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Abstract
In the control systems community, path-following refers to the problem of tracking an output reference curve. This work
presents a novel model predictive path-following control formulation for nonlinear systems with constraints, extended with
an obstacle avoidance strategy. The method proposed in this work simultaneously provides an optimizing solution for both,
path-following and obstacle avoidance tasks in a single optimization problem, using Nonlinear Model Predictive Control
(NMPC). The main idea consists in extending the existing NMPC controllers by the introduction of an additional auxiliary
trajectory that maintains the feasibility of the successive optimization problems even when the reference curve is unfeasible,
possibly discontinuous, relaxing assumptions required in previous works. The obstacle avoidance is fulfilled by introducing
additional terms in the value functional, rather than imposing state space constraints, with the aim of maintaining the
convexity of the state and output spaces. Simulations results considering an autonomous vehicle subject to input and state
constraints are carried out to illustrate the performance of the proposed control strategy.

Keywords Path-following · Model predictive control · Obstacle avoidance

1 Introduction

Solving path-following problems is widely required in
the industry, as it finds application in the autonomous
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vehicles technology such as unmanned aerial vehicles or
automated guided vehicles, as well as in different types of
industrial robots (crane towers, milling machines), which
are examples of autonomous motion systems whose correct
functioning is based on the computation of a feasible
collision-free trajectory. Path-following is a quite general
problem in the control systems design that basically
consists in tracking a predefined curve. In fact, the control
problems can in general be roughly classified into setpoint
stabilization, trajectory tracking and path-following and the
first two can be considered particular cases of the latter
-more general- problem. In the literature, this problem
is also referred to by different names, such as manifold
stabilization [4, 29], maneuvering problem [37], or contour
control [17, 38], among others. The path-following problem
can be interpreted by splitting the problem into a geometric
and a dynamic task, where the geometric task consists
in driving the system to the path and the dynamic task
requires to satisfy a dynamic assignment along the path (for
example, when there is a prescription on time, velocity, or
acceleration). In recent years, optimization-based strategies
for solving motion planning problems have been gaining
attention [31]. In particular, Model Predictive Control
(MPC) stands out as an interesting optimization-based
scheme for this task. It consists of a receding horizon control
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strategy, meaning that a fixed-horizon optimal control
problem is solved at every sampling time [32]. From the
resulting optimal control sequence, only the first control
action is applied to the plant, and the procedure is repeated.
A significant advantage of the MPC framework is its ability
to take into account (and to anticipate) constraints on the
inputs and states, such as collision avoidance constraints.
Frequently, in the context of path-following applications,
the presence of obstacles must be considered, increasing the
complexity of the task, which can be divided in three issues:
path-following control, obstacle avoidance strategy and the
coupling between the two previous goals.

1.1 RelatedWorks

1.1.1 Model Predictive Path Following

The Path-Following problem using Nonlinear Model
Predictive Control (NMPC) strategies where the reference
is a parameterized curve has been extensively studied and
several contributions have been recently introduced. In [39]
a model predictive path-following controller is proposed
which uses a fixed terminal law obtained by linearizing
the error system along the state reference path and solving
a Polytopic Linear Differential Inclusion Problem (PLDI).
Furthermore, a unique terminal set in the error space is
computed, which could be very restrictive in many relevant
cases. In [1], a path-following control based on kinematics
model of vehicles is proposed, by introducing a terminal
stabilizing feedback law, although no considerations on
dynamic tasks are discussed. For a thorough review of
NMPC trajectory tracking and path-following controllers
with application to non-holonomic robots the reader is
referred to [26, 27]. Output path-following is deeply
studied in [7], including dynamic tasks and a geometric
interpretation of the problem. Similar to what is made in
[3], the geometric interpretation is based on a normal-
traverse form decomposition for manifold stabilization,
as well as the analysis of convergence conditions. In all
these works the path is required to be sufficiently often
continuously differentiable. A general explanation about
the relation between different control objectives, covering
setpoint stabilization, trajectory tracking, path-following,
and economic operation, and discussion on their approaches
within the NMPC framework are included in [23].

1.1.2 Collision Avoidance

A plethora of strategies concerning the global planning
of collision-free trajectories on known or partially known
environments are available in the literature, with several
remarkable methods such as RRT and others [15, 16,
33]. Often, hard constraints, barrier functions and artificial

potential fields, among others are also used. The reader is
referred to [14] for a detailed review on the subject. Real-
time obstacle avoidance coupled with an accurate path-
following control has been one of the major issues in the
field of mobile robotics [5, 18]. Proposing adequate obstacle
avoidance control strategies is a major issue in the design
of reliable applications in this field, and it underlies two
different issues: the obstacle detection and the computation
of the system reaction [9].

1.1.3 CombinedModel Predictive Path Following
and Collision Avoidance

Strategies combining NMPC and Obstacle Avoidance
are frequently found in works on the field of robotics
research. For example, in [8] an integrated control structure
combining path tracking, vehicle stabilization, and collision
avoidance is presented, which uses a variable time-step and
horizon, as well as so-called emergency paths -that violate
the stabilization criteria- for collision-avoidance guarantees.
A controller based on non-linear model predictive control
for trajectory tracking and path-following is introduced
in [42]. Similar to this work, the collision avoidance is
achieved by introducing a penalty into the cost function.
In order to guarantee the avoidance, constraints depending
on the distance towards the obstacle are introduced in the
optimization problem. Simulation examples on a robotic
manipulator are presented. A reference tracking NMPC
controller for output trajectory tracking with obstacle
avoidance is presented in [34]. It is based on continuous
trajectory replanning executed in real-time. The obstacles
are modelled as elliptic sets, that are enlarged as means
of providing a safety margin. The obstacle avoidance is
imposed as soft constraints for the controller. Experimental
results on 6 DoF manipulator are provided, which confirm
the suitability of the approach for real time applicability.
The path-following and obstacle avoidance tasks -typically
when the system follows the path that leads to an obstacle-
may require opposite reactions from the system. This
generates a situation referred to as corner-situation, in
which a local minimum on the cost is reached. In many
practical situations, control objectives are locally modified
with the aim to fulfill the desired task, see for example [18].
Another example of this situation can be found in [2], where
trajectory tracking and path-following controllers based in
model predictive control are compared and the obstacles
are modeled as hard constraints. For additional optimization
based collision avoidance strategies the reader is referred to
[40] and references therein. The reader is also referred to
recent works that implement NMPC strategies, which are
focused on the setpoint tracking in unknown environments
[25] and trajectory tracking tasks [30], with application in
the context of quadrotor control.
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1.1.4 Artificial Variables

A formulation for tracking references subject to unpre-
dictable changes for linear systems is introduced in [19].
In that work, auxiliary variables are introduced in the opti-
mization problem of the NMPC. This formulation provides
guarantees of recursive feasibility for the optimization prob-
lem, for piecewise constant references. The auxiliary or
artificial variable is constrained to belong to an invari-
ant set which contains the equilibrium set of the dynamic
system. This approach has been extended to nonlinear sys-
tems in [20]. Artificial trajectories have also been proposed
in the literature; earlier works are available in the con-
text of the control of periodic linear time-varying system
[21]. A more recent formulation for trajectory tracking with
obstacle avoidance, that is based on an economic NMPC
strategy and makes use of auxiliary trajectories, can be seen
in [36]. Following the ideas presented in [19] and further
extended in [20], auxiliary variables are used as additional
optimization variables. Similarly to [36], a set of variables
conforming an auxiliary reference trajectory is introduced in
the optimization problem as decision variables. Moreover,
these variables are required to satisfy the system dynamics,
meaning that the artificial trajectory is a feasible trajectory
for the system.

1.2 Contributions

This paper is an extension of a work originally presented
in [35], where the obstacle representation presented in
[13] is merged in a new path-following framework,
based on an NMPC which uses auxiliary trajectories.
The work is extended in the sense that theoretical
foundations for proving the stability of the control strategy
are established, by introducing specific definitions and
sufficient assumptions. Also, scenarios including arbitrary
reference paths are discussed. The global collision-free
motion planning task, which involves the planning and
tracking of the optimal obstacle avoiding trajectory with
respect to the complete reference path is not within
the scope of this work. Rather, this work focuses in a
lower-level layer, conforming a local optimizing trajectory
planner and tracker which is able to handle generic
reference paths, with obstacle-avoiding capabilities. The
contribution of the paper is twofold. First, a formulation
of model predictive path-following control is presented,
which is able to optimally track reference paths that
may be incompatible with the constraints and system
dynamics. Also, this formulation is able to account for a-
priori known obstacles or keep-out zones by introducing
soft constraints into the cost functional, maintaining the
convexity of the admissible state-space. This formulation is
promising since it is a step towards overcoming limitations

of available MPC controllers for path following in scenarios
where certain conditions, such as terminal constraints
or the presence of obstacles along the path, render
them theoretically inapplicable. The proposed controller
uses additional decision variables that provide a feasible
trajectory (compatible with the system dynamics and
constraints) which acts as a reference to be tracked by the
system. At each iteration, a single optimization problem is
solved, providing an optimal time-parameterization of the
reference path, an auxiliary trajectory, and the inputs to
be applied to the system. This auxiliary trajectory, which
is referred to as artificial trajectory, is planned and used
as reference to be tracked by the system. Besides, this
trajectory fulfills certain assumptions -such as continuity,
differentiability, feasibility- required in path-following
formulations available in the literature. The incorporation
of the artificial trajectory provides guarantees of recursive
feasibility even under hard and conservative constraints,
such as a terminal equality constraint. Sufficient conditions
for feasibility and stability for feasible reference paths
using artificial trajectories are introduced and preliminary
results on stability are developed, which as far as the
authors know, have not been presented in the literature. The
theoretical result comprises the stability proof of the closed-
loop system which applies for followable paths, considering
a convex feasible state space.

Complications arise due to the presence of obstacles
on the path, mainly concerning constraints, such that the
optimization problem might eventually become unfeasible
in existing formulations. With the scheme proposed in this
work, this problem is overcome thanks to the additional
ingredients included in the optimization problem. Although
this situation is present in the proposed controller, it can
be alleviated through convenient tuning parameters that
penalize the planning error (the difference between the
nominal reference trajectory and the artificial variable).
Lower weights on these parameters provide optimal
solutions for larger deviations from the reference, as
required for avoiding obstacles, at the expense of closeness
of the tracking result. Another advantage resulting from
the modifications introduced with respect to standard MPC
controllers follows from the feasibility guarantees obtained.

1.3 Organization

The remainder of this paper is organized as follows:
Section 2 describes the path-following problem, its moti-
vation and definitions of path feasibility and followability
are introduced. Next, existing MPC strategies designed to
achieve path-following are discussed in Section 3. Section 4
is devoted to the presentation of the proposed controller for-
mulation for path-following, based on extending the existing
controllers by the incorporation of artificial trajectories. A
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stability proof for feasible reference paths is included. In
Section 5, the obstacle avoidance problem is formalized and
the Nonlinear Model Predictive Path-Following Control for
obstacle avoidance formulation is presented. Section 6 is
devoted to numerical simulations. Beginning the section, the
system model and design parameters are detailed. Next, the
simulation scenarios, which are used to asses the proposed
control strategy, are presented, followed by the results of
numerical experiments and discussion on the performance
of the controller. Finally, conclusions and future works can
be found in Section 7.

2 Problem Statement andMotivation

The aim of this work is to design a novel model predictive
path-following control formulation for nonlinear systems
with constraints, extended with an obstacle avoidance
strategy. Before presenting the problem, some fundamental
concepts are at first revisited. Intuitively, path-following
can be understood as tracking, as close as possible, a
reference that moves along a curve (in a space of lower
or equal dimension than the state space). In the case
of a parameterized path, the predictive control strategy
also involves obtaining, at successive time instants, a
time parameterization of the path parameter, which means
determining how the reference should evolve or, for discrete
time, which points on the reference curve are to be tracked.

Consider a continuous-time nonlinear dynamical system1

ẋ = f (x, u), x(0) = x0,

y = h(x),
(1)

where x ∈ X ⊆ R
n, y ∈ Y ⊆ R

p, and u ∈ U ⊆ R
m,

are the state, the output and the input at time t , respectively.
The constraints sets X , Y and U are assumed to be compact
and convex. The functions f (x, u) : Rn × R

m → R
n and

h(x) : Rn → R
p are assumed to be continuous.

The output reference path is a parameterized curve P
defined by

P = {r ∈ R
p|r = yref(s)}, (2)

where s ∈ S = [s0, s1) is the path-parameter and yref : R →
R

p is the reference function to be followed in the output
space. The curve P can be interpreted as a set of points, r ,
parameterized by a scalar s. The path-parameter evolution
is modeled by a single integrator dynamic system, w = ṡ,
where s is handled as an internal state of the controller, and
w is an internal input signal w ∈ W = [0, wmax]. Formally,
the path-following problem is defined as

1In order to avoid cluttered notation, the time dependence (t) will be
dropped unless necessary.

Definition 1 (Path-following problem) Consider a con-
strained system described by Eq. 1 and a parameterized
reference curve P defined by Eq. 2. Design a control law
for u and w such that, as t → ∞, i) ‖y − yref(s)‖ converges
to and remains inside an arbitrarily small neighborhood of
zero (convergence to the path) and ii) s(0) = s0, s → s1,
for t → ∞, and ṡ ≥ 0, for all t ≥ 0 (forward movement in
the path direction).

Note that Definition 1 introduces the variable s and the
input w providing an extra degree of freedom to the control
system. The previous formulation accounts for the so-called
geometric task. Now, a dynamic task is introduced, which
requires the satisfaction of convergence to a desired speed
along the path wref(s). In this context, the path-following
problem can be reformulated as follows:

Definition 2 (Path following with velocity assignment prob-
lem) Consider a given reference parameter velocity wref(s).
Solve the path-following problem given in Definition 1,
with the parameter input converging to wref(s), i.e.,

lim
t→∞ ‖w − wref(s)‖ = 0.

The path-parameter s defines a critical variable for
the functionality of the controller presented in this work.
This allows the spatial path to be followed more closely,
at the expense of moving along the path without a
strict requirement on when the system should be at each
successive point on the path.
In the case the parameter velocity is enforced, ṡ = wref(s),
the path-following problem becomes a trajectory tracking
one2. Finally, in the case ṡ = 0 (i.e., when s is a constant),
it becomes a setpoint tracking problem.

Assumption 1 It is assumed that the output reference yref

and the system dynamic determine a unique pair of state and
input references (xref, uref) for a given path-parameter input
value w. Moreover, there exist continuous functions Γx and
Γu such that xref = Γx(r(s), w) and uref = Γu(r(s), w) for
a prescribed path-parameter evolution s.

Remark 1 Note that Assumption 1 becomes trivial in the
case of a reference expressed in the state space (p = n).
This assumption is also fulfilled by systems that can be
described with differentially flat outputs.

2A soft switching between path-following and trajectory tracking
problem is achieved by imposing a penalty on a cost term of the form
|w(s) − wref(s)|.
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As in [39], the path-following problem can be expressed
in terms of the path-following error, which is defined as

xe = x − xref(s, w). (3)

The error dynamics are given by

ẋe = ẋ − ẋref(s, w)

= f (x, u) − ∂xref

∂s
w,

(4)

where the path is assumed to be differentiable. Particularly,
exact path-following means that for any initial state such
that xe(0) = 0, then xe = 0, for t ≥ 0. For this to be
accomplished, there must exist some input w such that the
reference trajectory xref, obtained by imposing it at some
point on the path, is a solution to the nonlinear system
equation

f (xref, uref) = ∂xref

∂s
w.

Also, since the path-following problem requires that s →
s1 as t → ∞, the condition for the equilibrium must
be fulfilled considering some positive value of the input
(w > 0) along the path. In other words, as long as the
error dynamics is considered, for this kind of equilibria -
referred to as dynamic equilibria - to exist, the path must
be consistent with the system dynamics and constraints.
Namely, the path must be feasible according to the following
definition.

Definition 3 (Feasible path) A path P is feasible if there
exists some positive path-parameter velocity input w ∈ W ,
w > 0, such that f (xref, uref) = ẋref with uref ∈ U ,
xref ∈ X , for all s ∈ S.

A more conservative definition of the reference path in
terms of the state and inputs constraints can be the exactly
followable path, expressed as follows,

Definition 4 (Exactly followable path) A path P is exactly
followable if it is feasible and P is contained in the interior
of the pointwise image of the state constraints X under the
output map h, i.e P ⊂ int (h(X )).

The followability of a path constrains the reference state
and input to belong at all times to the interior of X and
U respectively, where no constraints are active, which is a
more conservative requirement than feasibility.

Next, some technical assumptions are introduced.

Assumption 2 There exist a continuously differentiable
function g(·, ·) and a control input ue such that the error
dynamic system Eq. 4 can be expressed as

ẋe = g(xe, ue). (5)

Remark 2 Note that in the error system (5), the function g

is parameter-dependent on s and w, and the input ue is an
implicit function of u, s and w.

Assumptions 1 and 2 are typical for output tracking in
NMPC and are required to provide stability guarantees.

With respect to the general path-following problem, if the
problem was expressed in terms of the path-following error,
which is dependent on the path-parameter, an equivalent
definition of the control objective would be to stabilize the
system around the origin of the error dynamical system,
xe = 0.

Considering the error dynamics, an equilibrium on the
error will be determined by

ẋe = g(xe, ue) = 0. (6)

3Model Predictive Path Following Control
(MPPFC)

In the MPC framework, a finite horizon optimal control
problem is solved successively, at each time instant tk [6,
32]. The result of the optimization problem is the optimal
input sequence -and implicitly the state evolution- predicted
over horizon T . In most applications, a regular sampling
interval Ts and a horizon length N ∈ N

+ < ∞ is introduced
such that T := NTs . At each k-th time instant, an optimal
control input sequence {u∗

i }k, i = 1, · · · , N , is obtained,
from which the first control action is applied during a
sampling interval Ts .

Considering the system (5) and a prediction horizon T >

0, a cost function is defined as

J (x0, s0; u(·), w(·)) :=
∫ T

0
�(xe(τ ), u(τ ), w(τ))dτ + V e

f (xe(T )), (7)

where the first term, �(xe(τ ), u(τ ), w(τ)), is a positive
definite function - referred to as stage cost - devoted to
penalize the output and input error along the path, while
the second one, V e

f (xe(T )), - denoted as terminal cost -
penalizes the predicted terminal state.

An optimal control problem, corresponding to a stable
MPC formulation, can then be written as

min
u(·),w(·)J (x0, s0; u(·), w(·))

s.t . ẋe(τ ) = g(xe(τ ), ue(τ )), x(0) = x0, (8a)

ṡ(τ ) = w(τ), s(0) = s0, (8b)

x(τ) ∈ X , u(τ ) ∈ U ∀τ ∈ [0, T ], (8c)

s(τ ) ∈ S, w(τ) ∈ W ∀τ ∈ [0, T ], (8d)

w(τ) ≥ 0 ∀τ ∈ [0, T ], (8e)

xe(T ) ∈ X e
f , (8f)
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where constraints (8a and b) describe the error system
evolution and the evolution of the path-parameter s,
(8c) describes the input and state constraints, (8d and
e) constitute forward movement constraints, forcing the
system to move along the path in the direction of increasing
values of s, and (8f) is the terminal constraint. The solution
of this problem will be conformed by the optimal input
sequence {u∗

i }k as well as the optimal path-parameter
input sequence {w∗

i }k . The terminal penalty V e
f (xe(T )) and

terminal constraint xe(T ) ∈ X e
f are the key ingredients to

ensure the asymptotic convergence to the path.
Following the ideas presented in [39], it can be shown

that, assuming that all assumptions are fulfilled and the
reference path is followable, the previous formulation for
the controller is asymptotically stable. Moreover its region
of attraction is outer bounded by the controllable set to X e

f .
An interesting case that will be considered in this work
stems from the followability of the reference path, therefore
it can be chosen as terminal set (xe(T ) = 0) for a trivial
terminal control law ue = 0.

Remark 3 A generic path that fulfills state constraints is
not necessarily dynamically feasible to be followed. The
dynamical feasibility of the path is not trivially verified
for nonlinear systems. Also, simple paths obtained as
concatenation of feasible paths are not necessarily feasible.
This fact could hinder the applicability of this strategy,
as previous feasible path generation and/or validation is
required.

Path-parameter Initial Condition The selection of the initial
condition for the path-parameter s0 at the time instant tk ,
s0 = s(tk), is also a design decision. In some path-following
formulations, the initial condition for the path-parameter is
not fixed and is freely determined by the controller [39]. For
example, it could be obtained as the closest point on the path
with respect to the current system state, as

s(tk) = arg min
s

‖x − xref(s, w)‖. (9)

Alternatively, it is often preferred to enforce a strict time
evolution on the path-parameter. This can be obtained by
introducing the following constraint.

s(tk + Ts) =
∫ tk+Ts

tk

w∗
k (τ )dτ, s(tk) = sk . (10)

This constraint consists in propagating the path-parameter
by the input w∗, which could be the result of the
optimization problem (8). Note that this may lead to
time-varying terminal constraints in the optimization
formulation, typically required for stability proofs [7].

4 Extended Nonlinear Model Predictive
Path-Following Controller (xMPPFC)

In this section, a nonlinear MPPFC that extends the previous
formulation with an artificial trajectory is presented. This
formulation aims to relax the requirement of feasibility of
the reference path with respect to the MPPFC formulation.

The key of this formulation is the addition of an artificial
trajectory reference as an extra decision variable in the
optimal control problem with the aim of enlarging the
region of attraction and avoiding the possible loss of
feasibility which can be due to unfeasible references -
e.g. discontinuities or violation of state constraints- or
derived from the presence of obstacles. The obstacle can
be considered as an external source that causes a loss of
feasibility to a path-following problem, and consequently
the existing formulations are deemed to be inapplicable.

4.1 Terminal Constraint and Equilibrium
Characterization

Next, some technical definitions will be introduced.
An error equilibrium trajectory is a feasible trajectory

such that for each of its points, the error with respect to their
corresponding points on the reference path is constant. This
is fulfilled, for example, by trajectories that follow the same
evolution as the path (i.e., trajectories that have the same
“shape”), although they may not be coincident (they may
differ in a constant term, i.e. they are a translated copy of
the path). They can be defined as follows,

Definition 5 (Path-following error equilibrium trajectory)
Let T ∈ (0, ∞) be an horizon length, let (x(·), u(·)) be a
pair of state and input trajectories such that (x(τ ), u(τ)) ∈
X × U , and let w(·) be a path-parameter velocity input
trajectory with w(τ) ∈ W , for all τ ∈ [0, T ], that satisfy the
system and path-parameter dynamics, namely ẋ = f (x, u),
w = ṡ, with initial conditions x(0) = x0 and s(0) = s0. For
a given feasible path P , a Path-Following Error Equilibrium
Trajectory is given by both a trajectory (xs(·), us(·)) and
a path-parameter velocity input ws(·) that satisfy (6), i.e.
ẋe(·) = 0.

In the error space, the equilibrium trajectories are fixed
points (i.e., equilibria). It should be noted that a fixed and
bounded feasible set for system ẋ = f (x, u), corresponds
to a time varying feasible set for the error system ẋe =
g(xe, ue). Consequently, an equilibrium trajectory may be
feasible locally, but not globally.

Remark 4 In the particular case w ≡ 0, the reference
becomes a single point and therefore, the Error Equilibrium
Trajectory is also a point in both, the original state space
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and the error state. This can be exploited when working with
systems with feasible equilibria, i.e. f (xs, us) = 0 exists
and is feasible.

Multiple path-following error equilibrium trajectories
may exist for a given initial path-parameter value s,
corresponding to different values of w and consequently
to different trajectories. Therefore, a path-following error
equilibrium set can be defined as follows.

Definition 6 (Path-following error equilibrium set) The
Path-following error equilibrium set X e

s is the set of points
in the error space such that there exist some input trajectory
us(·) and some path-parameter velocity input trajectory
ws(·) which make the future (predicted) error between the
state xs(·) and the reference path xref(s(·)) to be constant
while the predicted state trajectory remains feasible for all
future time, i.e.

X e
s = {xs ∈ X |∃us(τ ) ∈ U , ws(τ ) ∈ W : ẋe(τ ) = g(xe

s (τ ), ue
s (τ )) = 0,

xs(τ ) ∈ X∀τ > 0}.
(11)

Remark 5 It is important to note that feasibility is required
for increasing values of the time variable, rather than the
path-parameter. This enables the selection of equilibrium
trajectories that consist of a constant reference value
(corresponding to a parameter input w(τ) = 0 for all τ ≥ 0)
or trajectories for which the path-parameter come to a stop
after some increase interval, as well as trajectories with
always increasing path-parameter evolutions.

4.2 Controller Formulation

The controller presented in the previous section is extended
by the introduction of an auxiliary trajectory resulting
from additional decision variables incorporated in the
optimization problem. This trajectory will be referred to as
artificial trajectory and may be interpreted as a reachable
reference output trajectory given by ya(·) = h(xa(·)) [20].
The artificial state trajectory is resulting from applying
the input trajectory ua(·) by the dynamic system (1)
to an initial state xa . The artificial initial state and the
input trajectory are decision variables in the optimization
problem. In order to account for this, the stage cost will
be composed of two terms, the tracking stage cost and the
planning stage cost. The tracking stage cost, denoted by
�a(·), penalizes the tracking error between the predicted
trajectory and the artificial trajectory. The latter, �p(·),
penalizes the error between the artificial output trajectory
with respect to the reference path, and also the time-dilation
we, namely the difference between the parameter input
and the parameter reference velocity. The proposed cost

functional is completed by the terminal offset penalization
VO(·). Summing up, the cost functional is presented:

J a(x0, s0;u(·), xa, ua(·), w(·)) =
∫ T

0
�a(xe

a(τ ), ue
a(τ ))dτ

+
∫ T

0
�p(ye

O(τ), we(τ ))dτ + VO(ye
O(T )),

(12)

with xe
a(τ ) = x(τ) − xa(τ ), ye

O(τ) = ya(τ ) − yref(τ )

and we(τ) = w(τ) − wref(τ ) denote the artificial
error trajectory, the artificial error output trajectory, and
path-parameter input error trajectory, respectively. The
feedback control is obtained by the solving at each time
instant tk , for the current state x(tk), the optimization
problem P a

N(x0, s0; u(·), xa, ua(·), w(·)):
min

u(·),xa ,ua(·),w(·)J
a(x0, s0;u(·), xa, ua(·), w(·))

s.t . ẋe(τ ) = g(xe
a(τ ), ue

a(τ )), x(0) = x0, (13a)

ẋa(τ ) = f (xa(τ ), ua(τ )), (13b)

ṡ(τ ) = w(τ) s(0) = s0, (13c)

x(τ) ∈ X , u(τ ) ∈ U ∀τ ∈ [0, T ], (13d)

s(τ ) ∈ S, w(τ) ∈ W ∀τ ∈ [0, T ], (13e)

xe
O(T ) ∈ X e

s , (13f)

xe
a(T ) = 0, (13g)

d
dτ

�p(ye
O(τ), we(τ )) ≤ 0 ∀τ ∈ (0, T ), (13h)

where the constraint (13c) describes the evolution of the
path-parameter s, X , U are the state and the input constraint
sets, respectively. The inclusion of the cost decrease
constraint (13h) is required, as it conforms a fundamental
tool in the stability proof. The terminal artificial error
xe
O(T ) := xa(T ) − xref(T ) is constrained to belong to the

error equilibrium set X e
s (13f), while the terminal equality

constraint forces the predicted state to be equal to the
artificial reference.

The artificial trajectories in Problem (13) induce a greater
domain of attraction and provide guarantees of recursive
feasibility in reference infeasibility scenarios, which may
be consequence of reference paths that produce constraints
violation, discontinuities on the reference, or of the presence
of obstacles on the path, for instance.

As it is usual in MPC with terminal equality constraint, a
controllability assumption is required to derive asymptotic
stability. In this case, the following controllability condition,
similar to the one proposed in [20], is stated.

Assumption 3 The system function f (x, u) is differen-
tiable at any feasible reference trajectory (xref, uref) and
the linearized model given by the matrices (A(xref, uref) =
∂f (x,u)

∂x
(xref, uref), B(xref, uref) = ∂f (x,u)

∂u
(xref, uref)) is con-

trollable. Furthermore, there exist positive constants ε, b >

0 and σ > 1 such that∫ T

0
�a(xe

a(τ ), ue
a(τ ))dτ ≤ b|x − xa|σ
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holds for any feasible solution (u(·), xref(·)) of
P a

N(x0, s0; u(·), xa, ua(·), w(·)) such that |xe
a| ≤ ε and

|ue
a| ≤ ε.

Assumption 3 ensures that the value functional admits
at least a quadratic upper bound. This condition, similar
to the one proposed in [20] for setpoint stabilization, is
stronger than the weak controllability assumption proposed
by [32][Ass. 2.23].

Remark 6 Differentiability of any feasible trajectory
follows from the continuity of the dynamic system.
This property is required only for system and artificial
trajectories, which fulfill the system dynamics. Therefore,
the resulting trajectories result to be differentiable. This
property is also fulfilled by followable reference paths.

In the formulation (8), the domain of attraction of the
controller is determined by the set of states that can be
steered in the prediction horizon to the terminal set (which
contains the reference path). Instead, the introduction of
the artificial trajectories enlarges such domain of attraction,
which for Problem (13) is the set of states that can be
steered to a terminal set with respect to any artificial
error trajectory that reaches X e

s . The terminal state of the
artificial error trajectory is forced to belong to X e

s , which
means the error can remain constant in the future, i.e.
�p(ye

O(τ), 0) = �p(ye
O(t + T ), 0) for all τ > t + T

(see Section 4.4).
The stage cost functional and the offset cost functional

must fulfill the following assumptions:

Assumption 4 1. There exists a K∞ function α� such that
�a(z, v) ≥ α�(‖z‖) for all (z, v) ∈ R

n+m.
2. There exists a unique minimizer of the planning cost

(ȳe
O, w̄e

O).
3. There exists a K∞ function α such that �p(z, w) ≥

α(|z|) for all w ∈ W .
4. There exists a lower bound on the offset cost VO(ye

O) >

αO(|ye
O |), with αO a K-function and VO(0) = 0.

These assumptions are typical in MPC for tracking
formulations [20].

4.3 Stability Proof

Theorem 1 (Asymptotic Stability) Consider that Assump-
tions 3 and 4 hold. Given a reference path P and initial
parameter value s, then for any feasible initial state x0

uch that the optimization problem (13) is feasible, the sys-
tem controlled by the MPC feedback law derived from the
solution of Problem (13) is stable, fulfills the constraints
throughout the time and converges to

1. the reference path, if the path is exactly followable, or
2. a locally optimal (possibly non-zero) error equilibrium

reference, if the path is not exactly followable.

Proof The proof is divided into two parts. First, it is proved
that the optimization problem is recursively feasible. In the
second part, asymptotic stability of the optimal equilibrium
error reference is proved.

i. Recursive feasibility.

Assume that there exists an optimal solution at time t

given by ū(τ ), x̄a(τ ), ūa(τ ), w̄(τ ), with τ ∈ [0, T ].
Assuming nominal system dynamics, the state at the
following sampling time x(t + Ts) is coincident with the
predicted state, i.e. x(t + Ts) = x̄(t + Ts), and the path-
parameter is s(t + Ts) = s̄(Ts). From the error equilibrium
constraint imposed on the terminal artificial error (13f)
and terminal equality constraint (13g), it follows that both
terminal error xe(T ) and terminal artificial error xe

a(T )

belong to X e
s . The error equilibrium state will be denoted by

xe
s (T ). Applying any equilibrium input trajectory us(·) and

the corresponding path-parameter velocity input ws(·) on
the terminal equilibrium state xs(T ) := xe

s (T ) + xref(s(T ))

results in an error equilibrium trajectory xe
s (·) -following

from Definition 6-. This produces an error trajectory that
remains in the set X e

s , indefinitely. Therefore, a feasible
solution at time t + Ts can be obtained by extending the
optimal inputs during Ts with adequate equilibrium inputs
(us(·, ws(·)) for a given xs(T )), as follows

ua(τ, x̄(t + Ts)) =
{

ūa(τ, x(t)), τ ∈ [Ts, T ),

us(τ, x̄(t + T )), τ ∈ [T , T + Ts],

u(τ, x̄(t + Ts)) =
{

ū(τ, x(t)), τ ∈ [Ts, T ),

us(τ, x̄(t + T )), τ ∈ [T , T + Ts],

w(τ, x̄(t + Ts)) =
{

w̄(τ, x(t)), τ ∈ [Ts, T ),

ws(τ, x̄(t + T )), τ ∈ [T , T + Ts],
(14)

The resulting feasible state evolution is

xa(τ, x̄(t + Ts)) =
{

x̄a(τ, x(t)), τ ∈ [Ts, T ),

xs(τ, x̄(t + T )), τ ∈ [T , T + Ts],

x(τ, x̄(t + Ts)) =
{

x̄(τ, x(t)), τ ∈ [Ts, T ),

xs(τ, x̄(t + T )), τ ∈ [T , T + Ts],
(15)

Note that this provides ẋe
a(t) = 0 for T ≤ t < T + Ts .

Since xe
a(T ) ∈ X e

s , it is able to stay in the set for all future
instants, i.e. xe

a(T + τ) ∈ X e
s , τ ≥ 0. The equilibrium input

renders X e
s invariant, therefore the recursive feasibility is

granted.
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ii. Stability.
Consider that the optimal solution of Eq. 13 at time t is

given by

J̄ a(x, s) =
∫ t+T

t

�a(x̄e
a, ū

e
a)dτ +

∫ t+T

t

�p(ȳe
O, w̄e)dτ

+ VO(ȳe
O(t + T ))

where J̄ a(x, s) denote the optimal value of the cost
functional (12). In order to prove asymptotic stability, the
function W(x, xref) = J̄ a(x, s) is used as a candidate
Lyapunov function for the closed-loop system. Then, there
exist K∞, αW and βW , such that

1. W(x, xref) ≥ αW(|xe|).
Considering Assumption 4, then we infer that

W(x, xref) ≥
∫ t+T

t

�a(x̄e
a, ū

e
a)dτ +

∫ t+T

t

�p(ȳe
O, w̄e)dτ + VO(ȳe

O)

≥ α�(|x − x̄a |) + αp(|x̄a − xref|) + αO(|x̄a − xref|)
≥ αW (|xe|).

2. W(x, xref) ≤ βW(|xe|).
Assume that there exists an ε such that Assumption 3
holds and P a

N(·) is feasible for xa = xref and for all
x such that |x − xref| ≤ ε. Let (u, xref) be a feasible
solution of Problem 13, then

J̄ a(x, s) ≤
∫ T

0
�a(x − xref, u − uref)dτ

Due the controllability of xref (Assumption 3) there
exists a K∞ function βW such that

W(x, xref) = J̄ a(x, s)

≤
∫ T

0
�a(x − xref, u − uref)dτ

≤ βW(|xe|)
3. W(x+, x+

ref) − W(x, xref) ≤ −αW(|xe|)
Continuing with the proof, we first prove that the cost is

decreasing if x �= xa . Since the artificial error trajectory is
contained in X e

s , then the application of input us and the
parameter velocity ws provides a system evolution that is
feasible and fulfills the constraints of Problem 13, such that,
at time t + Ts , produces the feasible cost is given by

J a(x+, s+) =
∫ t+T

t+Ts

�a(x̄e
a, ū

e
a)dτ +

∫ t+T +Ts

t+T

�a(xe
a, u

e
a)dτ

+
∫ t+T

t+Ts

�p(ȳe
O, w̄e)dτ +

∫ t+T +Ts

t+T

�p(ȳe
O,we

s )dτ

+ VO(ye
O(t + T + Ts)).

The state and path parameter immediately after the
sampling interval are denoted by x+ and s+.

Then, considering that the term
∫ t+T +Ts

t+T
�a(xe

a, u
e
a)dτ

generated by the feasible extension (14) and (15) is zero due

to the terminal equality constraint, the optimal value of the
cost functional J̄ a(x+, s+) fulfills

J̄ a(x+, s+) − J̄ a(x, s) ≤J a(x+, s+) − J̄ a(x, s)

≤ −
∫ t+Ts

t

�a(x̄e
a, ūe

a)dτ

−
∫ t+Ts

t

�p(ȳe
O, w̄e)dτ +

∫ t+T +Ts

t+T

�p(ȳe
O, we

s )dτ .

(16)

Since the terminal state of the artificial trajectory is
constrained to belong to the error equilibrium set, there is a
feasible solution that VO(ye

O(t+T +Ts)) = VO(ye
O(t+T )).

Since �a(·) is positive definite and from constraint (13h) the
latter two terms add up to a non-positive value, it follows
that the feasible value and, consequently, the optimal value
is monotonically decreasing, i.e.

J̄ a(x+, s+) − J̄ a(x, s) ≤ −
∫ t+Ts

t

�a(x̄e
a, ū

e
a)dτ . (17)

Then, in order to prove asymptotic stability, it suffices
to demonstrate convergence to (xref, uref). To this aim,
using the same arguments as in [20], see that it has been
proved that W(x, xref) is a positive function that satisfies the
following inequality

W(x+, x+
ref) − W(x, xref) ≤ −α�(|x − x̄a|).

Then, it can be derived that

lim
t→∞ |x − x̄a| = 0.

Given that W(x, xref) ≥ 0, then

lim
t→∞ W(x, xref) = W∞.

From Lemma 1, included in the Appendix, we have that if
|x − x̄a| = 0, then W(x, xref) = 0. Therefore, we have that

lim
t→∞ W(x, xref) = W∞ = 0.

Taking into account the bounds of function W(·), this is
equivalent to

lim
t→∞ αW(|x − xref|) ≤ lim

t→∞ W(x, xref) = 0

and then

lim
t→∞ |x − xref| = 0.

Note that for xe = 0, since the path is assumed feasible at
the reference velocity wref, the optimality of the cost implies
we = 0. Thus, the proof is complete.
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4.4 Enlarged Region of Attraction:

One of the main advantages of the proposed formulation
is the enlarged region of attraction obtained by the
introduction of artificial variables. For illustrative purposes,
the following scenario is depicted. Consider a perfectly
followable path and a convex state space. For simplicity,
we define terminal equality constraint for MPPFC and
xMPPFC controllers, i.e. a) x(T ) = xref(s(T )) and b)
x(T ) = xa(T ), respectively. For the MPPFC, condition
a) implies that the system reaches the reference after an
interval T . In contrast, condition b) forces the system to
reach the artificial trajectory xa(T ), which is a decision
variable of the problem and, in particular, is to be chosen
as an error equilibrium state. Note that the reference path
at xref(·) is an error equilibrium, and therefore is contained
in the largest error equilibrium set. Consequently, constraint
b) is less restrictive and a larger region of convergence
is obtained in xMPPFC. For example, consider an initial
system state which is outside the controllable set in a T

interval to the reference. This state is outside the region
of convergence of the MPPFC. Nevertheless, if the state
lies within the controllable set to any error equilibrium
trajectory, i) there exists a reachable error equilibrium, ii)
the state is contained in the region of convergence of the
xMPPFC, and iii) the reference is asymptotically stable.

5 Obstacle Avoidance

As described above, the aim of this work is attaining a model
predictive formulation for obstacle avoiding path-following
control. To begin with, the current problem definition is
stated:

Definition 7 (Obstacle avoiding path-following problem)
Consider a constrained system described by Eq. 1 and let
r(s(t)) be a parameterized output trajectory reference, being
the path-parameter s(t) ∈ [s0, s1). Design a control law
for u and w(t) = ṡ(t) such that, as t → ∞, a collision
free trajectory is locally planned and tracked, which is as
close as possible to the trajectory reference. In other words,
the control law is such that the path-following is performed
while avoiding fixed obstacles.

In the recent work [13], the authors propose to consider
the obstacles as equality constraints and their shapes are
determined by the intersection set of ni inequalities of the
form

O = {y ∈ R
p : hi(y) > 0, i = 1, · · · , ni},

where hi(y) : R
p → R are continuously differentiable

functions with Lipschitz continuous gradients. Then, the

obstacle-avoidance constraint (y /∈ O) can be written as
follows:

∃i ∈ 1, . . . , ni : hi(y) ≤ 0,

which means that to avoid the obstacle, at least one of the
inequalities defined by O must be violated.

A very general class of obstacles can be described using
the above formulation. For example, any polyhedral set can
be cast as a set of affine constraints

O = {y ∈ R
p : bi − AT

i y > 0, i = 1, . . . , ni}, (18)

which is a particular case of the general one, for hi(y) =
bi − AT

i y. Furthermore, any other complex obstacle can be
approximated by the smallest polyhedron containing it.

The avoidance condition can also be rewritten as the
following equality (nonlinear) constraint

Ψ (y) :=
ni∏

i=1

[hi(y)]+ = 0, (19)

where the operator [hi(y)]+ is defined as [hi(y)]+ =
max(hi(y), 0).

This latter form of the obstacle avoidance condition
permits to cast the hard constraints as soft constraints, by
mean of the addition of a penalty function to the MPC
cost functional. In fact, it is straightforward to construct a
quadratic penalty function of the form

ν = 1

2
μΨ (y)2, (20)

with a penalty factor μ > 0, in such a way that fulfilling
the constraint (19) is indicated by obtaining zero from the
evaluation of the function at y. Furthermore, the obstacle
avoidance penalty function has the advantage of being
continuously differentiable, in contrast to an exact penalty
formulation of the obstacle avoidance constraints. In order
to account for obstacles in the formulation, the following
term is added to the cost functional

J obs(y(·), ya(·),O) =
Nobs∑
o=1

∫ T

0
(νo(ya(τ )) + νo(y(τ )))dτ,

(21)

where {O} denotes a set of obstacles with Nobs elements in
it, and νo is the penalty function corresponding to the o−th
obstacle. The obstacle-aware cost is given by

J oa((x0, s0, {O}; u(·), xa, ua(·), w(·))) = J a(x0, s0; u, xa, ua,w)

+ J obs(y(·), ya(·),O).

(22)
It is important to note that the artificial trajectory is

a feasible trajectory for the dynamical system (13a). For
trajectories running over the obstacle, the term ν(xa) will
increase, therefore, trajectories avoiding the obstacle are
convenient in terms of the cost. This way, the artificial
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trajectory provides an alternative path to the system, which
simultaneously fulfills the dynamics of the system and, by
optimality of the cost, penetrating into of the obstacles is
discouraged. Note that this provides no strict guarantees
of obstacle avoidance -for that, hard constraint or barrier
functions should be imposed-, but it is a effective strategy
for practical applications, as it will be shown in the
simulation examples. A requirement for terminal prediction
of the artificial trajectory is to belong to the Path-Following
Error Equilibrium set, so recursive feasibility is achievable.

6 Simulations Results

Two scenarios are presented in order to demonstrate proper-
ties of the proposed controller. First, a piecewise-followable
track consisting of the discontinuous concatenation of two
sinusoidal paths is presented. The feasibility is compro-
mised due the discontinuity and cannot be guaranteed in the
traditional formulations. It will be evident that the artificial
trajectories provide intermediate references which maintain
the feasibility of the constrained optimization problem. The
second scenario consists of an eight-shaped path which is
not feasible, as it violates the inclusion in the feasible set
X , and also obstacles are located on the path. The proposed
controller can handle this situation, as the artificial variables
provide feasible trajectories that enable following the path
while avoiding the obstacles.

6.1 Sampled-data Implementation

The optimal control formulations (13) with costs definitions
(12) and (22) were introduced to formally present the
main ideas in the continuous-time domain. In order to
numerically solve the constrained optimization problem, a
reformulation in discrete-time is required. The controller
is implemented in the sampled-data MPC fashion [12].
In this type of implementation, the input signal u is
considered to be sampled and applied to a zero-order hold,
which keeps a constant value throughout each sampling
interval, and consequently u is a piecewise constant
signal. A discretization of the nonlinear continuous-
time model is required for the prediction, and will be
conducted using Runge-Kutta methods, although several
alternatives are available [11]. The discrete-time model is
denoted as

xk+1 = fd(xk, uk),

yk = h(xk).
(23)

It is convenient to adequate the value functional after
the discretization. This is done by incorporating additional
terms that penalize the inputs. In case no input reference

uref is available, it is typical to consider uref ≡ 0,
and the corresponding penalization term is referred to as
regularization term. Under such conditions, for a given time
instant tk , the MPPFC cost is given by

J̃ a
oa =

N−1∑
j=0

(la(xe
a,j , u

e
a,j ) + lO(ye

O,j , u
e
O,j )) + lw(we

j )

+Vf (xe
a(N)) + VO(ye

O(N)) + J obs(y(·), ya(·),O),

(24)

where the cost �a(·) has been split into two terms, �O(·)
and �w(·), that penalize the planning error on state and
time dilation, respectively. Often in the literature, stage
and terminal cost terms are chosen to be quadratic. In the
remainder of this work it will be assumed so. Then, the
penalty terms can be expressed as

la = ‖xe
a‖2

Q + ‖ue
a‖2

R,

lO = ‖ye
O‖2

K + ‖ue
O‖2

S ,

lw = ‖we‖2
T ,

VO(ye
O(N)) = ‖ye

O(N)‖2
Kf

,

Jobs(y(·), ya(·),O) =
Nobs∑
o=1

∑N
j=0(νo(ya,j ) + νo(yj )),

where Q, R, S, and T are positive definite penalization
matrices of adequate dimensions, while the penalization
of the o-th obstacle νo(yk) follows the definition given in
Eq. 20.3

In order to implement the cost-decrease constraint in the
sampled-data framework, the constraint is approximated in
a discrete form,

lp(ye
O,j+1, w

e
j+1) − lp(ye

O,j , w
e
j ) ≤ 0, j ∈ [0, N − 1],

where lp(ye
O,k, w

e
k) = lO(ye

O(k), ue
O(k)) + lw(we(k)).

6.2 Underactuated Vehicle Model

Several robotic systems and vehicles (wheeled mobile
robots, waterborne vehicles or fixed wing aerial vehicles
moving at constant altitude) can be modeled with sufficient
accuracy for different applications by the two dimensional
nonlinear system classically known as Dubin’s car. This
is a first order kinematic model which has been used in
the design of control systems for unmanned vessels [41],
unicycle-like robots [24], and even -with a slight adaptation
on the input ω- for unmanned aerial vehicles [22]. The
system is modeled as⎡
⎣ṙx

ṙy
ψ̇

⎤
⎦ =

⎡
⎣cos(ψ) 0

sin(ψ) 0
0 1

⎤
⎦

[
v

ω

]
(25)

3Notation: second subindex j indicates the j -th sample of the discrete
time variable.
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where x and y give the vehicle’s location, and ψ its heading.
The system’s inputs v and ω are the translation speed
and the angular velocity, respectively. By inspection of
Eq. 25, its is evident that states rx and ry , do not affect
its dynamics. In other words, the dynamics are invariant
to translations on rx and ry . The stabilizing terminal set,
penalization and control law are computed on the error
space in terms of xe(T ) -the error of the predicted terminal
state with respect to the reference path-. These sets could
also be used for xe

a(T ) -the error between the predicted
states with respect to the terminal state of the artificial
trajectory- as long as the reference and artificial variable
have the same heading ψ . For the numerical simulations,
box constraints in the inputs and the position are considered,
such that 0 ≤ v ≤ 1[m/seg], −1 ≤ ω ≤ 1[rad/seg],
−5.5 ≤ rx ≤ 6.5[m] and −2.5 ≤ ry ≤ 3.5[m]. The
parameter input for the adjoint system (8b) is constrained by
0 ≤ w ≤ 1.

6.3 Terminal Set

Exploiting the fact that the selected unicycle model has
feasible equilibrium points at the entire feasible space,
i.e. f (x, 0) = 0, ∀x ∈ X , then X can be used as
terminal set with a feasible path-parameter input w = 0,
such that Eq. 13f can be replaced by xa(T ) ∈ X . For
a more general computation of terminal error equilibrium
sets, the reader is referred to [20] where LTV partitions
of the system are used for the calculation of the terminal
ingredients.

6.4 Heuristic Tuning

In order to provide a basic tuning strategy, we propose
a heuristic approach. We start by ordering the path-
following objectives in a hierarchy: preventing the path-
parameter to stall (due to infeasibilities or obstacles) is
of highest priority. Reducing the tracking errors are at
a secondary level. Finally, low levels of the input are
desired, which is of interest in many applications. The
obstacle avoidance is achieved by introducing relatively
large obstacle penalizations νo, which are competing against
the tracking costs. Note that this cost is only effective
while in the vicinity of the obstacles. High values of the
time-dilation penalty T are initially chosen, and the rest of
the tuning values are relatively low. Iteratively, the time-
dilation penalization is reduced until the path-parameter
input is not saturating, specially when the system state is
close to the obstacles or infeasible regions. This means
the path-following control is producing some effects. At
that point, slightly increasing the tracking penalties Q and
K provides a better path tracking while maintaining the
time-dilation functionality. Finally, the input penalization

R and regularization S can be adjusted in order to obtain
softer input curves. The development tuning strategies
for specific applications is left for future work, the
interested reader is referred to [10] and [28] for related
works.

6.5 Numerical Results

In all simulations, the system evolution simulation (contin-
uous time) is implemented with a timestep of 0.0250[seg],
and the Runge-Kutta integration method is applied. The
NMPC is implemented using a sampling interval of 1[s]
and a horizon length of N = 6. The discrete time pre-
dictions were also obtained by the Runge-Kutta method
of fourth order. Terminal equality constraints of the form
x(T ) = xa(T ) are imposed, this means the terminal pre-
dicted state and terminal artificial state are coincident or,
equivalently, xe

a(T ) = 0.

Remark 7 In this application, the xMPPFC controller is
thought of as a high-level kinematic controller which
generates the reference velocity for a low-level dynamics
controller. This enables the application for robotics with
fast dynamics using longer sampling intervals. It is
not in the scope of this work the discussion on the
computational efficiency of the numerical solutions or the
computation time demanded by the optimization algorithm.
Nevertheless, simulations with available high efficiency
solvers have been conducted and results are obtained within
reasonable time intervals. Therefore, real-time applicability
appears achievable.

Fig. 1 Resulting trajectories for path-following problem using
xMPPFC applied to a discontinuous trajectory. The actual trajectory of
the vehicle (blue) converges to the reference path (yellow, dashed). The
artificial variables provide locally feasible references that enable the
continuation of the path-following problem around the discontinuity
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6.5.1 Piecewise Followable Path

A piecewise-continuous output path defined by

p1(s) =
{[

rx

ry

]
=

[
−2 + 4 s

(Tt /2)

2 + 1
2 sin( 6π

Tt
s)

]
,

p2(s) =
{[

rx

ry

]
=

[
−2 + 4 s−(Tt /2)

(Tt /2)

−2 + 1
2 sin( 6π

Tt
s)

]
,

with Tt = 60 is tracked, the reference is changed from p1

to p2 when s reaches Tt/2. The vehicle initial configuration

is set to x0 = [−2 2 0]T . The weighting matrices
are chosen Q = diag(10, 10, 10), R = diag(10, 10),
T = 3, K = diag(10, 10), and S = diag(0.01, 0.01).
This illustrative example presents one of the strongest
benefits of the formulation with artificial trajectories. It can
be observed that the system correctly tracks the feasible
parts of the reference. Note that due to discontinuity of
the path, perfect path tracking is rendered unfeasible. In
fact, traditional MPPFC with terminal equality constraints
would stall before the discontinuity as the posterior
section of the path is unreachable, leaving the objectives

Fig. 2 Outputs and Inputs (blue,solid) plot for the piecewise follow-
able discontinuous path. The system tracks the reference while feasible
and maintains feasibility regardless of the discontinuity. The inputs and

states are clearly within bounds, and it can be seen that the state and
inputs constraints are enforced. There reference curves are also plotted
(green, dot-dashed)
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Fig. 3 Resulting trajectories for
obstacle avoidance with
xMPPFC. The actual trajectory
of the vehicle (blue) converges
to the reference path (green,
dashed) while feasible and
avoids the obstacle. Artificial
variables show the alternative
path used as effective reference

of the path-following problem unaccomplished. Here the
artificial trajectories provide reachable, feasible references
for the system, even with the restrictive terminal equality
constraint. The controller is then able to continue driving
the system towards the following section of the path. The
effective system and artificial trajectories can be seen in
Fig. 1, and in Fig. 2 the corresponding inputs and outputs
plots are presented.

6.5.2 Obstacle Avoiding Path-following

An ∞-sign shaped path is used, given by p(s) =
[6 cos( 2π

Tt
s) 3 sin( 4π

Tt
s)], with Tt = 90. Two circular

exclusion zones with radius of one meter, representing a
convex bound around an obstacle, centered at (0,0) and (4,3)
are introduced. The reference path has been designed such
that it violates also the state constraints. Due to the fact that
the obstacle related cost term is not a barrier function, due
to optimality of the local solution, the resulting trajectory
may overlap some parts of the obstacle when reference
becomes unfeasible as it is moving through the obstacle. In
consequence, a 0.2[m] safety margin was introduced around
the obstacle. The weight μ is set to 5 · 105. The initial
configuration of the vehicle is x(0) = [4 −1 −π/2]T . The
weighting matrices are chosen as Q = diag(10, 10, 10),
R = diag(10, 10), T = 10, K = diag(0.5, 0.5), and
S = diag(0.01, 0.01). By inspecting Fig. 3, it can be seen
that both obstacles are avoided, constraints are enforced, and
the artificial variables are effective in providing a feasible
reference for the obstacle avoidance task. Consequently, the
path-following with obstacle avoidance problem is solved.
The states and inputs plots can be seen in Fig. 4, where the
coincidence between the reference and the solution when

feasible is evident. It is also remarkable that the inputs are
smooth while following the path. Besides, strong inputs
are applied when avoiding the obstacle or returning to the
feasible path. The path-following extra degree of freedom
can be noted in the w input, as it is low valued for 0 < t < 2,
which means that the reference is not advancing, as long
as the system state prediction is not getting closer to the
reference evolution.

7 Conclusion

This work presented a new formulation of MPC for path-
following with obstacle avoidance, that solves both path-
following and obstacle avoidance in a unified control law.
The solution approach is proposed as an extension of the
MPC for path-following by the introduction of auxiliary
trajectories. The controller solves the local trajectory
planning and tracking tasks in a combined manner. These
variables not only enlarge the region of attraction of
the controller, enabling the recursive feasibility under
arbitrary reference paths, but also provide the necessary
flexibility for obstacle avoidance in practice, as shown
in the simulation scenarios. Two simulation examples are
introduced to show the versatility and main benefits of the
proposed approach, handling changes of reference paths
and managing the presence of obstacles on the path, with
application as kinematic control for a constrained nonlinear
vehicle system. Future works include implementation and
evaluation using efficient numerical solvers and the generic
characterization of terminal sets. The development of
a more general stability proof, based on a specifically
designed cost function which might result in a Lyapunov
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Fig. 4 Outputs and Inputs plots (solid, blue) for obstacle avoidance
with xMPPFC. The system tracks the reference while feasible and it
makes a detour for the avoidance task. The inputs and states are clearly
within bounds and it can be seen that the state and inputs constraints
are enforced. It can be noted that strong inputs are applied when

avoiding the obstacle, as the system quickly returns to the reference
path. The low value of the path-following input w at the beginning and
at point where the reference reaches the obstacles indicates that the
reference advances at slower pace that desired. The references are also
plotted (green, dotted-dashed)

function for the closed-loop system, is being conducted.
Finally, simulation and experimentation on different vehicle
models and other systems will be conducted.

Appendix

Using the same arguments as in [20] the following lemma is
introduced.

Lemma 1 Consider that Assumption 3 and 4 hold.
Consider also a reference path xref and assume that for
a given state x the optimal solution of P a

N(·) is such that
x = x̄a(x, xref). Then the function W(x, xref) = 0.

Sketch of Proof. The key idea of the proof is to show
that if the system converges to an equilibrium trajectory
x̄a , then this trajectory is already equal to the reference
path xref. In other words, the convergence of the system
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trajectory to the artificial one, x̄a , and the convergence of the
artificial trajectory to the reference, xref, are not consecutive,
but simultaneous, and the convergence rate of the former
is an upper bound for the latter. The formal proof can be
done by contradiction, by assuming that the system state
and input, (x, u), converge to an artificial trajectory that is
an equilibrium different from the one corresponding to the
reference trajectory, i.e., (x, u) = (x̄a, ūa) �= (xref, uref).
Then, given that both trajectories (x̄a, ūa) and (xref, uref)

belong to a convex set, there exists a feasible trajectory
(x̂, û) = β(x̄a, ūa) + (1 − β)(xref, uref), with β ∈ (0, 1),
which produces a cost function smaller than one obtained at
(x̄a, ūa). This proves that there exists a β ∈ (0, 1) such that
the cost of moving the system from x̄a to x̂ is smaller than
the cost of remaining in the error equilibrium solution x̄a .
This contradicts the optimality of the solution to problem
P a

N(·), and hence x = x̄a = xref.
For more details of the complete proof of this Lemma the

reader can refer to [20].

Remark 8 Lemma 1 covers the case of a feasible trajectory
reference xref. However, the analysis made in the proof still
holds true for infeasible references. Indeed, by a simple
convex analysis, if xref is not reachable the system will
converge to the optimal feasible equilibrium trajectory with
respect to xref. This means that the controller finds by itself
an optimal trajectory (in the sense of the proximity to xref)
even in the case xref is infeasible/unreachable.
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AlejandroH. González is a Titular Professor of Industrial Engineering
at National University of Litoral (UNL), and Independent Researcher
at the Argentine National Scientific and Technical Research Council
(CONICET). After getting his Ph.D from UNL in 2006, he became
Postdoctoral fellow at the Chemical Engineering Department at
Universidade de São Paulo, São Paulo-Brazil, under the supervision
of Prof. Darci Odloak (2007-2008) and, subsequently, at the
“Departamento de Ingenierı́a y Automática de la Escuela Técnica
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