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Abstract: The postnatal rodent spinal cord in-vitro is a useful model to investigate early pathophysi-
ological changes after injury. While low dose nicotine (1 µM) induces neuroprotection, how higher
doses affect spinal networks is unknown. Using spinal preparations of postnatal wild-type Wistar rat
and Wnt1Cre2:Rosa26Tom double-transgenic mouse, we studied the effect of nicotine (0.5–10 µM)
on locomotor networks in-vitro. Nicotine 10 µM induced motoneuron depolarization, suppressed
monosynaptic reflexes, and decreased fictive locomotion in rat spinal cord. Delayed fall in neuronal
numbers (including motoneurons) of central and ventral regions emerged without loss of dorsal
neurons. Conversely, nicotine (0.5–1 µM) preserved neurons throughout the spinal cord and strongly
activated the Wnt1 signaling pathway. High-dose nicotine enhanced expression of S100 and GFAP in
astrocytes indicating a stress response. Excitotoxicity induced by kainate was contrasted by nicotine
(10 µM) in the dorsal area and persisted in central and ventral regions with no change in basal Wnt
signaling. When combining nicotine with kainate, the activation of Wnt1 was reduced compared
to kainate/sham. The present results suggest that high dose nicotine was neurotoxic to central and
ventral spinal neurons as the neuroprotective role of Wnt signaling became attenuated. This also
corroborates the risk of cigarette smoking for the foetus/newborn since tobacco contains nicotine.

Keywords: nicotine toxicity; Wnt1 pathway; spinal cord injury; locomotor networks; excitotoxicity;
fictive locomotion; postnatal; rat; mice

1. Introduction

Transient application of nicotine (Nic) to brain and spinal motor networks in vitro
can robustly protect them from excitotoxicity and neurodegeneration [1–3]. In particular,
using the isolated rodent spinal cord maintained in vitro for 24 h as a model of acute
spinal injury [4,5], we have observed that nicotine evokes a neuroprotective action against
excitotoxic damage induced by the glutamate agonist kainate; KA [2]. The translational
implication of these data suggests that the role of nicotine might extend beyond its well-
known effect of alleviating certain forms of chronic pain in humans [6], a phenomenon at
least in part attributable to positive modulation of inhibitory synaptic transmission in the
spinal cord [7–9]. Nevertheless, acute administration of nicotine to smokers with spinal
cord injury (SCI) induces a sharp increase in neuropathic pain [6], demonstrating a dual
action of nicotine. Thus, in a spinal cord model, we set out to investigate the borderline
between neuroprotection and toxicity exerted by nicotine to discover mechanisms that
could contrast this transition. In particular, although the neurotoxicity of nicotine is widely
documented [10], especially in young people [11], little is known about its possible toxic
effects on spinal networks. Although high-dose nicotine is a well-known convulsive
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agent that activates brain centers [12,13], whether nicotine can cause hyperexcitability or
depression of spinal circuitries is unclear.

In the mouse hippocampus, during the process of neuroprotection against various in-
sults, nicotine activates Wnt (wingless-related MMTV integration site) signaling pathways
which in turn upregulate α7 nicotinic acetylcholine receptors (nAChRs) via transcriptional
activation of Wnt target genes related to survival [14]. Either short (30 min) or 24 h appli-
cation of nicotine is reported to positively regulate Wnt via a PKC-dependent process in
cultured cells [15].

The Wnt/β-catenin signaling pathway comprises a family of secreted lipid-modified
glycoproteins involved in cell–cell communication through intercellular signaling [16,17],
with an essential role in vertebrate development [18,19] including spinal cord dorsal–
ventral patterning [20]. Furthermore, the direction of axon movement and specific inner-
vation depends on Wnt signaling mechanisms [19,21]. Wnt1 and Wnt3a are expressed in
extensively overlapping regions within the central nervous system, predominantly along
the dorsal midline from the diencephalon to the spinal cord, and are required for the
specification of dorsal interneurons [20]. The signaling pathways involved in neuronal
recovery and regeneration following spinal cord and peripheral nerve injury have garnered
growing attention. Within this framework, an in vitro study has shown that inactivation
of Wnt signaling depresses spinal excitatory synaptic transmission [22]. An increase in
the expression levels of Ryk, a Wnt receptor, was found a few hours after contusion of
the rat spinal cord, consistent with early involvement of this signaling pathway in the
pathophysiology of SCI [23]. Furthermore, recent studies have demonstrated that, after
blocking Wnt/Ryk receptor signaling, progression of neuropathic pain due to spinal nerve
ligation is reduced [24]. Wnts can also modulate astrocyte function [25] and contribute
to the formation of glial scars after SCI in adult rats [26]. Wnt1 is reported to promote
the expression of the glial glutamate transporter EAAT2, which has been associated with
astrocyte-mediated protection in cultured dopaminergic cells through the decrease in the
concentration of extracellular glutamate [27]. Therefore, it appears that the Wnt/β-catenin
signaling pathway may contribute to certain neuroprotective effects as, in a rat SCI model,
its induction results in significant locomotion improvements [28]. Thus, it seemed inter-
esting to study changes in the expression of Wnts in the spinal cord tissue in response
to an acute treatment with nicotine or KA (as an experimental excitotoxic stimulus) or a
combination of both.

Hence, the aims of the present study were to investigate the effect of high-dose nicotine
(10 µM), as well as of its interaction with KA, on synaptic transmission and rhythmic
output of motor networks, neuronal and astroglia numbers, and the activation of the Wnt1
promoter. To this end, we used in vitro spinal cord preparations of wild-type rat as well as
transgenic mice expressing Wnt1Cre2:Rosa26Tom (here Cre represents Cre recombinase
enzyme) for interrogating gene function and activity. The Wnt1Cre2 transgenic mouse
line includes the Wnt1 promoter and enhancer sequences without the gene sequence itself.
Indeed, crossing this transgenic mouse with Rosa26Tom reporter mouse produces a useful
model for studying the differentiation of neuronal subtypes and drive gene expression to
design restorative therapies [29].

2. Results
2.1. Dose-Dependent Effect of Nicotine on Network Depolarization, Wnt1 Pathway, and
Neuronal Numbers

Figure 1A shows representative examples of the ventral root (VR; left L5) depolariza-
tion (representing the integrated output of motoneuron pools) evoked by nicotine applied
at various concentrations up to 10 µM (Nic 10). The bar chart of Figure 1B shows that
Nic 10 induced significant depolarization that persisted for several min as exemplified in
Figure 1A. Statistical analysis confirmed that the depolarization response to 10 µM nicotine
was the strongest one as indicated by the fold increase in Nic 10 amplitude in comparison
to baseline (Nic 10 vs. baseline: 211; Nic 2 vs. baseline: 120; Nic 1 vs. baseline: 900; Nic 0.5
vs. baseline: 10) and p values (Nic 10 vs. Baseline: *** p ≤ 0.001, t = 8.416; Nic 2 vs. Baseline:
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p = 0.001, t = 4.862; Nic 1 vs. Baseline: ** p = 0.004, t = 4.033; Nic 0.5 vs. Baseline: p = 0.004,
t = 4.1, Holm–Sidak Method). Furthermore, the highest nicotine dose also elicited a flurry
of high-frequency discharges indicating repeated firing of motoneurons. Although 10 µM
nicotine has previously been shown to exert neuroprotective effects on hypoglossal mo-
toneurons in rats [1], the extent and duration of such effect on spinal networks suggested
its potential neurotoxicity. To further investigate this phenomenon which presumably
developed slowly, the effect of different nicotine concentrations on the number of neurons
(immunolabeled for the specific NeuN marker) and the activation of Wnt1 were analyzed
24 h later by using slices from the lumbar (L) spinal cord of Wnt1Cre2:Rosa26Tom mice.
The application of 0.5 and 1 µM nicotine for 4 h exhibited a neuroprotective effect on such
neurons in the ventral horn as their number was higher than in sham preparations 24
later, thus, suggesting that this drug had likely slowed down the standard neuronal loss
usually occurring during long in vitro maintenance. Conversely, the neuronal number was
significantly reduced 24 h after Nic 10 administration (Figure 2A, upper panel; sham vs.
Nic 10: p = 0.01, U = 53.5, Mann–Whitney test; 24% decrease). Application of 0.5 µM of
nicotine largely increased Wnt1 signal compared to sham (85% increase), an effect observed
at a lesser extent when higher doses (34–47% increase) were applied (Figure 2A, lower
panel, and B; sham vs. Nic 0.5: p ≤ 0.001, t17.487 = −6.83, Welch’s t-test; sham vs. Nic
1: p ≤ 0.001, t24.845 = −3.808, Welch’s t-test; sham vs. Nic 10: p ≤ 0.001, t31.645 = −8.592,
Welch’s t-test). Supplemental Figure S1B shows, in a transverse section of the mouse spinal
cord, broad expression of the Wnt1 signal in the blood vessels, by colocalization of CD31
antibody labeling [30]. The Pearson correlation coefficient (PCC) was used to quantify the
degree of colocalization between Wnt1 signal with a neuronal (NeuN), glial (S100) or blood
vessels (CD31) marker [31]. Costes et al. [32] methodology approach for automatically
identifying the threshold value was used to identify background based on an analysis
that determines the range of pixel values for which a positive PCC was obtained by using
FiJi software. The analysis of the Wnt1 signal in fluorescence microscopy images over the
entire ventral spinal region indicated high distribution in blood vessels (Supplemental
Figure S1B) with sample images of positive signals for both probes shown in white. When
red and green pixel intensities were quantified by PCC, a significant increase was observed
for CD31 (0.87 ± 0.01) vs. S100 (0.41 ± 0.05) and vs. NeuN (0.20 ± 0.07), respectively (S100
vs. CD31: p < 0.004; NeuN vs. CD31: * p < 0.047; Dunn’s method).

These results are consistent with previous reports showing a neuroprotective effect
of 1 µM nicotine to spinal locomotor networks [2] and suggest a narrow range of nicotine
levels near the border between a neuroprotective and a toxic effect.

To support a possible involvement of the Wnt1 signaling pathway, the Wnt1 antagonist
irinotecan was applied at a concentration of 5 µM [33,34] (Figure 2C) and was found to
partially inhibit the expression of Wnt1-Cre-Tom compared to sham (12% decrease) and
prevent the rise elicited by 0.5 (Nic 0.5 vs. Nic 0.5+Irinotecan: 37% decrease) or 10 µM (Nic
10 vs. Nic 10+Irinotecan: 53% decrease) nicotine on the activation of the Wnt1 promoter
(p < 0.001, F5,121 = 14.47, one-way analysis of variance test).
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Figure 1. VR depolarization responses induced by applying different nicotine (Nic) doses to the rat spinal cord. (A) Sample
recordings with Nic 10 (n = 5), 2 (n = 4), 1 (n = 6) and 0.5 (n = 4); µM where a grey arrow designates the beginning of
drug administration. (B) Whisker plot (where mean bars are represented in red) shows baseline (n = 5) and depolarization
responses induced by Nic 0.5, 1, and 2 with large effect evoked by Nic 10 in comparison to lower Nic doses (Nic 0.5 vs. Nic
10: ** p = 0.01, t4.818 = −3.813, Welch’s t-test; Nic 1 vs. Nic 10: ** p = 0.005, t7.337 = −3.987, Welch’s t-test; Nic 2 vs. Nic 10:
** p = 0.002, t5.486 = −5.706, Welch’s t-test). Note that n is the number of spinal cords used.
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Figure 2. Effect of different doses of nicotine on neuronal numbers and Wnt1 pathway in mouse spinal ventral region. (A)
Top panel: no change in neuronal numbers after low nicotine doses (0.5 and 1 µM) while a significant decrease was observed
with 10 µM nicotine in comparison to sham (Nic 10, A upper panel; sham vs. Nic 10: ** p = 0.01, U = 53.5, Mann–Whitney
test). Lower panel shows effects of nicotine on Wnt1 immunolabeling whereby Nic 0.5 intensified Wnt1 expression (sham vs.
Nic 0.5: *** p ≤ 0.001, t17.487 = −6.83, Welch’s t-test) while Nic 1 (Nic 0.5 vs. Nic 1: ** p = 0.002, t28.05 = 3.452, Welch’s t-test)
or 10 elicited a clearly smaller response (Nic 0.5 vs. Nic 10: ** p = 0.009, t18.95 = 2.94, Welch’s t-test). (B) Example images of
Wnt1 signal in the ventral region for control condition and after nicotine application where Nic 10 application shows an
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increase in Wnt1 expression. (C) Irinotecan significantly decreased Wnt1 expression (sham vs. Irinotecan: * p = 0.038,
t38.62 = 2.148, Welch’s t-test), prevented the rise by Nic 0.5 (Nic 0.5 vs. Irinotecan+Nic 0.5: ** p = 0.003, t19.19 = 3.42, Welch’s
t-test), and lowered it below control after Nic 10 (sham vs. Irinotecan+Nic 10: *** p = 0.001, t21.87 = 4.11, Welch’s t-test; Nic
10 vs. Irinotecan+Nic 10: *** p ≤ 0.001, t26.495 = 9.82, Welch’s t-test). Sham: n = 3; Nic 0.5: n = 5; Nic 1: n = 5; Nic 10: n = 5;
Irinotecan, n = 8; Nic 10+Irinotecan, n = 4, where n is the number of spinal cords used. Note that mean bars in the whisker
plots are represented in red. 3–4 slices were analyzed per spinal cord. Scale bar (100 µm) applies to all panels.

2.2. Effect of High Nicotine Levels on Rat Spinal Neurons and Motoneurons

To investigate the topology of the effect of a high dose of nicotine on rat spinal neurons
and motoneurons, neuronal (NeuN+) numbers from the dorsal (D), central (C), and ventral
(V) regions and ventral motoneurons (immunostained for SMI32) were quantified. After
nicotine application (4 h), no change was found in the number of dorsal neurons 24 h
later; however, a significant decrease was observed in regions C and V (Figure 3A,B;
p ≤ 0.001, F5,53 = 127.77, One Way Analysis of Variance test; C: 27% decrease; V: 21%
decrease) and among ventral motoneurons (Figure 3A,C; 26% decrease), compared to
sham. These data suggest a neurotoxic effect of high nicotine on certain spinal neurons
and motoneurons, particularly in the regions believed to be essential for generating the
locomotor rhythm [35,36].
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Figure 3. Changes in neuronal and motoneuronal numbers after incubation with Nic 10 (n = 3) in
rat spinal cord. (A,B) No modulation in the number of neurons (immunolabelled by NeuN, red in
panel A) in the dorsal horn (D; sham vs. Nic 10: p = 0.238, t10.781 = −1.249, Welch’s t-test) whereas
significant reduction in the central (C; sham vs. Nic 10: *** p ≤ 0.001, t10.034 = 4.903, Welch’s t-test)
and the ventral (V; sham vs. Nic 10: *** p ≤ 0.001, t13.722 = 4.658, Welch’s t-test) regions occurred
(n = 3). (A,C) Spinal motoneurons immunolabelled by SMI32 were substantially decreased after Nic
10 application (*** p = 0.001, t22.002 = 3.637, Welch’s t-test). Note that mean bars in the whisker plots
are represented in red. A minimum of three slices was analyzed per spinal cord, therefore nine slices
were analyzed per treatment. Scale bar (100 µm) applies to all panels.
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2.3. Upregulation of S100 and GFAP by Nicotine 10 µM

A strong increase in GFAP expression in the fetal brain has previously been reported
after exposure to nicotine [37]. Here, similar results were obtained in the spinal cord of
newborn rodents 24 h after the application of Nic 10 for 4 h. Astroglia response to treatment
with Nic 10 was monitored with S100 (Figure 4A, upper panel; sham: n = 10; Nic 10: n = 7)
and GFAP (Figure 4A lower panel; sham: n = 6; Nic 10: n = 4) immunostaining in postnatal
rat spinal preparations. The Nic 10 treatment induced an overexpression of S100 in all spinal
regions D (34% increase), C (27% increase), and V (32% increase) (p ≤ 0.001, F5,50 = 10.087,
one-way analysis of variance test). Even though no significant changes were observed in
GFAP expression levels in the D region, this signal was increased in the C (46% increase)
and V (60% increase) regions (p = 0.023, F5,29 = 3.217, one-way analysis of variance test).
S100 expression was also analyzed in the spinal cord of Wnt1Cre2:Rosa26Tom mice, with
an overall enhanced immunofluorescence intensity (Figure 4B) (p = 0.044, t12.98 = -2.224,
Welch’s t-test; 21% increase). These data suggest that Nic 10 induced a stress-like response
probably through astrocyte differentiation likely due to over-activation of nAChRs caused
by high-dose nicotine [37,38].
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Figure 4. Glial effects by 10 µM Nicotine. (A) in the D, C and V regions of the rat spinal cord of rats S100 expression
was raised (sham: n = 10 and Nic 10: n = 7; D: ** p = 0.004, t14.08 = −3.464; C: * p = 0.03, t14.464 = −2.404; V: * p = 0.013,
t14.486 = −2.843; Welch’s t-test) and similar rise was observed with GFAP, (sham: n = 6 and Nic 10: n = 4; D: p = 0.09,
t8 = −1.907; C: * p = 0.04, t8 = −2.385; V: * p = 0.02, t8 = −2.795; Welch’s t-test) biomarkers. (B) Similar over-expression of
S100 was observed in the ventral spinal cord of mice (* p = 0.044, t12.983 = −2.224, Welch’s t-test). Note that mean bars in the
whisker plots are represented in red. Scale bar (100 µm) applies to all panels.

2.4. Impaired Monosynaptic Transmission and Fictive Locomotion Induced by Nic 10

After treatment with Nic 10, synaptic transmission was recorded 24 h later from
VRs of the rat L spinal cord and compared with that of sham preparations. Monosynap-
tic transmission (Figure 5A) was substantially impaired after incubation with nicotine
(p ≤ 0.001, U = 0, Mann–Whitney test; 81% decrease); however, the polysynaptic reflex was
not significantly depressed (Figure 5B; amplitude: p = 0.445, U = 65; area: p = 0.617, U = 70;
Mann–Whitney test).
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Nic 10 abolished monosynaptic reflexes (sham vs. Nic 10: *** p ≤ 0.001, U = 0, Mann–Whitney test) whereas polysynaptic
reflexes were not significantly affected in comparison to sham (n = 10) (sham vs. Nic 10: Amplitude: p = 0.445, U = 65; Area:
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Pulse trains applied to a single L dorsal root (DR) are known to evoke segmentally
alternating oscillations on top of the cumulative depolarization observed on VRs. These
oscillations have the hallmarks of electrically induced fictive locomotion [39] and their num-
ber was significantly reduced after treatment with Nic 10 (p ≤ 0.001, t22.66 = 3.943, Welch’s
t-test) (Figure 5C), while no depression was observed for the cumulative depolarization am-
plitude (p = 0.551, t19.56 = 0.607, Welch’s t-test) or its area (p = 0.929, t19.604 = 0.0904, Welch ’s
t-test) (Figure 5C). Fictive locomotor patterns alternating among flexor and extensor motor
pools were also elicited by bath-applied drugs such as N-methyl-D-aspartate (NMDA) plus
5-hydroxytryptamine (5HT) [40]. In the present study, Nic 10 significantly decreased the
cycle amplitude by 56% of the chemically induced fictive locomotion (amplitude: p = 0.001,
t6.588 = 5.548; Welch’s t-test) (Figure 5D) with no changes in the cycle periodicity (period:
p = 0.09, t13 = −1.801; Welch’s t-test).

2.5. Effect of Nicotine (10 µM) on Dorsal–Dorsal Root Potential

To further investigate whether Nic 10 was able to affect the functionality of rat dor-
sal horn neurons, the dorsal–dorsal root potentials (D-DRPs) were recorded from one
DR following stimulation of an adjacent ipsilateral DR in sham or Nic 10 conditions
(Figure S2A). Despite the slightly smaller average amplitude of this response after Nic 10,
there was no significant difference with the sham control, which is consistent with our
previous results suggesting that there was no loss of dorsal horn neurons (p = 0.106, U = 83,
Mann–Whitney test).

2.6. Neuronal Number, Motoneurons and Wnt1 Pathway after Excitotoxic Insult Followed by
Nic 10

As expected, application of KA (50 µM; 1 h) induced excitotoxicity causing 24 h
later substantial neuronal death (NeuN+ neurons; p ≤ 0.001, F8,80 = 159.745, one-way
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analysis of variance test) in the D (p ≤ 0.001, t15.2 = 9.337, Welch’s t-test; 51% decrease in
neuron number), C (p ≤ 0.001, t14.36 = 4.327, Welch’s t-test; 20% decrease) and V (p ≤ 0.001,
t15.70= 8.307, Welch’s t-test; 38% decrease) regions of the rat spinal cord. Interestingly,
Nic 10 prevented the fall in neuronal numbers evoked by KA in the D region (KA vs.
KA+Nic/Nic 4 h: p < 0.001, t15.03 =−10.21, Welch’s t-test; 91% higher); however, Nic 10 was
unable to counteract excitotoxic damage in spinal regions C and V (Figure 6A, upper panel
histogram). The D-DRPs, that were abolished by KA (87% decrease by KA in comparison
Nic 10), persisted one day later when Nic 10 was applied together with KA followed
by Nic 10 for 4 h (KA+Nic/Nic 4 h; Supplemental Figure S2B; p ≤ 0.001, H(2) = 30.156,
Kruskal–Wallis one-way analysis of variance on ranks test).
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Figure 6. Neuronal number and Wnt1activity after KA application alone or with the co-application protocol KA+Nic
10 followed by Nic 10 for 4 h (KA+Nic/Nic 4 h). (A) KA administration caused fall in neuronal (NeuN red in the
example images; Nic: n = 3, KA: n = 3, KA+Nic/Nic 4 h: n = 3) (Nic 10 vs. KA: *** p ≤ 0.001, t15.228 = 9.337, Welch’s
t-test) and motoneuronal (SMI32 green; Nic 10: n = 6, KA: n = 7, KA+Nic/Nic 4 h: n = 7) (Nic 10 vs. KA: *** p ≤ 0.001,
t37.95 = 4.361, Welch’s t-test) numbers while Nic 10 application together with KA preserved neurons in the dorsal horn (KA
vs. KA+Nic/Nic 4 h: *** p ≤ 0.001, t15.03 = −10.21, Welch’s t-test) with no improvement in the C (KA vs. KA+Nic/Nic 4 h:
p = 0.35, t14.39 = −0.974, Welch’s t-test) and V (KA vs. KA+Nic/Nic 4 h: p = 0.1, t15.8 = −1.73, Welch’s t-test) region in the
rat spinal cord. No recovery in motoneuronal numbers were observed after KA+Nic/Nic 4 h (KA vs. KA+Nic/Nic 4 h:
p = 0.2, t41.96 = −1.248, Welch’s t-test) in the rat spinal cord. (B) In the mouse spinal cord, KA (KA: n = 4; Nic 10: n = 5)
alone significantly diminished neurons in the ventral horn (KA vs. Nic 10: ** p = 0.007, t30.05 = 2.887, Welch’s t-test) with no
recovery observed after KA+Nic/Nic 4 h (n = 3) (KA vs. KA+Nic/Nic 4 h: p = 0.42, t26 = −0.83, Welch’s t-test) treatment.
KA application did not change the % Wnt1 expression level in comparison to sham (sham vs. KA: p = 0.910, t22.052 = 0.114,
Welch’s t-test) which is shown by a black dotted line (as 100%) in the bar plot (lower panel). However, Nic 10 application
together with KA significantly reduced the % Wnt expression (KA vs. KA+Nic/Nic 4 h: ** p = 0.005, t21.2 = 3.13, Welch’s
t-test). Note that mean bars in the whisker plots are represented in red. Minimum 3–4 slices (N) were analyzed per spinal
cord. Scale bar (100 µm) applies to all panels.

The same Nic 10 dose could not protect ventrally located neurons/motoneurons,
when applied together with KA followed by nicotine for another 4 h (Figure 6A, lower
panel histogram; KA vs. KA+Nic/Nic 4 h: p = 0.2, t41.96 = −1.248, Welch’s t-test). Similar
results were obtained with Wnt1Cre2:Rosa26Tom mouse preparations by applying nicotine
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(10 µM) together with KA, followed by nicotine (4 h) (Figure 6B, upper panel; KA vs.
KA+Nic/Nic 4 h: p = 0.42, t26 = −0.83, Welch’s t-test) as nicotine could not alter the ventral
neuronal loss elicited by KA.

The administration of KA alone did not induce changes in Wnt1 signal compared to
sham (Figure 6B, lower panel; sham vs. KA: p = 0.910, t22.052 = 0.114, Welch’s t-test). This
suggests that KA could not modulate the activation of the Wnt1 promoter in the ventral
spinal cord. Nevertheless, the application of Nic 10 together with KA resulted in an overall
reduction in Wnt1 signal (Figure 6B, lower panel; KA vs. KA+Nic/Nic 4 h: p = 0.005,
t21.2 = 3.13, 23% decrease; sham vs. KA+Nic/Nic 4 h: p ≤ 0.001, t21.857 = 5.073, Welch’s
t-test, 24% decrease). Such a decrease in the expression of the reporter gene reached a
similar level to the one found when applying the Wnts pathway inhibitor irinotecan (see
Figure 2C), suggesting a likely inhibition of the Wnts signaling pathway by Nic 10. To
further explore any relation between nicotine toxicity, Wnts pathway, and excitotoxicity,
we counted the global number of pyknotic cells as a reliable index of global cell death in
our model [4]. Thus, in the ventral region, KA significantly increased the occurrence of
pyknotic nuclei (observed with DAPI staining, Supplemental Figure S3A,B; sham vs. KA:
p ≤ 0.001, t15.31= −10.629, Welch’s t-test, 58-fold increase), a process already detectable at
the end of 1 h application of KA and only slightly less intense after KA+Nic 10 followed
by Nic 10 for 4 h (KA vs. KA+Nic/Nic 4 h: p = 0.003, t29.975 = 3.195, Welch’s t-test, 41%
decrease). In keeping with data shown in Figure 2, 3 Nic 10 administration evoked a
significant rise in the number of pyknotic nuclei (sham vs. Nic 10: p = 0.03, t8.15 = −2.61,
Welch’s t-test, 15-fold increase). After application of irinotecan (Figure S3B), the number
of pyknotic cells was similar to untreated controls, indicating that in basal conditions
Wnts pathway activity was not constitutively operating to support cell survival in vitro,
whereas nicotine administration together with irinotecan drastically increased the number
of pyknotic cells (sham vs. Irinotecan+Nic 10: p ≤ 0.001, t18.37 = −9.58, 52 fold increase;
Irinotecan vs. Irinotecan+Nic 10: p ≤ 0.001, t18.496 = −9.435, Welch’s t-test).

2.7. Poor Recovery in Reflex Responses and Fictive Locomotion

The monosynaptic reflex amplitude was equally depressed 24 h after Nic alone (cf.
Figure 5A), KA or Nic 10 after KA followed by nicotine (4 h) (Figure 7A; p = 0.2, H(2) = 3.108,
Kruskal–Wallis one-way analysis of variance on ranks test). Conversely, polysynaptic re-
flexes were partly improved (in amplitude by 92% and area by 109%; KA vs. KA+Nic/Nic
4 h) after the combined treatment with Nic 10 and KA vs. KA alone (Nic 10 vs. KA: ampli-
tude: 73% decrease; area: 85% decrease) (Figure 7B; amplitude: p≤ 0.001, F2,56 = 32.99; area:
p ≤ 0.001, F2,55 = 57.15; one-way analysis of variance test). Both electrically and chemically
induced fictive locomotor patterns were completely abolished by KA. The standard protocol
of Nic 10 plus KA compared with KA alone did not improve any component of the DR-
induced response including cumulative depolarization and oscillations (Figure 7C; number
of oscillations: p ≤ 0.001, F2,33 = 51.9; cumulative depolarization: p ≤ 0.001, F2,40 = 21.1;
area: p ≤ 0.001, F2,40 = 31.26; one-way analysis of variance test). Nonetheless, in the case
of chemically induced fictive locomotion, low amplitude slow oscillations were observed
after such a protocol (Figure 7D; amplitude: p ≤ 0.001, H(2) = 15.262; period: p ≤ 0.001,
H(2) = 14.563; Kruskal–Wallis one-way analysis of variance on ranks test).
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Figure 7. Synaptic transmission and fictive locomotion after excitotoxic insult by KA (n = 8) or treatment with co-application
of KA+Nic 10 followed by Nic 10 for 4h (KA+Nic/Nic 4 h, n = 6) in the rat spinal cord. (A) Monosynaptic reflex responses
were suppressed by Nic 10 (n = 5) which were similar to the responses evoked by KA with no further improvement
after KA+Nic/Nic 4 h application (p = 0.2, H(2) = 3.108, Kruskal–Wallis one-way analysis of variance on ranks test). (B)
Polysynaptic reflex responses diminished by KA (Nic 10 vs. KA; amplitude: *** p ≤ 0.001, t17.052 = 6.34, Welch’s t-test; area:
*** p ≤ 0.001, t17.1 = 8.350; Welch’s t-test) were partly recovered by Nic 10 when co-applied with KA (KA vs. KA+Nic/Nic
4 h; amplitude: *** p ≤ 0.001, t28.34 = −4.372; area: ** p = 0.006, t24.58 = −3.013; Welch’s t-test). (C) Electrically induced fictive
locomotion blocked by KA (Nic 10 vs. KA; number of oscillations: *** p ≤ 0.001, t12 = 9.144; cumulative depolarization:
*** p ≤ 0.001, t14.51 = 5.38; area: ***p ≤ 0.001, t15.41 = 6.83; Welch’s t-test) was not recovered after Nic 10 co-administration.
(D) Chemically induced fictive locomotion disrupted by KA (amplitude: ** p = 0.002, U = 0; period: ** p = 0.002, U = 0; Mann–
Whitney test) was very mildly recovered after Nic 10 co-application with KA followed by Nic 4 h (KA vs. KA+Nic/Nic 4 h;
amplitude: *** p ≤ 0.001, U = 0; period: *** p ≤ 0.001, U = 0; Mann–Whitney test). Note that mean bars in the whisker plots
are represented in red.

3. Discussion
3.1. An Evolving Scenario from Neuroprotection to Neurotoxicity

The key finding of this study is that nicotine-induced neurotoxicity in the spinal
neuronal network of newborn rodents, and that there was a fine dividing line between
neuroprotective (1 µM) [2] and neurotoxic (10 µM) doses of this drug. Both effects were
associated with various degrees of motor pool depolarization which lingered for sev-
eral minutes. After 10 µM nicotine, intense motoneuron firing appeared and was, 24 h
later, followed by neuronal loss in the central and ventral areas of the spinal cord. This
phenomenon had the main characteristics of excitotoxicity which had replaced the neuro-
protective action earlier reported [2]. The onset of nicotine toxicity occurred in parallel with
a reduction in the ability of nicotine to activate the Wnt1 signaling pathway in the spinal
cord (Figure 8). Our genetic model to induce Tomato gene expression in the spinal cord
by crossing Wnt1-Cre with Rosa26-Tom mice allowed us to monitor functional changes
resulting from the activation of Wnt1 mediated by different nicotine concentrations. While
low doses of nicotine led to an increased number of surviving neurons in spinal slices and
raised Wnt1 activity, neurotoxicity was accompanied by lower Wnt1 activity (Figure 8).
These observations imply that neuronal resilience and Wnt1 stimulation proceeded in
parallel, although there was no implicit suggestion of causality between these two events
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because it is not known whether a few surviving neurons strongly expressed Wnt1 or a
larger number of neurons moderately activated Wnt1. Indeed, the correlation between
localization of Wnt1 activity and neurons was weak, indicating a range of potential inter-
pretations like the nicotine-evoked release of unidentified neuronal messengers stimulating
Wnt1 in non-neuronal cells, the release of other Wnt proteins by neurons to affect Wnt1
expressing cells, or nicotine desensitization occurring preferentially at certain cholinergic
receptors. These notions remain currently conjectural and will require future investigation.
Nevertheless, pharmacological inhibition of Wnt signaling by irinotecan [33,34] largely
increased the extent of neuronal pyknosis, a marker of cell death, thus consistent with a
Wnt role in this process.
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Figure 8. Summary of interactions among nicotine, Wnt1 pathway and excitotoxicity in spinal networks of postnatal
rodents. High nicotine concentration led to low Wnt1 expression, which occurred together with depressed neuronal activity
and finally neuronal death. Conversely, low nicotine dose led to increased Wnt1 expression and also rescued neurons
from excitotoxic cell death (by contrasting excitotoxic mechanisms) with the outcome of neuronal survival and higher
neuronal activity.

Notwithstanding elucidation of these issues, it was apparent that nicotine toxicity
strongly depressed monosynaptic transmission on motoneurons while displaying much
less depression of polysynaptic transmission and cumulative depolarization evoked by
repeated DR stimuli. The preferential inhibition of monosynaptic reflexes suggests an effect
targeted at the presynaptic level of transmitter release [41] which could be, at least partly,
overcome by stronger afferent fiber stimulation and consequently stronger release typically
observed with polysynaptic reflexes. It was, however, clear that perturbation by nicotine
(10 µM) of premotor networks led to disruption of fictive locomotion which is a highly
integrated function necessitating complex, concerted activity at the level of the central
pattern generator [35,36,42]. Thus, chemically-driven fictive locomotion that requires
broad recruitment of locomotor circuits by bath-applied drugs was depressed, whereas
electrically-induced fictive locomotion that is based on a more segmental recruitment was
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suppressed. We propose that strong excitation of motor networks by Nic 10 was the initial
step to produce synaptic depression and cell death.

Previous studies have demonstrated how prenatal or postnatal exposure to nicotine
leads to disruption of synaptic transmission within brainstem respiratory motor networks
by altering GABAergic [43], glycinergic [44], and glutamatergic [45] transmission. Our
present data are consistent with a damaging effect of nicotine on postnatal motor networks
even in the spinal cord as long as a critical drug concentration is reached.

3.2. Nicotine, Wnt Signaling, and Neurotoxicity

A number of former studies have indicated crosstalk between nicotine and the Wnt
signaling pathway. For example, nicotine has been shown to prevent P19 cell differentiation
into cardiomyocytes [46], and to induce epithelial–mesenchymal transition [47] and lung
cancer [48] via overexpression of the Wnt signaling pathway. In response to stress caused
by smoking, suppression of the Wnt/β-catenin pathway has been reported in the airway
epithelium [49]. Our present data also support a functional dialogue between Wnt1 and
nicotine as low levels of nicotine (0.5 µM) caused a marked increase in Wnt1 activation
in parallel with significant neuroprotection. Indeed, the expression of the Wnt1 signal at
the ventral spinal cord region was mostly colocalized with S100 signal, a calcium-binding
protein mainly expressed by challenged glia [50]. Additionally, upregulation of Wnt1 and
β-catenin and attenuation of inducible nitric oxide synthase (iNOS) expression can be
associated with neuroprotection in a mouse model of Parkinson’s disease [51].

Several research groups have linked Wnt signaling pathways to the inflammatory
response that activates astrocytes [27,52], dendritic remodelling after chronic pain mod-
els [53] and even neurogenesis in the developing spinal cord [54]. Here, treatment with
high dose nicotine caused astroglia activation by the overexpression of GFAP and S100
perhaps indicative of accelerated maturation of astrocytes due to activation of nAChRs [38].
It seems, therefore, likely that astrocytes reacted to the nicotine challenge and contributed
to stimulate Wnt1 activity whose reporter gene was relatively well correlated to the glial
biomarker S100, typically enhanced after the damage evoked by excitotoxic insult [50].

Although nicotine shows neurotoxic effects on spinal neurons (central and ventral
region) and motoneurons, it produced minimal toxicity to dorsal horn neurons, probably
due to the high density of neurons [55] and their neuronal nAChRs [56–58], which can
evoke potent upregulation of inhibitory synaptic activity in the dorsal horn [58] with likely
downregulation of overexcitation and consequent damage limitation.

3.3. Effect of High Nicotine on Kainate-Mediated Excitotoxicity

KA was previously used in our laboratory as an excitotoxic agent to induce experimen-
tal SCI in a newborn rodent model in vitro that allows monitoring early pathophysiological
events for up to 24 h [59,60]. In particular, transient (1 h) KA (50 µM) incubation was shown
to abolish fictive locomotor patterns irreversibly and, thereby, provides a model with slowly
developing damage and relatively delayed outcome in terms of network structure and
function [2,59]. In the present report nicotine (10 µM) co-applied with KA provided signifi-
cant histological preservation of neurons only in the dorsal horn. At the same time, Nic
10 treatment did not protect central and ventral horn neurons against KA excitotoxicity
(Figure 8). Interestingly, even when KA and nicotine were co-applied and the physiological
outcome was very poor, a substantial number of neurons was histologically intact. This
observation accords with our former results that have indicated a ceiling to excitotoxic
damage [59] in line with clinical SCI damage which is rarely total. Nonetheless, despite
surviving neurons in large numbers, complex network activities like fictive locomotion
collapsed because the network membership of the central pattern generator presumably
fell below a critical value whereby coordinated activity becomes impossible [61].

Since KA did not affect the level of the Wnt1-dependent gene expression, the present
data indicate that toxicity induced by a glutamate agonist or a cholinergic agonist involved
distinct cellular processes, even if they were not additive.
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3.4. Advantages and Limitations of the Experimental Model and the Study

Since the rodent isolated spinal cord has been used as a classical tool for studying the
structure, physiology and pathophysiology of spinal networks [35,36], it may be useful
to summarize its experimental advantages and disadvantages. On the plus side, this
preparation offers unrivalled access to identified circuits like those for locomotor activity,
long survival in vitro (for >24 h) and the opportunity to investigate early development
and maturation of spinal networks [55]. On the minus side, it should be noted that
this preparation is immature, lacks the role of descending brain inputs, and its in vitro
maintenance cannot perfectly reproduce the in vivo condition. For these reasons, data
obtained in vitro should be validated with in vivo experiments.

4. Materials and Methods
4.1. Wild-Type Rat Spinal Cord Preparation

In vitro spinal cord preparations were obtained from postnatal (P0–P2) wild-type
Wistar rats (total n = 115, where n is the total number of rats used in the study) after
decapitation under urethane anesthesia (0.2 mL i.p. of a 10% w/v solution). Whole
spinal cord preparations were gently removed in oxygenated Krebs solution (in mM;
113 NaCl, 4.5 KCl, 1 MgCl2.7H2O, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3, 11 glucose; gassed
with 95% oxygen (O2) and 5% carbon dioxide (CO2); pH 7.4 at room temperature, flowing
at 7.5 mL/min) as reported earlier [2,62,63] and were kept in Krebs solution for 2 h to reach
functional recovery.

4.2. Transgenic Mice Spinal Cord Preparation

Wnt1Cre2 mice (Jackson stock Nº 022501) were mated with Rosa26-tdTomato mice
(Rosa26Tom; Jackson stock no. 007909). In mouse genetic lineage tracing strategies, two
strains of transgenic mice are mated. One of them carries a transgene that allows the
expression of the Cre under a specific promoter (in this case, Wnt1). The other strain
contains two loxP sites flanking a STOP signal, before a reporter gene sequence (in this case,
Tomato), under a ubiquitously active promoter (Rosa26). When both transgenes recombine
in F1, Cre cleaves the loxP sites and removes the STOP signal, so that only in cells in
which Wnt1 was activated at some point in development is the reporter gene expressed.
Genotyping of Wnt1-Cre2 transgenic mice was performed by PCR with primers (for-
ward, 5′-CAGCGCCGCAACTATAAGAG3′) and (reverse, 5′-CATCGACCGGTAATGCAG
3′) giving a 400 bp product [64]. Wnt1Cre2:Rosa26Tom mice were mated with other
Wnt1Cre2:Rosa26Tom animals. The penetration and recombination of both transgenes
was assessed by direct observation of tail tip under fluorescent microscope (Supplemen-
tal Figure S1A). Only tissues that showed Tomato expression were included and were
randomly distributed among the experimental groups. Thoracolumbar spinal cord prepara-
tions were isolated from postnatal Wnt1Cre2:Rosa26Tom mice (1–3 days old) in accordance
with standard procedures [59]. Protocols to maintain mouse spinal preparations were
similar to those for the rat one. Thereafter, spinal cord tissue was immediately fixed in
1× phosphate-buffered saline (1× PBS) containing 4% paraformaldehyde (PFA; 24 h at
4 ◦C) followed by 30% sucrose 1× PBS for cryoprotection (24 h at 4 ◦C). After immunos-
taining, images were taken at a 20×magnification using a Nikon Eclypse NiE microscope
(Melville, NY, USA). Since the staining was diffuse, data quantification of Tom expression
was performed in terms of immunofluorescence intensity (expressed in arbitrary units,
AU) by the ImageJ software (National Institutes of Health (NIH), Bethesda, MD, USA,
https://imagej.nih.gov/ij/index.html, accessed on 1 March 2021) in a 150 × 150 µm2 area.
To measure the colocalization between Wnt1Cre2:Rosa26Tom, NeuN and S100 signals
were analyzed at the ventral spinal cord region by Pearson’s correlation were calculated
using Colocalization Threshold plugin (from ImageJ software, NIH, accessed on 1 March
2021, https://imagej.nih.gov/ij/index.html). The method was implemented in Costes et al.
(2004) [32] using the methodology as reported by Dunn et al. (2011) [31] (Figure S1B).

https://imagej.nih.gov/ij/index.html
https://imagej.nih.gov/ij/index.html
https://imagej.nih.gov/ij/index.html
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4.3. Protocol for Drug Application and Lesioning the Spinal Cord

Nicotine (4 h bath application) was used at 0.5–10 µM concentration (prepared in Krebs
solution), the latter previously found to protect brainstem hypoglossal motoneurons from
excitotoxic death [1]. It was applied alone or in combination with excitotoxic conditions:
data were compared with results from untreated spinal cords were maintained in vitro for
24 h and designated as a sham.

Kainate (KA, 50 µM, 1 h bath application) was used to induce an excitotoxic lesion
primarily affecting the gray matter [4,59], which fully blocks fictive locomotor patterns
(evoked either chemically or electrically) for at least 24 h. To investigate the effect of
nicotine neuroprotection on spinal locomotor networks, nicotine (10 µM) was applied
together with KA (for 1 h) followed by nicotine alone for 4 h (represented as KA+Nic/Nic
4 h, bath application).

To compare the dose-dependent effect of nicotine on network depolarization (mea-
sured from the baseline DC level) various nicotine concentrations were used such as 0.5, 1,
2, 10 µM on day 1 (for 4 h, bath application, Figure 9). Changes in DC polarization of any
VR represented the summated output of motoneuron population depolarization produced
by direct action on such cells plus indirect excitation from pre-motoneurons. After leaving
preparations overnight in Krebs solution, reflex activities (mono- and poly-synaptic) and
fictive locomotion were tested on the next day as previously reported [4,59].
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Figure 9. Protocol for drug application, electrophysiological recordings (Elephys) and immunohisto-
chemistry performed with wild type Wistar rat spinal cord (P0–P2).

For Wnt1Cre2:Rosa26Tom mouse experiments the total number (n) of mice used was
42. Four experimental groups were used: sham, Nic 4 h, KA, and KA+Nic/Nic 4 h. Spinal
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cords were dissected out from mice and kept in Krebs solution for approximately 30 h
before fixation. All the procedures were performed with continuous supply of 95% O2 and
5% CO2 before fixation. The 30 h timepoint was chosen to match the mouse spinal cord
preparation with the rat preparation used to perform electrophysiology before fixation.

From animals showing high efficiency of transgene recombination, different spinal
cords preparations were subjected to different experimental conditions. Some spinal cords
were treated only with irinotecan (Wnt signaling and DNA topoisomerase I inhibitor,
5 µM, [33,34] or different doses of nicotine (0.5, 1, and 10 µM) and subjected to the same
experimental procedures and were processed for immunostaining (Figure 10).
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Figure 10. Protocol for drug administration and immunohistochemistry performed with
Wnt1Cre2:Rosa26Tom mouse spinal cord.

4.4. Electrophysiology

Full details of electrophysiological recording were previously reported by Marchetti
et al. (2001) [39] and Taccola et al. [4]. Briefly, to investigate the reflex activity and fictive
locomotion from the rat spinal cord, VRs of the lumbar (L2 and L5) segments were sucked
with tight-fitting suction electrodes to record DC-coupled responses from L2 and L5 VRs
which mainly carry flexor and extensor motor responses to the hindlimb muscles, respec-
tively [36]. VR signals were evoked by square pulses (0.1 ms) applied to ipsi-lateral dorsal
roots (DR) using bipolar suction electrodes. DR stimulus intensity was adjusted to induce
monosynaptic reflex responses, which was considered equivalent to 1× threshold [39] and
polysynaptic reflex responses when the stimulus was three times higher [65] as shown
in the scheme (Figure 11). The responses were computed by considering 3–5 averaged
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events for the peak amplitude and area. Previously reported intracellular recordings from
spinal motor neurons have confirmed the functional identification of these responses as
monosynaptic and polysynaptic reflexes, respectively [66]. D-DRPs were elicited by electri-
cal stimulation of a single L DR and the output signal was recorded from the ipsilateral
adjacent DR. To evoke electrically or chemically induced fictive locomotion, a train of
30 pulses at 2 Hz, or bath application of N-methyl-D-aspartate (NMDA; 3–6 µM) plus
5-hydroxytryptamine (5-HT; 10 µM) were used, respectively [36]. Fictive locomotion was
characterized by VR rhythmic cycles alternating between left and right side at segmental
level and between flexor (L2) and extensor (L5) VRs on the same side once about every
2–3 s [36]. For the analysis of cycle peak amplitude and periodicity, 20 consecutive os-
cillations were considered as reported previously [4]. Data were acquired, digitized and
recorded in pClamp 9.2 (Molecular Devices, Sunnyvale, CA, USA) at 20 KHz (acquisi-
tion frequency).
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Figure 11. Schematic representation of isolated spinal cord preparation used for recording the reflex activity from the
lumbar (L2/L5) ventral roots of the postnatal rat. Monosynaptic and polysynaptic reflexes evoked by electrical stimulation
of one dorsal root were recorded from ipsi-lateral and ipsi-segmental ventral roots.

4.5. Immunohistochemistry

After completing the electrophysiological experiments, spinal cords were fixed in
4% PFA overnight and then cryoprotected with 30% (w/v) sucrose the subsequent day.
The whole procedure was performed as reported previously [55,63,67–70]. Transverse
spinal sections (30 µm) were cut using a microtome (at –20 ◦C) from T13 to L5 segments
and collected in 1× phosphate buffer solution (PBS) until further use. Spinal cords were
processed using a free-floating immunofluorescence protocol where the sections were again
washed using 1× PBS followed by incubation with the blocking solution (5% fetal bovine
serum, FBS or normal goat serum, NGS; 5% bovine serum albumin, BSA; 0.3% Triton X-100;
1% PBS) at room temperature. Later, spinal sections were immunolabelled with primary
antibodies such as anti-SMI32 (specific to non-phosphorylated neurofilament-H of spinal
cord motoneurons; mouse monoclonal; 1:1000 dilution; Chemicon, Millipore, Milan, Italy;
NE1023), anti-NeuN (specific neuronal marker; rabbit polyclonal; 1:250 and 1:500 dilution;
Merck Millipore, Milan, Italy; ABN78), anti-GFAP (specific for glial fibrillary acidic protein,
GFAP, member of class III protein family of intermediate filament, expressed in astrocytes
and some other astroglial cells in the central nervous system; mouse monoclonal; 1:500;
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Sigma-Aldrich, Milan, Italy; G3893), anti-S100 (specific for S100 protein which is a part of
Ca2+ binding proteins family in astrocytes’ nuclei and cytoplasm, rabbit polyclonal; 1:1000
and 1:400 dilution; DAKO, Glostrup, Denmark; Z0311) and anti-CD31 (specific for Platelet
Endothelial Cell Adhesion Molecule-1, mouse monoclonal, Invitrogen, BD Biosciences,
Buenos Aires, Argentina; 1:200) at 4 ◦C for overnight. Antibody validation was performed
as reported in our previous studies [2,50]. On the following day, sections were again washed
and immunolabeled with secondary antibodies (1:500 dilution; Invitrogen, Carlsbad, CA,
USA) such as goat anti-mouse Alexa Fluor 488 (A11029) or 594 (A11032) and goat anti-
rabbit Alexa Fluor 488 (A11034) or 594 (A11037) and DAPI (biomarker for cell nuclei; 1:200
dilution used for rat and 1:1000 used for mice; Sigma-Aldrich) for 2 h at room temperature.
Samples were directly viewed with a confocal microscope Leica DM6000, FV300 (Olympus
Optical, Tokyo, Japan) or Nis-Eclipse microscope (NIKON, Amsterdam, Netherlands) with
20×magnification. Images were captured from the dorsal, central (D, C; 350 × 350 µm2)
and ventral (V; 300 × 230 µm2) spinal regions (in the case of Wistar rats) [2,59,68]. Data
were quantified using ImageJ or Fiji software (https://imagej.net/software/fiji/, accessed
on 1 March 2021). In the case of Wnt1-Cre2:Rosa26Tom mice, NeuN positive cells were
counted in the ventral region. DAPI nuclear staining was used to identify the dead/dying
cells quantified with Fiji software. The average percent values of nuclei with condensed
chromatin were compared between all experimental groups for the ventral region and
normalized to the total number of nuclei. The occurrence of cells with pyknotic nucleus for
control condition or after KA application were similar results as previously described for
the ventral region [71].

4.6. Drugs Used

Drugs used in the experiments include nicotine from Sigma Aldrich (Saint Louis, MO,
USA), kainate from Sigma Aldrich (Saint Louis, MO, USA), N-methyl-D-aspartate (NMDA)
from Tocris Bioscience (Bristol, UK), 5-hydroxytryptamine (5HT) from Sigma Aldrich (Saint
Louis, MO, USA) and irinotecan from Sibudan (Buenos Aires, Argentina).

4.7. Statistics

All the data were statistically analyzed using SigmaPlot 14 and SigmaStat (SigmaStat
3.1, Systat Software, Chicago, IL, USA). Data values were indicated as mean ± SEM where
mean was represented by thick red bars, n represents the number of spinal cords used and
N shows the number of spinal slices/spinal cord. Normality test was used to differentiate
between parametric and non-parametric data. Parametric values were evaluated either
by Welch’s t-test (assuming unequal population variances and/or sample sizes) and non-
parametric by Mann–Whitney test. One-way analysis of variance test (ANOVA) was used
for multiple comparisons and non-parametric data Kruskal–Wallis (either Holm–Sidak
or Dunn) test was applied. The accepted significance level was p ≤ 0.05 (*** p ≤ 0.001,
** p ≤ 0.01, * p ≤ 0.05).

5. Conclusions

Various efforts have been made to induce neuroprotection of spinal neurons against
spinal injury [68,72–74]. In addition, substantial data are available on nAChRs as a poten-
tial target to rescue from neurodegeneration using nicotine [1–3]. However, until now little
was known what effect a high concentration of nicotine might have on spinal neuronal
networks. The present study shows that exposure to a high level of nicotine could cause
neuronal death and upregulate the expression of proteins associated with astrocyte activa-
tion. Likewise, our results suggest that changes in the levels of activity of Wnt1 modulated
by nicotine were accompanied with either neuroprotection or neurotoxicity. Finally, this
study highlights the differential vulnerability of the central nervous system of newborn
mammals to nicotine exposure, which could irreversibly damage a significant number of
spinal neurons. Future work is needed to investigate the long-term effects of high doses of
nicotine on the postnatal/fetal spinal locomotor circuitry in vivo.

https://imagej.net/software/fiji/
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Cre Cre recombinase enzyme
D-DRP Dorsal–dorsal root potential
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iNOS inducible nitric oxide synthase
KA Kainate
L Lumbar
n total number of rats/mice
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nAChRs nicotinic acetylcholine receptors
Nic Nicotine
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