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Abstract. Data collected on a rectangular lattice occur frequently in many
areas such as field trials, geostatistics, remotely sensed data, and image analy-
sis. Models for the spatial process often make simplifying assumptions, includ-
ing axial symmetry and separability. We consider methods for testing these
assumptions and compare tests based on sample covariances, tests based on
the sample spectrum, and model-based tests.
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1 Introduction

Data collected on a regular two-dimensional lattice arise in many areas. Most
models used for such data assume axial symmetry, but can still be difficult to
use. Many of the problems of two-dimensional modelling can be overcome by
using separable processes. Under this assumption, time series methods can
be used to analyze and model lattice data (Martin, 1990).

However, no tests for separability and axial symmetry are known apart from
Guo and Billard (1998), who suggested the Wald test to test separability. This
model-based test compares the fit of an AR(1)·AR(1) process and the more
general Pickard process to the data, and actually tests for axial symmetry
and separability together.

We propose and compare some different model-free and model-based tests
for testing axial symmetry and separability. The paper is structured as fol-
lows. In section 2 we give some notation and definitions, illustrate the simu-
lation method and present the different models used. The different tests for
axial symmetry and separability are discussed in section 3. In section 4 we
compare the performances of the tests.

2 Definitions, models and simulation method

2.1 Notation
We assume that data occur on an n1 by n2 rectangular lattice, with rows
indexed by i1 = 1, . . . , n1 and columns by i2 = 1, . . . , n2. Row and column
lags are g1 and g2, with gj = −(nj − 1), . . . , 0, . . . , (nj − 1), for j = 1, 2.
The sites are ordered lexicographically, so that (i1, i2) precedes (i1, i2 + 1)
for i2 < n2, and (i1, n2) precedes (i1 + 1, 1). Data can be considered as a
realization of random variables Yi1,i2 . Let the vector Y contain the Yi1,i2 in
site order and assume a constant mean. We assume Y ∼ N(0, V σ2) where
V = V (α) is an n by n positive definite matrix depending on the q-vector of
parameters α.
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Assuming second-order stationarity, C(g1, g2) = Cov (Yi1,i2 , Yi1+g1,i2+g2) is
the covariance at lags g1, g2, with C(0, 0) = σ2. The spectrum is f(ω1, ω2) =∑∞

g1=−∞
∑∞

g2=−∞ C(g1, g2) cos(g1ω1 + g2ω2)/(2π)2 (Priestley, 1981, section
9.7). Note that C(g1, g2) = C(−g1,−g2) and f(ω1, ω2) = f(−ω1,−ω2) al-
ways.

2.2 Axial symmetry and separability
For an axially or reflection symmetric process C(g1, g2) = C(g1,−g2),∀g1, g2
and, equivalently, f(ω1, ω2) = f(ω1,−ω2),∀ω1, ω2. This means that the co-
variances and the spectrum are both symmetric about the axes.

For a process to be separable, C(g1, g2) ∝ C(g1, 0) · C(0, g2),∀ g1, g2 and
f(ω1, ω2) ∝ f(ω1, 0) · f(0, ω2),∀ ω1, ω2 are also required. Therefore, the co-
variances and the spectrum are determined, up to a multiplicative constant,
by the margins. Clearly separability implies axial symmetry.

It is often desirable in practice that a process should be axially symmetric,
and that the covariances should have a simple form. Separable processes have
both these properties, and are still flexible enough to provide a reasonable
representation of many planar structures (Martin, 1990).

For a separable process, the V matrix can be expressed as V = Vx ⊗ Vz,
where Vx and Vz are two smaller matrices that arise from the two underlying
one-dimensional processes, and this implies that its determinant and inverse
(required for exact Gaussian maximum likelihood, generalised least-squares
estimation and exact Gaussian simulation) are easily determinable, which is
a major advantage of this subclass of processes (Martin, 1996).

2.3 Models simulated and simulation method
We compared the different tests proposed by simulation: separable (or axially
symmetric) processes were used to simulate the null distribution of tests for
separability (or axial symmetry), while non-separable (or non-symmetric)
processes were used to simulate the distribution of the tests under the al-
ternative hypothesis. We indicate tests for axial symmetry by S and tests
for separability by R, using different superscripts for their basis: (c) sample
covariances, (p) sample spectrum, and (m) model-based.

The separable process we used is the AR(1)·AR(1) process (Martin, 1979):

Yi1,i2 = α1Yi1−1,i2 + α2Yi1,i2−1 − α1α2Yi1−1,i2−1 + εi1,i2

where the εi1,i2 are assumed to be independently distributed as N(0, σ2
ε ).

As an axially symmetric, non-separable model we used a particular case of
a second-order conditional autoregressive process, the CAR(2)SD with sym-
metric diagonal term (Balram and Moura, 1993). It can be written as:

E(Yi1,i2 |·) = β1(Yi1−1,i2 + Yi1+1,i2) + β2(Yi1,i2−1 + Yi1,i2+1)
+ β3(Yi1−1,i2−1 + Yi1+1,i2+1 + Yi1−1,i2+1 + Yi1+1,i2−1)

with constant conditional variance. Conditioning is on Yl1,l2 , ∀(l1, l2) 6= (i1, i2).
A CAR(2)SD with β3 = −β1β2, β1 = α1/(1 + α2

1) and β2 = α2/(1 + α2
2) has

the same covariance structure as an AR(1)·AR(1) with parameters α1, α2.
The non-separable, non-axially-symmetric model used, referred to as the

Pickard process (Pickard, 1980, Tory and Pickard 1992) can be written as:

Yi1,i2 = α1Yi1−1,i2 + α2Yi1,i2−1 + α3Yi1−1,i2−1 + εi1,i2 .
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The AR(1)·AR(1) is a special case of the Pickard process with α3 = −α1α2.
Each process was simulated 1 000 times to estimate the distribution of

the test statistics under the null and the alternative hypotheses. Choosing a
matrix T such that V = TT ′, the observation vector y can be simulated as
y = Tε where ε is a random vector of n independent N(0, 1) observations.

3 Testing axial symmetry and separability

3.1 Tests based on sample covariances
Since axial symmetry and separability are usually defined in terms of the
covariance structure, it seems natural to try and test these two hypothe-
ses using the sample covariances. The sample estimator of the covariances
we used is c(g1, g2) =

∑n1−g1
i1=1

∑n2−g2
i2=1 (Yi1,i2 − Y )(Yi1+g1,i2+g2 − Y )/n and

c(g1,−g2) =
∑n1−g1

i1=1

∑n2−g2
i2=1 (Yi1,i2+g2 − Y )(Yi1+g1,i2 − Y )/n, for g1, g2 ≥ 0,

where Y =
∑n1

i1=1

∑n2
i2=1 Yi1,i2/n. Writing c(g1, g2) as a quadratic form in Y

and using standard results (Cressie, 1993 section 2.4.2), it is easy, given V ,
to calculate cov[c(g1, g2), c(g?

1 , g?
2)], from which it is clear that the c(g1, g2)

are highly dependent and have non-constant variance.

3.1.1 Testing axial symmetry
We can consider basing tests for axial symmetry on the sample differences
F (g1, g2) = c(g1, g2) − c(g1,−g2) for g1, g2 ≥ 1. Under the null hypothesis
E[F (g1, g2)] = 0 ∀ g1, g2. However the F (g1, g2) have non-constant variance
and they are correlated. For 1 ≤ gj ≤ aj , let F denote the vector containing
the F (g1, g2) in lexicographic order, and let cov(F ) = Σ. Since the c(g1, g2)
are asymptotically normally distributed, F ∼ N(0, Σ) and a possible test uses

S(c) = F ′Σ̂−1F.

Under axial symmetry, S(c) ∼ χ2
a, asymptotically, with a = a1 ·a2. Notice that

estimating Σ requires estimating V and, therefore, this test is not completely
model-free. We fitted the AR(1)·AR(1) to estimate V .

3.1.2 Testing separability
Modjeska and Rawlings (1983) suggested testing separability by using the
singular value decomposition of the matrix M of sample covariances c(g1, g2)
for −(a1 − 1) ≤ g1 ≤ a1 − 1 and 0 ≤ g2 ≤ a2 − 1. Since C(g1, g2) ∝
C(g1, 0) ·C(0, g2) under the null hypothesis, the population M has rank one
for a separable process. If λ1 is the largest singular value of M , in absolute
value, a test for separability could use:

R(c) = λ2
1/

∑
λ2

i .

Its distribution needs to be simulated. Note that R(c) ∈ [0, 1], low values
leading to rejection of separability.

3.2 Tests based on sample spectrum
The main advantage of the sample spectrum is that it has better asymptotic
properties than the sample covariances, being asymptotically independent at
different frequencies. For ωj a multiple of 2π/nj , the sample spectrum we
used is I(ω1, ω2) =

∑n1−1
g1=−n1+1

∑n2−1
g2=−n2+1 c(g1, g2) cos(g1ω1 + g2ω2)/(2π)2.
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Then, for ωj 6= 0, π, we have I(ω1, ω2)/f(ω1, ω2) → i.i.d. Exp(1), E[I(ω1, ω2)]
→ f(ω1, ω2) and Var[I(ω1, ω2)] → f2(ω1, ω2), as n1, n2 →∞. Exact formula
for the mean and the variance of the one-dimensional sample spectrum are
in Priestley (1981, section 6.1.3).

3.2.1 Testing axial symmetry
Consider the differences G(ω1, ω2) = I(ω1, ω2) − I(ω1,−ω2) (with ωj =
2πkj/nj , kj = 1, 2, . . . , bj , and bj = (nj−1)/2 if nj is odd, or bj = nj/2−1 if
nj is even). Clearly under axial symmetry E[G(ω1, ω2)] = 0 and Var[G(ω1, ω2)]
→ 2f2(ω1, ω2) as n1, n2 →∞. Since the G(ω1, ω2) do not have constant vari-
ance, we considered two modifications. Firstly, taking the logarithm of the
I(ω1, ω2) approximately stabilizes the variance and also reduces the non-
normality. For ωj 6= 0, π we then have, asymptotically log[I(ω1, ω2)] ∼
Gumbel (log[f(ω1, ω2)], 1) from which Var {log[I(ω1, ω2)]} → π2/6 as n1, n2
→ ∞. Given b = b1 · b2, a possible test uses:

S
(p)
1 = D

√
b/

√
π2/3,

where D =
∑

ω1,ω2
D(ω1, ω2)/b, D(ω1, ω2) = log[I(ω1, ω2)]− log[I(ω1,−ω2)].

Assuming b large enough for the central limit theorem to hold, under ax-
ial symmetry S

(p)
1 ∼ N(0, 1). Other tests, for example, the sign test or the

Wilcoxon test on the differences D(ω1, ω2) or G(ω1, ω2), can also be used.
A second modification is to standardize the differences G(ω1, ω2), esti-

mating f(ω1, ω2) by [I(ω1, ω2) + I(ω1,−ω2)]/2. Thus, if H(ω1, ω2) denotes
G(ω1, ω2)/[I(ω1, ω2) + I(ω1,−ω2)], then another possible test uses

S
(p)
2 =

√
3b H.

If the I(ω1, ω2) are independent and exponentially distributed, H(ω1, ω2) has
a uniform distribution in the interval [−1, 1], and the sum converges rapidly
to a N(0, b/3), so S

(p)
2 ∼ N(0, 1) asymptotically under axial symmetry.

3.2.2 Testing separability
The same idea in section 3.1.2 can be applied to a matrix of I(ω1, ω2) to test
separability (we use R

(p)
1 to denote this test statistic).

As an alternative, under separability, log[I(ω1, ω2)] and log[I(ω1,−ω2)] can
be regarded as two sample realizations of the same value of the log spectrum
log[f(ω1, ω2)] = d + log[f(ω1, 0)] + log[f(0, ω2)] where d is a constant. So
testing for separability reduces to testing for lack of interaction in a two-way
classification table with two realizations in each cell and, var(log[I(ω1, ω2)])
being approximately constant, this can be done using the statistic:

R
(p)
2 = SSrc/SSe

where SSrc is the mean of squares due to the interaction, and SSe is the
residual mean of squares. Under separability, and assuming the log differences
are approximately normal, R

(p)
2 ∼ F(b1−1)(b2−1),b, asymptotically.
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3.3 Model-based tests
Assuming a specific model behind the data allows the use of model-based tests
for axial symmetry and separability. The idea is to fit a particular unrestricted
model (non-separable or non-symmetric) to the data, then to restrict it to
be axially symmetric or separable, imposing constraints on its parameters
and to test which model is more appropriate. The comparison can use the
generalised likelihood ratio test (GLRT) or tests which are asymptotically
equivalent, such as the Wald test or the Score test.

3.3.1 Testing axial symmetry and separability together
Under the assumption Y ∼ N(0, σ2), the log-likelihood can be written as
`(α, σ2; y) = −(n/2) log(2π) − (n/2) log(σ2) − log | V | /2 − y′V −1y/(2σ2).
The GLRT statistic is then

S(m) = 2[`(α̂, σ̂2; y)− `(α̂0, σ̂
2
0 ; y)].

Now, to test for axial symmetry and separability together we can consider
the Pickard as the unrestricted model and the AR(1)·AR(1) as the restricted
one, with the constraint α3 = −α1α2 (see section 2.3). Alternatively, the
Wald (Guo and Billard, 1998) and the Score tests could be used, although
we found that GLRT is preferred for smaller lattice sizes. Under the null text
hypothesis, the three test statistics are asymptotically distributed as a χ2

1.

3.3.2 Testing separability
Separability can be tested comparing the fit of a CAR(2)SD with the fit of
an AR(1)·AR(1), applying the restriction β3 = −β1β2 (see section 2.3) to the
parameters of the CAR(2)SD. The GLRT can be expressed this time as:

R(m) = 2[`(β̂, σ̂2; y)− `(β̂0, σ̂
2
0 ; y)].

4 Results and discussion

For the tests on axial symmetry, a good correspondence between the simu-
lated and theoretical distributions was found for S

(p)
1 , S

(p)
2 , S(m) on 11 by 11

or larger lattices. For S(c) with a1 = a2 = 4, a 15 by 15 lattice was required.
Tests S

(p)
1 , S

(p)
2 are completely general, the main assumption required being

stationarity, while S(c), S(m) require partial or complete specification of a
model. On the other hand, S(m) and S(c) are more powerful (see Table 1).
Note that the power partially depends on how far the Pickard process is from
the AR(1)·AR(1), measured by |α3 + α1α2|. Also note that S(m) is testing
for separability at the same time.

Separability proved to be harder to test. Tests R(c) and R
(p)
1 are not invari-

ant, their distributions strongly depending on the parameters of the process
considered, and also can have values very close to 1 under the alternative
hypothesis. Simulations show R

(p)
2 to be distributed as expected on 11 by

11 lattices, although this test does not seem to be very powerful. Also, it
assumes axial symmetry, which therefore should be tested first. Test R(m) is
very powerful (see Table 2), although it requires specification of a model.

As well as the tests mentioned, we have also considered some other tests,
and considered variants of those mentioned - for example using different aj .
We have evaluated the tests on other parameter values than those mentioned,
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and on some other processes - for example some separable ARMA processes.
We have some theoretical results to help explain the power for different pa-
rameters under the alternative hypothesis. We have tried the tests on a real
data set - a SAR (synthetic aperture radar) image for which the postulated
form of the point-spread function implies separability. The theoretical distri-
bution of the data is Exponential, so further work is needed to see how the
tests perform for theoretical SAR data. For further details, see Scaccia (2000)
and Scaccia & Martin (2002).

Parameters S
(p)
1 S

(p)
2 S(c) S(m) |α3 + α1α2|

α = (0.1, 0.2, 0.6) 97.4% 97.1% 99.9% 100.0% 0.62
α = (0.6, 0.7,−0.8) 87.0% 86.3% 99.5% 100.0% 0.38
α = (0.3, 0.4, 0.2) 55.2% 59.0% 78.1% 99.8% 0.32
α = (0.1, 0.6, 0.2) 44.6% 45.8% 61.2% 99.3% 0.26
α = (0.3, 0.6,−0.15) 5.1% 5.3% 5.8% 6.8% 0.03

Table 1. Simulated power of tests for axial symmetry for different Pickard pro-
cesses, on a 15 by 15 lattice when the level of the tests is equal to 5%.

Parameters R
(p)
2 R(m) |β3 + β1β2|

β = (0, 0, 0.25) 88.8% 100.0% 0.25
β = (0.11, 0.07, 0.16) 13.6% 98.7% 0.17
β = (0.2, 0.2, 0.05) 9.1% 92.7% 0.09
β = (0.25, 0.25, 0) 8.3% 86.8% 0.06
β = (0.3, 0.2,−0.03) 5.3% 12.3% 0.03

Table 2. Simulated power of tests for separability for different CAR(2)SD processes,
on a 15 by 15 lattice when the level of the tests is equal to 5%.
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