and can be
used to judge what parametric family of variograms should be used. An example of
an empirical variogram is also seen in Fig. 3.15.

The �tted theoretical variogram acts as the covariance needed for the zero-mean
Gaussian Process {e(s)} of the model given in eq. (3.15). This function encodes the
spatial dependence, so that the �nal model will borrow information in space to predict
unobserved values. Now we need a procedure to go from the covariance of {e(s)} to
actual interpolation. Within the context of classical geostatistics, this is known as
kriging.

3.5.2 Spatial interpolation: Kriging

One of the main goals of spatial models is to pool the existing information in space to
interpolate to unobserved locations. In classical geostatistics, the base model is the
one described in eq. (3.15), which divides X(s) into a mean function and a zero-mean
stochastic process. A natural choice is to set e(s) to be a zero-mean Gaussian process.
Thanks to the the additive property of GPs (eq. (3.3)), X(s) becomes in that case a
Gaussian process with mean α(s). The model is then given by

X(s) = α(s) + e(s) (3.20)

e(s) ∼ GP(0,K), (3.21)

where just as before, K is the covariance matrix, given by the covariance function.
All that is needed now to interpolate is to �nd a way of obtaining the values of e(s)
for unobserved s.

The geostatistical model given by eq. (3.21) is called universal kriging (the same
model is known as �Gaussian process regression� for non-spatial data). For universal
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Figure 3.16: Example of predictions from kriging. Left: Empirical and Theoretical vari-
ogram. Center: Modeled temperature values using kriging. Right: 95% CIs for predictions.
(Data source: aire.cdmx.gob.mx)

kriging the mean α(s) is modeled using the trend surface from eq. (3.17). Interpolation
is then achieved with the following equation:

X(s) = A(s)β +
n∑
i=1

λie(si), (3.22)

where λ is the so-called vector of kriging weights, determined by the spatial dependence
structure of the covariance function. These weights, as well as the β coe�cients need
to be �tted using the data. This is often done using the method of least squares.

Figure 3.16 shows an example of interpolated values for 2m air temperature using
universal kriging. The observations (seen as points) consist of 24 air temperature
measurements in the Mexico City metropolitan area, with an average distance of
16 km between stations. The variogram on the left shows a Gaussian theoretical
variogram superposed with the empirical variogram, with a somewhat good �t (range
= 10 km, sill = 2.5). The middle plot shows the predicted temperatures in a grid with
resolution of 700 m, and the right plot shows the corresponding 95% CI derived from
the variance of the estimation. Note that while the kriged temperatures gives values
for regions in the south were no information exists, the uncertainty is rather large.
Thus, one should be careful to interpolate outside of the region with information.
The value of 10 km for the range parameter suggests that estimates outside of a 10 km
radius from any observation should be taken with a lot of suspicion. Note that this
example ignores the complex topography of Mexico City; therefore, this predicted
temperature map should be seen only as informative for how kriging results look.

For modeling extreme rainfall in space, it is tempting to use classical geostatistics
methods like universal kriging to, for example, interpolate the resulting return levels
or the GEV parameters in space. However, as will be discussed in the next section,
classical geostatistic methods are ill-�tted for extreme valued data. Therefore, an
extension for extremes, called spatial extremes, needs to be introduced.

3.6 Spatial Extremes

The last section showed how the geostatistical methods pool information between sta-
tions to borrow the strength of spatial dependence, leading to improved estimates for
unobserved locations. Unfortunately, the assumption of an underlying Gaussian Pro-
cess renders most of these methods invalid for extreme-valued data like block maxima
or threshold exceedances. The main problem is that the Gaussian distribution is not
max-stable, making it a poor candidate for any EVT modeling. Furthermore, classical
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Figure 3.17: Typical data setting for an spatial extremes application.

geostatistics deal with central tendencies (like the mean), and little to no attention
is given to the tail of the distribution, which is of central interest for extreme valued
analysis. This last condition is also re�ected in another important di�erence: geo-
statistical methods like kriging require only one observation per location, but for any
meaningful EVT analysis, many observations from the same location are necessary.
Nevertheless, we will see that under certain conditions, the central ideas from classical
geostatistics (such as the covariance function or the variogram) can be extended to
extremes. The resulting collection of methods that deal with extreme-valued data
with a spatial component is usually classi�ed under the umbrella term of spatial
extremes.

Spatial extremes datasets typically consist of the measured series X(si), where si
denotes the location of one of N -stations (e.g., rain gauges) inside the domain S. Each
measurement series xki contains k = 1, ...,Ki block maxima, where the total number
of K-maxima can di�er between stations as a result of di�ering series lengths. Figure
3.17 shows an example of an imaginary spatial dataset. When modeling rainfall, the
positions si represent the location of the rain gauges, which can be seen as �xed in
time and space. A distance measure h can be de�ned for the di�erent si locations,
typically taken to be the euclidean distance. Using this kind of dataset, the central
questions this time are:

1. How can we borrow strength from the spatial dependence to improve the marginal
estimates of the GEV parameters for each location?

2. How do we use the existing observations to predict the GEV parameters of
unobserved locations so that we account for the spatial dependence?

These questions generally deal with the joint distribution of the X(s) random
vectors. This means spatial extremes deal with multivariate extreme valued distribu-
tions (i.e., multivariate max-stable distributions). Moreover, because any point s is
assumed to have a marginal max-stable distribution, and the number of points s ∈ S
is in�nite, we require to extend the univariate methods of EVT to a setting with
in�nite dimensions. For this, the use of stochastic processes is ideal, as they operate
on in�nite dimensions.

A standard base assumption is that for every location s, X(s) is GEV distributed
(eq. (3.6)), although this can vary depending on the speci�c method. To further sim-
plify this problem, a widely used technique is to transform every margin to be unit-
Fréchet distributed (i.e., GEV(1, 1, 1)). This transformation results in the simpli�ed
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distribution function G(z) = exp(−1/z). There is no loss of generality in performing
this transformation, as it is straightforward to transform the margins back to arbi-
trarily GEV-distributed margins. The transformation of the margins to unit-Fréchet
is accomplished with the following equation:

z =

[
1 + ξ

(
x− µ
σ

)]1/ξ

+

, (3.23)

where x is the original GEV-distributed data, and z is the unit-Fréchet distributed
data.

Let Z(s) = {Z1, Z2, ..., ZD} be a collection of random vectors corresponding to
the unit-Fréchet transformed componentwise maxima X(s). Then, the limiting joint
distribution of the Z(s) random vectors is given by:

Pr[Z1 ≤ z1, ..., ZD ≤ zD] = exp[−V (z1, ..., zD)], zi > 0. (3.24)

In this equation, V (·) is the exponent measure, de�ned by de Haan et al. (1977).
The exponent measure has several constraints that ensure that the marginal distribu-
tions are unit-Fréchet and extend the max-stability property to higher dimensions. In
principle, any function for V (·) that ful�lls these conditions can be used to construct
a valid max-stable multivariate distribution using eq. 3.24. Unfortunately, this means
that no unique parametric form for V (z) in the style of the GEV exists for multivariate
distributions. However, several parametric forms have been proposed (Davison et al.,
2015).

An alternative to the use of the exponent measure V (z) is the use of the so-called
spectral measure, typically denoted by H(ω). As is the case with the exponent
measure, the spectral measure also determines the dependence structure of the random
vector. This transformation can sometimes simplify the construction of valid functions
(as described in the section on max-stable processes), but the same identi�cation
challenges remain. Mathematical details of both the exponent measure and spectral
measure will be omitted, but the reader can consult de Haan et al. (1977) for more
details.

Once a proper characterization of the dependence structure has been found (either
by using V (z) or H(ω)), the two questions of spatial extremes can be solved using
the joint distribution derived from the dependence measures. However, this method
requires the transformation of the margins to unit-Fréchet. From eq. (3.23) it can
be seen that this transformation requires the marginal distributions to be known a
priori, as the GEV parameters are required inputs for the transformation. All of this
suggests that the work�ow of spatial extremes can be divided into two overarching
goals:

1. estimate the marginal GEV parameters for each location to transform the data
to unit-Fréchet, and

2. �nd an appropriate description of the spatial dependence of the transformed
data using V (z) or H(ω), which can be used to construct a joint distribution.

Regarding the two steps above, Cooley et al. (2012) make an essential distinction.
They claim that the �rst step is akin to characterizing the overall tail variability in
the domain, which comes from large-scale considerations. On the other hand, they
see the second step as related to the local spatial e�ect, which results from large
enough events that simultaneously hit several locations. Because this second step
deals with the dependence left after the marginal transformation, they call it the
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residual dependence. The residual dependence is what is captured by V (z) or
H(ω), and thus, is the central object of study for spatial extremes analyses.

An important observation is that, while the two steps described above appear to
be sequential, they can be combined into a single overarching step by combining them
in the likelihood. This is true for both the frequentist and Bayesian settings. This is
explored in more detail in section 3.6.3.

The rest of this section is structured as follows: First, I discuss how the concept
of similarity in the context of spatial extremes is measured. Secondly, a way to
extend classical geostatistics to an in�nite-dimensional setting with max-stability is
discussed; this is where the prominent methodological powerhouse used in this thesis is
introduced: the max-stable process. Additionally, a discussion of how to do inference
for max-stable processes is given for the frequentist and Bayesian paradigms. The
section then ends with a short discussion of alternative methods for modeling spatial
extremes, namely the latent variable approach, copulas, and r-Pareto processes.

3.6.1 Extremal coe�cient

Applying Tobler's �rst law of geography requires the de�nition of a similarity mea-
sure between the data from two locations. For classical geostatistics, this measure is
the semivariance de�ned by the variogram (eq. (3.19)) for intrinsically stationary pro-
cesses. However, these similarity measures do not work for extreme-valued datasets
(i.e., block maxima or threshold exceedances), as the variogram focuses exclusively on
the central tendency of the linear relationship between locations. For spatial extremes
we require a similarity measure between the tails of the distribution. Therefore, we
need to construct a function that assigns large (small) values when a large (small)
value of a random variable co-occurs with a large (small) value of another random
variable. Additionally, the measure should be valid for non-linear relationships and
extendable to more than two dimensions.

For the latter requirement, several non-linear bivariate dependence measures exist
(see Nelsen (2007) for more information). Examples include Kendall's Tau, Spear-
man's Rho, and Blomqvist's Beta. These three are measures of association (similar
to Pearson's correlation coe�cient) valid for non-linear relationships. However, while
they help measuring the overall non-linear dependence between two random vectors,
they do not focus on the tail of the distributions, which is the interest of EVT studies.
Thus, we need a more specialized function to measure the so-called tail dependence.

As mentioned above, a complete characterization of the tail dependence (also
known as the extremal dependence) between the components of a max-stable ran-
dom vector is given by either the exponent measure function V (z) or, equivalently,
by a spectral measure like the Pickands dependence function A(w). The problem
is that direct computation of either of these functions is a formidable challenge, es-
pecially in high-dimensional settings. Therefore, a simpler summary coe�cient that
contains information about the extremal dependence without needing to fully specify
it is preferred for most real-world applications.

Before discussing some of the widely used summary measures of extremal depen-
dence, it is essential to distinguish between asymptotical tail dependence and inde-
pendence. This is because the summary measures were designed to work only within
one of the two regimes. Tail dependence/independence refers to the asymptotical tail
behavior for regions in the far-right of the distributions: When the di�erent random
vectors still show a level of dependence for very large-valued regions, the data is said
to be asymptotically dependent. On the contrary, when the data shows no discernible
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Figure 3.18: Comparison of the F-madogram (left) and the extremal coe�cient (right)
using the same dataset. The red dots represent the binned means from the underlying cloud.
Dashed lines show the theoretical limit for both measures. Notice that the theoretical limit
is violated several times for the F-madogram. The data source is explained in section 5.2.1

structure for very large-valued regions, it is said to be asymptotically independent. Us-
ing a summary measure of tail dependence for a mismatched asymptotical dependence
regime will result in systematical errors. Most currently used applications of spatial
extremes assume asymptotical tail dependence. Therefore, here I will exclusively focus
on measures for the asymptotically dependent case. An alternative model for Spatial
Extremes that can account for asymptotical independence is that of Wadsworth et al.
(2019), which was applied to hourly rainfall data by Richards et al. (2021).

The �rst summary measure of tail dependence introduced here is very similar to
the variogram: the F-madogram proposed by Cooley et al. (2006). For an isotropic
and stationary stochastic process {Z(x)}, the F-madogram is de�ned by the following:

νF (h) =
1

2
E[F{Z(x+ h)} − F{Z(x)}], (3.25)

where F (·) denotes the cumulative distribution function, and x, h ∈ X . The F-
madogram is of particular usefulness for max-stable processes, de�ned in the next
section. For simple max-stable processes, the F-madogram is well-de�ned, because
the expected value E[F{Z(x)}] is �nite (which is not the case for the expected value
E[Z(x)] in the variogram). Plots of νF (h) against the distance h are very similar
to plots of the variogram and have virtually the same interpretation. An example
is shown in the left panel of Fig. 3.18. Furthermore, empirical estimates of the F-
madogram can be obtained following the same procedure as the empirical variogram.
νF (h) has lower and upper bounds of [0, 1/6], indicating complete dependence and
independence, respectively. However, these theoretical bounds can be violated, so
that a correction is sometimes needed (Vettori et al., 2018).

An alternative summary measure of extremal dependence is the extremal coef-

�cient θ proposed by Smith (1990b) 6. The extremal coe�cient θ is derived from
the multivariate joint distribution, as Pr{max(X1, ..., Xk) ≤ z} = F θ(x), where θ is
the extremal coe�cient. The theoretical bounds of θ are 1 ≤ θ ≤ k, where 1 denotes
complete dependence and k complete independence. The extremal coe�cient can be
seen as �the e�ective number of independent random variables in the k-dimensional
random vector� (Smith, 1990a; Cooley et al., 2012). Additionally, the extremal coef-
�cient has a theoretical connection to Pickand's dependence function, the exponent

6Not to be confused with the parameters θ of a distribution.
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measure, and the F-madogram.
For spatial extremes applications, the extremal coe�cient is usually restricted to

the bivariate isotropic case, for which θ becomes a function only of the distance h
between two points: θ = θ(h). For the bivariate case, θ has a theoretical range of
1 ≤ θ ≤ 2, where 1 denotes complete dependence and 2 complete independence. The
connection with Pickands' dependence function is given by θ = 2A(1/2). Furthermore,
the F-madogram de�ned in eq. (3.25) can be transformed to θ(h) with the following:

θ(h) =
1 + 2νF (h)

1− 2ν(h)
. (3.26)

The above equation suggests a straightforward method to estimate the value of θ(h)
for an observed dataset. By estimating the empirical F-madogram, the empirical θ(h)
can be derived using eq. (3.26). A comparison between the F-madogram and θ(h) is
given in Fig. 3.18.

While the F-madogram is a valid method to estimate the extremal coe�cient
θ(h), it is not the only existing method for estimating θ(h). In a study comparing
the di�erent estimation methods for A(w) (and by extension, θ), Marcon et al. (2017)
found that the estimator proposed by Vettori et al. (2018) had better performance
than the other methods. This method is based on the F-madogram but uses Bernstein-
Bézier polynomials to ensure the resulting estimates �t within the constraints required
by Pickands' dependence function. In fact, the issue of not correcting the empirical
F-madogram is seen in the left plot of Fig. 3.18: Here, the empirical F-madogram
contains points that violate the theoretical limit; this was corrected for θ(h) using
the method proposed by Vettori et al. (2018) in the right plot. The estimation of the
empirical extremal coe�cient done in the subsequent studies of this thesis was done
using the same method.

To summarize, the analog summary measure of similarity between two locations
for spatial extremes is not given by the variogram γ(h) but rather by the extremal
coe�cient θ(h). This coe�cient can be estimated by the F-madogram, which behaves
similarly to the variogram. We now explore a way to incorporate this measure into a
model with max-stability for spatial datasets.

3.6.2 Max-Stable Processes

One of the main goals of spatial extremes methods is to account for the spatial �resid-
ual� dependence in the observed data. For non-extreme data, this was accomplished
by proposing a zero-mean Gaussian process as the stochastic component of eq. (3.15)
and then �nding an appropriate covariance function that describes the dependence.
For spatial extremes, we want to �nd a stochastic process that ful�lls the max-stability
property (section 3.3.1), for which the dependence between locations can then be char-
acterized with an analog of the covariance function. This brings us to the concept of
Max-stable processes.

Max-stable processes are extensions to in�nite dimensions of �nite-dimensional
EVT theory models like the GPD or the GEV distribution. They arise as �the point-
wise maxima taken over an in�nite number of (appropriately rescaled) stochastic pro-
cesses� (Ribatet, 2013). Let X1, X2, ... be independent copies of a stochastic process
{X(s) : s ∈ S} with continuous sample paths, where S ⊂ Rd and d > 1. Assuming
then that there exists continuous functions an(x) > 0 and bn(x) ∈ R and that the
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limit is not-degenerate, a max-stable process {Z(s) : s ∈ S} is de�ned as:

Z(s) = lim
n→+∞

maxni=1Xi(s)− bn(s)

an(s)
, s ∈ S (3.27)

In the same manner as with the GEV distribution(eq. (3.6)), the sequence of pro-
cesses Z1, Z2, ... must possess the max-stability property, which means that taking
the maxima of Z(s) results in the same process Z(s) as before. The max-stability
property entails that any �nite D-variate sample [Z(s1), ..., Z(sD)] has a multivariate
extreme-value distribution, meaning that the marginal distributions of this sample
must be GEV distributed. While max-stable processes operate in in�nite-dimensions,
in practice the data will always have a �nite number of dimensions. For this �nite-
dimensional case, the max-stable process Z(s) can be seen as describing the limiting
process of maxima from Xi i.i.d. random �elds.

As mentioned above, the margins of a max-stable process are always GEV dis-
tributed. To simplify the use of max-stable processes the margins are usually trans-
formed to the unit-Fréchet distribution GEV(1, 1, 1). A max-stable process whose
margins are unit-Fréchet distributed is denoted as a simple max-stable process.
Note that the transformation to unit-Fréchet given by eq. (3.23) requires that the
values of the marginal GEV parameters be known beforehand. Within the context
of modeling using max-stable processes, this means that an additional model for the
variability of the parameters in space is needed to transform the data. This is typically
achieved by using response surfaces like the one in eq. (3.17).

Admittedly, the usefulness of using max-stable processes for modeling spatial ex-
tremes is not readily apparent from their de�nition above. For this, assume that there
exists some stochastic process {X(s) : s ∈ S}, where X represents the quantity ob-
served (e.g., rainfall depth), S ⊂ R2 represents the geographical domain, and s the
spatial location. In this case, the problem stated in section 3.4 reduces to �nding
an appropriate model for the joint distribution of sup{X(s) : s ∈ S}. The problem
is that, unlike the univariate case where the maxima converge to a certain family of
distributions, no single family exists for the multivariate case. However, the max-
stable process Z(x) arises as a justi�ed model of sup{X(s) : s ∈ S} if we assume that
it is a good candidate to model the partial maxima process. It must be noted that
max-stable processes assume that asymptotic dependence exists, so they are not valid
models for the asymptotically independent case. If we can construct a max-stable
process that properly describes the partial maxima, we can use it to obtain the joint
distribution.

Although well-de�ned, the de�nition given in eq. (3.27) for max-stable processes is
not very useful for model construction, as it does not suggest ways to construct valid
processes {Z(s)}. This problem was approached by de Haan (1984) and Schlather
(2002), who proposed several canonical representations of max-stable processes. Of
them, the spectral representation of de Haan (1984) is the most useful for this
thesis. Consider the simple max-stable process {Z(s) : s ∈ S}; For the spectral
representation, such a process can be rewritten as:

Z(s) = max
i≥1

ζiYi(s), s ∈ S, (3.28)

where ζi ∈ Π denotes the points {ζi ≥ 1} of a Poisson process Π with intensity dζ/ζ2

on (0,∞), and {Y (s) : s ∈ S} is a non-negative stochastic process with independent
realizations {Yi(s)}i∈N and where E[Y (s)] = 1. An important advantage of this rep-
resentation is that it allows the straightforward construction of the joint distribution
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Figure 3.19: Visualization of the construction of a max-stable process using the spectral
representation from eq. (3.28). The left plot shows three replications of ζiYi(s), where Yi(s) is
a zero-mean Gaussian Process with Whittle-Matern covariance. The right plot shows thirty
replications: a max-stable process is then the pointwise maximum over all s, denoted by the
red line.

function using

Pr[Z(s) ≤ z(s), s ∈ S] = exp

(
−E

[
sup
s∈S

{
Y (s)

z(s)

}])
. (3.29)

Equations (3.28) and (3.29) show that di�erent choices of the stochastic process {Y (s)}
will lead to di�erent classes of max-stable processes (Cooley et al., 2012). Thus, a
straightforward way to construct max-stable processes is to propose di�erent types of
stochastic processes for Y (s). The properties of these proposals would then depend
on domain-speci�c aspects.

To better understand the spectral representation of max-stable processes given in
eq. (3.28), Smith (1990b) proposed the so-called rainfall-storms interpretation. This
interpretation is a useful (although somewhat unrealistic) analogy with meteorology.
The idea is that every point of ζi represents the overall intensity of a rainfall storm
that impacts the region S with a spatial extent given by {Yi(s)}. The total amount
of rainfall for a storm i centered in s is then given by the product ζiYi(s). A max-
stable process is given by the pointwise maxima taken over each point in S for an
in�nite number of storms. For example, the left plot of Fig. 3.19 shows an example
of three �storms� impacting a certain 1-dimensional region. Note that while every
storm is di�erent, the overall spatial dependence of each storm is the same, given by
the covariance function of the Gaussian Process Yi(s). The right plot shows many
more �storms�, for which the max-stable process (in red) is constructed by taking
the pointwise maxima for every s. This procedure can be easily extended to two
dimensions, giving a direct application of max-stable processes for spatial extremes.

An obvious �rst choice for the stochastic process {Y (s)} in eq. (3.28) is a Gaussian
process. Just as in classical geostatistics, the well-known properties of GPs make them
easy to use and adapt to many problems. Furthermore, GPs are characterized by the
covariance function, which encodes the information of spatial dependence. Thus,
choosing a Gaussian process to construct a max-stable process is a straightforward
way to include spatial dependence. In fact, the use of GPs as the basis of many
parametric max-stable processes is why these processes are sometimes referred to as
an extension to geostatistics, but for extremes.

Many di�erent parametric families of max-stable processes exist, most of which use
some type of Gaussian process for their construction using the spectral representation.
The resulting max-stable processes are typically named after the author that proposed
them. These include the Smith process (Smith, 1990b; Schlather, 2002), the Schlather



3.6. Spatial Extremes 71

process (Schlather, 2002), the Brown-Resnick process (Brown et al., 1977; Kabluchko
et al., 2009), and the extremal-t process (Davison et al., 2012b; Opitz, 2013). Of the
four, the Brown-Resnick max-stable process has been shown in many studies to be
a good choice for modelling environmental extremes (Engelke et al., 2015; Thibaud
et al., 2016; Asadi et al., 2015), and in particular, rainfall extremes (Davison et al.,
2012b; Buhl et al., 2016; Davison et al., 2013; Cooley et al., 2012). We now make a
brief description of the properties of the Brown-Resnick process, used in most of the
studies of this thesis.

The Brown-Resnick max-stable process

First proposed by Brown et al. (1977), the Brown-Resnick process is based on
a zero-mean Gaussian process with an assumption of intrinsic stationarity. While
this process was one of the earliest proposals, it was not until the seminal work of
Kabluchko et al. (2009) that its characterization was easy enough to handle for most
applications. Following Kabluchko et al. (2009), the Brown-Resnick process is de�ned
by

Z(x) = max
i≥1

ζi exp(Yi(s)− γ(s)), s ∈ S, (3.30)

where {Yi(s) : s ∈ S} are independent copies of a zero-mean Gaussian process with
intrinsic stationarity, and γ is the variogram de�ned in eq. (3.19). The advantage
of this process over the other GP-based processes is that the assumption of intrin-
sic stationarity allows the direct use of the variogram, extending much of classical
geostatistics theory to extremes.

A widely used assumption for the variogram γ(h) of the BR process is the following
expression:

γ(h) =

(
h

ρ

)α
, (3.31)

where h is the euclidean distance between two locations, ρ > 0 is the range param-
eter, and 0 ≤ α ≤ 2 is known as the smooth parameter. This variogram model
assumes isotropy. However, alternative variogram models can be proposed to include
anisotropy. From the variogram expression, it is clear that the dependence structure
of the Brown-Resnick process is completely characterized by the parameters ρ and α.
Therefore, these parameters are sometimes referred to as the dependence parameters.

An important aspect of the variogram γ(h) is that h does not necessarily need
to be the euclidean distance h =|

√
s2 − s′2 |; h merely needs to be a monotonically

non-decreasing function that describes a measure of distance between two points s and
s′. For example, in the �rst study of this thesis, h is de�ned as a temporal distance
between di�erent durations.

The use of the variogram for Brown-Resnick processes gives way to a clear con-
nection with the extremal coe�cient θ(h). A theoretical estimate θBR is given by

θ(h) = 2Φ{[γ(h)/2]1/2}, (3.32)

where Φ is the standard Gaussian distribution function. Thus, after �tting the BR
parameters, a simple model diagnostic is to compare the empirical estimates of θ(h)
with the theoretical estimates given by eq. (3.32). The proposed model should not
deviate too much from the empirical values.

The construction of a joint distribution function for the Brown-Resnick process is
straightforward using eq. (3.29) for any number of dimensionsD. The density function
and the likelihood can then be obtained by di�erentiating the resulting distribution.
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However, in practice, we restrict ourselves to the use of D = 2, which avoids the com-
binatorial explosion when having to di�erentiate the resulting distribution functions
for high-dimensional orders. For example, using D = 17 results in 8.3×1010 combina-
tions, a number that is intractable in most settings. Therefore, in this thesis, I restrict
myself to the bivariate (i.e., two-dimensional) setting. For the bivariate setting, the
distribution function of the Brown-Resnick process is given by:

Pr[Z(s) ≤ z1, Z(s′) ≤ z2] =

exp

[
− 1

z1
Φ

(√
γ(h)

2
+

1√
γ(h)

log
z2

z1

)
− 1

z2
Φ

(√
γ(h)

2
+

1√
γ(h)

log
z1

z2

)]
. (3.33)

Here z follows a unit Fréchet distribution, Φ denotes the standard normal distribution
function, h is de�ned as the distance between s and s′, and γ is the variogram.

The density function is given by di�erentiating the bivariate function; an expres-
sion can be found in Tyralis et al. (2019).

3.6.3 Inference for max-stable processes

In principle, if N -stations are available in the dataset, inference for the model's pa-
rameters would be based on the correspondingN -dimensional distribution constructed
from the max-stable process. However, as mentioned in the last section, the way to
construct a distribution function for max-stable processes given by eq. (3.29) has
many severe practical issues for modeling with these processes. MLE and Bayesian
methods are based on the likelihood, which requires an expression for the density
function. To get the density function from a max-stable process, di�erentiating the
distribution function is necessary. This derivative is performed for all N dimensions
and their combinations, which inevitably leads to a combinatorial explosion of terms
when dealing even with moderately low-dimensional levels.

The lack of closed-form expressions for the joint likelihood of high-dimension cases
motivates the use of the so-called composite likelihood. The composite likelihood
is a type of misspeci�ed likelihood that can be constructed from low-dimensional cases
to be used for inference of the max-stable process. In recent studies, for example, the
most common approach is to construct a composite likelihood from the 2-dimensional
case. It should be noted that the development of asymptotic theories of MLE using
composite likelihoods has led to most applications being based on the frequentist
paradigm; however, some work with Bayesian inference has also been done in recent
times. For a review of composite likelihood and their methods, check Sang (2016).

For working with max-stable processes in the bivariate case, the composite likeli-
hood is given by the pairwise likelihood. For a dataset with N stations, the idea
of the pairwise likelihood is to �nd all possible N(N − 1)/2 pairs and use them to
construct a likelihood function based on the bivariate distribution. In mathematical
terms, the pairwise log-likelihood is given by:

`P (θ) =

K∑
k=1

N−1∑
i=1

N∑
i′=i+1

log f(xk(si), xk(si′) | θ), (3.34)

where f(·) denotes the bivariate density of the max-stable process as given by the
derivative of the distribution function, and (s, s′) represents two di�erent locations.
The �rst sum is over the K i.i.d replicates (i.e., the di�erent years/months), and the
other two sums are over all the possible pairs of N -stations. Note that just like the
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normal likelihood, the log-version is preferred to work with, as this avoids the product
of tiny quantities.

A potential problem surges when the di�erent measuring stations have di�er-
ing record lengths, leading to an imbalance of some locations having much more
K-maxima than others 7. The expression (3.34) for the log-pairwise likelihood does
not directly indicate how to deal with this situation, but we propose as a solution to
set the value of zero to the log-likelihood of any invalid pairs. Simply ignoring invalid
pairs by assigning them a log-likelihood of zero avoids having to throw a consider-
able amount of data, but at the expense of potentially invalidating the theoretical
framework of the composite likelihood. Therefore, in the studies for this thesis, this
workaround was performed exclusively when the amount of missing data was judged
to be inconsequential compared to the total number of stations.

It is tempting to treat the pairwise likelihood as if it was the full likelihood for
inference: In fact, inference for bivariate max-stable processes is done by simply sub-
stituting the full likelihood with `P for MLE estimation. This substitution is not
without merit, as MLE using composite likelihoods has been seen to yield estimators
with good asymptotic properties (which will not be mentioned here). Nevertheless,
it is important to remember that any composite likelihood constitutes a misspeci�ed
model, and as such, estimators obtained from composite likelihoods will typically re-
sult in a loss of statistical e�ciency compared to its full likelihood counterpart. This
does not mean that estimators based on the composite likelihood are useless, as sev-
eral corrections can be used to counteract this e�ect. For example, the Open-Faced
Sandwich correction proposed by Shaby (2014) extends the use of composite likeli-
hoods for the Bayesian paradigm. Details about the OFS correction and its novel
application to the second study described in this thesis are explained in section 5.2.3.

In contrast to the methods to approximate the prediction accuracy of the models
explored in section 2.5, model selection is usually performed with the Composite

Likelihood Information Criterion (CLIC). The CLIC is based on the expected
KL-divergence between the true unknown model and the adopted misspeci�ed model
given by the composite likelihood. As with the AIC, the CLIC can be used to compare
di�erent models.

It is important to mention that the pairwise likelihood stemming from the bivariate
density function constructed from eq. (3.29) is valid only for unit-Fréchet distributed
margins. However, by transforming the margins to unit-Fréchet, we e�ectively ignore
the spatial variation in the GEV parameters. This e�ect is undesirable, as �nding
the spatial variation of the GEV parameters commonly constitutes one of the goals
of spatial analysis. To tackle this problem, two options exist: (i) �nding the spatial
variation of the GEV parameters beforehand by assuming the observations are iid,
e�ectively ignoring the spatial dependence; or (ii) constructing a method of inference
that �nds the value of both the GEV parameters and the BR dependence parameters
all-at-once. The latter method transfers some information from the spatial dependence
to the marginal estimates. However, just how much information is transferred is not
clear. The �rst two studies of this thesis delve more into this issue by �tting models
with the all-at-once approach and comparing them to the iid option. As will be seen,
the di�erence in the pointwise estimates is not very large, but the di�erence in the
uncertainty is signi�cant.

Introducing the required transformation from unit-Fréchet to an arbitrary GEV
distribution of the margins for the pairwise likelihood requires a way to transform a
random variable from one distribution to another. Let X be a series of random vectors

7This situation is exceedingly common when dealing with weather observations.
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with probability density px(x), and Z = T (X) be a bijection mapping values of X to
Z, where Z has probability density pz. Both densities are related by

pz(T (x)) =
px(x)

|JT (x)|
, (3.35)

where |JT (x)| is the determinant of the Jacobian matrix of T . The Jacobian matrix
is given by the derivatives of each n-component of T :

JT (x) =


∂T1
∂x1

· · · ∂T1
∂xn

...
. . .

...
∂Tn
∂x1

· · · ∂Tn
∂xn

 .
Therefore, the Jacobian matrix is necessary to transform a random vector from one
distribution to another8.

For the particular case of the Brown-Resnick process, the bijection z = T (x) is
given by eq. (3.23). This transforms the x GEV-distributed observations to unit-
Fréchet ones (here represented by z). The bivariate density derived from eq. (3.33) is
valid only for unit-Fréchet data. Thus, in order to use the GEV-distributed data in
the bivariate density directly, we rearrange eq. (3.35) to be

f(x(s), x(s′)) = f(T (x(s), x(s′)))|JT (x(s), x(s′))|,

where f(·, ·) is the bivariate density of the Brown-Resnick process. This expression
lets us directly introduce the observed block-maxima in the pairwise log-likelihood `P ,
which in turn means that inference can be performed in the all-at-once setting.

To summarize this section, inference for max-stable processes is typically possi-
ble only for composite likelihoods like the pairwise likelihood, as the full likelihood
is commonly intractable. The pairwise likelihood possesses favorable properties, so
methods such as MLE or Bayesian inference can be applied by substituting the full
likelihood with the composite likelihood. However, this usually comes at a cost as-
sociated with using a misspeci�ed likelihood, so care must be used when interpreting
the result. This is why several corrections exist for estimates obtained using compos-
ite likelihoods. Lastly, the density given by simple max-stable processes allows only
unit-Fréchet margins to be used in the likelihood, but this can be extended to the full
GEV distribution using the Jacobian transformation.

3.6.4 Simulation from max-stable processes

As seen in section 2.5, the goal of statistical modeling is sometimes to generate sim-
ulated values by randomly drawing from the resulting distribution. The idea is that
the simulated values will also be distributed according to the model so that we can
use them as future �predictions� of sorts. For the univariate case, simulating from a
GEV distribution is relatively straightforward, for which many simulation techniques
have been developed. However, the situation changes when simulating a draw from
a max-stable multivariate distribution like the ones given by max-stable processes.
Remember that closed-form analytical expressions for distributions resulting from
max-stable processes are usually available only for bivariate distributions, and yet, we
would like to simulate from a process that includes all dimensions.

8If px and pz are probability functions for discrete random variables then no Jacobian term is
needed.
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Figure 3.20: Three realizations from a Brown-Resnick max-stable process �tted using the
data and methods described in section 5.2.1. Notice how the spatial dependence is kept for
each realization.

Exact simulation from max-stable processes is usually not possible; however, some
recently developed algorithms make it possible to sample a �nite number of locations
from a max-stable process (Oesting et al., 2016). For example, Dombry et al. (2016)
proposed an algorithm for sampling a Brown-Resnick process via the spectral measure.
This algorithm is currently implemented in the R-package SpatialExtremes (Ribatet,
2020).

Figure 3.20 shows three simulations from a Brown-Resnick max-stable process
�tted using rainfall data. The spatial dependence of the BR process can be seen in
the structures of each realization in the form of regions with increased intensity. Each
individual realization will result in a di�erent �eld. Note that this maps show a �eld
of pointwise annual block maxima, so that the size of the events cannot be directly
characterized, as the maxima for each point does not necessarily come from the same
event. However, it does give an indication of possible sizes if one considers that many
extreme rainfall events have a large spatial extent.

3.6.5 Alternative approaches for spatial extremes

So far in this section, we have only considered the use of max-stable processes to model
the joint distribution of the X(s) block maxima. Max-stable processes can be seen
as an extension of classical geostatistics and as such, share many of the advantages of
geostatistical methods. However, they are not the only valid approach for modeling
spatial extremes. For an exhaustive review of the other existing methods, see (Davison
et al., 2012b; Cooley et al., 2012; Davison et al., 2015; Huser et al., 2022).

The main alternative to max-stable processes is using so-called latent variable

models. A latent variable model is a multilevel model where the block maxima from
di�erent locations are all assumed to be independent and follow the same distribution
family. In this setting, the margins follow the GEV distribution, whose parameters
vary in space. In turn, the variability in space of the GEV parameters is modeled via
an additional layer constructed using a Gaussian Process. Therefore, an individual
GEV is given for each location, but at the same time information from all stations
is used to inform the estimates of each location's parameters. An advantage of this
method is that it requires much less computational demand than a max-stable process
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and is theoretically much simpler. In fact, this model type is optimal when the
main goal of the analysis is to infer the marginal parameters. The problem with the
latent variable approach comes from the independence assumption, which intrinsically
forces the resulting likelihood to be misspeci�ed, resulting in an underestimation of
the uncertainty. Furthermore, simulations using the latent variable approach will be
nonsensical, as the spatial structure will not be re�ected in the simulated draws.

A further alternative for modeling spatial extremes with block maxima is the use of
copulas. Copulas are functions that describe the dependence between several random
vectors, independent of their marginal distribution. However, it is well-known that
copulas have a poor performance when modeling extremes, as they usually cannot
capture the tail dependence adequately. The exception is the use of extreme-value
copulas; however, these kinds of copulas constitute what are e�ectively max-stable
processes.

Finally, some alternatives to the block maxima approach exist for spatial extremes.
An extension of PoT methods is given by the r-Pareto process, described in Fondeville
et al. (2018) and Fondeville et al. (2020). This kind of model is optimal for modeling
the size of events, which cannot be discerned when using block maxima.

3.7 Summary

The spatial modeling of extreme rainfall requires the extension of classical geostatis-
tics to incorporate max-stable distributions and account for the extremal dependence
structure. This is given by the methods of spatial extremes, which extend the theo-
retical basis of univariate EVT to a multivariate setting. The extension of EVT to
multivariate settings results in max-stable processes. In the univariate case, block
maxima are described exclusively by the GEV distribution. However, for the mul-
tivariate case, no single parametric family exists, so no single form for a max-stable
process exists. Nevertheless, the spectral form of max-stable processes provides a
straightforward way to construct them using di�erent types of Gaussian processes. Of
the di�erent possibilities, the Brown-Resnick process has been proven to be successful
at modeling rainfall maxima. The Brown-Resnick process encodes the spatial depen-
dence into the variogram γ(h), which can be transformed into the summary measure
of extremal dependence known as the extremal coe�cient. Thus, Brown-Resnick max-
stable processes are proposed as a theoretically-sound method for modeling extreme
rainfall in the following sections.
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Abstract

To explicitly account for asymptotic dependence between rainfall intensity maxima
of di�erent accumulation duration, a recent development for estimating Intensity-
Duration-Frequency (IDF) curves involves the use of a max-stable process. In our
study, we aimed to estimate the impact on the performance of the return levels re-
sulting from an IDF model that accounts for such asymptotical dependence. To
investigate this impact, we compared the performance of the return level estimates
of two IDF models using the quantile skill index (QSI). One IDF model is based on
a max-stable process assuming asymptotic dependence; the other is a simpli�ed (or
reduced) duration-dependent GEV model assuming asymptotic independence. The
resulting QSI shows that the overall performance of the two models is very similar,
with the max-stable model slightly outperforming the other model for short durations
(d ≤ 10 h). From a simulation study, we conclude that max-stable processes are worth
considering for IDF curve estimation when focusing on short durations if the model's
asymptotic dependence can be assumed to be properly captured.



80 Chapter 4. IDF modeling with max-stable processes

4.1 Introduction

Much research has been recently done on the application of multivariate methods to
estimate Intensity-Duration-Frequency (IDF) curves. IDF curves are a popular tool
among hydrologists to estimate exceedance probabilities of extreme rainfall events
with di�erent durations. In broad terms, IDF curves model a relationship between
intensities of extreme rainfall events and their frequencies (i.e., return periods) as a
function of event duration. A challenge in estimating IDF curves is how to deal with
the simultaneous modeling of intensities for di�erent durations, in particular, how to
account for the possible dependence that could arise between intensities of di�erent
durations.

Initially, the conventional approach to model IDF curves was based on univariate
extreme value theory (EVT) models. Early work on the topic estimates extreme value
distributions individually for several �xed durations and subsequently �ts an empirical
relation to quantiles (return levels) as a function of duration (Chow, 1953; Aparicio,
1997; García-Bartual et al., 2001; Monjo, 2016). This approach is prone to inconsis-
tencies as the natural ordering of quantiles is not guaranteed to be preserved over all
durations (in other words: quantiles cross). To address this problem, Koutsoyiannis
et al. (1998) suggested a consistent extreme value model for intensities as a function
of duration with location and scale being functions of duration. Later on, a couple
of studies implemented methods from Bayesian statistics for the univariate relation-
ship between intensity and duration. Lehmann et al. (2016) formulated a Bayesian
Hierarchical Model (BHM) based on the model from Koutsoyiannis et al. (1998), and
Van de Vyver (2018) presented a multi-scale model using Bayesian inference. More
recently, Ritschel et al. (2017) used this model to characterize stochastic precipitation
models, and Ulrich et al. (2020) proposed the addition of spatial covariates to the
model from Koutsoyiannis et al. (1998), extending the work of Fischer et al. (2017)
using spatial covariates to model daily precipitation maxima. These studies make an
assumption of stationarity, which may not be valid under a changing climate. Some
recent studies have focused on tackling this issue with univariate methods to construct
consistent IDF curves in a nonstationary setting. Some examples include the work
of Padulano et al. (2019) using the storm index method, as well as those of Ganguli
et al. (2017) and Ganguli et al. (2019) comparing the estimates from a stationary and
nonstationary method.

Many of the previous univariate models assume that rainfall intensities are inde-
pendent for di�erent durations, thus simplifying the modeling e�orts. However, the
estimation of an extreme value distribution as a function of durations brings along
the problem of dependence of extremes associated with di�erent durations, as longer
duration series are always aggregated from series of shorter durations. An important
consequence of this way of aggregating is that there exists no �single� event for any
given duration. As an example, the values of the 15 minute duration events are not
events that lasted exactly 15 minutes, but rather the �largest� 15 minute long average
values from longer events.

In recent years there has been widespread use of multivariate EVT methods for
modeling IDF curves, which allow the explicit modeling of dependence structures that
could not be captured by the univariate approach. Essentially, a multivariate extreme
value distribution (MEVD) is �tted to extreme precipitation data, with the marginal
distributions being frequently modeled by a univariate extreme value distribution. Si-
multaneously, the dependence structure is described with methods such as max-stable
processes or copulas. An early example of this was proposed by Muller et al. (2008)
who, alongside the independence likelihood (analogous to the univariate approach),
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proposed the use of a so-called trivariate likelihood for three durations: 1, 24, and 72
h. In this study, the dependence between 24 and 72 h was modeled with a bivariate
extreme distribution from the logistic family. Afterward, Van de Vyver (2015) inves-
tigated the use of the trivariate likelihood by calculating the parameters' uncertainty
using a Bayesian approach. He found that, while the resulting posterior distributions
from the trivariate likelihood were narrower than the independence likelihood ones,
its limitations were too strict to recommend its use over the independence likelihood.
An early example of modeling IDF curves using copulas is the study of Singh et al.
(2007), who used a Frank Archimedean copula to estimate the IDF relationship in a
bivariate setting.

Some of the most recent advances have been a result of studies that attempted to
model IDF curves within a spatial setting. These approaches take advantage of the
methods developed for modeling so-called spatial extremes (Davison et al., 2013). For
example, Stephenson et al. (2016) implemented a spatial max-stable process for IDF
estimation; they estimated IDF curves in a spatial setting by incorporating a Bayesian
Hierarchical Model in every station with a max-stable process. While their approach
was able to capture the spatial dependence, they had to limit their scope to assume
that the rainfall maxima were independent for di�erent durations. Later on, Tyralis et
al. (2019) proposed the use of a max-stable process to estimate IDF curves for a single
station in a way that the asymptotic dependence between rainfall intensity maxima
of di�erent durations was explicitly modeled, extending the spatial methodology by
proposing a so-called duration space instead of geographical coordinates. Remarkably,
their proposed max-stable process was able to explicitly account for the asymptotic
dependence between intensities for di�erent durations.

Although Tyralis et al. (2019) demonstrated the feasibility of a duration-dependent
max-stable process to estimate IDF curves, they did not investigate their performance
compared to, e.g., univariate EVT methods. Their results showed that both the uni-
variate and multivariate approaches adequately approximated the empirical quantiles,
where the max-stable approach resulted in more conservative (i.e., higher) intensities
for large quantiles (i.e., longer return periods). In our study, we aimed to build upon
the results of Tyralis et al. (2019) by estimating the impact on performance when ac-
counting for the asymptotical dependence between rainfall intensity aggregated over
di�erent durations. We expected that, whenever the asymptotical dependence be-
tween durations is high and the max-stable approach is able to capture the �strength�
of such dependence for the estimated intensities, the model performance should be
signi�cantly higher than for a model assuming independence.

The present paper introduces a scheme to evaluate the impact of the asymptotic
dependence between rainfall intensities aggregated over di�erent durations on the
performance of EVT-based IDF models. This involves a comparison of skill between
two IDF models: one accounting for asymptotic dependence between durations, the
other assuming independence. The comparison shows that accounting for the depen-
dence between rainfall intensity aggregated over di�erent durations slightly improves
the point estimates for long return periods, and particularly for �short� durations
(d ≤ 10 h) usually associated with convective phenomena. However, this comes at the
price of increased complexity of modeling the asymptotic dependence.

4.2 Methods and Data

Our study involves numerical experiments to estimate the relative performance of
IDF curves modeled with two approaches: one based on a max-stable process to
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account for asymptotic dependence (henceforth named as the MS-GEV approach), and
another one based on the assumption of independence using the reduced d-GEV model
(henceforth named as the rd-GEV approach). By doing so, we aimed to estimate how
the performance of IDF curves is a�ected by considering (or ignoring) the asymptotic
dependence between rainfall intensity maxima for di�erent durations.

We performed the study in two broad steps. First, we conducted a case study using
data from 6 rain-gauge stations. This data was used to estimate the respective IDF-
model parameters from both the MS-GEV and rd-GEV approaches. We compared
the performance of both approaches using a measure of skill. In the second step, we
introduced synthetic data with known levels of dependence to estimate the e�ect that
the level of dependence has on the resulting estimations. We used the synthetic data
to estimate and compare their performance again. Finally, we compared the results
from both steps to determine how the performance was a�ected by the asymptotic
dependence between durations. The two di�erent methods used for estimating IDF
curves are explained in more detail in the following section. Subsequently, the methods
used for veri�cation are described, and, �nally, the observation data and the synthetic
data are presented.

4.2.1 Estimation of IDF Curves

Let ζd(t) be the instantaneous rainfall intensity series integrated over a time window
of length d, where d is an arbitrary time duration (which commonly ranges from the
measurement interval to 72�120 h). Given ζd(t), we obtain the series of the maximum
annual average rainfall intensity for each value of d as

i(d) = max
y−<t<y+

{ζd(t)} y = (1, ..., n), (4.1)

where n is the total number of observation years, and y−, y+ are the beginning and
end of the yth year, respectively. As a rule, k durations dj , j = 1, ..., k are simulta-
neously used when constructing i(d), with values from the measurement interval to
120 h (depending on the application). The resulting k series can be thought of as
a realization of a random variable I(d). Notice that, in Equation (4.1), d is not a
random variable but a parameter for the intensity, as noted by Koutsoyiannis et al.
(1998).

The construction of i(d) from a single duration series (e.g., hourly precipitation
sums) generates a statistical dependence between i(d1) and i(d2) corresponding to
di�erent aggregation durations d1 6= d2. For example, i(d = 2 h) and i(d = 3 h)
show a very high dependence (that is, when one of them has what is considered to
be a high value, the other intensity also has a high value). However, as the gap in
aggregation duration between the values grows, this dependence diminishes: i(d = 2)
and i(d = 24) show almost complete independence. Nadarajah et al. (1998) proposed
a scheme to work with this type of random variable, which they denoted as ordered
random variables. Some authors have linked this concept to the di�erent physical
processes that result in di�erent time scales for precipitation events. For example,
Muller et al. (2008) claimed that the independence between the 1 h and 24-h events
were due to the 1-h events being a result of convective (local) motions, while the 24-h
event was related to synoptic phenomena. In this paper, we take a closer look at how
this dependence a�ects the estimation of IDF curves down the road.

Following the block-maxima approach, e.g., (Coles, 2001), a GEV can be �tted
to each k-series of i(dj). Then, the return levels zd,T associated with return periods
T = 1/p can be calculated for each duration used for the �t dj , where p is denoting the
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non-exceedance probability with values usually in the range corresponding to upper
extreme quantiles. The idea behind IDF curves is to describe the return level zd,T for
arbitrary durations d based on the sample i(dj) in a meaningful way. This typically
involves a parametric form of zd,T as a function of d. The choice of the model used
for estimating IDF curves depends on the choice of parametric form of zd,T .

For this study, we employed two di�erent approaches for the parametric form of
zd,T as a function of d. For the model that assumes asymptotical independence for
i(d) for di�erent d, we follow the duration dependent GEV model (d-GEV) of Ritschel
et al. (2017). Based on Koutsoyiannis et al. (1998), the d-GEV model of Reference
Ritschel et al. (2017) estimates a GEV simultaneously from annual maxima associated
with various durations, thus conceiving the GEV as a function of duration. The d-
GEV yields consistent quantiles zd,T , which cannot cross by de�nition. The other
approach is based on a max-stable process for modeling the relationship of zd,T that
accounts for the asymptotic dependence between durations.

Using the Duration-Dependent GEV

Following Ritschel et al. (2017) and Ulrich et al. (2020), we used the duration depen-
dent GEV (d-GEV) to model i(d) with the distribution

G(x) = exp

[
−
(

1 + ξ

(
x

σ(d)
− µ̃

))−1/ξ
]
, (4.2)

where σ(d) = σ0/(d + ν)η is the duration dependent scale parameter, and µ̃ =
µ(d)/σ(d) is the modi�ed location parameter.

Given the estimated (µ(d), σ(d), ξ) parameters, it is straightforward to calculate
the return level zd,T for any arbitrary duration using

zd,T = µ(d) +
σ(d)

ξ

[(
− log

(
1− 1

T

))−ξ
− 1

]
. (4.3)

To compare the resulting zd,T of this approach with those estimated using the
MS-GEV approach, we set the parameter ν = 0. This parameter is related to sub-
hourly duration values (0 < d < 1), which we do not consider here. Therefore, the
dependence of location and scale parameter on duration follows

µ(d) = µ̃σ0d
−η, (4.4)

σ(d) = σ0d
−η . (4.5)

This results in a model with four parameters to be estimated, namely {µ̃, σ0, ξ, η}.
We call this modi�ed distribution the reduced d-GEV or rd-GEV for short. The
parameters of the d-GEV distribution are estimated by maximizing the likelihood as
implemented in the R-package IDF (Ulrich et al., 2019). Equation (4.3) is used to get
intensities for arbitrary durations (d ≥ 1).

Using a Max-Stable Process

Max-stable processes are extensions to in�nite dimensions of �nite-dimensional ex-
treme value theory models (i.e., extremes of random variables or vectors). They arise
as �the pointwise maxima taken over an in�nite number of (appropriately rescaled)
stochastic processes� (Ribatet, 2013). Let {X(x) : x ∈ χ} be a stochastic process,
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where χ is a compact subset of Rd, d ≥ 1, and {Z(x) : x ∈ χ} be a max-stable stochas-
tic process. Following de Haan (1984), if there exist continuous functions an(x) > 0
and bn(x) ∈ R, and provided that the limit is non-degenerate, the process Z(x) can
be de�ned as

Z(x) = lim
n→+∞

maxni=1Xi(x)− bn(x)

an(x)
, x ∈ χ . (4.6)

The max-stable process Z(·) describes the limiting process of maxima from the
Xi IID random �elds (Zheng et al., 2015). The use of this max-stable process for
modeling spatial extremes is justi�ed when, based on n independent replicates, and,
if n is large enough, we assume that Z(x) is a good candidate for modeling the partial
maxima process {maxi=1,...,nXi(x) : x ∈ χ} (Dey et al., 2016).

One of the main advantages of using a max-stable process is that it provides
a �exible way of modeling the dependence structure between the Xi IID random
�elds. If we assume that χ ⊂ R2 represents a geographical catchment, we can think
that for multiple points (x ∈ χ), the marginal distributions are jointly modeled via
the max-stable process, resulting in continuous functions of the GEV parameters
µ(x), σ(x), ξ(x) for each margin.

In order to implement a max-stable model for estimating IDF curves, we followed
the framework proposed by Tyralis et al. (2019). This approach (MS-GEV) employs
the Brown-Resnick process, a frequently used parametric family of max-stable pro-
cesses for modeling environmental extremes (Engelke et al., 2015; Thibaud et al.,
2016; Asadi et al., 2015). Previous studies have shown the applicability of the Brown-
Resnick process for extreme rainfall applications (Davison et al., 2012b; Buhl et al.,
2016; Davison et al., 2013; Cooley et al., 2012). A central proposition of our current
approach is to de�ne a continuous variable ī(d) in a one-dimensional space, where
each �location� is one of the durations d. This in contrast to other applications of
max-stable processes, where the variable of interest is commonly de�ned in a two-
dimensional (e.g., latitude and longitude) space.

For any max-stable process, the X(si) marginals are generalized extreme value
(GEV) distributed, with distribution function:

G(i) = exp

{
−

[(
1 + ξ

i− µ
σ

)−1/ξ

+

]}
, (4.7)

where µ, σ, ξ are the location, scale and shape parameters, and x+ = max(0, x).
Following de Haan (1984) (with the adaptation for d > 0), when the limiting process
{̄i(d) : d > 0} is non-degenerate, a simple max-stable process can be constructed
by its so-called spectral characterization, which is a representation of the max-stable
process in the frequency domain (Ribatet, 2013). In the spectral characterization,
the max-stable process is given by choice of the stochastic process (Xi(d) in Equation
(4.21)).

Such max-stable processes are called simple as the margins z̄(d) are unit Fréchet
distributed (i.e., µ = σ = ξ = 1). The use of unit Fréchet marginals is standard, as
the max-stable process theory is based on the assumption that the marginals have
a common, convenient max-stable distribution. There is no loss of generality in as-
suming that the limiting process {̄i(d) : d > 0} has unit Fréchet margins, as it is
straightforward to transform such margins into arbitrarily GEV-distributed ones and
vice versa.

For this study, we used the bivariate form of the Brown-Resnick process given by
Kabluchko et al. (2009) (see Appendix 4.A) as the stochastic process Xi(d). In this
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form, the dependence is a function of the semivariogram γ, de�ned as

γ2(h) = 2

(
h

ρ

)α
, ρ > 0, 0 < α ≤ 2 , (4.8)

where α and ρ are, respectively, the smooth and range parameters of the semivari-
ogram, and h represents a measure of the distance between two durations. Tyralis
et al. (2019) calculated this distance as the euclidean distance

he = |dj − di|, (4.9)

where the indices i and j denote di�erent durations di in hours, and j 6= i. However,
this measure does not account for the non-linearity of the distance between durations
for events of increasing magnitude. For example, consider that an event of 4 h com-
pared to one of 2 h (he = 2) is already twice as long, while an event of 50 h compared
to one of 48 h (he = 2) is only 1.04 times the second one.

To address this issue, we explored the use of a distance measure based on a loga-
rithm following Van de Vyver et al. (2018). This distance is de�ned as

hl = log2(dj)− log2(di) = log2

(
dj
di

)
, (4.10)

where i and j denote di�erent durations di in hours, and j > i.
We compare the resulting pairwise extremal coe�cients from both distance mea-

sures to discern which one results in a more appropiate �t for the semivariogram of
Equation (4.8).

The bivariate form of the Brown-Resnick max-stable process described in Equation
(4.22) is valid only for unit Fréchet marginals. Therefore, the series of yearly rainfall
intensity ī(d) requires an appropriate transformation (see Tyralis et al. (2019) for
details) to be unit Fréchet distributed, using the relationship

z̄(d) = (1 + ξ(̄i(d)− µ(d)/σ(d))
1/ξ
+ . (4.11)

To link ī(d) to z̄(d) for all durations, we used the response surfaces for the GEV
parameters (Tyralis et al., 2019):

µ(d) = µ0d
c , (4.12)

σ(d) = σ0d
c . (4.13)

These response surfaces follow the constraints given by Equations (4.18)�(4.20),
and describe a function Ψ(d) for the parameters of the marginals of ī(d). Equa-
tions (4.12) and (4.13) are equivalent to Equations (4.4) and (4.5) in the rd-GEV
model. The response surfaces allow to use all durations simultaneously when estimat-
ing the max-stable process parameters.

Taking the response surfaces into account, the parameters that we need to estimate
for calculating IDF curves using the Brown-Resnick model are six: [ρ, α, µ0, σ0, ξ0, c].
This is accomplished via the maximum likelihood estimate of the pairwise likelihood
given in Equation (4.23). The estimation of the parameters is done using the R package
SpatialExtremes (Ribatet, 2020).

Of particular usefulness for our study, is a measure to summarize the strength of
the asymptotical dependence modeled by the Brown-Resnick max-stable process. A
well-known measure is the extremal coe�cient θ, which for the bivariate case, can
take values of 1 ≤ θ ≤ 2. The value of θ decreases when the dependence between the
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two margins increases. When θ = 1 the two margins are completely dependent, and
when θ = 2 they are independent.

For the dependence structure of the Brown-Resnick max-stable process described
by Equation (4.8), the extremal coe�cient is a function only of the distance between
durations: θ = θ(h). Given the semivariogram γ for a Brown-Resnick max-stable
process, with Φ denoting the standard normal distribution function, the extremal
coe�cient is given by

θ(h)BR = 2Φ(γ(h)/2)1/2 . (4.14)

For comparison purposes, we also calculate the extremal coe�cient nonparamet-
rically (θ̂emp). For our study, we used the method proposed by Marcon et al. (2017),
which was found by Vettori et al. (2018) to generally perform better than other non-
parametric estimators.

To summarize: To estimate IDF curves with a max-stable process, we (i) transform
our block-maxima data i(d) into unit Fréchet using Equation (4.11) with the response
surfaces given by Equations (4.12)�(4.13); then (ii) estimate the parameters via the
maximum likelihood estimates of the pairwise likelihood given by Equation (4.23);
and, �nally, (iii) calculate the intensity for any arbitrary duration d and return period
T from Equation (4.3). We perform all the computations within the R language (R
Core Team, 2020). The data and code is available as supplementary information.

4.2.2 Veri�cation and Model Comparison

As a performance measure, we use the quantile score (QS) (Bentzien et al., 2014).
This allows us to evaluate predictions of zd,T estimated from IDF-curves in terms of
quantiles (i.e., return periods). For D durations, N years, and a given return period
T the QS is de�ned as

QST =
1

ND

D∑
d=1

N∑
n=1

ρT (in(d)− zd,T ) , (4.15)

where in(d) is the observed block maxima, zd,T is the corresponding intensity from
the model (using Equation (4.3)), and ρT (u) is the so-called check function

ρT (u) =

{
(1− 1/T )u u ≥ 0

(−1/T )u u < 0;
(4.16)

thus, for this particular application, ρT (u) = ρT (in(d)− zd,T ).
The QS is always positive and reaches an optimal value at zero. To compare

the performance of a model with a reference, we use the Quantile Skill Index (QSI)
(Ulrich et al., 2020) derived from the Quantile Skill Score QSS = 1−QSmodel/QSref
(see Wilks (2011) for more details on skill scores), de�ned as

QSI =

1− QSmodel
QSref

, if QSmodel < QSref

−
(

1− QSref
QSmodel

)
, if QSmodel ≥ QSref

. (4.17)

For our study, QSmodel is the score for the MS-GEV approach, and QSreference is
the score for the rd-GEV approach. Positive (negative) values of the QSI indicate
a gain (loss) of skill for the MS-GEV approach compared to the rd-GEV one. The
advantage of using the QSI over QSS is that negative values have a more meaningful
interpretation.
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To get a robust estimation of the prediction error for the QSI, we applied 10-fold
cross-validation to estimate the QS (Hastie et al., 2009). The QSI is then obtained
using the mean cross-validated QS, averaged over all cross-validation folds, for each
model. We used return periods T = (5, 10, 20, 40, 100) years. However, the results
from the 100 year return period should be interpreted with caution, as the data used
for parameter estimation consists of much shorter series of approximately 40 years.
The QSI has to be interpreted with care for return periods much larger than the length
of the time series (e.g., T > 40 years). The lack of observations for this region could
result in a really high uncertainty of the value of the QS, and, therefore, of the QSI.

4.2.3 Data
Two di�erent datasets are used for our study. The �rst one is a synthetic dataset
generated for the simulation study. The second one is the block maxima from six rain
gauge stations located in the Wupper Catchment (West Germany). We describe both
datasets in the following section.

Synthetic Data

We generate synthetic datasets with varying levels of dependence to investigate the
models' performance in estimating IDF curves. We designed three synthetic datasets
that simulate rainfall block maxima aggregated over di�erent durations with increasing
levels of dependence. For each dataset, we simulate values from a Brown-Resnick
simple max-stable process with known dependence parameters using the R-package
SpatialExtremes. For the marginal d-GEV distribution, we used a set of parameters
characteristic of those d-GEV distributions �tted from the stations in the observational
dataset. Then, to ful�ll the constraints of annual rainfall maxima averaged over
durations di, i = 1, ..., k, we transformed the initial simulated data from having unit-
Fréchet margins to GEV margins that follow the constraints given by (Nadarajah
et al., 1998; Koutsoyiannis et al., 1998)

ζ(di) = ζ0 , (4.18)

σ(di)(di/dj) ≤ σ(dj) ≤ σ(di), di ≤ dj ∀i, j, and (4.19)

µ(di)(di/dj) ≤ µ(dj) ≤ µ(di), di ≤ dj ∀i, j . (4.20)

This transformation uses the response surface described in Equations (4.12) and
(4.13). We simulate 40 values for each dataset (representing 40 years) for d =
(1, 3, ..., 119, 120) h. Following Zheng et al. (2015), three sets of dependence parame-
ters were used: (ρ = 1, α = 1) for weak dependence, (ρ = 0.5, α = 0.5) for moderate
dependence, and (ρ = 0.5, α = 0.2) for strong dependence. For each parameter set,
we generate 1000 realizations. An issue we encountered is that the nature of the
simulated data allowed for rainfall intensity series that did not strictly follow the con-
strains given by Equations (4.18)�(4.20), however, we considered this to happen at a
frequency that would not a�ect the �nal result of the study.

Observations

We used six rain gauge stations from the Wupper Catchment in Germany (Figure 4.1).
All the stations have hourly values of accumulated precipitation height for the period
1979�2016. The stations are all within an elevation range of 250 m, and horizontally
the shortest and longest distance between each station is 7 Km and 34 Km, respec-
tively. We chose this dataset as it has a large number of years with high-frequency
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(hourly) measurements. Furthermore, the stations range from the Bergisches Land to
the Upper Rhine Plain and therefore represent very well the di�erent altitudes of the
catchment. Figure 4.1 shows the distribution of rainfall maxima for this period.

Figure 4.1: Left: (Lower panel) Distribution of the annual rainfall maxima at a 1-h accu-
mulation duration plotted against time. Each boxplot shows the distribution of the pooled
maxima from the six stations used for the case study in the Wupper catchment region. (Up-
per panel) Time series of the annual rainfall maxima, showing the values of each station as a
di�erent color. Right: Map of the Wupper catchment (dashed line) showing the location of
all 6 stations; the lower-right corner shows the location of the catchment within Germany.

We obtain the annual block maxima i(dj) of the averaged rainfall intensity ζd(t)
over the time window dj for each station using Equation (4.1). For estimation pur-
poses, we used durations d = (1, 3, ..., 119, 120) h. The decision for the cut-o� value
of 120 h was based on previous studies on IDF curve estimation (Tyralis et al., 2019;
Stephenson et al., 2016). By visual inspection of the corresponding Quantile Quantile
(QQ)-plot, we ensure good agreement of the resulting i(dj) block maxima for all 6
stations with the GEV distribution. A small subset of the QQ-plots can be seen in
Figure 4.10.

4.3 Results

We present the results for the case study in the Wupper region of Germany �rst,
followed by the results of the simulation study.

4.3.1 Case Study
Structure of the Extremal Dependence

Figures 4.2 and 4.3 show a comparison of the pairwise extremal coe�cient θ derived
from the parameters of the MS-GEV approach (Equation (4.14), red line) and from
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a nonparametric estimate (dots) to assess how well the MS-GEV approach captures
the observed asymptotic dependence. We used di�erent distance measures h for each
plot. Figure 4.2 uses the euclidean distance he (Equation (4.9)), and Figure 4.3 uses
the log-distance hl (Equation (4.10)). Additionally, the di�erent colors show the lower
distance di used for each duration pair (di, dj), where i < j, and (i > 0, j > 0).

Figure 4.2: Nonparametric (dots = θ̂emp) and parametric (solid line = θBR) estimates for the
pairwise extremal coe�cient θ using the euclidean distance he. The estimated nonparametric
mean of θ for each duration lag bin is shown as black dots. Each color represents the lower
duration di used for each duration pair.

For the euclidean distance he (Figure 4.2), the values of θBR are close to the binned
means of θ̂emp (black circles) with respect to the scattering of the individual empirical
estimates (color circles) for all stations. Nevertheless, the empirical point clouds show
a remarkably high variability of θ around the mean value. To name one example, in
station Buchenhofen, the distance of he = 25 h has a range of very di�erent values
of θ, spanning from 1.2 to 1.8. Thus, using a model that approximates the empirical
mean-binned values in this case does not appear to be a meaningful representation of
the overall variability of the dependence between durations.

Furthermore, each set of duration pairs with a �xed lower duration di in Figure 4.2
(represented by di�erent colors) seems to follow a di�erent path as the distance he
grows. In particular, for duration pairs with a short lower duration (di ≤ 10 h),
the value of θ grows much faster than duration pairs with longer lower durations
(di > 10 h). This suggests that several di�erent regimes of dependence coexist, which
are not only a function of the distance he, but also of the magnitude of the durations
used. This is a transgression of the assumption that the extremal coe�cient, and
by extension, the semivariogram model of Equation (4.8) is isotropic (i.e., γ should
only be a function of h). It is thus not evident that using a dependence model for
the MS-GEV approach based on the euclidean distance he adequately captures the
asymptotical dependence between durations seen on the data used for this study.
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The resulting extremal coe�cient using the log-distance hl is shown in Figure 4.3.
The point cloud shows a remarkably lower variability around the binned means than
those of Figure 4.2. Furthermore, the empirical values of θ̂emp appear to follow the
same regime, suggesting that θ is isotropic when using the log-distance. The shape of
the point cloud seems to be appropriately captured by θBR for duration ratios dj/di .
6 (i.e., when the upper duration dj is around six times the lower duration di). However,
the parametric model deviates from the empirical estimates as hl increases. With the
exception of station Leverkusen, the parametric model consistently overestimates the
strength of the asymptotical dependence for the pairs with a duration ratio dj/di > 6.

Figure 4.3: Nonparametric (dots = θ̂emp) and parametric (solid line = θBR) estimates for the
pairwise extremal coe�cient θ using the logarithmic distance hl. For ease of interpretation,
the values of the log-distance hl in the x-axis were transformed to the duration ratio dj/di.
The estimated nonparametric mean of θ for each duration ratio bin is shown as black dots.
Each color represents the lower duration di used for each duration pair. Notice the di�erence
in the variability of the point clouds when compared to those of Figure 4.2.

In light of the above results shown by Figures 4.2 and 4.3, we decided to use the
log-distance hl when estimating the semivariogram of the MS-GEV approach in all of
the following calculations.

Estimation of IDF Curves

Table 4.1 shows the parameter estimates for the MS-GEV approach for all Wupper
catchment stations, estimated from durations d = (1, 3, ..., 119, 120) h. The estimates
for the range parameter ρ are reasonably consistent across all stations. Their value of
∼ 2 suggests that, for all stations, the rainfall intensities of di�erent durations become
asymptotically independent when their ratio dj/di is larger than (22 = 4).
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Table 4.1: Parameter estimates from the MS-GEV approach for stations in the Wupper
catchment using durations d = (1, 3, ..., 119, 120) h.

Station α ρ µ0 σ0 ξ0 c

Bever 1.42 2.09 13.32 2.84 0.03 −0.58
Buchenhofen 1.39 2.22 13.38 3.03 0.02 −0.63
Leverkusen 1.32 2.19 10.74 2.34 0.05 −0.64
Lindscheid 1.54 2.44 13.69 3.23 0.06 −0.64
Neumuehle 1.54 1.84 13.52 2.74 0.04 −0.60
Schwelm 1.53 1.74 13.07 2.77 0.05 −0.62

Figure 4.4 shows the IDF curves following from Equation (4.3) for the MS-GEV
approach (solid lines) and compares them to the IDF curves based on the rd-GEV
approach (dashed lines). Return levels from the MS-GEV are for the most part
consistently higher, which is in agreement with Tyralis et al. (2019).

Figure 4.4: Comparison of IDF curves for the MS-GEV (solid line) and rd-GEV approach
(dashed line) for all stations. Di�erent colors represent di�erent return periods; from bottom
to top: (5, 10, 20, 40, 100) years.

To compare the results of the IDF curves using the euclidean distance he instead
of the log-distance hl, a plot comparing the resulting 100-year return level of both
distances is shown in Appendix 4.A.

Performance Averaged Over All Durations

Figure 4.5 shows the cross-validated QSI evaluating the performance of the MS-GEV
approach compared to the rd-GEV one. Similar behavior can be seen for all stations.
For short return periods, the QSI is close to zero (denoting that both models are
equally good), increasing towards longer periods. Station Lindscheid pro�ts most
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from the MS-GEV with a 20% increase in skill for the 100-year return level. Only for
a few points is skill negative, mostly for the shorter return periods.

Figure 4.5: Quantile Skill Index comparing the MS-GEV versus the rd-GEV approach for
all stations in the Wuppertal catchment. Positive values favor the MS-GEV approach.

Performance for Individual Durations

For a detailed comparison, we show the QSI conditioned on duration in Figure 4.6.
The QSI varies appreciably over di�erent durations for a given return period. For
short durations (d < 10 h), the QSI is mostly positive for all return periods; for long
durations d > 100 h, it is mostly negative. Gauge Lindscheid exhibits positive skill
for many more combinations of durations (d < 50 h) and return periods T > 40 years;
station Bever is the only station not showing a positive skill for very short durations,
showing a general loss of skill for all but the shortest durations.

4.3.2 Simulation Study

We studied the e�ect of the level of dependence on the performance of the MS-GEV
approach. To this end, we used synthetic data with known dependence parameters (ρ
and α in Equation 4.8) and estimate the performance for various levels of dependence.
Figure 4.7 shows the cross-validated QSI obtained using Equation (4.17), using the
averaged QS values over all d = (1, 2, ..., 120) h durations for 1000 replications as box-
whisker plots. Similar to the case study, the distance h used for the semivariogram of
the Brown-Resnick process was the log-distance hl (Equation 4.10).

The variation of skill among the replicates increases with increasing return period.
The median is consistently positive (MS-GEV superior to rd-GEV) but below 0.05,
suggesting that the dependence does not impact strongly on the performance results.
The strong level of dependence leads to a slightly higher median skill but also to a
considerable larger variance.

Figure 4.8 shows the QSI calculated with the model and reference QS averaged
over all replicates for individual durations. The results are similar to the pooled QSI
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over all durations of Figure 4.7: The QSI increases with return period and dependence,
staying below QSI = 0.1 for a 100 year return period and the strongly dependent series.
This again suggests that the level of dependence has little impact on the performance
of the return levels from the IDF curves.

Figure 4.6: Quantile Skill Index conditioned on duration comparing the MS-GEV (using
log-distance hl) versus the rd-GEV approach for all stations in the Wuppertal catchment.
Positive values favor the MS-GEV approach for di�erent durations.

Figure 4.7: Quantile Skill Index calculated from QS averaged for all durations d =
(1, 2, .., 120) h, comparing the MS-GEV versus the rd-GEV approach as a function of sim-
ulated data's dependence parameter. Positive values of the QSI favor the MS-GEV approach.
Each boxplot represents the distribution from the results of 1000 simulations.
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Figure 4.8: Quantile Skill Index, as in Figure 4.7, but showing the quantile score index
(QSI) as a function of return period and duration.

4.4 Discussion

In this study, we obtained a measure of relative performance for return level estimates
of IDF curves for various durations involving a max-stable process that allows for
asymptotic dependence between durations (MS-IDF), compared to a model that as-
sumes independence (rd-GEV). To do so, we built upon the previous study of Tyralis
et al. (2019), who focused on the theoretical basis of using max-stable processes for
modeling IDF-curves and did not investigate the consequences in terms of model per-
formance.

To investigate the possible impact of the asymptotical dependence, we evalu-
ated and compared the performance of estimating IDF curves with two di�erent ap-
proaches: i) using a max-stable process to describe the dependence between rainfall
intensity maxima for di�erent durations and ii) assuming independent maxima. We
evaluated individual performance based on a score that allows us to focus on the
tail of the distribution, namely the quantile score (QS). The comparison between the
MS-GEV and rd-GEV approach was carried out with the quantile score index (QSI),
an index based on the QS skill score. The QSI enables us to quantify a gain/loss in
performance when accounting for asymptotic dependence in return level estimation.

The results of Figure 4.2 showed that the resulting pairwise extremal coe�cient
was non-isotropic when using the euclidean distance he as the measure h in the semi-
variogram of the Brown-Resnick process for the MS-GEV approach. Thus, in contrast
to the approach of Tyralis et al. (2019), we explored the use of a logarithmic distance
measure instead of an euclidean one for the semivariogram of the Brown-Resnick pro-
cess. Figure 4.3 shows that this was a reasonable choice, with the resulting parametric
extremal coe�cient properly capturing the variability of the empirical extremal coef-
�cient around its binned means.

A simulation study suggests a minor advantage of the MS-GEV approach over
the rd-GEV, particularly for long return periods (large quantiles). This advantage
increases with the strength of the dependence, but remains low (QSI ≤ 0.1) even
for the strongest level of dependence. A complementary case study for six gauges in
the Wupper catchment (Germany) corroborates a general advantage for long return
periods when averaging the performance measure over all durations. A detailed inves-
tigation of performance conditioned on durations shows, for our case study, that this
advantage results mostly from short (d . 10 h) and, in some cases, from intermediate
(20 h . d . 50 h) durations, depending, however, on the speci�c station.



4.4. Discussion 95

The presented �ndings support the idea of Tyralis et al. (2019) that max-stable
processes are valuable models for IDF curve estimation. The simulation and case
study results indicate that an increase in skill with the MS-GEV approach is mostly
found for large quantiles and short to medium durations. This e�ect might be related
to the fact that shorter durations have a larger number of pairs than the longer
durations for the pairwise likelihood. This means that the longer durations could
be underrepresented in the current likelihood expression, leading to a better �t of
the model for the shorter durations for the MS-GEV approach. However, extreme
events of short durations have usually a higher impact on society than those of long
durations. Therefore, we believe that this underrepresentation does not necessarily
detract value from using the MS-GEV approach. When focusing on large quantiles
and short durations, it might be worth taking the added computational expense and
model complexity in exchange for increased skill in the return levels for such events.

In addition, the simulation study demonstrated that the level of dependence had a
modest impact on the overall performance and variability of the MS-GEV approach.
These �ndings contradict those of Zheng et al. (2015), who found that the dependence
strength did not in�uence the performance of the return level estimates. However, our
study focused on a di�erent dependence structure than that of Zheng et al. (2015), who
used a spatial approach, in contrast to our duration space. This contradiction may
be associated with the particular form of the asymptotic dependence for the di�erent
durations of i(d), which stems from the nature of i(d) as random ordered variables.
As previously studied by (Nadarajah et al., 1998; Nadarajah et al., 2019), when
two random variables are intrinsically ordered, each margin's distribution is a�ected,
something that has to be taken into account. While the response surfaces described
in Equations (4.12)�(4.13) take this ordering into account, the dependence structure
given in Equation (4.8) does not, a factor that could explain the contradiction with
previous studies.

The parametric estimate of the extremal coe�cient θBR from the MS-GEV ap-
proach shown in Figure 4.3 appears to be a reasonable �t for the empirical values of
θ when the ratio of the duration pair is around (di/dj . 6). However, as the upper
duration gets around six times larger than the lower duration, the model consistently
overestimates the strength of the dependence. Figure 4.3 also showed that duration
pairs (di, dj) involving short lower durations di ≤ 10 h had an extremal coe�cient that
approached independence (i.e., θ = 2) faster than those with longer lower durations as
hl increased. This suggests that the dependence between rainfall maxima of di�erent
aggregation durations is short-ranged, in particular, for the shorter durations.

For an operational use of this approach, uncertainty estimates for the quantiles
(IDF curves) need to be incorporated. In this regard, Mélèse et al. (2018) and Gan-
guli et al. (2017) showed that a Bayesian Hierarchical Model approach resulted in
reliable credibility intervals for IDF curves. For the rd-GEV approach, we investi-
gate a bootstrap-based method for estimating the uncertainty of d-GEV based return
levels in a di�erent study (Ulrich et al., 2020). We also limited our study to using
data with hourly frequency, resulting in the value of the (sub-hourly) ν parameter of
the d-GEV to be arti�cially set to zero (what we called the rd-GEV). Further studies
would bene�t from using sub-hourly frequencies, allowing ν to vary freely. Moreover,
we assumed that the stations' data was stationary, ignoring the possible e�ects of
climate change. Several studies have shown that accounting for nonstationarity has a
measurable e�ect on the return levels estimates (Ganguli et al., 2017; Ganguli et al.,
2019; Padulano et al., 2019).

The method presented in this study is a straightforward and practical manner of
estimating IDF return level performance based on a max-stable process. The results
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for the case study encourage to investigate its performance within a larger geographical
setting. Furthermore, it seems worth implementing more �exible functions describing
the variability of GEV parameters with duration as used for the response surface,
e.g., an additional parameter accounting for di�erent behavior, particularly for short
durations, as suggested in Koutsoyiannis et al. (1998). Another critical issue for future
studies is to explore how di�erent dependence structures could impact the performance
of the estimation. Furthermore, a comparison with the recent developments in the use
of covariates for the rd-GEV approach could result in better skill for such an approach
compared with our current MS-GEV one (Ulrich et al., 2020).

4.5 Conclusions

Our �ndings indicate that the use of models that allow for the asymptotic dependence
between rainfall maxima of di�erent durations when estimating IDF curves can lead
to moderately better return level estimates, particularly for long return periods (100
years, generally of considerable interest) and short durations (d ≤ 10 h). However,
the former comes at the expense of the added complexity of modeling the asymptotic
dependence. Furthermore, this asymptotical dependence seems to be short-ranged
for the short durations. We, therefore, recommend the use of the simpler univariate-
EVT methods assuming independence between durations for a single station when
the main goal is obtaining return levels for a wide range of short and long durations
from IDF-curves.
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Appendices

4.A Inference from the Brown-Resnick Max-Stable Pro-

cess

Consider a stochastic process {X(d) : d ∈ χ} , where χ is a compact subset of
RD, D ≥ 1, and a Poisson process Π with intensity dζ/ζ2 on (0,∞). Let Xi(d) be
independent realizations of a process X(d) with E[X(d)] = 1, and let ζi ∈ Π be points
of the Poisson process. A simple max-stable process is then given by

Z(d) = max
i≥1

ζiXi(d), d ∈ χ . (4.21)
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Smith (1990b) proposed a useful analogy to interpret this kind of max-stable
process as the so-called rainfall-storms interpretation. In this interpretation, ζ rep-
resents the overall intensity of a rainfall storm that impacts the region χ, and ζX(d)
corresponds to the total amount of rainfall for the storm centered at position d. A
max-stable process would then be the pointwise maxima (taken over each point in χ)
over an in�nite number of storms.

For the Brown-Resnick process, we follow the proposal from Kabluchko et al.
(2009), where Xi(d) = exp(ei(d) − 1

2σ
2(d)). Here, ei(d) is a Gaussian process with

stationary increments and semivariogram γ(h) = 1
2Var(ei(d+h)−ei(d)). The bivariate

distribution function for the Brown-Resnick process (Kabluchko et al., 2009; Davison
et al., 2013), is

Pr[Z(d1) ≤ z1, Z(d2) ≤ z2] = exp

[
−

1

z1
Φ

(√
γ(h)

2
+

1√
γ(h)

log
z2

z1

)
−

1

z2
Φ

(√
γ(h)

2
+

1√
γ(h)

log
z1

z2

)]
,

(4.22)
where z̄ follows a unit Fréchet distribution, Φ denotes the standard normal distribution
function, h is a measure of the �distance� between duration pairs (di, dj) (given in this
study by Equation 4.10), and the semivariogram γ is de�ned in Equation (4.8).

For inference purposes, we applied the commonly used pairwise likelihood proposed
by Padoan et al. (2010), given by

L(ψ|i1(d1), ..., in(dk)) =

n∑
t=1

k−1∑
j=1

k∑
j′=j+1

log f(it(dj), it(dj′)|ψ) , (4.23)

where ψ = [µ, σ, ξ, ρ, α] represents the parameters to estimate. Here each term
f(ik(dj), ik(dj′)|ψ) is the (appropriately transformed) bivariate density function de-
rived from Equation (4.22) for observed maxima ī(d) at durations dj and dj′ . Note
that the �rst three parameters in ψ are the univariate parameters of the GEV distribu-
tion, unique for each duration, while the last two parameters of ψ are the parameters
of the Brown-Resnick process, which model the asymptotic dependence.

4.B Comparison of 100-year Return Level between Eu-

clidean and Log-Distance for MS-GEV Approach

Figure 4.9 shows a comparison of the resulting 100-year return level intensity resulting
from the MS-GEV approach using the euclidean distance he and the log-distance hl.
To facilitate the comparison, it shows the ratio qhl(0.99)/qhe(0.99), where q(0.99)
is the quantile corresponding to the probability of 0.99, that is, the corresponding
100-year return level.
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Figure 4.9: Comparison of the 100-year return level intensity for the MS-GEV approach
using the euclidean distance he and the log-distance hl.

Surprisingly, although the variability of θ around its mean is remarkably di�erent
when using hl instead of he, the resulting 100-year return levels are very similar for
both distances. The single exception was for station Leverkusen, which is the only
station of the catchment located in the Upper Rhine Plain; the change observed for this
stations was however still relatively small. However, this result is only accounting for
the point estimates of the return levels. As seen in Figures 4.2 and 4.3, the variability
of the extremal dependence is much higher when using the euclidean distance he than
the log-distance hl. Thus, we believe that the resulting uncertainty for the MS-GEV
approach should be lower when using hl instead of he. Nevertheless, as mentioned in
the limitations of our study, we did not perform any estimation of the uncertainty.

4.C QQ-Plots for Selected Stations and Durations

Figure 4.10 shows the QQ-plots for validation of the marginal �ts of the GEV distri-
bution for four intensity maxima series ī(d), with d = (1, 3, 48, 72) h, for three stations
(Bever, Leverkusen, and Neumuehle.). The closer that the points are aligned to the
identity line, the better the �t of the GEV distribution.
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Figure 4.10: QQ plots for model checking of the marginal distributions for three stations:
Bever (top row), Leverkusen (middle row), and Neumuehle (bottom row). The duration
used for the accumulation of the rainfall maxima is indicated in each plot.
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Abstract

For modeling extreme rainfall, the widely used Brown-Resnick max-stable model extends the
concept of the variogram to suit block maxima, allowing the explicit modeling of the extremal
dependence shown by the spatial data. This extremal dependence stems from the geometrical
characteristics of the observed rainfall, which is associated with di�erent meteorological pro-
cesses and is usually considered to be constant when designing the model for a study. However,
depending on the region, this dependence can change throughout the year, as the prevailing
meteorological conditions that drive the rainfall generation process change with the season.
Therefore, this study analyzes the impact of the seasonal change in extremal dependence for
the modeling of annual block maxima in the Berlin-Brandenburg region. For this study, two
seasons were considered as proxies for di�erent dominant meteorological conditions: summer
for convective rainfall and winter for frontal/stratiform rainfall. Using maxima from both
seasons, we compared the skill of a linear model with spatial covariates (that assumed spatial
independence) with the skill of a Brown-Resnick max-stable model. This comparison showed
a considerable di�erence between seasons, with the isotropic Brown-Resnick model showing
considerable loss of skill for the winter maxima. We conclude that the assumptions commonly
made when using the Brown-Resnick model are appropriate for modeling summer (i.e., con-
vective) events, but further work should be done for modeling other types of precipitation
regimes.
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5.1 Introduction

The statistical modeling of extreme precipitation is essential for designing public hy-
drological infrastructure and urban planning worldwide (Durrans, 2010). This ap-
proach typically combines observed information from past events with models from
Extreme Value Theory (EVT) to give a probabilistic estimate of the magnitude and
frequency of future extreme precipitation events (Coles, 2001). Information about past
events usually comes from ground observations (e.g., rain gauges), operated mainly by
local weather services. For a typical EVT application, information from rain gauges
is used to �t the parameters of a max-stable distribution (such as the Generalized
Extreme Value (GEV) distribution), from which information on the magnitude and
frequency of events in the far-right tail of the distribution can be elicited. The ultimate
goal of EVT analyses is then to provide adequate estimates of these estimates along
with their uncertainties. These estimates are commonly communicated to decision-
makers either in the form of return periods for certain return levels (i.e., �1-in-n years
event�) or as a more general quantity like the probability of exceedance and risk of
failure over a given design life period (Serinaldi, 2015; Rootzén et al., 2013).

A common problem when modeling extreme rainfall is that no observations exist in
many locations where information from statistical modelling of extreme events would
be useful. However, on many occasions, observations exist near unobserved locations.
This setting is the same as in Geostatistics, except that the focus is on extremes
and max-stable distributions in this case. This problem has given way to di�erent
EVT models that allow interpolation of estimates to unobserved locations, usually
englobed within the term �Spatial Extremes�. Spatial Extremes models follow a very
similar theoretical background to the methods of Geostatistics and can be thought of
as extensions of Geostatistics, but for extremes (Davison et al., 2012a).

Most Spatial Extremes and Geostatistical models use the so-called �rst law of
Geography: �everything is related to everything else, but near things are more re-
lated than distant things.� (Tobler, 1970). In other words, there exists a particular
covariance function that depends on the distance between points with observations.
Spatial models use the observations from the di�erent locations to �t a covariance
function that describes how much two or more variables change as a function of some
distance metric. Thus, covariance functions describe the spatial dependence between
the observed locations. In the case of Spatial Extremes, the corresponding analog
to the covariance function (e.g., the tail-dependence function) is combined with an
appropriate model for extremes to �t a joint distribution for the di�erent locations
and, in some cases, to also obtain the estimates of the marginal parameters in each
location. Interpolation to unobserved locations is then achieved by combining the
�tted tail-dependence function with the �tted model.

When dealing with block maxima stemming from observations �xed in space (e.g.,
rain gauges), a commonly used spatial extremes model is a max-stable process (Davi-
son et al., 2015). Max-stable processes are an extension to in�nite dimensions of
univariate EVT models for block maxima (Padoan et al., 2010). Unlike univariate
EVT models, there does not exist a single parametric family of max-stable processes
to which block maxima always converge. Nevertheless, diverse parametric families
with di�erent tail-dependence functions have been proposed. For the spatial mod-
eling of extreme precipitation, a commonly used family of max-stable processes is
the Brown-Resnick family (Le et al., 2018; Davison et al., 2012b; Buhl et al., 2016).
Brown-Resnick models are based on Gaussian processes with a tail dependence func-
tion that includes the geostatistical concept of the (semi-)variogram. Assuming that
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the underlying Gaussian process possesses stationary increments (i.e., it is only a func-
tion of the distance between di�erent stations), the spatial dependence structure can
be modeled exclusively with the variogram.

In previous studies using Brown-Resnick models for extreme rainfall, the focus has
been on maxima that stem from summer events. This choice is typically justi�ed as
rainfall events in summer are usually the events with the largest magnitude and, thus,
the ones with the most signi�cant impact. Furthermore, these events are usually
associated with convective activity, which for the study region is predominant in
summer (Berg et al., 2013). Nevertheless, little work has been done to model extreme
rainfall resulting from other types of events, such as stratiform ones. These events
are relevant, as they could be the dominant types in other regions of the planet or
of interest to di�erent stakeholders. An essential aspect of our study is that these
events di�er signi�cantly in terms of spatial and temporal extent, which likely leads
to di�erent spatial dependence structures, creating a need to research and improve our
understanding of modeling extreme rainfall for maxima that originates from di�erent
types of events.

The present study aims to investigate how the extremal dependence changes for
di�erent rainfall-generating mechanisms and how this change in�uences the estima-
tion of return levels down the line. The modeling of the extremal dependence is done
via a Brown-Resnick max-stable process that accounts for the spatial variability of
precipitation maxima in the Berlin-Brandenburg region. Instead of taking annual
block maxima, we obtain semmi-annual block maxima from two seasons: winter and
summer. We hypothesize that summer block maxima come mainly from convective
events, while winter block maxima come from slow-moving storms that lead to strat-
iform and frontal events. This choice is justi�ed based on the results of (Ulrich et al.,
2021), who for the Wuppertal region in Germany found that convective events domi-
nated in the summer months, while stratiform/frontal events dominated in the winter
months. By using the semi-annual from the two seasons to �t the Brown-Resnick
model, we estimate how the dependence changes with di�erent rainfall-generating
mechanisms.Moreover, we selected two temporal scales for each season to investigate
the impact of processes with di�erent time scales. We �t a Bayesian distributional
linear model that assumes independence in space as a reference to our spatial model
to discern the e�ects of the change in dependence on the estimated return levels. This
reference model is compared with the spatial model within a veri�cation framework.

This study is organized as follows: �rst, we present a review of the di�erent types of
rainfall-generating mechanisms that dominate in our study region. Then, we present
the EVT methods we used to model extreme rainfall. Afterward, we introduce a
veri�cation framework to compare the di�erent models, from which we present the
results to determine whether a considerable change in the extremal dependence was
observed and their consequences on the reported return levels.

5.1.1 Extremal dependence in rainfall data

Rainfall is the result of complex processes and interactions in the hydro- and at-
mosphere, involving processes from a wide range of temporal and spatial scales. In
particular, for the midlatitude region, rainfall characteristics are heavily associated
with the synoptic weather situation present when the event happened. Walther et al.
(2006) classi�es rainfall events as either frontal or convective based on synoptic-scale
considerations. The synoptic-scale is usually de�ned as a length scale of around 2000
km to 20000 km, involving events that last from days to weeks. The distinction be-
tween synoptic or convective rainfall is relevant for the statistical modeling e�orts, as
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Figure 5.1: Map showing daily accumulated precipitation height for two extreme precipita-
tion events chosen arbitrarily for demonstration). Left: A summer convective event. Right:
A winter frontal event. Data comes from the RADOLAN database made available from the
DWD.

rainfall events associated with fronts (i.e., synoptic-scale) have very di�erent tempo-
ral and spatial characteristics than those associated with isolated convective (typically
mesoscale) events. By way of illustration, Orlanski (1975) characterizes thunderstorms
as events lasting from half an hour up to a few hours covering areas of several km2,
and frontal events as having a lifetime of more than a day with a spatial spread of
hundreds of km. These spatiotemporal characteristics can also in�uence the mag-
nitude and the timing of extreme rainfall events; for example, Bohnenstengel et al.
(2011) found that for a 25 km x 25 km region to the southeast of Berlin, extreme
precipitation events occur more often in times of convective events than during times
with frontal precipitation.

In the midlatitudes region, the type of dominant rainfall-generating mechanism
changes during the year. For example, Berg et al. (2013) found that synoptic obser-
vations of convective events dominated during the summer seasons in four stations
across Germany. In contrast, they found that most rainfall in the winter months re-
sulted from stratiform clouds (commonly associated with frontal events). Thus, we
predict that when looking at seasonal block maxima for a study region in Germany,
summer maxima will originate mainly from convective events, while winter maxima
will primarily originate from frontal ones. An example of this can be seen in Fig. 5.1,
which shows the daily precipitation height in the Berlin-Brandenburg region for a
convective event in summer (left) against that of a frontal/stratiform event in winter
(right). For most stations in the domain, the semi-annual block maxima in the two
corresponding seasons were attained for these two particular events, meaning they
can be seen as extreme events. Extremal dependence in space arises when an extreme
event is large enough to impact several rain gauges simultaneously. Therefore, the
extremal dependence heavily depends on the spatial characteristics presented by the
rainfall generating mechanisms. Thus, if these mechanisms change seasonally during
the year, we expect the dependence structure to also change throughout the year.

5.2 Methods and Data

In this study, we perform the statistical modeling of extreme rainfall using the block
maxima approach. This approach is based on the Fisher-Tippett-Gnedenko theorem,
which states that under mild conditions block maxima of a su�ciently large block
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Figure 5.2: Map showing the location inside the Berlin-Brandenburg area of the DWD
weather stations included in this study (red dots). The lower left inset shows the location of
the study domain within Germany. Diamonds show the reference stations used to showcase
results.

length of independently and identically distributed random variables can be approxi-
mately modeled by the generalized extreme value (GEV) distribution. When dealing
with rainfall, block lengths of one month have been proven to be long enough to as-
sure convergence to the GEV distribution (Fischer et al., 2017). Yearly block maxima
can then be used to �t the parameters of the GEV for each rain gauge individu-
ally, resulting in the �zeroth-order� approach to modeling extreme rainfall in space.
This pointwise approach, however, does not pool any information across stations and,
therefore, cannot predict values for ungauged sites. Prediction of ungauged sites can
be achieved by extending the pointwise GEV approach to include spatial covariates,
which pools information from di�erent locations, typically resulting in reduced uncer-
tainties for the estimated parameters of the GEV (Ulrich et al., 2020). Nevertheless,
this second approach ignores the spatial dependence in the data, resulting in a mis-
speci�ed likelihood that consistently underestimates the uncertainty of the estimates.
Our study extends this approach by using a max-stable process to include spatial
dependence.

5.2.1 Data

We used accumulated hourly and daily precipitation height measurements (in mm)
from 53 stations belonging to the German Meteorological Service (DWD) in the
Berlin-Brandenburg region of Germany (Fig. 5.2). The data was acquired through
the German Meteorological Service (DWD) Open Data Server using the R-package
rdwd (Boessenkool, 2021). The stations were chosen to include only those that con-
tained measurements with both hourly and daily periods. This choice reduced the
available number of stations with daily measurements from 300 to 53. Reducing
the total number of stations was considered necessary to ensure the fairness of the
comparisons with results using stations with hourly measurements and to lower the
computational burden needed to �t the models. The average distance between all
station pairs was approx. 95 km, with a range of [4, 245] km. The raw data contains
further information about the type of precipitation measured (liquid or solid), but
for the purpose of this study no discrimination was done with regard to precipitation
type.
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Two di�erent periods were considered for this study: from 1970-2020 for the daily
observations and 2004-2020 for the hourly observations. These periods were chosen in
order to minimize the number of invalid pairs when using the pairwise likelihood (see
Appendix 5.A).

At the location sj ∈ S, where S represents the geographical domain and j = 1, ..., n
is an index denoting the rain gauge, the data contains the accumulated rainfall values
(rd,1(sj), ..., rd,kj (sj)) in mm, where d ∈ {1, 24} is an index for the duration of the
considered precipitation events, namely, hourly or daily. Di�erent gauges can have
di�erent lengths for the measurement period, so that kj depends on the location
sj . The accumulated rainfall values were transformed to the average hourly/daily
intensity values (ζd,1(sj), ..., ζd,ki(sj)) in mm/h.

Following (Koutsoyiannis et al., 1998), the average hourly intensity data ζd=1,τ (s)
(where τ represents the time (in hours) of the observation) were aggregated to create
the 12-hour accumulated precipitation intensity time series ζd=12,τ (s) (in mm/h). This
aggregation was necessary because a visual inspection of the pairwise extremal coe�-
cient resulting from the hourly series strongly suggested that the data was asymptoti-
cally independent, which violates a major assumption for using max-stable processes.
The lowest aggregation duration that did not show asymptotic independence was 12
hours. The 12-hour aggregated series is obtained using

ζd=12,τ (s) =
1

12

11∑
i=0

ζd=1,τ−i(s), (5.1)

which can be seen as a moving average with a time window of 12 hours. The aggre-
gation described in Eq. (5.1) was done using the package IDF (Ulrich et al., 2020).

The 12-hour ζ12(sj) and daily ζ24(sj) average precipitation intensity series are then
used to get four series of semi-annual block maxima series (ild,t=1(sj), ..., i

l
d,t=Nj

(sj)).
In this case, the index t can be seen as indicating the year. These four series result from
combining the two durations d ∈ {12, 24} and the two seasons l ∈ {sum,win} using
the corresponding abbreviations for sumer and winter, respectively. The semi-annual
block maxima were obtained using

ild,t(s) = max
l−t <τ<l

+
t

ζd,τ (s), (5.2)

where l−t and l+t correspond to the beginning and end of either winter or summer for
each year t. For this work, we consider summer as May, June, July, and August; win-
ter is considered to be the months of January, February, November, and December.
In order to avoid having winter block maxima that come from disconnected months,
we shifted the ζd(s) values of November and December to the following year, making
the four winter months of any given calendar year come from the same �meteorolog-
ical� winter. Note that for each instance of τ within the same type of season, i.e.
summer or winter, and for each �xed duration d ∈ {12, 24}, we perceive ζd,τ (·) as
independent realizations of some stochastic process {X(s) : s ∈ S} which will be the
justi�cation for the use of GEV distributions and max-stable processes for modeling
the distribution of ild,t(s) below.

Figure 5.3 shows the temporal distribution of the semmi-annual block maxima for
summer, i.e. isum

12 (s) and isum
24 (s), and winter, i.e. (iwin

12 (s) and iwin
24 (s)) over the 53

stations. From Figure 5.3, it is apparent that the magnitude of the maxima changes
depending on the season, with consistently larger values for summer events. The �nal
length of the daily series is 50 years, while for the 12-hour series, it is 26 years.
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Figure 5.3: Boxplots showing the distribution of the rainfall semi-annual block maxima
for the 53 stations included in this study. (A) 12-hour summer maxima, (B) daily summer
maxima, (C) 12-hour winter maxima, and (D) daily winter maxima.

5.2.2 Characterizing extremal dependence

To explore how the bivariate extremal dependence changes for the block maxima
derived from the summer and winter seasons, we used an estimate of the empirical
pairwise extremal coe�cient θ(sj , sj′), which is a summary measure of dependence of
a random two-dimensional vector (X(sj), X(sj′)) (Coles, 2001; Ribatet et al., 2016).
The pairwise extremal coe�cient can take values in the rage [1, 2], where 1 denotes
complete dependence and 2 asymptotic independence.

For each pair (sj , sj′) of locations of gauged stations, we estimate the empirical
extremal coe�cient θ̂NP(sj , sj′) using the non-parametric method proposed by Marcon
et al. (2017), which Vettori et al. (2018) found to have the best overall performance
compared to other empirical estimators. The estimation of θ̂NP(sj , sj′) is done with
the R-package ExtremalDep (Boris et al., 2021). This method requires the speci�cation
of a polynomial order, for which a graphical analysis (not shown) found that a �xed
value of k = 20 yielded the most appropriate values of θ̂NP(sj , sj′) for the di�erent
ild(s) series.

5.2.3 Modeling of extreme rainfall

We follow a two-step approach to model the ild(s) series. In the �rst step, we model
the marginal distribution of the pooled data from all stations by including spatial
covariates within a Bayesian distributional model (DM). For the second step, we
extend the model of the �rst step with a max-stable process, allowing the model to
capture the so-called �residual dependence� left from the �rst-step that arises from the
extremal dependence (Cooley et al., 2012). We then compare the models from both
steps using a forecast veri�cation framework to study how the extremal dependence
in�uences the estimates of the model parameters. We consider the BDM approach
to act as a �control� compared to the max-stable process approach, allowing us to
explore how the seasonal di�erence in the extremal dependence a�ects the estimates
down the line.

Estimations made within the framework of extreme value statistics are usually
made with small data samples, as extreme events are by de�nition rare. The small
sample size, in turn, leads to high uncertainty of all estimates, a problem compounded
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by the fact that most applications of EVT focus on the very far right of the distri-
bution, where estimates already have high levels of uncertainty. Therefore, any EVT
study must include information about the uncertainty that can be easily interpreted
and adapted for the �nal-user applications. Uncertainty in this study is exclusively
obtained using Bayesian methods for inference, which allow a straightforward and
intuitive interpretation of their values.

The following sections explore the two approaches used for this study: First, the
approach that includes spatial covariates but assumes independence in space (hence-
forth denoted as the DM approach), and second, the approach that uses a Brown-
Resnick max-stable process to account for the spatial dependence (henceforth denoted
as the BR approach).

Using a Bayesian distributional model

A simple but e�ective approach to model the variability of extreme rainfall in space
is to pool information from all stations in the study region and assume that all values
are independent and identically distributed. This approach assumes that observations
at each station are independent of those at any other station. Instead, information
is pooled from di�erent stations using spatial covariates, such as the position of each
station, as a predictor within a model. The resulting model can then characterize
extremal behavior at unobserved locations simply by using their position in the co-
variates.

In this study, we use an analog of Vector Generalized Linear Models known in
the Bayesian literature as Distributional Models (DMs), or sometimes, as Bayesian
distributional regression (Umlauf et al., 2018). Distributional models allow for the
simultaneous linear modeling of all distributional parameters. This is in contrast to
standard GLMs, where only the location parameter is modeled. Furthermore, like
VLGMs, DMs allow the use of distributions from outside the exponential family, such
as the GEV distribution. Extending a GLM to be a Bayesian DM is straightforward, as
one requires only to add the additional log-likelihood contribution from the additional
parameter models in the MCMC steps. Using these models, we can incorporate spatial
covariates into linear models for every parameter of the marginal distributions.

For every rain gauge j located at sj , the block maxima ild(sj) = (ild,1(sj), ..., i
l
d,Nj

(sj))
are assumed to be i.i.d. and, as the Fisher-Tippett-Gnedenko Theorem for block max-
ima suggests, follow the Generalized Extreme Value (GEV) distribution, which fol-
lowing (Coles, 2001) is given by

G(x) =

{
exp

[
−
(
1 + ξ x−µσ

)−1/ξ

+

]
ξ 6= 0,

exp
[
−x−µ

σ

]
ξ = 0,

(5.3)

where µ ∈ R, σ > 0, ξ ∈ R are the location, scale, and shape parameters, respectively,
and x+ = max(0, x). This assumption is veri�ed for all stations using Quantile-
Quantile plots (not shown).

We then follow (Fischer et al., 2017) and describe the spatial variation of location
µ and scale σ using a linear combination of Legendre polynomials of longitude and
latitude as covariates. Legendre polynomials form a set of orthogonal basis functions
on [−1, 1], ensuring that their evaluations at the covariates � normalized to that
interval � will be linearly independent. Our model is restricted only to the northing
and easting coordinates, ignoring the altitude. Thus, we are left with the distributional
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model

µ(s) = βµ0 +
J∑
j=1

βµj,xPj(x
′) +

K∑
k=1

βµk,yPk(y
′), (5.4)

log(σ(s)) = βσ0 +

J∑
j=1

βσj,xPj(x
′) +

K∑
k=1

βσk,yPk(y
′), (5.5)

ξ = ξ , (5.6)

where s = (x′, y′), and a logarithmic link function is used for the scale parameter σ to
ensure positivity. Pi(·) denotes the ith order Legendre Polynomial. We transform the
coordinates from longitude and latitude to Universal Transverse Mercator (UTM)
x and y coordinates (UTM zone 33N) so that the distances between stations are
measured in meters instead of degrees, simplifying the analysis. The (x, y) coordinates
are then shifted and scaled to the (x′, y′) coordinates within the [−1, 1]×[−1, 1] square
in order to compute the respective Legendre Polynomials.

The shape parameter ξ is left constant throughout the domain, as other studies
have found that this parameter is complicated to estimate properly and can strongly
impact the model's performance (Cooley et al., 2012).

Model Selection The linear model in Eqs. (5.4) and (5.5) requires an order for the
Legendre Polynomials to be speci�ed. The order is chosen within the model selection
framework using the Widely Applicable Information Criteria (WAIC) (Vehtari et al.,
2017a). A total of 140 possible combinations of up to order P5(·) were �tted, and
the model with the lowest WAIC value was chosen. Furthermore, a regularizing prior
(detailed below) was used to lower the risk of over�tting.

Using a max-stable process

For the second step of our study, we expanded the model for the marginal distribution
presented in section 5.2.3 by a simple max-stable process. The latter was chosen to
capture the extremal dependence in the rainfall maxima. Max-stable processes are
extensions to in�nite dimensions of �nite-dimensional Extreme Value Theory models,
arising as �the pointwise maxima taken over an in�nite number of (appropriately
rescaled) stochastic processes� (Ribatet, 2013).

More precisely, let X(s) be a random variable representing the daily precipitation
height at site s ∈ S (for some �xed duration d and season l); that is {X(s) : s ∈ S}
is a stochastic process modeling the precipitation at each site in the spatial domain
S. If we have i.i.d. replicates {Xi(s) : s ∈ S} of the process such as precipitation
heights for di�erent days within the same season, then as already discussed, under
mild conditions, the Fisher-Tippett-Gnedenko Theorem states that, for each site s
and su�ciently large n, the distribution of maxi=1,...,nXi(s) may be approximated
by a GEV distribution with spatially varying parameters µ(s), σ(s), ξ(s). Assuming
that not only the marginal distributions, but also the spatial dependence structures
converge, by a spatial extension of the Fisher-Tippett-Gnedenko theorem the block
maxima process {maxi=1,...,nXi(s) : s ∈ S} can be approximated by a max-stable
process {Z ′(s) : s ∈ S}, given that n is large enough (Ribatet et al., 2016). Thus, max-
stable processes does not only allow for arbitrary GEV marginal distributions Z ′(s) ∼
GEV(µ(s), σ(s), ξ(s)), but also provide a �exible way of modeling the dependence
structure of the maxima of the Xi random �elds.
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Consequently, we will assume that the semi-annual block maxima ild(sj) form
realizations of a max-stable process {Z ′(s) : s ∈ S} at the gauged sites sj ∈ S. It is
common in extreme value theory to transform the original block maxima data ild(sj)
into standardized maxima zld(sj) following unit Fréchet marginal distributions (i.e.,
the case where µ = σ = ξ = 1 in Eq. 5.3). Transformation of the margins to the unit
Fréchet distribution does not a�ect the dependence structure. This transformation is
performed via the relationship

zld,t(s) =

[
1 + ξ

(
ild,t(s)−

µl(s)

σl(s)

)]1/ξ

+

. (5.7)

As this transformation can be easily reversed, it then allows us to focus on the max-
stable process {Z(s) : s ∈ S} without any loss of generality. For such standardized
max-stable processes, a variety of parametric submodels has been developed including
the popular Brown-Resnick max-stable process model (Kabluchko et al., 2009).

In our study, the marginal standardization requires the speci�cation of response
surfaces for µl(s) and σl(s) to link zld(s) to i

l
d(s). We chose the response surfaces to

have the same expressions as the model resulting from the model selection of Eqs. (5.4)
and (5.5), with the shape parameter assumed to be constant over the entire domain.

In theory, max-stable process models can be used to model the joint distribu-
tion of all semi-annual block maxima (ild,1(sj), . . . , i

l
d,Nj

(sj)), j = 1, . . . , 53, and

their standardized analogues (zld,1(sj), . . . , z
l
d,Nj

(sj)), j = 1, . . . , 53, respectively. In
practice, however, the resulting likelihood terms are intractable for even relatively
low-dimensional settings. This is why a common strategy is to restrict the pro-
cess to the bivariate case, where the distribution functions and their correspond-
ing densities are well-known. The bivariate joint probability for the rescaled maxima
Pr{Z ld(s) ≤ z1, Z

l
d(s+h) ≤ z2} is then modeled using the bivariate distribution of the

Brown-Resnick max-stable process model (Kabluchko et al. (2009), see appendix 5.A).
For the Brown-Resnick model, the extremal spatial dependence is a function only of
the variogram γ, which, with a slight abuse of notation, for this study has the following
theoretical model:

γ(s, s+ h) = γ(h) =

(
‖h‖
ρ

)α
, (5.8)

Here, ‖h‖ is the Euclidean distance between the two locations considered, ρ is the
range parameter, and α is the smoothness parameter. The range parameter ρ can be
seen as the distance for which the dependence is still e�ective and takes values (ρ > 0).
The smooth parameter α has no straightforward interpretation and is constrained to
be α ∈ [0, 2]. For this study, we restrict the variogram to be isotropic and stationary,
i.e. γ(s, s+h) depends on ‖h‖ only. The two Brown-Resnick parameters (α, ρ) contain
the information regarding the pairwise dependence structure. To compare the Brown-
Resnick dependence estimated from the model with the empirical dependence shown
by the data, we also obtain a parametric estimate of the bivariate extremal coe�cient
θ(sj , sj′) using the (ρ, α) parameters of the Brown-Resnick model. This parametric
estimate θBR(sj , sj′) is computed from the Brown-Resnick variogram γ(h) obtained
in Eq. (5.8) using the following relationship:

θBR(sj , sj′) = 2Φ(γ(‖sj − sj′‖)/2)1/2), (5.9)

where Φ represents the standard normal distribution function.
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Statistical Inference

The estimation of the posterior distribution of the (β0, βi,P ) coe�cients for the DM
approach and the response surfaces, as well as for the BR dependence parameters
(α, ρ), was carried out using Bayesian inference. Given a random variable or vector Y
and a probabilistic distribution function G(φ) such that one assumes that Y ∼ G(φ)
(where φ represents the distributional parameters), Bayesian inference assumes that
the parameters φ also follow a probability distribution. The quantity of interest is the
so-called posterior distribution of probable values for φ given observations y from the
random variable Y , which is obtained using Bayes' rule: p(φ | y) ∝ p(y | φ)p(φ). The
uncertainty of the estimates is then directly obtained from the posterior distribution
p(φ | y). Furthermore, the likelihood p(y | φ) is derived from the model, and has
the same mathematical expression as the likelihood used for MLE methods. Finally,
the so-called prior p(φ) includes the information known about the parameters φ before
observing the data y. For studies involving extremes, the choice of p(φ) is of particular
importance, as the small size of the data sample typically results in a strong in�uence
of the prior over the posterior. Stephenson (2016) provides current strategies to choose
appropriate priors when performing inference of the GEV distribution.

For the inference of the parameters in this study, we used a Markov Chain Monte
Carlo (MCMC) sampling scheme. MCMC sampling requires that the right-hand side
of Bayes' rule is known up to a multiplicative constant, for which it is enough to know
the expression for the likelihood p(Y | φ) and the prior distribution p(φ).

The likelihood term of the DM approach given by Eqs. (5.4)-(5.6) is directly ob-
tained from the GEV distribution (Eq. (5.3)). For the BR approach, using the full
likelihood is unfeasible as the data's high dimensionality made the full likelihood in-
tractable; we chose instead to use the pairwise likelihood from (Padoan et al., 2010)
(see Appendix 5.A for details). The expression for the pairwise likelihood of the
Brown-Resnick model included both the marginal and dependence parameters so that
each MCMC step updated the value of all φ = {ρ, α, βµ0 , βσ0 , β

ξ
0, β

ψ
i,P } parameters si-

multaneously, where βψi,P denotes all potential relevant coe�cients for ψ = {µ, σ}
aside from their intercepts βµ0 or βσ0 .

The last step to perform Bayesian inference is to propose a prior distribution for
all parameters. For the DM approach, this includes the three intercepts (βµ0 , β

σ
0 , β

ξ
0)

and all the possible coe�cients βψi,P , where ψ ∈ {µ, σ}.
The covariates were recentered around zero so that the value of the intercepts can

be interpreted as the value when all other covariates are set to their mean values.
Based on the study of (Fischer et al., 2017), who did a similar analysis for the same
region, we use the following priors for the location and scale intercepts:

βµ0 ∼ Normal(1.54, 0.6166) (5.10)

βσ0 ∼ Normal(0.4166, 0.4166) (5.11)

The prior for the shape parameter ξ is a rescaled Beta-distribution βξ0 ∼ Beta(2, 2)
that has support in [−0.5, 0.5]. This choice was made as this prior has already
been used by Dyrrdal et al. (2015) and also in the operational application used
by MeteoSwiss (Fukutome et al., 2018). For the βψi,P , we use the prior βψi,P ∼
Student− t(2, 0, 1), which is a regularizing prior (Kruschke, 2014), preventing over-
�tting.

For the BR approach, the priors for the marginal response surfaces were the same
as those used for the DM approach described above. Using the same priors for the two
models was done to simplify the comparison between them. Additionally, the prior for
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the range parameter ρ and the smooth parameter α were elicited from typical values
of these parameters in other studies (Zheng et al., 2015; Stephenson et al., 2016)
and were chosen to be p(ρ) = Normal(30000, 7000) and p(α) = Exponential(2.5),
respectively. The scales of the parameters for p(ρ) are in meters.

MCMC sampling was performed using the software Stan (Stan Development Team,
2022). A total of 4 chains with 2500 post-warmup samples per chain using 1000
samples as warmup was used. A visual analysis of the ridge and trace plots was
performed for all models to detect issues with MCMC chain convergence.

A known issue when using pairwise likelihoods for Bayesian inference is that the
resulting posterior distributions will severely underestimate the spread of the distri-
bution ((Ribatet et al., 2012; Ribatet et al., 2016; Chan et al., 2017)). The underes-
timation occurs because the pairwise likelihood over-uses the data by including each
location in n/2 terms of the objective function rather than just one, as would be the
case with the full likelihood, resulting in a likelihood function that is far too sharply
peaked (Ribatet et al., 2012). While this issue does not severely a�ect the overall me-
dian of the posterior distribution (Chan et al., 2017), the estimated credible intervals
of the parameters will be strongly underestimated. To tackle this issue, we applied
the Open Faced-Sandwich (OFS) correction proposed by (Shaby, 2014) to all posterior
MCMC samples from the Brown-Resnick model. The OFS-corrected samples produce
credible intervals that have proper coverage values. However, it is worth noting that
while the resulting posterior samples ful�ll the desired coverage properties, they are
no longer truly Bayesian. Appendix 5.C shows a comparison between the raw MCMC
samples and the OFS-corrected ones.

Prediction of return levels

Once a posterior distribution of the marginal GEV parameters is obtained from the
MCMC samples, it is straightforward to calculate qp(s) quantile levels for any prob-
ability p of non-exceedance (i.e., return levels) via the quantile function of the GEV
distribution

qp(s) =

{
µ+ σ

ξ [(− log p)−ξ − 1] ξ 6= 0,

µ− σ log(− log p) ξ = 0 .
(5.12)

For each one of the S MCMC sampled parameter values, we calculate a value of
qp(s) with probability p. This results in a distribution of S return levels. We report
the median of these return levels as the estimated return level. Their uncertainty
is calculated as the 2.5% and 97.5% quantiles of the S return levels, forming 95%
credibility intervals. Note that the resulting return levels no longer stem from a GEV
distribution but rather from a mixture of many GEV distributions.

5.2.4 Veri�cation and Model Comparison

We use the quantile score (QS) (Bentzien et al., 2014) as a measure of accuracy for
both the marginal and the Brown-Resnick models. Given a series for a single rain
gauge of semi-annual block-maxima observations (ild,1(sj), ..., i

l
d,Nj

(sj)) with Nj years
of data for the j-th gauge and the corresponding prediction for the quantile level
qlp,d(sj) with probability p for the same location sj , duration d and season l, the QS
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is de�ned as:

QSlp,d =
1

N

N∑
t=1

ρp(i
l
d,t(sj)− qlp,d(sj)); (5.13)

where ρp(u) = [|u|+ (2p− 1)u]/2. (5.14)

The QS is always positive and reaches an optimal value at zero. We obtain the
QS values for both the marginal and the Brown-Resnick model for probability levels
of p = (0.9, 0.95, 0.98, 0.99), corresponding to return periods of (10, 20, 50, 100) years.

To compare the performance of two models, Ulrich et al. (2020) de�ned the Quan-
tile Skill Index (QSI), a measure derived from the Quantile Skill Score QSS (cf. Wilks,
2011, for an introduction to skill scores). Given the QS for a model to be tested
(QSmodel) and the QS for a reference model (QSref), the QSI is de�ned as

QSI =

1− QSmodel
QSref

, if QSmodel < QSref

−
(

1− QSref
QSmodel

)
, if QSmodel ≥ QSref

. (5.15)

Positive (negative) values of the QSI indicate a gain (loss) of skill for the tested model
over the reference. The advantage of the QSI over the QSS is that the interpretation
of negative or positive values is equivalent (which is not the case for skill scores). For
this study, the tested model is the Brown-Resnick max-stable process model, and the
reference model is the marginal distributional model.

To get an estimation of the out-of-sample performance for the QSI, we applied 10-
fold cross-validation in space to estimate the QS values. The folds were constructed
such that in each one, 90% of the stations were used for training the model and
the remaining 10% for validation. Each station appears in a given validation set
once and only once. This speci�c cross-validation scheme gives an estimate of how
good the model is at predicting values at ungauged sites, and it does not give any
information on the model's skill at predicting future observations. Considering the
sizeable computational load needed to perform MCMC sampling for all 8 models for
all 10 folds, we opted to use maximum likelihood instead of Bayesian inference for this
step. Using MLE instead of full Bayesian inference was considered a fair assessment
as we are only interested in point estimates of return levels when calculating the QS
using Eq. (5.14). A separate analysis (not shown) revealed that the QS point estimates
obtained from maximum likelihood were almost always very similar to the median QS
values obtained from the full posterior distribution.

5.3 Results

5.3.1 Extremal dependence

The estimated bivariate extremal coe�cient θ̂NP(sj , sj′) for the i
(sum,win)
12 (sj) and the

i
(sum,win)
24 (sj) block maxima series is shown in Fig. 5.4. The main feature is that
winter maxima (blue) consistently show lower average values (i.e., higher extremal
dependence) until a distance of around h = 150 km. For distances h > 150km this
relationship is inverted. Furthermore, the average distance where the pairwise maxima
still show asymptotical dependence is shown to be lower than 150 km. The di�erence
between seasons is larger for the 12-hour series, possibly re�ecting di�erences in the
rainfall generating mechanisms at this timescale compared to the 24-hour series.
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Figure 5.4: Empirical values of the extremal coe�cient θ̂NP(sj , sj′) (dots) and estimated
values from the resulting Brown-Resnick variogram (θBR(sj , sj′) (solid lines, shaded regions
represent the 50% CI). Colors represent the season: blue for winter and red for summer. The
left panel shows results from the 12-hourly data; the right panel shows results for the daily
data. θ(sj , sj′) ∈ [1, 2], where one is complete dependence and two is complete independence.

Estimates of the extremal coe�cient based on the Brown-Resnick model (θ̂BR(sj , sj′))
are also shown in Fig. 5.4 as the solid lines with the shaded regions representing 50%
credibility intervals. We compare the values from the Brown-Resnick model to the
empirical θ̂NP(sj , sj′) to get an idea of how well the BR approach captures the pair-
wise dependence shown by the data. For the 12-hour series (left), this comparison
shows that for winter, the model consistently overestimates the strength of the depen-
dence for h > 100, while for summer, the average dependence is properly captured for
h . 150 km; for greater distances, the dependence is underestimates. The overesti-
mation in the winter model can also be seen for the daily series (right); however, it is
much less pronounced, with most of the average θ̂NP(sj , sj′) falling inside of the 50%
CIs. In both time series, the 50% CIs are larger for winter; this could suggest that
the extremal dependence for winter is more complex than for summer, resulting in
the winter model exploring a greater range of values for the dependence parameters.
Additionally, the daily series shows less variability than the 12-hour series. This dif-
ference in variability may be due to the increased length of observations for the daily
series.

An initial inspection of the θ̂NP(sj , sj′) values would suggest that the data shows
asymptotic dependence for all series for distances up to h ≤ 150 km. Therefore,
the assumption of asymptotic dependence necessary for using a max-stable process,
should be justi�ed. Further discussion about this topic can be found in Appendix
5.D.

5.3.2 Model building

Model selection

The procedure to choose the orders for the Legendre Polynomials of Eqs. (5.4)-(5.6)
results in the models described in Tab. 5.1. Basic prior and posterior predictive checks
were performed to detect any misspeci�cation issues; some examples for the reference
stations described below can be found in Appendix 5.E. A visual analysis of the prior
and posterior checks did not detect any severe issues.

5.3.3 Parameter estimates

Parameter estimates for the dependence and shape parameters are reported in Tab. 5.2
as median and 95% credibility intervals for each parameter. A distinct di�erence can
be seen in the value of the range parameter ρ (in meters) between summer and winter,
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Table 5.1: Maximum chosen orders of Legendre Polynomials for the distributional model
in Eqs. (5.4)-(5.5)

.

µ σ

summer (24h) 2 1
winter (24h) 3 2
summer (12h) 2 1
winter (12h) 3 2

Figure 5.5: Estimated values of the location µ, scale σ, and shape ξ parameters of the GEV
distribution for station Potsdam. The symbols' shape indicates the model used for estimation:
circle (blue) = BR, triangle (green) = DM, square (gray) = pointwise GEV.

as the value in winter is always signi�cantly larger than for summer, regardless of the
time scale. This result is consistent with the behavior of the extremal coe�cient
seen in Fig. 5.4, and it may indicate that the rainfall events leading to the block
maxima in winter are, on average, larger than those in summer. Furthermore, the
shape parameter shows a di�erence for winter and summer, regardless of the time
scale.

Table 5.2: Bayesian estimates of the Brown-Resnick max-stable model parameters. Pos-
terior medians are reported along with their 95% credible interval limits on either side as
(lower,median,upper). The coe�cients corresponding to the Legendre Polynomials were omit-
ted from this table.

ρ α ξ

12h (s) 413,4896,11997 0.17,0.40,0.64 0.05,0.18,0.31
12h (w) 3596,43870,104192 0.31,0.78,1.24 -0.01,0.08,0.20
24h (s) 4722,22993,43936 0.39,0.54,0.69 0.15,0.24,0.33
24h (w) 6801,53228,109265 0.57,0.83,1.12 -0.01,0.09,0.21

5.3.4 Marginal parameters and return levels

Four reference stations were chosen to illustrate the di�erences in the marginal GEV
parameters and return levels from the DM and the BR models (respective locations
of the reference stations are given by red diamonds in Fig. 5.2). We chose the two
stations with the longest time series, which are closely surrounded by other stations
(Potsdam and Lindenberg), a station with a long time series that is isolated from other
stations (Meyenburg), and a station with a short time series which is surrounded by
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Figure 5.6: Return level of precipitation intensity (mm/h). Color denotes the model used:
Blue for the BR model, green for the DM model, and gray for the pointwise GEV. Shaded
regions represent pointwise 95% credibility intervals. (A) 12-hour data, (B) daily data. For
reference, the probabilities of non-exceedance p = (0.96, 0.98, 0.99, 0.995) correspond to the
(25, 50, 100, 200) year return periods, respectively.

other stations (Luebben-Blumensfelde). Figures 5.5-5.6 show the GEV parameter
estimates and the resulting return levels with 95% credibility intervals, respectively.
Furthermore, pointwise GEV estimates and their resulting return levels with 95%
credibility intervals were added for reference; these estimates were obtained using the
same priors for the intercepts described in section 5.2.3.

Concerning the GEV parameters, Fig. 5.5 shows that the pointwise estimates
(taken here as the median value of the posterior distributions) are similar for the DM
and the BR models. This similarity was expected, as the marginal parameters are only
vaguely a�ected by the spatial dependence through their incorporation in the likeli-
hood term of Eq. (5.16). However, when comparing the models, a pattern concerning
the uncertainty of the estimated parameters (taken here to be the 95% credibility
intervals) is visible. For summer (and in the case of ξ, also winter), the highest uncer-
tainty is always seen for the pointwise GEV model, followed by the BR model and the
DM model, which consistently show the smallest uncertainty. In contrast, the largest
uncertainty for location and scale in winter can be seen for the BR model, followed
by the pointwise GEV and the distributional models. This phenomenon can be ob-
served in other stations (not shown). We infer that the uncertainty estimated for the
marginal parameters is strongly a�ected by the underlying spatial dependence, which
changes according to the rainfall-generating mechanisms dominant in the respective
season.

To further delve into the last point, Fig. 5.6 presents how the return levels for dif-
ferent non-exceedance probabilities for the BR and DM approaches di�er. As before,
we compare di�erent seasons and two di�erent durations. The median return level
is generally similar across the di�erent models, with increasing di�erences for larger
probabilities of non-exceedance. In contrast, the uncertainty is noticeably di�erent for
each model, which is consistent with the results of the GEV parameters. In summer,
the uncertainty is always largest for the pointwise GEV model, followed in order by
the BR and the DM models. This changes in winter, when the uncertainty is largest
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Figure 5.7: Boxplots showing the distribution of the Quantile Skill Index for all stations
for 12-hourly (left) and daily (right) data. The colors indicate the season. Positive (negative)
values indicate an increase (decrease) in skill for the BR approach compared to the DM one.

typically for the BR model, with a few exceptions. Surprisingly, it would appear that
the inclusion of the max-stable dependence on the model for winter resulted in an
overall increase in the uncertainty, even when compared to the pointwise model that
contains no information about other stations. This result may be associated with a
loss of skill for the BR model when modeling block maxima in winter, an aspect that
will be explored in the next section.

5.3.5 Model comparison

We now explore how the seasonal di�erences in the extremal dependence a�ect the
accuracy of the return levels estimates using the BR model. We use the DM approach
as reference in the QSI to assess how much the dependence in�uences the return level
estimates. Positive (negative) QSI values mean that the predicted return levels for
ungauged sites have better (worse) QS values for the dependent BR model than for
the independent DM one. For this study, our main focus is on the QSI di�erence
between seasons, as we believe this arises from a change in the extremal dependence
when analyzing the semi-annual block maxima from di�erent meteorological regimes.

Figure 5.7 depicts the distribution of the cross-validated QSI values over all sta-
tions. The 12-hourly data shows an overall average loss of skill for the winter and
summer models when using the BR model. This loss of skill increases as the non-
exceedance probability increases, with the winter model showing substantially lower
average QSI values than the summer model. Furthermore, the variability in QSI val-
ues is noticeably larger for winter than summer; in fact, the highest QSI value is
always found within an outlier of the winter model. For the daily data, the winter
model shows the same decrease in skill with increasing non-exceedance probabilities
with high variability; however, in this case, the summer model consistently shows QSI
values close to zero with very low variability. Finally, a noteworthy di�erence between
average QSI values can be observed between summer and winter for both periods.
This di�erence increases with the non-exceedance probability, but it remains constant
between the 12-hourly and daily periods.

To further explore the di�erence in QSI values for both seasons and durations,
Figure 5.8 shows the spatial distribution of QSI values, i.e. values for every station.
No apparent pattern is visible from the di�erent con�gurations, as QSI values appear
to be largely random. Nevertheless, the lowest QSI appear mostly at stations close to
the domain's border, suggesting that the BR model performs better when a station is
surrounded on all sides by other stations. This e�ect is admittedly not very reliable,
as stations with very low values of QSI can also be found within the middle of the
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Figure 5.8: Spatial distribution within Berlin-Brandenburg (solid line) of QSI values for the
12-hourly (leftmost two columns) and daily (rightmost two columns) data. Boxplots below
each map show the distribution of QSI values as in Fig. 5.7
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domain. A closer inspection of the di�erence between seasons reveals a subtle pattern:
similar QSI values seem to cluster in summer, while the distribution is predominantly
random in winter. This change could be attributed to the di�erence in the rainfall
generating processes, as will be discussed in the following.

5.4 Discussion

The results described in the last section provide compelling evidence that the extremal
dependence shown by the data changes su�ciently enough to have a noticeable e�ect
in the resulting marginal estimates down the line when using a model capable of
capturing such dependence (the BR model in our case). This di�erence was mainly
observed when comparing di�erent marginal quantities from two seasons: the esti-
mated GEV parameters (with their respective return levels) and the cross-validated
Quantile Score (QS), an out-of-sample performance measure for the predicted return
levels for ungauged sites.

The observed di�erence in marginal estimates when using a spatial model is con-
sistent with previous extreme rainfall studies; Stephenson et al. (2016), for example,
reports that the incorporation of the max-stable process dependence led to an overall
shift towards heavier tailed marginal distributions across their study location. They
also found that the uncertainty for the estimated marginal quantities was larger for
the max-stable process model than for the independent model, which is in good agree-
ment with our results for summer maxima estimated return levels. Additionally, the
spatial distribution of the QSI falls in line with Le et al. (2018), who found that return
levels estimated from a max-stable process presented noticeable di�erences in their
spatial distributions compared to an unconditional model. However, these studies did
not estimate the impact of this di�erence on the model performance. Our study then
provides insight into the operational use of Brown-Resnick max-stable models by �rst
examining how di�erent types of rainfall-generating mechanisms a�ect the marginal
estimates and then applying a model validation framework for the out-of-sample un-
gauged model accuracy.

A comparison of the uncertainty in the GEV parameters and the return levels
showed that when modeling summer maxima, the uncertainty resulting from the BR
model appeared to be a middle point between the DM and the pointwise GEV models.
However, the signi�cant reduction in uncertainty for the DM model compared to the
pointwise GEV model signals that this model underestimates the natural variability
in the rainfall data. Thus, it seems plausible that the larger uncertainty seen in the
BR model is a more accurate representation of such variability. In contrast, when
dealing with winter maxima, the uncertainty obtained by the BR model appears to
have been consistently overestimated compared to the pointwise approach. From
our results, it is not completely clear why this is the case, but it may be speculated
that the isotropic Brown-Resnick dependence model was misspeci�ed for the extremal
dependence structure in the winter data. A possible source of error is the assumption
that the dependence structure is isotropic, which might be a better approximation for
convective events than for synoptic/mixed events that occur in winter. On the other
hand, the larger values estimated for the range and smooth parameters indicate that
the dependence is stronger for winter than in summer; however, these parameters do
not say anything about the isotropic/anisotropic structure. This larger dependence in
winter could be attributed to frontal events being generally larger and more elongated
than convective events. Thus, more stations are simultaneously a�ected by the same
event, increasing the dependence. Figure 5.9 in appendix 5.B reports how many



120 Chapter 5. Seasonal Spatial Dependence

unique events resulted in block maxima being chosen from the daily series in winter
and summer. This table supports the idea that the events are larger in winter, as the
number of unique events is consistently lower in winter than in summer. However,
Fig. 5.4 also reveals a surprising increase in dependence for distances larger than 120
km; this may suggest that some underlying weather patterns from a larger scale than
the convective scale in�uence the dependence.

Our �ndings report that the Brown-Resnick model is mostly as good as the un-
conditional DM model when modeling summer block maxima, whereas the BR model
presents a remarkable loss in skill compared to the DM model when modeling winter
block maxima. It is worth noting that past studies have primarily focused on sum-
mer maxima, as the convective nature of the rainfall-generating mechanisms in this
season typically leads to the annual maxima events to occur in summer. Our �ndings
suggest that the isotropic Brown-Resnick dependence model is a proper �rst approx-
imation when dealing with block maxima resulting from convective events. On the
other hand, the loss in skill for the winter maxima model provides further evidence
that this model is misspeci�ed when dealing with either synoptic, stratiform, or a
mixture of synoptic/convective events.

We acknowledge potential limitations to this study. An important question for fu-
ture studies is to determine the e�ect of anisotropy in the results, which, as discussed
above, is expected to have an important role in modeling the spatial dependence for
synoptic events. Furthermore, previous studies have shown that rain gauge networks
are typically too scarce to resolve convective cells properly (Lengfeld et al., 2019).
Thus, in order to get a better representation of the spatial dependence, future work
should make use of radar networks to complement rain gauge data. A signi�cant lim-
itation of our work was the use of the pairwise likelihood instead of the full likelihood
of the Brown-Resnick model within the Bayesian framework. While some of the most
known issues with this approach were tackled by using the Open-Faced Sandwich ap-
proach of (Shaby, 2014), it would be bene�cial instead to use a full-likelihood approach
such as that of (Dombry et al., 2017). Furthermore, due to the high computational
demand of performing Cross-Validation within a Bayesian setting, the QS and QSI
results reported in the results come from a maximum likelihood estimation. More-
over, we assumed that the data was stationary, ignoring the possible e�ects of climate
change. The e�ect of this non-stationarity on the extremal dependence should be
explored in further studies, as it has been shown that accounting for non-stationarity
results in a measurable e�ect on the return level estimates (Ganguli et al., 2017). Our
study indirectly classi�ed precipitation types based on dominant types for di�erent
seasons. Further studies should use a direct classi�cation of event types, which would
avoid the mixing of convective and frontal events in winter. Some work in classifying
extreme events already exists, for example, that of Lengfeld et al. (2021). Further-
more, the use of max-stable processes requires that the data present asymptotic tail
dependence, an assumption that does not hold for aggregation durations lower than
12 hours. For a more in-depth study of convective events shorter durations would be
needed; in this case, a more �exible model that can capture both asymptotic tail de-
pendence and independence would be needed, such as the one proposed by Wadsworth
et al. (2019), which was applied to hourly rainfall data by Richards et al. (2021).

This study indicates that di�erent rainfall mechanisms can strongly in�uence the
spatial dependence presented by the block maxima. This change in the dependence
structure can, in turn, result in signi�cant misspeci�cation of the model if not ac-
counted for properly. Thus, it is essential to understand the types of rainfall-generating
mechanisms in the domain of study when using max-stable models.
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Appendices

5.A Inference from the Brown-Resnick max-stable pro-

cess

Inference is done using the pairwise log-likelihood (Padoan et al., 2010), which for our
study is

L(φ | ild,1(s1), ..., ild,N (sJ)) =

N∑
t=1

J−1∑
j=1

J∑
j′=j+1

log f(ild,t(sj), i
l
d,t(sj′) | φ), (5.16)

where φ = {ρ, α, βµ0 , βσ0 , β
ξ
0, β

ψ
i,P } represents the parameters to estimate, ild,t(sj) is the

observed semi-annual block maxima for the duration d and season l at location sj for
year t, and each term f(·, ·) is the appropriately transformed bivariate density function
derived from the bivariate distribution function for the Brown-Resnick process given
by
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. (5.17)

Here z follows a unit Fréchet distribution, Φ denotes the standard normal distribution
function, h is de�ned as the euclidean distance between s1 and s2, and the variogram
γ is de�ned in Eq. 5.8. In equation (5.16) it is assumed that the number of years N
is equal for all J-stations. However, this is not the case, as some stations have longer
records than others. We took N to be the one from the station with the longest
records, and whenever a station did not have data for the t-th year, we made the
corresponding term in the log-likelihood to be zero. However, the time period used
for all stations was chosen to minimize the number of paired stations with no data.

5.B Number of events per year

Figure 5.9: Boxplots showing the di�erence in unique events for the di�erent seasons stud-
ied. Only the 24 hour data is shown.

Figure 5.9 shows how many unique events that resulted in block maxima were seen
from the daily i(sum,win)

24,l series. Overall, the number of unique events in summer is
larger than in winter.
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5.C OFS correction for Bayesian Inference using compos-

ite likelihood

A comparison between the uncorrected raw samples from the MCMC sampling using
Stan with the pairwise likelihood of Eq. (5.16) and the corresponding samples cor-
rected using the Open-Faced Sandwich (OFS) correction from Shaby (2014) is shown
in Fig. 5.10. It can be seen that the uncorrected samples grossly underestimate the
uncertainty shown by the 95% credibility intervals. On the other hand, the OFS cor-
rected samples keep the same median but �stretch� the resulting uncertainty so that
the desired 95% coverage of the intervals is achieved.

Figure 5.10: Density plots for the raw MCMC samples (dashed line) and the resulting OFS
corrected samples (continuous lines) for 4 selected parameters from the daily summer results.

5.D Analysis of asymptotic dependence using extremal

coe�cient

Figure 5.11 shows the distribution of bootstraped samples for θ̂NP(sj , sj′), where the
estimation method is the same as the one used for Fig. 5.4. The bootstraped sam-
ples provide an estimate of the uncertainty that allows us to judge the asymptotic
dependence conditions present in the data.

The �gure shows that for the daily series, both seasons show a value of the extremal
coe�cient below 1.75 for h ≤ 150 km, suggesting that the data is asymptotically
dependent at least for this distance. After 150 km, the coe�cient goes close to 2,
but not immediately. On the other hand, the situation is di�erent between summer
and winter for the hourly frequency. Here, the uncertainty is much larger, which
could be a re�ection of the smaller number of years. Furthermore, while the winter
series behaves similar to the daily winter series having reasonably strong dependence
for distances up to 150 km, the hourly summer series tends very quickly to lower
dependence levels. This again suggests that the events in summer are typically smaller
in size that those in winter. Asymptotical dependence can be reasonably suggested for
the hourly winter data, but for hourly summer, one could argue this is true only for
relatively short distances. However, the uncertainty is rather large, wit a lot of values
still falling under the strong dependence case. Therefore, we make the assumption for
asymptotical dependence for all four series.

5.E Model diagnostic and posterior predictive checks for

reference stations

We obtained Quantile-Quantile plots and Posterior predictive checks to assure that
our model adequately represents the observed data. Some of these are shown in Fig.
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Figure 5.11: Boxplots showing the distribution of bootstraped samples (N=500) of the

non-parametrical estimate of the extremal coe�cient θ̂NP(sj , sj′). The width of the boxplots
is proportional to the amount of data.

5.12. The included plots come from the hourly summer data.
The QQ plots for the di�erent stations provide evidence that the GEV is mostly

appropriate for modeling the marginal distributions, with some minor exceptions.
Similarly, the posterior predictive checks allow us to see how well the posterior distri-
butions for the GLM and BR models would be at capturing the original data. In this
case, both models' original data seems well-captured.

Figure 5.12: Top row: Q-Q plots for the four reference stations. Middle row: Posterior
predictive check for the GLM model. Bottom row: Posterior predictive check for the BR
model. For the middle and bottom row, the dashed line shows the observed density, and the
grey lines show 100 samples from 20 GEV distributions with parameters sampled from the
respective posterior distributions.
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6
Other advances to the modeling of extreme rainfall

In the previous two chapters, two studies were performed to show how the incorpora-
tion of di�erent dependence structures can improve statistical models for extreme rain-
fall. These applications involved a direct incorporation of the dependence, achieved
by using a max-stable process. However, these methods are not the only ones that
can borrow the strength from spatial/temporal similarity. As mentioned in ch. 3, a
VGLM model that assumes independence but incorporates spatial covariates can also
be used to model the spatial variability of extreme rainfall. The question is then how
good the model is when it (wrongly) assumes that there exists no dependence between
the random variables.

In the following sections, we summarize the results of several studies where I used
the previously developed techniques from ch. 4 to capture the dependence not in space
but across durations for IDF relations. Although the results from this study showed
that modeling the dependence does not signi�cantly improve the pointwise estimate
of IDF relations, it allows for simulation of maxima series for di�erent durations when
including the dependence across duration. These simulations constitute a prerequi-
site for evaluating strategies for con�dence intervals. In section 6.1, we explore this
application for a case study in the Wupper region.

Additionally, the relatively short-ranged dependence between durations found for
the Wupper stations in ch. 4 is used as a justi�cation for the study presented in section
6.2. This allowed for a more nuanced discussion of the resulting uncertainties when
using the independence likelihood.

Finally, the contribution to a study that uses the copula-based modeling approach
described in section 3.6.5 to describe the bivariate spatial dependence is given in
section 6.3. In this case, the two random variables are ozone and temperature, never-
theless, the methods for modeling in space remain the same.
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6.1 Using simulations from a max-stable process to inves-

tigate coverage of IDF curves

Publication details

The following section contains a summary of the contribution made to the
published study titled Flexible and consistent quantile estimation for

intensity-duration-frequency curves, published in 2021 by Felix S. Fauer,
Jana Ulrich, Oscar E. Jurado, and Henning W. Rust to the HESS journal.
The other authors granted permission to reproduce some excerpts of text and
�gures.

Chapter 3 introduced the concept of IDF curves and the d-GEV distribution.
These methods aim to incorporate extreme rainfall events of di�erent durations into
a single model, from which inter- and extrapolation to unobserved durations can be
performed. An additional advantage is that information from durations with larger
datasets can be transferred to durations with less information; for example, the DWD
in Germany has much more records for daily precipitation height than for hourly or
minutely precipitation height. Choosing an appropriate IDF model can then take
advantage of the extra information for the daily precipitation intensity, transferring
it to the shorter durations. This occurs by assuming that the function that links
intensity and duration is rather smooth, allowing for interpolation.

In past chapters we showed that the d-GEV distribution from eq. (3.12) can handle
precipitation intensities of any arbitrary duration. However, in this study, Fauer et al.
(2021) showed that the d-GEV is not �exible enough to capture some variations across
durations, as seen in annual maxima for various stations. In this study, the main goal
is to investigate the e�ect of adding two parameters to the d-GEV model that allow it
to be more �exible: the so-called intensity o�set and themultiscaling parameter.
The impact of these parameters was investigated using the QSI veri�cation measure.

6.1.1 The issue of underestimating uncertainty

This study uses rainfall series aggregated from di�erent durations to �t di�erent d-
GEV models. The model parameters were �t using MLE, which requires the assump-
tion of independence between rainfall data of di�erent durations. However, as explored
by Jurado et al. (2020) (ch. 4), the method for constructing the aggregated intensity
series for di�erent durations always induces a statistical dependence, which is known
as the dependence between durations. Thus, by assuming independence between du-
rations when performing MLE, the resulting likelihood is misspeci�ed. Similar studies
have shown that, under certain conditions, pointwise estimates from misspeci�ed like-
lihood models are unbiased, but the estimated uncertainty is not always meaningful.
Chan et al. (2017), for example, found that a misspeci�ed GEV model that ignored
spatial dependence of extreme rainfall resulted in consistently underestimated con�-
dence intervals for the resulting return levels.

Underestimation of the uncertainty can result in a severe issue when generating
con�dence intervals: if the resulting intervals are too narrow, then the true value will
be missed by the interval in a greater ratio than the expected one. Figure 6.1 shows an
example of this phenomenon, where the same estimation method was used to construct
two sets of 100 con�dence intervals. The con�dence intervals were constructed in a
way that, if we took many samples and constructed CIs for each one, we expect 95%
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Figure 6.1: Example of con�dence intervals with two di�erent coverage probability values.
For this example, the true value of the estimated parameter is zero. Red intervals denote
con�dence intervals that did not contain the true value inside. For both examples the nominal
coverage is set at .95, which means that we expect 95 out of 100 CIs to contain the true value.
The left plot shows 95% CIs with the proper nominal coverage. The right plot shows CIs that
underestimate the uncertainty, resulting in more intervals not containing the true value than
expected.

of the intervals to contain the true value (in statistical jargon: the nominal coverage
was set to 0.95). In the left panel we see that 5 out of 100 intervals did not contain the
true value, which is expected. In the right one, the estimates were modi�ed so that
the uncertainty was underestimated, resulting in much narrower intervals. From this
panel we can see that around 14 out of 100 intervals did not contain the true value,
which represents a larger proportion than the expected 5. This example illustrates
the main problem with underestimating the uncertainty: the intervals are too narrow,
increasing the number of intervals that do not contain the true value. The quantity
that summarizes the proportion of time that a con�dence interval contains the true
value is known as the coverage probability, explained in section 2.4.1.

In any case, obtaining the proper uncertainty values from the d-GEV model is
crucial for the correct interpretation of the resulting return levels, which are used by
e.g. water management agencies. The question for this study was then: What impact
does the dependence between durations have in the MLE-based uncertainty estimates
for the �exible d-GEV model? To investigate this question, a coverage study of the
con�dence intervals was required to make sure that the coverage probability did not
deviate too strongly from the nominal coverage.

As far as we know, very little studies investigating the e�ect of ignoring the de-
pendence between aggregation durations existed before doing the work for this dis-
sertation, as most studies focused exclusively in quantifying the e�ects of spatial
dependence. This knowledge gap was the focus of study 1 (ch. 4), where the impact
of including the dependence between durations is investigated.

6.1.2 Using simulated data to calculate coverage probabilities

In that study, we do not delve explicitly in the quanti�cation on uncertainty, but we
did propose a method to simulate rainfall series with a speci�ed level of dependence.
For the study of Fauer et al. (2021), we had the idea to adapt this simulation in order
to perform a coverage analysis of bootstrapped CIs via a simulation study, where the
simulated data had di�erent (known) dependence levels. This proceedure is as follows:
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Figure 6.2: Coverage probability for di�erent levels of dependence between durations. The
nominal coverage was of 0.95 for all panels. The di�erent colors represent the probabilities
of non-exceedance for which the return level was computed. Image reproduced from Fauer
et al. (2021) with permission of the authors.

1. For the d-GEV model, �x the value of all parameters to known values that are
reasonable for the study area.

2. Set the values of the dependence parameters (ρ and σ in eq. (4.8)) used for
the simulation. This step allows us to choose between a high or low level of
dependence.

3. Generate a dataset of rainfall maxima with di�erent aggregation durations con-
taining the level of dependence between durations set in the last step. Note that
here we directly simulate annual maxima.

4. Estimate parameters for the proposed �exible d-GEV model using the simulated
data from the last step. Additionally, obtain the 95% con�dence interval of the
parameters and propagate to the return levels.

5. Repeat the last two steps many times, keeping track of how many times the
resulting con�dence intervals contain the true value of the parameters set in the
�rst step. Using this information, obtain the coverage probability covp, given by
dividing the relative number of times that the interval contained the true value
by the nominal coverage.

The above procedure allowed us to study how the level of dependence can a�ect
the resulting coverage of the con�dence intervals. Our previous hypothesis was that
for strong dependence, the coverage probability would di�er strongly from the nominal
values. The resulting coverage values for the di�erent dependence levels are shown in
Fig. 6.2. For both the weak and strong dependence, the coverage for the 95% CI was
around 0.9, which was found to be an appropriate trade o� for using the d-GEV with
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the independence assumption. This was a rather surprising �nding, but it aligns with
the �ndings from study 1, where the di�erent dependence levels did not seem to have
a big impact in the �nal estimates.

In order to create the simulated rainfall data from di�erent duration with di�er-
ent dependence levels, a max-stable process was constructed using the same procedure
as in the study from ch. 4. For this, a 1-dimensional �duration-log-space� was con-
structed, where the log of each duration log2(d) acted as a location, and the distance
between durations d and d′ was given by the log-ratio log2(d)− log2(d′) = log2(d/d′).
This construction allowed the use of a simple max-stable Brown-Resnick process, for
which the dependence could be set using the range and smoothness parameters. Max-
stable processes were then used to capture the dependence to learn more about the
modeling of this particular dataset.

Performing the simulation study for determining the coverage was crucial for the
correct interpretation of the results from this study. This was due to the likelihood
misspeci�cation resulting from the assumption that the maxima from di�erent ag-
gregation durations were independent, even though we know this dependence exists.
Without the simulation study, we would not know if the misspeci�cation would result
in strong deviations of the coverage from the con�dence levels below their nominal
levels. The speci�c contribution to this study was the following: design of the simu-
lation study, writing of the R code for the simulations, and co-writing/editing of the
paragraph describing the simulation study.

6.2 Modeling extreme rainfall of di�erent durations with

a VGLM

Publication details

The following section contains a summary of the contribution made to the pub-
lished study titled Estimating IDF curves consistently over durations

with spatial covariates, published in 2020 by Jana Ulrich, Oscar E. Jurado,
Madlen Peter, Marc Scheibel, and Henning W. Rust to the Water Journal. The
other authors granted permission to reproduce some excerpts of the results.

So far, in the examples and studies presented in this thesis (particularly in ch. 5),
the dependence between di�erent spatial locations has been one of the main topics of
interest when creating models. We have seen that including this dependence explicitly
in the models can lead to reductions in uncertainty when pooling data from di�erent
locations. However, this e�ect can be relatively small in some cases, and when the
interest is only in the parameters of the marginal GEV distribution for di�erent lo-
cations, the added complexity of a max-stable model could prove to be too much to
justify their use. In these cases, a valid alternative is using a VGLM (or its Bayesian
alternative, the Distributional Model), as explained in section 2.2.

The dataset used for this study consists of minutely, hourly and daily rainfall
observations from 92 rain gauges located inside the Wupper catchment (Germany).
The observations from each gauge were aggregated into 15 di�erent durations; the
resulting series were used to obtain yearly maxima. This process resulted in ca. 15
series of annual maxima for each rain gauge. The base assumption for this study is
that, for a �xed duration, the maxima from the di�erent locations was independent
and identically distributed. That is, we assume that the observations from one site
are independent from the observations from all other sites. Furthermore, a second
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Figure 6.3: Bootstraped 95% con�dence intervals for IDF-estimates at the example stations
Solingen-Hohenscheid and Schwelm, using the station-wise d-GEV (left column) and the
spatial d-GEV approach (right column). Image reproduced from Ulrich et al. (2020) with
permission of the authors.

assumption of independence was done, for which maxima from di�erent aggregation
durations are seen as independent, even if they come from the same location. The
validity of this second assumption is the one that was studied in ch. 4.

The goal of the study performed by Ulrich et al. (2020), was to estimate consis-
tent IDF curves using a model that describes the spatial variability of the estimates,
but does not explicitly include spatial dependence. This is done via a VGLM (see
section 2.2.1 for more information about these models). The VGLM proposed in this
study uses the d-GEV (eq. (3.12)), where each parameter includes spatial covariates
(transformed longitude and latitude). This model is very similar to that of eqs. (5.4)-
(5.6), with the di�erence that the d-GEV is used instead of the GEV distribution.
This method was encoded in the R-package IDF, which uses our study as a reference
(Ulrich et al., 2019). The bene�ts of this type of model is that it allows for very quick
and e�cient estimation of the estimates for each location, with reduced uncertainties
thanks to the pooling of information from di�erent rain gauges. Furthermore, the use
of spatial covariates allowed for the interpolation at ungauged sites.

In addition to the model described above, two pointwise models were also �tted for
comparison. For these models (1) the d-GEV was �tted to every single location, and
(2) a GEV is �tted to each individual location and duration. Finally, a comparison
using the veri�cation framework detailed in section 5.2.4 of this thesis was performed.

An essential aspect of this study was determining the uncertainty of the return
levels resulting from the proposed spatial d-GEV approach, and how it compared to
the pointwise approach. Figure 6.3 shows a comparison between the pointwise and
spatial approach of the estimated return levels for three non-exceedance probabilities
with their respective 95% con�dence intervals. The right column for both stations
shows a clear reduction in the width of the con�dence intervals, suggesting that the
uncertainty was reduced when using the spatial d-GEV approach compared to the
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pointwise d-GEV. The biggest e�ect is seen for gauges where no previous information
about a certain duration existed, as seen in station Schwelm.

The results shown in Fig. 6.3 appear to be a promising way to reduce the uncer-
tainty of the estimates, but they should be interpreted carefully. This is because the
assumption of independence between durations and locations for the spatial d-GEV
approach results in a misspeci�ed likelihood, as discussed above. Thus, we expected
that the uncertainty estimated from the spatial d-GEV approach would be underes-
timated. This underestimation has two main contributions: ignoring the dependence
between di�erent locations, and ignoring the dependence between di�erent aggrega-
tion durations. The e�ect of ignoring the dependence between locations was already
known from Zheng et al. (2015). In contrast, the possible e�ect of ignoring the de-
pendence between durations was unknown at the time. For this, the results from the
study presented in ch. 4 were used, as they included an analysis of the dependence
between durations for the same precipitation data in the same region. As the results
of ch. 4 showed that the dependence between durations had a (mostly) negligible e�ect
on the marginal estimates, the iid assumption for rainfall of di�erent durations was
justi�ed.

The speci�c contribution to this study was the following: discussion and investi-
gation of the e�ect of dependence between durations, collaboration in software devel-
opment for the IDF package, review and editing of the manuscript, and collaboration
with the data curation process.

6.3 Modeling the bivariate spatial dependence of ozone

and temperature maxima using copulas

Publication details

The following section contains a summary of the contribution made to the
published study titled The impact of atmospheric blocking on the com-

pounding e�ect of ozone pollution and temperature: a copula-based

approach, published in 2022 by Noelia Otero, Oscar E. Jurado, Tim Butler,
and Henning W. Rust to the ACP journal. The other authors granted permis-
sion to reproduce some excerpts of text.

The previous studies shown in this dissertation have dealt only with extreme rain-
fall. However, the methods presented for spatial models in ch. 5 also apply to model
the dependence between other environmental variables. For example, in the study of
Otero et al. (2022), we investigated the spatial distribution of the bivariate dependence
between the following variables:

� Daily maxima of the 8-hour average ozone concentration (MDA8O3); and

� daily maximum temperature extracted from the measured values at 2 m above
the ground in a 6-hourly frequency (Tmax).

The aim of this study is to investigate how the spatial distribution of the bivariate
dependence between MDA8O3 and Tmax changed when subjected to a meteorological
phenomenon known as blocking. Blocking is a large-scale atmospheric phenomenon
where persistent anticyclones interrupt the westerly �ow in the midlatitudes, leading
to a standstill of many weather systems. Our study hypothesized that under blocking
conditions, the bivariate dependence between ozone and temperature maxima would
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Figure 6.4: (a) Spatial distribution of the upper tail dependence parameter derived from the
copulas when BI=0 and BI=1. (b) Di�erence of the upper tail dependence parameter between
the two blocking scenarios. Image reproduced from Otero et al. (2022) with permission of the
authors.

increase, leading to an increase in the probability of co-occurrence of both events.
Knowing how much this probability changes is of great interest to the general public,
as signi�cant health issues can follow when high ozone concentrations are combined
with high temperatures (Hertig, 2020).

In contrast to the max-stable process models used for the studies presented in
chs. 4 and 5, the bivariate dependence for this study was modeled with copulas. As
de�ned in section 3.6.5, copulas are models that describe the dependence structure
between uniform marginals. For this study, we focused mainly on a subtype of copulas
known as extreme value copulas. Under certain conditions, extreme value copulas
can be seen as ful�lling the max-stable property, making them a valid alternative to
max-stable processes to model the dependence between two extreme-valued random
variables 1.

In this study the bivariate spatial dependence between MDA8O3 and Tmax for
di�erent locations s was studied. Let the random variable X represent Tmax and
the random variable Y represent MDA8O3, and F (·) represent their respective dis-
tribution function transformed to a standard uniform distribution. The multivariate
distribution was then modeled as

F(X,Y )(x, y) = C(FX(x), FY (y)), (6.1)

where C(·) denotes the copula function. The advantage of this model is that the
marginal distributions can be arbitrary, as they are ultimately transformed into uni-
form distributions. Our study focused on families of C(·) capable of capturing tail
dependence: Student-t, Clayton, Gumbel, and Joe.

Inference for the copula parameters was done using MLE, and the copula choice
was performed with the AIC 2 In a similar setting to the framework developed in
the last two chapters, the copula function was �tted for two scenarios: one when
blocking was present and one when blocking was not present. The presence of blocking
was derived from the two-dimensional blocking index (BI), where: BI = 1 indicated
blocking, and BI = 0 indicated no blocking.

1Note that for spatial extremes the choice of copulas can seem non intuitive, as copulas are basically
(�nite dimensional) multivariate distributions, while max-stable processes are (in�nite dimensional)
stochastic processes. However, in practice, we always have a �nite number of measurements, so that
inference is intrinsically multivariate (Ribatet et al., 2013)

2Once again, this shows how the likelihood (essential for computing MLE and AIC) plays crucial
role in all the methods presented in this dissertation.
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The use of extreme value copulas allowed for the estimation of the upper tail coe�-
cient, a summary measure of extreme dependence analog to the extremal coe�cient θ
described in section 3.6.1. This coe�cient indicates high levels of dependence when its
value is close to 1. Figure 6.4 shows the resulting bivariate upper tail coe�cient for all
locations under two scenarios: BI = 1, and BI = 0. Observing the di�erence between
the two scenarios, we concluded that blocking increased the upper tail dependence
over northwest and central Europe.

The speci�c contribution to this study was the following: support in the imple-
mentation of the copulas using the copulas package, help with the discussion and
interpretation of results, and review and editing of the manuscript. In summary, this
study represents for me a transfer of knowledge from the methods of spatial extremes
to a di�erent setting.
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7
Summary and Conclusions

This dissertation set out to improve the understanding of the statistical modeling
of extreme rainfall. In particular, the main goal was to incorporate the information
encoded by dependence into statistical models for extreme rainfall, expecting that
this would result in more e�cient use of the data. From this goal, two principal aims
were set: the �rst was to improve the understanding of the mechanisms that lead to
statistical dependence in extreme rainfall datasets. The second aim was to improve
the extreme rainfall estimates made from models by incorporating the dependence in
a meaningful way. To ful�ll these aims, two primary studies were presented. Each
study tackled the same aims, but with a di�erent perspective. In addition to these
two aims, this dissertation also set out to investigate how the methods presented could
improve other types of rainfall models. For this, the contribution made to other three
studies was summarized in the last chapter.

In this chapter, a summary of the two main studies conducted during this disser-
tation is presented. For this, the main �ndings of each study will be highlighted, as
well as their implications in the �eld. Afterwards, we present some of the limitations
of this dissertation, followed by possible research lines that could follow the work
presented here. We �nalize with a short conclusion.

7.1 Summary

Two novel studies were presented in the course of this dissertation. Both studies dealt
with incorporating dependence into models for extreme rainfall but di�ered in the type
of dependence included. The �rst one investigated the impact of dependence between
rainfall extremes from di�erent aggregation durations; the second one investigated the
impact of spatial dependence of rain gauges in the same geographical catchment.

These studies found that, under certain conditions, this kind of statistical depen-
dence can be modeled using Brown-Resnick max-stable processes. However, several
considerations, like isotropy or the choice of distance functions, are essential to get
proper results from the model. Overall, the results of the studies show that introduc-
ing the dependence to the model is a valuable way to reduce uncertainties without
overestimating them; a middle point between the large uncertainty of pointwise esti-
mation and the underestimating from iid GLMmodels. Furthermore, good veri�cation
results from all considered studies showed that including this dependence can lead to
better pointwise estimates for speci�c situations.

A summary of the aims and main results from each study is given in the following
subsections.
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7.1.1 Summary of study 1: Impact of including dependence for IDF
models

In this study, we investigated the impact of including the dependence between rainfall
intensities aggregated over di�erent durations in the d-GEV model for estimating IDF
curves. This aim was achieved by building two models:

1. A model based in the d-GEV that assumed independence between rainfall max-
ima of di�erent aggregation durations, which was named the rd-GEV ap-

proach; and

2. a model derived from a max-stable process that includes dependence between
rainfall maxima of di�erent aggregation durations, refereed to as theMS-GEV

approach.

The development of the MS-GEV approach required the construction of a distance
measure for di�erent aggregation durations. This measure needed to re�ect that
heavy rainfall events are very heterogeneous for short durations (i.e., d ≤ 5 hours)
but homogeneous for long durations (i.e., d > 12 hours). Thus, instead of using the
euclidean distance proposed by Tyralis et al. (2019), we opted to use a logarithmic
distance. By comparing Fig. 4.2 with Fig. 4.3, it becomes apparent that the log-
distance makes for a much more appropriate (for our purpose) dependence structure
in the MS-GEV approach. Thus, one of the main �ndings of this study was the
following:

Study 1 - Main �nding 1

The distance between aggregation durations for rainfall maxima is better rep-
resented by a logarithmic distance instead of the Euclidean distance.

After estimating the parameters for the two models, we calculated the out-of-
sample performance using an accuracy measure for each model. This measure was
the (10-fold) cross-validated Quantile Score (QS). Having a QS value for each model
allowed us to compare the performance between the rd-GEV and MS-GEV models.
This comparison was summarized via the Quantile Skill Index (QSI), which incorpo-
rates the QS of both models. The QSI showed positive values when the MS-GEV
model performed better and negative values when the rd-GEV model performed bet-
ter. Because the MS-GEV approach has the same underlying model as the rd-GEV
approach, we interpreted the QSI as a proxy of the impact of the dependence on the
estimated return levels from the model.

The resulting QSI for di�erent durations and return periods is seen in Fig. 4.6.
This showed that the MS-GEV approach had an advantage for large return periods
and short-to-medium durations. Therefore, we can state that:

Study 1 - Main �nding 2

Including the dependence between durations in the model had a moderate-to-
low positive impact on the QSI values of the �nal return levels, concentrated
mainly on the short duration/large non-exceedance probability events.

Following this �nding, for future studies we recommended including the depen-
dence only when the focus of the study is the short duration/large non-exceedance
probability region from the distribution.
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Finally, a simulation study was also presented, where the impact of including
the dependence between durations was shown for a low, medium, and high level of
dependence (see Fig. 4.7). The procedure was to �t the rd-GEV and MS-GEV models
for each dependence level, from which the QSI was calculated. This procedure allowed
us to see the impact of the dependence level in the QSI. The results showed that, as
expected, an increasing level of dependence led to better QSI results for the MS-GEV
model. By combining these results with those from the case study, we concluded the
following:

Study 1 - Main �nding 3

The dependence between rainfall of di�erent aggregation durations appears to
decay quickly with increasing distance, particularly for short durations.

This last result was expected, as rainfall events can be grossly divided into two
types according to their time-scales. The �rst one, local convective events, tend to be
short and very intense. The second one are frontal/stratiform events, which tend to be
much longer. Short durations tend to be associated with convective events. Thus, it
makes sense that for short durations the dependence is strong but decays very quickly
with increasing duration.

7.1.2 Summary of study 2: Seasonal spatial dependence

This study had two distinct aims. The �rst one was to describe how the spatial depen-
dence for rainfall maxima changed when looking at two types of rainfall-generating
processes: convective and frontal/stratiform. The second aim was to determine the
impact of including these dependence structures when estimating return levels with
a spatial model. Both aims were investigated with a case study in the region of
Berlin-Brandenburg.

For the �rst aim, a method was proposed to divide the events into convective or
frontal/stratiform. For the study region, it has been observed that extreme convective
events predominate in the summer months, while frontal/stratiform extreme events are
more frequent in the winter months. Therefore, we used season (summer/winter) as a
proxy for the type of rainfall-generating process that resulted in the event considered
to be the maximum. This method required the use of semi-annual instead of annual
maxima. Further justi�cation for this method is given by the results from Ulrich
et al. (2021), who found that annual block maxima tend to come from convective
events in summer and frontal/stratiform in winter for another similar region in the
mid-latitudes.

After classifying the events into winter and summer maxima, we investigated the
characteristics of the bivariate extremal coe�cient for the pairwise case. The main
results for the estimated empirical extremal coe�cient are shown in Figs. 5.4 and 5.11.
These �gures show that a complex dynamic exists for the extremal dependence, as
several regimes appeared to coexist. We compared the empirical estimates with those
resulting from the model as a way to check that the model adequately captured the
dependence structure. This comparison resulted in the following main �nding:
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Study 2 - Main �nding 1

The dependence structure for summer maxima (i.e., presumably convective
events) was adequately represented with an isotropic model, while the depen-
dence for winter maxima (i.e., presumably stratiform/frontal events) was not
well represented, suggesting that an anisotropic model would perform better.
Furthermore, the summer maxima showed a dependence structure with a fast
decay with increasing distance, while the dependence structure for the winter
maxima showed a slower decay.

The results from this main �nding were expected, given the general geometric
considerations for convective and frontal/stratiform events: Convective events tend
to be localized, while frontal events tend to be much larger with an elongated shape.
As both events have very di�erent time scales, it was necessary to investigate the
extremal dependence for a sub-daily (12 hours) and daily aggregation duration.

Once the spatial dependence structure was described for both seasons and dura-
tions, we investigated the impact of including the dependence in the VGLM model
proposed by Fischer et al. (2017) and used by Ulrich et al. (2020) in a similar setting.
This aim was achieved using a Brown-Resnick max-stable process where the response
surfaces were equivalent to those from the VGLM approach. We ended up with two
types of models:

1. A model assuming spatial independence between the maxima of di�erent loca-
tions based on the VGLM model (abbreviated as the DM approach); and

2. a Brown-Resnick model that includes spatial dependence (abbreviated as the
BR approach).

Quantifying the impact of dependence was achieved by following the same ver-
i�cation strategy as in study 1: the QSI quanti�es how much skill was gained/lost
when estimating return levels of di�erent non-exceedance probabilities by including
the dependence in the model. The main results for the QSI are seen in Fig. 5.7. From
this �gure, we found the following:

Study 2 - Main �nding 2

The isotropic Brown-Resnick model showed a good performance for summer
maxima (i.e., presumably convective events). On the other hand, it showed an
unsatisfactory performance for the winter maxima.

In conclusion to this study, we propose that the design of a model, especially
when including dependence, must consider the type of event that will be modeled,
or be �exible enough to incorporate various types of rainfall processes. Convective
events appear to work well with the isotropic assumption, but other type of events,
like frontal/stratiform ones require a more general model for the dependence.

7.1.3 Summary of other studies included in this dissertation

In chapter 6 the contributions made to three further studies dealing with the modeling
of extreme events was described. The �rst study, that of Fauer et al. (2021), involved
adapting the simulation developed for study 1 in order to compute the coverage of
con�dence intervals. This allowed to judge whether the con�dence intervals were
meaningful under the assumption of independence. Furthermore, in the study of
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Ulrich et al. (2020), the main �ndings from study 1 were used to justify the choice of
independence for the design of the VGLM model. Finally, in the study of Otero et al.
(2022), a model that includes extreme dependence was developed following the ideas
from the other studies.

The contributions done to these studies show the �exibility of the models de-
scribed in this dissertations. Furthermore, they show the di�erent contexts where
methods from EVT and spatial extremes can add valuable information to the study
of meteorological extreme events.

7.2 Limitations

It is important to acknowledge limitations to the work done for this dissertation. This
dissertation does not engage with the theoretical development of stochastic methods
for modeling extreme events. Instead, this work adopts state-of-the-art stochastical
methods in order to investigate previously unknown aspects of extreme rainfall model-
ing. Furthermore, it is beyond the scope of this dissertation to examine the impact of
climate change, including non-stationarity, in the estimates of the models. Particular
limitations to each study can be found in each chapter.

7.3 Outlook

This work focused mainly on adapting several state-of-the-art statistical models from
a meteorological point of view to improve the knowledge gained by modeling extreme
rainfall. This research has given way to several questions in need of further investi-
gation. Here I explore some of the main topics of interest that could lead to better
models.

7.3.1 Estimating uncertainty for the MS-GEV approach used to es-
timate IDF curves

The goal of study 1, described in ch. 4, was to measure the impact of including the
dependence between durations in the d-GEV model. This study gave valuable insight
into the performance of the point estimates of di�erent IDF models; however, it did
not investigate how much the uncertainty of the estimates was a�ected by including
the dependence. This uncertainty is essential in any EVT study where the results are
used for designing infrastructure. Therefore, a valuable addition to this model would
be to devise a method to obtain the uncertainty of the MS-GEV model.

As seen in section 2.4, two di�erent ways of quantifying the uncertainty of a model
exist: frequentist or Bayesian. In the published paper, we performed the inference of
the parameters using MLE, which is a frequentist method. Thus, to obtain con�dence
intervals of the predicted return levels, we would have to use theoretical approxi-
mations (i.e., the delta method) or resampling (i.e., the bootstrap). However, the
complexity of both the pairwise likelihood of the Brown-Resnick model and of the
rd-GEV distribution made the necessary computations for the propagation of uncer-
tainty intractable in their current form. Therefore, an alternative way of propagating
the uncertainty for this model is required.

The issues described above with the frequentist approach to propagate the uncer-
tainty of the MS-GEV and rd-GEV models suggest that a more straightforward path
is to use Bayesian inference. This advantage arises because the Bayesian approach
automatically gives the desired uncertainties as long as the assumptions are met. In



142 Chapter 7. Summary and Conclusions

this case, getting the uncertainty from the MS-GEV or rd-GEV models would require
using a Bayesian method like MCMC instead of MLE. From there, it is enough to get
the posterior predictive distribution (eq. (2.16)) to get credibility intervals from the
return levels.

The problem of obtaining uncertainty reduces to �nding an appropriate way of
doing Bayesian inference with the MS-GEV model. Fortunately, most of this imple-
mentation was already done for study 2, where a Bayesian method was developed to
estimate parameters for the Brown-Resnick isotropic model. The di�erence between
the models is in the response surfaces, but this is a straightforward implementation.
It should be noted that implementing the OFS correction from Shaby (2014) is neces-
sary to get credibility intervals with the correct coverage probability when using the
pairwise likelihood for Bayesian inference.

7.3.2 Incorporating anisotropy for spatial dependence

The Brown-Resnick models introduced in section 4.2 of ch. 5 assumed isotropy, mean-
ing that the dependence was only a function of distance and not of direction. The
results showed that this proposed model was appropriate when modeling the semi-
annual summer maxima. However, they also showed that the model was not so ade-
quate for the semi-annual winter maxima. An idea that could improve the model for
winter events involves extending the model to allow for anisotropy in the dependence
structure.

Why would anisotropy (potentially) improve the Brown-Resnick model for winter
events? We know that frontal/stratiform events are predominant in the semi-annual
winter maxima � As explained before, these events tend to be long and narrow, with a
shape along-front of ca. 1000 km and across-front of ca. 100 km. Thus, it is logical to
think that an anisotropic dependence structure for the Brown-Resnick model would
better capture the properties of these kinds of events.

To include the anisotropy in the model, the variogram of the Brown-Resnick model
given in eq. (3.31) needs to be modi�ed to include anisotropy within the distance
function. This type of distance that includes anisotropy is commonly known as the
reduced distance. The reduced distance requires the computation of the rotation
matrix, which requires a parameter φ to be given.

Including anisotropy in this fashion ultimately means that at least one extra pa-
rameter needs to be estimated with the data. For the case of the pairwise likelihood,
the extra parameter is only one angle φ of the rotation matrix. This estimation
requires a straightforward modi�cation to the likelihood term, from which likelihood-
based inference methods like MLE or MCMC can be used. The complexity comes
when estimating the uncertainty of this new parameter. However, this information
can be extracted directly from the posterior when using Bayesian inference. The
problem, in that case, is the proposal of a prior distribution for φ. This prior could
depend on what we know about the predominant types of events for the speci�ed sea-
son. For example, it could be a wide re-centered Beta distribution with a bell shape
centered around zero for summer and, for winter, centered around 45. Alternatively,
the analyst could propose a more non-informative prior to see how the data shifts the
posterior. These analyses would then help the analyst judge whether anisotropy is
warranted or not for the data.
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7.3.3 Classifying events properly

A signi�cant limitation of study 2 (ch. 5) was using seasons as a proxy for the type of
rainfall-generating process predominant in the region. This design choice was justi�ed
for the domain used in the case study of this study, as this seasonal behavior has been
observed in other studies performed for the midlatitudes ((Berg et al., 2013; Ulrich
et al., 2021, see, for example, )). However, for other regions (especially outside of the
midlatitudes), using winter and summer as a proxy for convective or stratiform events
will not be straightforward. Therefore, using an objective classi�cation of events
instead of relying on a proxy would provide a sturdier foundation for investigating the
dependence structures of extreme events.

Some work in classifying extreme events already exists. For example, Lengfeld et
al. (2021) developed the Catalogue of Radar-based heavy Rainfall Events (CatRaRE).
This catalog provides a list of all the heavy rainfall events that a�ected Germany for a
20-year period; additionally, it provides many parameters describing their character-
istics, like objective weather type classi�cation. This information could be combined
with annual or monthly block maxima to determine what kind of weather type the
maxima came from. With this information, one could do the EVT analysis only for
maxima from a speci�ed weather type, such as frontal systems. The main problem is
that 20 years could not be long enough for proper extreme value analysis.

7.4 Conclusion

The statistical modeling of extreme rainfall provides crucial information for designing
and implementing of protection measures against heavy �ooding events. The design
of such models depends on many factors, like data availability, which typically is
not su�cient to characterize an entire catchment based only on pointwise estimates.
Thus, models that �borrow� strength from the similarity in space or temporal scales
are needed to extract information for unobserved locations.

This dissertation begins by exploring many of the existing spatial modeling meth-
ods developed from a statistical viewpoint. Then, this dissertation aimed to provide
di�erent strategies to adapt the methods incorporating knowledge from a meteorolog-
ical viewpoint. This was mainly provided by investigating how statistical dependence
arose from physical process considerations. For example, how the time-scale of the
di�erent rainfall-generating mechanisms resulted in dependence between durations,
and from there, how to measure its impact using a veri�cation framework.

To summarize this work, we have found that integrating the di�erent types of
dependence impacts the estimated return levels, which leads to improved estimates
under certain conditions. Taken together, these �ndings support strong recommen-
dations to incorporate the dependence for extreme rainfall models where the physical
characteristics of the predominant extreme events suggest a strong dependence on the
spatial and temporal scale of interest.
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