
 

 

 

This article has been accepted for publication and undergone full peer review but has not been 

through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1002/csc2.20315. 

 

This article is protected by copyright. All rights reserved. 

 

Sowing Date, Genotype Choice, and Water Environment Control Soybean Yields in Central Argentina 

Lucas N. Vitantonio-Mazzinia*, Damián Gómezb, Brenda L. Gambina, Guido Di 

Maurob, Rodrigo Iglesiasb, Jerónimo Costanzib, Esteban G. Jobbágyc, and Lucas 

Borrása  

Affiliations: 

 

a IICAR, Universidad Nacional de Rosario – CONICET, Campo Experimental 

Villarino S/N, S2125ZAA, Zavalla, Santa Fe, Argentina. 

b Grupo Don Mario (GDM), Ruta 7 Km 208, Chacabuco, B6740, Buenos Aires, 

Argentina.  

c Grupo de Estudios Ambientales, IMASL–CONICET, Universidad Nacional de San 

Luis, Avenida Ejercito de los Andes 950, D5700HHW, San Luis, Argentina 

 

* Corresponding author. E-mail: lucas.vitantonio@unr.edu.ar 

 

Keywords: crop optimization; water table; multi-model inference; yield predictors; 

soil type. 

ABSTRACT 

Soybean is one of the most important crops worldwide, and Argentina is the 

third largest global grain producer and the worlds´ largest meal exporter. Under the 

continuous challenge of increasing crop yields, especially in the central temperate 

region of the country, there is a growing need to optimize management in relation to 

the environment that each specific farm and paddock presents. Understanding the 
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impact of available technologies and management options can help optimize crop 

design. Here, we identify and quantify the effect of the most relevant variables 

affecting soybean yield by analyzing a database that includes 53 field trials with four 

common commercial genotypes, reporting 50 management and environmental 

variables. Linear mixed-effect models revealed that two management decisions 

(genotype and sowing date selection) and three environmental variables (rainfall 

during the reproductive crop period from R1 to R7, soil type -Hapludoll vs. Argiudoll-, 

and water table presence -above/below 2 m of depth from the surface) helped 

explain ca. 40% of total yield variability, which ranged from 1675 to 7226 kg ha-1 and 

averaged 5133 kg ha-1. Water table presence generated higher and more stable 

yields, particularly in coarse-textured Hapludolls and under low rainfall conditions. 

Results highlight specific management and environmental conditions that affect 

soybean crop yields in the region, pointing effective pathways towards yield gap 

reductions. 

 

Abbreviations: AIC, Akaike's information criterion; BIC, Bayesian’s information 

criterion; ML, maximum likelihood; MMI, multi-model inference; REML, restricted 

maximum likelihood; RI, relative importance. 

INTRODUCTION 

Soybean is one of the most important crops worldwide, with increased 

production and sustained demand in the last decades (FAO, 2019). World production 

increase has been based on both increasing yields and expanding cultivated areas. 

Both contributions to soybean production took place in Argentina over the last 30 

years (Aizen et al., 2009; Ray et al., 2012), when genetic yield gains have achieved 

44 kg ha-1 yr-1 (or 1.1% yr-1; data for the central temperate region, de Felipe et al., 
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2016) and cultivated area has tripled based on the addition of new agricultural land, 

the displacement of other extensive crops (Viglizzo et al., 2011), and the increase of 

double cropping schemes (Caviglia et al., 2004; Calviño and Monzon, 2009; Fischer 

et al., 2014). These historical events positioned Argentina as a relevant soybean 

source, currently representing 16% of the total global production, following United 

States and Brazil, which account for 34 and 32%, respectively (FAO, 2019). 

Argentina is also the largest global exporter of high protein soybean meal, 

accounting for half of the global export supply (USDA-FAS, 2019).  

Now, Argentina faces the challenge of increasing crop yields, especially in the 

central temperate region, where exploitable yield gaps have been documented 

(Aramburu-Merlos et al, 2015). Improving crop productivity needs optimized 

management in relation to site variables (Bennett et al., 1989; Calviño and Sadras, 

1999; Hatfield and Walthall, 2015), requiring a better understanding of yield 

responses to management decisions within the environmental context of common 

crop production scenarios.  

Management decisions can be crucial for optimizing soybean yield, and 

include the selection of an adequate genotype, sowing date (Rattalino Edreira et al., 

2017; Di Mauro et al., 2018), fertilization (Sucunza et al., 2018), application of 

fungicide (Grassini et al., 2015) and insecticide, inoculation (Legget et al., 2017), 

stand density (DeBruin and Pedersen, 2008; Masino et al., 2018), row spacing 

(Andrade et al., 2002; Andrade et al., 2019), and crop rotation schemes (Seifert et 

al., 2017), among others. Environmental variables known to affect yield include 

weather variables like temperature, solar radiation, rainfall amount (Andrade and 

Satorre, 2015) and distribution (Calviño et al., 2003), potential evapotranspiration 

(Grassini et al., 2015), and soil type (Di Mauro et al., 2018), among others. Soil 
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quality attributes mediate water availability and nutrient provision, and while several 

mineral soil nutrients are known to be essential for adequate soybean yield (like N, 

P, K, S, Ca, Mg, Fe, Zn, Mn, and B; Borst and Thatcher, 1931; Hammond et al., 

1951; Harper, 1971; Bender et al., 2015; Gaspar et al., 2017; Ciampitti and 

Salvagiotti, 2018) it is not completely clear to what extent they are limiting soybean 

yields in our focus region. There is a need to dissect and understand how all these 

management and environmental factors influence yield in the temperate production 

systems of Argentina. 

A recent study in our region considering many management options and 

environmental conditions identified sowing date, soil type, and rainfall during the crop 

cycle, as the most relevant yield predictors (Di Mauro et al., 2018). These results 

agree with findings from similar temperate regions in the USA (Grassini et al., 2015; 

Rattalino Edreira et al., 2017; Mourtzinis et al., 2018) and Argentina (Calviño and 

Sadras, 1999; Sadras and Calviño, 2001). However, Calviño and Sadras (1999) and 

Di Mauro et al. (2018) did not quantify the magnitude of each effect, nor did they 

explore relevant interactions among factors. Important interactions like those 

between sowing date and water availability were found to be highly relevant in other 

production systems (Rattalino Edreira et al., 2017). Interestingly, earlier studies did 

not quantify the yield impact of shallow water tables that are accessible to crops. 

Today, the influence of shallow water tables to stabilize crop yields is recognized 

worldwide (Nosetto et al., 2009; Rizzo et al., 2018), but for our region its net effect on 

soybean yields is still unknown. 

To explore the impact of multiple and potentially interactive management and 

environmental variables on soybean grain yield across the central Argentinean 

temperate region we conducted 53 field trials in farmer fields during three 
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consecutive cropping years. We used linear mixed-effects models and multi-model 

inference techniques (MMI) (Burnham and Anderson, 2004; Smith et al., 2005) as 

they proved to be particularly useful to quantify multiple variable effects from 

experimental agricultural data (Gambin et al., 2016; Casali et al., 2018; Vitantonio-

Mazzini et al., 2020). We hypothesized that the most relevant management variables 

are sowing date and genotype selection, while water table presence and rainfall 

during the crop cycle are the most important environmental controls. Based on 

previous evidences (Mercau et al., 2007; Rattalino Edreira et al., 2017) we also 

expected significant interactions between sowing date and water-related variables. 

 

MATERIALS AND METHODS 

 

Study system 

 

Experiments were sown in different locations across central Argentina (Fig. 1) 

during three consecutive growing seasons, 2016/17, 2017/18, and 2018/19 (referred 

as years 2017, 2018, and 2019, respectively). The analysis included 19 sites in 

2017, 15 sites in 2018, and 19 sites in 2019, providing a total of 53 trials. The term 

“site” is used to define the combination of a trial at a given location and year. The 

location is used as a loose spatial reference to the geographical position 

(summarized by the town name), and involves different paddocks, farms, and/or soil 

types subject to different management practices. All trials were managed under no-

till schemes without irrigation, following common agricultural practices for the region 

(Calviño and Sadras, 1999; Di Mauro et al., 2018). 
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Trials included four genotypes (DM40R16, DM4612, DM46R18, and 

DM50i17) that are commercially available from GDM (Grupo Don Mario). They were 

selected based on commercial relevance in the region and represent the maturity 

groups (MG) that are typically sown in central Argentina (DM40R16 is MG III long, 

DM4612 and DM46R18 are MG IV medium, and DM50i17 is MG IV long). 

Genotypes are STS (resistant to sulfonylurea herbicides) in all cases except 

DM4612. Together, these four genotypes were sown on more than 3 million hectares 

during the 2019 growing season in Argentina (INASE, 

https://www.argentina.gob.ar/sisa/informes). The number of replicates varied with 

sites, most of them having two (23 sites) or three (11 sites) replicates. Three sites 

had four replicates, and 16 sites had one replicate. Sites with single replicates were 

included to provide a wide range of management and environmental variables, which 

was the main focus of our study. Genotype evaluation power of the entire dataset 

was beyond the minimum requirement determined for non-replicated trials (Yan et 

al., 2002). Sites with two or more replicates had genotypes arranged in a 

randomized complete block design. Plots ranged in size from six to eight rows in 

width, where row spacing was different in each site, and from 200 to 240 m of length. 

This depended on available farming machinery at the site, and trials were sown and 

harvested with typical commercial planters and combines used by local farmers.  

At each individual site common farmer technology and management were 

applied, including decisions in terms of sowing date, fertilization management, stand 

density, and inter-row spacing. This made trials representative of actual soybean 

production environments, management, and yield for the region, and are similar to 

previously reported studies (Di Mauro et al., 2018). Weeds and insects were 

chemically controlled using standard practices for the region. Soils were 
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predominantly deep (>3 m) sandy loams (Typic Hapludoll and Entic Hapludoll), and 

shallower (2-3 m) clay loams (Typic Argiudoll and Aquic Argiudoll) (Soil Survey Staff, 

2014). These soil types represent the most common soybean farming land of the 

region. Individual trials were entirely fitted within a field portion with uniform soil 

characteristics as indicated by local soil maps provided by the Argentinean Federal 

Agricultural Agency Instituto Nacional de Tecnología Agropecuaria (INTA) (GeoInta, 

http://visor.geointa.inta.gob.ar/) and confirmed by local observations. Sites had 

similar management during previous growing seasons, with previous crop being 

soybean in 20 trials and maize in the other 33. 

For each trial, soil samples down to 2 m of depth were obtained with a hand 

auger before sowing to determine initial soil properties. Soil tests were more 

exhaustive than ones commonly carried out by farmers in the region, with the 

objective to detect micronutrient deficiencies. Soil tests for our study included the 

gravimetric content of organic matter (OM, %), and extractable P, K, S, Ca, Mg, Na, 

Zn, B, Mn, Fe, and Cu (ppm) for 0 to 20 cm depth. We also measured soil pH, 

cationic exchange capacity, sum of bases (CEC and SB, meq 100g-1), base 

saturation (SB/CEC), and exchangeable sodium percentage (ESP, %) at the same 

depth interval. Water content in soils was determined at each site to 2 m depth 

based on gravimetric measurements taken at 20 cm intervals and conversion to 

volumetric water availability (mm of water down to 2 m) using bulk density 

information (Black, 1965). Bulk density was taken from soil maps provided by INTA 

(GeoInta, http://visor.geointa.inta.gob.ar/) for each site. Water table was considered 

present whenever its depth was shallower than 2 m at sowing. Fertilization with P at 

sowing was defined in a qualitative manner (yes / no). Monthly accumulated rainfall 

and monthly mean temperature (°C) during the crop cycle were recorded at each 
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site. While rainfall was measured at each site, air temperature was obtained from the 

closest available public weather station (less than 90 km in all cases; Mercau et al., 

2007). Grain yield data was adjusted to 13.5% moisture content based on measured 

moisture. Harvest was performed with a commercial combine, and yield of each plot 

was independently obtained by weighing the tractor trailer grain tanks with sensors. 

Reported trials showed no major problems regarding weeds, diseases, or lodging. 

Coefficient of variation (CV) for yield for replicated trials ranged from 2 to 38%, with a 

median of 4% (86% of trials had a CV lower than 10%, and only one site, 

VMack1_18, presented a CV higher than 20%).   

 

Predictor variables 

 

Our main objective was to identify management and environmental variables 

that can help predict yield. The inclusion of predictors was based on several aspects, 

including specific interest as how to manage the crop, data availability, and enough 

variation across sites. Environmental variables included accumulated precipitation 

per month or groups of months (taking into account that from October to December 

when crops were in their vegetative stages, and from January to March when crops 

were at their reproductive stages), air temperatures (maximum, mean, and 

minimum), soil type according to the Soil Taxonomy criterion (Soil Survey Staff. 

2014), soil water content at sowing (2 m depth), and the presence of a water table 

shallower than 2 m at sowing time. We also evaluated the effect of soil variables 

including OM, pH, P, K, S, Ca, Mg, Na, SB, CEC, base saturation, ESP, Zn, B, Mn, 

Fe, and Cu. The management variables included were sowing date, maturity group, 

row spacing, and the use (or not) of P fertilizer at sowing (Table 1).  
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The first step of the analysis involved data exploration following Gambin et al. 

(2016) and Coyos et al. (2018). Key issues considered at this stage were outliers, 

multicollinearity, and relationships between variables (Zuur et al., 2009). 

Multicollinearity among quantitative variables was evaluated by matrix correlations 

following Pearson method, and variance inflation factor (VIF) in R software (R Core 

Team, 2018, version 3.5.1; fmsb package; Nakazawa, 2014). Collinearity between 

nominal and quantitative variables was evaluated by using general linear ANOVA 

(agricolae package; Mendiburu, 2017).  

 

Statistical analysis and model selection 

 

Data were analyzed using linear mixed-effects models to assess the influence 

of different predictors on grain yield (lme4 package, lmer function; Bates et al., 

2015). We applied the top-down strategy for the model selection process (Zuur et al., 

2009; Gambin et al., 2016; Coyos et al., 2018; Vitantonio-Mazzini et al., 2020).  

After data exploration, we proposed a “beyond optimal model” which included 

different variables that presented association with grain yield. These variables were 

classified into management and environmental. Each overall partial regression 

coefficient (β+) was considered a fixed effect, reflecting the influence of a predictor 

on grain yield across all sites. Once the “beyond optimal model” was defined, an 

optimal structure of the random component was obtained based on REML estimates. 

The random structure used block nested within site plus genotype. By including 

block nested within site as random effects, our models estimated different intercepts 

for each block and site to account for the hierarchical data structure. The same 

applied for the genotype random term. For sowing date and rainfall from January to 
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March (J-M), we tested models with both linear and curvilinear response. Curvilinear 

response was explored by fitting a second-order polynomial function (Yi = α + β1 × Xi 

+ β2 × Xi
2 + εi). We found model improvement (i.e., lower AIC) when considering 

some curvilinear relations, therefore we present models with coefficients β1+β2 in 

those cases. We used visual analysis of the residual errors against fitted values for 

all yield predictors, and no clear heterogeneity of error variance was evident. We 

also tested heterogeneity of error variance with a Levene’s test, and no significant 

differences were found. 

We searched for the optimal fixed structure based on ML estimations and 

multi-model inference (MMI), originated from the information theory approach 

(Burnham and Anderson, 2004). Aligned on the context and our objectives, AIC is 

the appropriate tool for model selection when compared to others indicators such as 

BIC, or hypothesis testing (Aho et al., 2014; Burnham et al., 2011). Because models 

have different fixed effects (but with same random structure) we used ML estimation 

instead of REML. The final model was presented using REML estimation.  

We also calculated a “weight of evidence” (Akaike weight, ωi), and a “measure 

of importance” for each possible predictor (based on relative importance; RI) in R 

software (MuMIn package, importance function; Bartón et al., 2018). The Akaike 

weights (ωi) represent the probability for a model i to be the actual “best model” 

given a set of considered models (Burnham and Anderson, 2004). In many contexts, 

the AIC selected “best model” will include and exclude some variables, yet this 

inclusion/exclusion does not distinguish differential evidence of importance for all 

predictors in itself. In consequence, RI provides a much more representative 

estimate of evidence for all predictors (Burnham and Anderson, 2004). 
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Proportional change in variance (PCV) at different grouping levels (site, 

genotype, and residual) was calculated as described in Merlo et al. (2005). PCV 

monitors changes specific to each variance component. That is, how the inclusion of 

additional predictor(s) has reduced (or increased) the variance component at 

different levels. Proportional change in variance is calculated as (equation 2): 

 

    
         

    
       (Equation 2) 

 

where VN-1 is the variance in the null model and VN-2 is the variance in the final model 

with predictors. Positive values indicate a reduction in the variation among groups 

(e.g., sites) given by the incorporation of predictors. 

R2 of adjusted models were obtained following the methodology described in 

Nakagawa and Schielzeth (2013) for generalized linear mixed models. Both marginal 

and conditional R2 were calculated. Marginal R2 (R2
m) represents the variance 

explained by fixed factors and is given by (equation 3): 

 

  
  

  
 

  
  ∑   

  
      

        (Equation 3) 

 

where   
  is the variance calculated from the fixed effect components of the linear 

mixed model,   
  is the variance component of the lth random factor, and   

  is the 

residual variance. Equation 3 can be modified to express conditional R2 (R2
c) 

(equation 4): 

 

  
  

  
  ∑   

  
   

  
  ∑   

  
      

        (Equation 4) 



 

 

 
This article is protected by copyright. All rights reserved. 
 

 

which represents the variance explained by the entire model (fixed and random 

factors) (Nakagawa and Schielzeth, 2013). Because predictor variables have 

different units and scales, the analysis was conducted with standardized variables 

using z-scores. Yet, figures and predictor effects are recalculated and presented in 

their original units and scales for easier visualization. 

 

RESULTS 

 

Management and environmental variations across sites 

 

The 53 trials reported here displayed a wide variability of management and 

environmental conditions as well as grain yields. The variables that were initially 

considered showed a large variation across time and space (Table 1). Grain yield 

ranged from 1675 to 7226 kg ha-1, with an average of 5133 kg ha-1 (Fig. 2), matching 

typical yields for soybean as a single crop in the region (Di Mauro et al., 2018). 

Among explored environmental variables (Table 1), those in the fixed 

components that were more likely to contribute to the optimal model were soil type, 

presence of a water table at sowing, rainfall from January to March, soil Ca, soil P, 

and soil pH. Interestingly, variations in soil type implied variations in the availability of 

several other soil nutrients (K was higher in Hapludolls; Mg, Mn, and Cu were higher 

in Argiudolls; p<0.05). There was no trend suggesting differential management with 

soil type and were also distributed at comparable geographical coordinates. 

Similarly, management variables in the fixed component that were more likely to 
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contribute to the optimal model were sowing date and maturity group. The rest of the 

explored variables (Table 1) showed no apparent association with yield. 

Data exploration also suggested potential interactions between sowing date 

and maturity group, soil type x water table and rainfall from January to March x water 

table, consequently all these interactions were included into the “beyond optimal 

model”. Finally, despite some correlations between pH, soil P and Ca, and rainfall 

from January to March, there was no evidence of multicollinearity among quantitative 

predictors of interest, and therefore they were all included in the analysis.  

 

Model selection 

 

The proposed “beyond optimal model” included two management variables 

(sowing date and maturity group) and its interaction, and six environmental variables 

(soil type, water table, rainfall from January to March, soil Ca, soil P, and soil pH), 

and the interactions soil type x water table and rainfall from January to March x water 

table, giving a total of eleven predictors (Table 2). The optimal fixed structure, based 

on MMI, included six of these predictors. These were sowing date, soil type, water 

table, rainfall from January to March, and the interactions soil type x water table and 

rainfall from January to March x water table. The model with the lowest AIC or “best 

model” (model A) has a ωi of 0.25 and predictors included presented a RI of 100% 

(Table 2). In agreement with this, models with fixed effects showed an important 

improvement in terms of AIC when compared to the model without fixed effects (or 

“null model”; Table 2), indicating the relevance of considered predictors. Including 

these predictors improved model accuracy from 0.86 to 0.92 (Table 2). 
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The model without fixed-effects predictors, which explored the random 

variation associated with random terms, indicated that 77% of the total yield variation 

was related to site-to-site differences, followed by 3% related to genotype-to-

genotype variations (Table 3). These results agree with the wide yield variation 

observed across sites (Fig. 2). The residual variation of the model was 14% of the 

total variance (Table 3). Similar results were observed in the model without 

standardization. 

By including management and environmental predictors, the “best model” 

(model A) explained a large portion of the total variability (Table 3). The fixed-effect 

predictors of the “best model” decreased the site-to-site variation in crop yield 

(PCVS) by 27%. This indicated that part of the variation in the model without fixed 

effects was caused by considered management and environmental variables (Table 

3). The residual of the final model improved as evidenced by a residual variance 

reduction (32%; Table 3). Similar results were observed in the model without 

standardization. 

 

Influence of predictor variables 

 

Final model (model A) included only one management variable (sowing date), 

and five environmental variables (soil type, water table, rainfall from January to 

March, the interaction of soil type x water table, and the interaction of rainfall January 

to March x water table). Sowing date, a management variable that can be easily 

modified by farmers, appeared with a high RI (100%; Table 2). The presence of an 

accessible water table at sowing and soil type, environmental variables that can be 

easily scouted by farmers, also showed a high RI (100%; Table 2).  
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We further examined the estimates of regression coefficients (β+) for the final 

model. This allowed quantifying the particular influence of each predictor variable on 

grain yield. The use of standardized variables allowed us to compare the influence of 

different predictors. Sowing date showed an accelerating negative effect on grain 

yield (Fig. 3A). The initial slope showed that the yield loss was -8.81 kg ha-1 day-1 of 

delay in sowing (Table 4). Results showed that the optimum period for sowing lasts 

until October 30th (90% of maximum yield) with an average decrease of -39 kg ha-1 

day-1 after this date. Interestingly, there was no evidence of interaction with maturity 

group, indicating that the yield of all maturity groups we studied responded similarly.  

Increased rainfall from January to March showed a positive yield response, 

although the magnitude of the effect depended on the presence of an available water 

table at sowing (Fig. 3B). The average response of grain yield to rainfall during this 

period was 6 kg of yield mm-1 at sites without water table, and close to 1 kg of yield 

mm-1 at sites with available water table at sowing (Table 4; Fig. 3B). The large 

rainfall range explored (48 to 508 mm) helped determine yield differences of ~3000 

and ~500 kg ha-1 without and with an accessible water table at sowing, respectively 

(Fig. 3B). Therefore, fields in the region with an accessible water table presented 

higher and more stable yields, regardless of rainfall amount from January to March. 

These results highlight the relevant yield effect of rainfall during soybean 

reproductive stages (occurring during these months), but also show that the 

presence of accessible water tables in the explored conditions can compensate for 

the lack of rainfall in this period.  

The presence of an accessible water table at sowing displayed an overall 

positive effect on grain yield that was six times higher in magnitude in the coarse-

textured Hapludoll compared to the Argiudoll soil type (1708 vs. 276 kg ha-1; Fig. 3C; 
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Table 4). Interestingly, with the presence of an influencing water table the average 

yield was similar for both soil types, being 5382 and 5298 kg ha-1 for Argiudolls and 

Hapludolls, respectively (Fig. 3C). The presence of an accessible water table 

masked the lower yields of Hapludolls compared to Argiudolls, which were -1515 kg 

ha-1 when water tables were not present at an accessible depth. Soil type and water 

table also affected the site-to-site yield stability. Hapludolls had higher yield 

variability than Argiudolls when an accessible water table did not exist, and the 

presence of an accessible water table reduced yield variability in both soil types. 

Genotypes random effects, or BLUPs, indicated DM46R18 was the genotype 

promoting the highest positive yield effect across sites, followed by DM40R16, 

DM50I17, and DM4612 (Table 4). A yield difference of ca. 400 kg ha-1 was evident 

when comparing the highest and lowest yielding genotypes, indicating the relevance 

of adequate genotype selection for maximizing yield.  

 

DISCUSSION 

 

Dissecting the relative importance of crop management x environment 

interactions is not trivial (Gambin et al., 2016; Rattalino Edreira et al., 2017). 

Developing tools to guide farmers’ decisions for closing exploitable yield gaps under 

different conditions is critical (Zhang et al., 2020). In the present study we identified 

and quantified the yield influence of important predictors for soybean yield in the 

central temperate region of Argentina, where soybean is cultivated under contrasting 

technical, management, and environmental conditions. Identified yield predictors 

were based on variables that can be optimized based on observed variability. Our 
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model satisfactorily described the spatial and temporal variation in grain yield (r2 = 

0.92), which ranged from 1675 to 7226 kg ha-1 (Fig. 2).  

In the context of maximizing yield per unit of land area we found one specific 

management decision with a strong yield effect. Sowing date showed an optimum 

period to prevent drastic yield losses until October 30th. After this sowing date an 

important yield penalty (-39 kg ha-1 day-1) unfolds, similar to that reported before in 

Argentina (Andrade, 1995), the United States (Grassini et al., 2015; Rattalino Edreira 

et al., 2017), and Brazil (Zanon et al., 2016). With another approach, Di Mauro et al. 

(2018) highlighted the advantages of early sowings for maximizing soybean yields in 

the study region but suggested a later threshold (November 25th) before yield losses 

occur. This management predictor can be easily considered by farmers to optimize 

yields. Based on our results, earlier sowings are recommended across all the 

explored soil types and environmental conditions that we covered. 

Argentinean soybean production systems are predominantly rainfed (Hall et 

al., 1992). For the range of maturity groups and sowing dates commonly used, 

soybean reproductive stages are achieved between January to March (Santachiara 

et al., 2017), and the rainfall during this period proved to be critical for maximizing 

yields, especially where water tables were not accessible. This is not surprising since 

this is the period when crops experience the highest water demands (Calviño and 

Sadras, 1999) and also determine the number of seeds per unit land area that will be 

harvested (Egli and Yu, 1991; Rotundo et al., 2012). Previous studies described 

positive water table effects on soybean yield, with an optimum depth ranging from 

1.2 and 2.2 m depth (Nosetto et al., 2009). Our results showed that the crops with 

water tables less than 2 m below the surface at sowing had reduced yield variability 

across a wide rainfall range, most likely resulting from the capillary supply of water to 
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crops. Soybean crops sowed into soils with water tables deeper than 2 m below the 

surface had greater dependency on rainfall, especially during the reproductive period 

of the crop. Rizzo et al. (2018) highlighted that the presence of shallow water tables 

under maize crops are leading to higher and more stable yields in central United 

States. The results for soybean in central Argentina in this analysis agree with those 

findings for maize in the United States. 

We explored a wide range of soil variables to search for nutrient limitations 

across sites with large yield differences. We expected that some nutrients could help 

explain part of those differences, but our analysis showed that soil type was more 

relevant than any specific nutrient. Although some nutrients varied with soil type (i.e., 

K was higher in Hapludolls, and Mg, Mn, and Cu were higher in Argiudolls), soil type 

helped to capture functional soil properties that may escape what is captured by 

individual indicators (like nutrient concentrations in our case). Physical effects on 

water supply was the most likely underlying mechanism of soil type effects. 

By exploring yields within the two most representative but texturally different 

soil types (Alvarez and Lavado, 1998) used for soybean in central Argentina, we 

identified a key contrast regarding water supply to crops, manifested by the soil type 

x water table interaction. While soybean crops grown on sandier Hapludolls had 

~1500 kg ha-1 lower yields than crops grown on Argiudolls when water tables were 

not accessible, this yield difference disappeared where those water tables were less 

than 2 m deep (Nosetto et al., 2009). These observations reflect the lower water 

holding capacity that Hapludolls have compared with Argiudolls (80-180 vs. 150-250 

mm from 0 to 2 m depth) under unsaturated conditions (no accessible water tables), 

but their higher capacity to store and transport water once they approach saturation 

(water tables becoming accessible). This is expected for sandier soils given their 
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large volumetric fraction involved in storage above field capacity (Hillel, 2003). While 

the observed yield differences found between Hapludolls and Argiudolls are in 

accordance with the general observation of higher dependency on real time 

precipitations at soils with restricted water holding capacity and availability (Calviño 

and Sadras, 1999), they highlight how this restriction flips to a comparative 

advantage with shallow water tables in the case of sandy soils.  

Our results showed that maturity group choices had little impact on crop yield 

variability, in agreement with Santachiara et al. (2017) reporting that widely used 

maturity groups in central Argentina have different strategies for yield determination 

but reach similar yield levels. Genotype selection can be optimized to increase yields 

across a wide range of environment and management scenarios. The genotypes 

tested represent a small sample of commercial germplasm currently available in 

Argentina, and span six years of genetic improvement between DM46R18 and 

DM4612, which were released in 2018 and 2012, respectively. We found an average 

yield difference of 414 kg ha-1 for these two varieties, which is in general agreement 

with the reported genetic gain for the region of 44 kg ha-1 yr-1 (de Felipe et al., 2016).  

In summary, our study explored a wide range of management decisions and 

environmental variables that could help optimize soybean yields and anticipate part 

of their yield variability. However, not all predictors had a high impact on yield. 

Variables like sowing date, genotype selection, rainfall during reproductive stages, 

presence of an accessible water table, and soil type drive soybean yields under 

current farming conditions. Soybean production in the central temperate region of 

Argentina will benefit further from a deeper understanding of the interactive effects of 

soil types and water table conditions on yields. These are aspects that can be easily 
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anticipated, helping not only farmers but others in the soybean production and 

supply chain to optimize their actions.  

 

CONCLUSIONS 

 

We identified management and environmental predictors that are relevant for 

soybean yield in our region and quantified the magnitude of their effect. Management 

decisions related to genotype selection and sowing date are very important. 

Genotype selection can increase yields by 400 kg ha-1, and optimum sowing date 

may be preserved until October 30th (with an average decrease of 39 kg ha-1 day-1 

after this date). 

Environmental variables including soil type, the presence of a water table less 

than 2 m from the surface, and rainfall during the reproductive crop periods all 

helped explain yield variability. The availability of a water table helped obtain more 

stable and higher yields regardless of rainfall and soil type. Soil variables like pH, 

Ca, and P were not relevant to differentiate sites with contrasting soybean grain 

yield.  
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FIGURE CAPTIONS 

 

Fig. 1. Map of the center temperate region of Argentina showing the location of 

tested sites. Empty red circles indicate trials sown in 2016/2017 (n: 19), empty red 

squares represent trials sown in 2017/2018 (n: 15), and empty red triangles indicate 

trials sown in 2018/2019 (n: 19). Solid lines show province boundaries, and broken 

lines describe annual rainfall isohyets (700, 900, and 1100 mm yr-1) based on data 

from 1970 to 2000. 
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Fig. 2. Boxplot of adjusted grain yield (13.5% moisture) for the 53 trials. The red 

dash line reflects the yield mean of all tested trials, averaging 5133 kg ha-1.  
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Fig. 3. Yield response to sowing date (Fig. 3A), to rainfall from January to March (J-

M) (Fig. 3B), and to each soil type x water table combination (Fig. 3C). In Fig. 3A the 

red solid line reflects the effect of sowing date. In Fig. 3B the red and black dashed 

line reflects the effect of rainfall at sites with the presence of a water table and with 

no water table at sowing, respectively (Fig. 3B). In Fig. 3B empty red circles indicate 

sites with presence of water table, and empty black show sites with no water table at 

sowing (Fig. 3B). In Fig. 3C the blue and green dash lines reflect the effect of a water 

table present at sowings at sites with an Argiudoll and Hapludoll soil, respectively. 

Observed yields were corrected with random effects.  
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Table 1. Description of environmental and management variables explored in 53 

sites, together with their unit and explored range. Figure 1 provides a geographical 

distribution of all sites across the region. ESP stands for exchangeable sodium 

percentage and CEC for cationic exchange capacity. Maturity group IIIL refers to III 

long, IVM refers to IV medium, and IVL refers to IV long.  

 

Variable   Type Unit Explored range 

     
Environmental      
     
Accumulated 
rainfall 

 Quantitative mm  

 October       7 to 340 
 November     13 to 320 
 December     18 to 282 
 January     22 to 322 
 February       0 to 195 
 March       5 to 202 

 
October to 
December 

    59 to 656 

 
January to 
March 

    48 to 508 

 
January to 
February 

    27 to 390 

 
February to 
March 

      5 to 323 

 
December to 
January 

  112 to 495 

 
October to 
March 

     261 to 1163 

Max. air 
temperature 

 Quantitative °C  

 December   26.6 to 32.8 
 January   27.6 to 32.7 
 February   26.6 to 32.6 
 March   23.2 to 30.5 
Mean air 
temperature 

 Quantitative °C  

 December   20.8 to 24.7 
 January   22.0 to 25.4 
 February   20.5 to 25.0 
 March   17.4 to 22.4 
Min. air 
temperature 

 Quantitative °C  

 December   13.8 to 17.2 
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 January   16.0 to 19.6 
 February   13.3 to 19.0 
 March   11.1 to 16.0 

Soil type  Qualitative 
Soil taxonomy 
classification 

Argiudolls, 
Hapludolls 

Soil water at 
planting 

 Quantitative mm 112 to 228 

Water table  Qualitative Yes/No  
Soil organic 
matter 

 Quantitative % 1.2 to 4.1 

Soil pH  Quantitative  5.2 to 6.7 
Soil 
phosphorus 

 Quantitative ppm   6 to 80 

Soil potassium  Quantitative ppm 197 to 897 
Soil sulfur  Quantitative ppm   1.1 to 59.4 
Soil calcium  Quantitative ppm      60 to 2,212 
Soil 
magnesium 

 Quantitative ppm 109 to 339 

Soil sodium  Quantitative ppm     9 to 151 
Soil sums of 
bases 

 Quantitative meq 100g-1   5 to 15 

Soil base 
saturation  

 Quantitative %   47 to 100 

Soil ESP  Quantitative % 0.3 to 6.4 
Soil CEC  Quantitative meq 100g-1   7 to 28 
Soil zinc  Quantitative ppm 1 to 4 
Soil boron  Quantitative ppm 0.2 to 1.8 
Soil 
manganese 

 Quantitative ppm   16 to 231 

Soil iron  Quantitative ppm   80 to 262 
Soil copper  Quantitative Ppm 0.6 to 3.4 
     
Management     

     

Sowing date  Quantitative days 
October 10th to 
December 1st 

Maturity group  Qualitative 000 to X IIIL, IVM, IVL 
Row spacing  Quantitative m 0.35, 0.38, 0.42, 0.52 
Fertilization 
with P 

 Qualitative Yes/No  
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Table 2. Akaike's Information Criterion (AIC) for mixed effects models of the potential 

effect of management and environmental variables on grain yield in soybean. The 

table describes the best 10 models (A to J; from a total of 830 possible models) plus 

the model without fixed effects (null model). Each column represents a different 

predictor variable. Uncross cells indicate variables that were not included in a 

particular model. AIC measures the relative goodness of fit of a given model and the 

ΔAIC column indicates the difference between a model's AIC and that of the best-

fitting model. The ω column express the probability of being the best model among 

all possible models. R2
m represents the variance explained by fixed factors, while R2

c 

represents the variance explained by the entire model. RI represents de relative 

importance of each predictor. J stands for January and M for March. See materials 

and methods section for further details. 

Mode
l 

Management variables  Environmental variables  Model statistics 

 
Sowin
g date 

 

Maturit
y group 

 

Sowing 
date 

x 
maturit
y group 

 

Soil 
typ
e 

 

Wate
r 

table 
 

Rainfal
l J-M 

 

Soil 
type 

x 
wate

r 
table 

Rainfal
l J-M 

x 
water 
table 

C
a 

P 
p
H 

 AIC 
ΔAI
C 

ω R
2

m R
2

c 

                   

A +    + + + + +     
510.

8 
0.0 

0.2
5 

0.3
6 

0.9
2 

B +    + + + + +  +   
512.

3 
1.5 

0.1
2 

0.3
5 

0.9
2 

C +    + + + + + +    
512.

6 
1.8 

0.1
0 

0.3
6 

0.9
2 

D +    + + + + +   +  
513.

0 
2.1 

0.0
9 

0.3
6 

0.9
2 

E +    + + + + + + +   
514.

1 
3.3 

0.0
5 

0.3
6 

0.9
2 

F + +   + + + + +     
514.

4 
3.6 

0.0
4 

0.3
5 

0.9
2 

G +    + + + + +  + +  
514.

5 
3.7 

0.0
4 

0.3
5 

0.9
2 

H +    + + + + + +  +  
514.

8 
4.0 

0.0
3 

0.3
6 

0.9
2 

I     + + + + +     
515.

2 
4.3 

0.0
3 

0.3
2 

0.9
2 

J + +   + + + + +  +   
516.

0 
5.1 

0.0
2 

0.3
5 

0.9
2 

                   

Null              
610.

6 
99.8 

0.0
0 

- 
0.8
6 

                   
RI 100 6 0  100 100 100 100 100 22 3 18       
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(%) 0 
                   

 

Table 3. Variance components (VC), for all random effects, proportional change in 

variance (PCV), and variance inflation factor (VIF) for the model without fixed effects 

and the final model at z-scores and non-standardized.  

Random effects Model without fixed 
effects 

(z-scores) 

Final model 
(z-scores) 

Model without fixed effects Final model 

     
Site (S) 0.91468 0.66877 1,039,527 760,051 
Genotype (G) 0.03549 0.03331      40,339   37,856 
Block (B) 0.07065 0.07063      80,304   80,284 
Residual 0.16458 0.11160    187,038 126,835 
     
PCVS - 27 % - 27 % 
PCVG -   6 % -   6 % 
PCVB      -   0 % -   0 % 
PCVResidual - 32 % - 32 % 
 
VIFs 
 

 < 4.0  < 4.0 

Table 4. Mixed-effects model estimates with their standard errors (SE) of the 

influences of environmental and management predictors on grain yield and their 

units. WT stands for water table, J for January and M for March. β1 and β2, describe 

parameters of a second-order polynomial function fitted to yield and each predictor. 

The estimated base model included Argiudoll as soil type, and absence of water 

table.  

Fixed effects    Final model 
(z-scores) 

Final model Units 

       

       
Intercept 
 

   -0.03 ± 0.47    4120 ± 1193 kg ha-1 

Sowing date β1   -0.34 ± 0.12     -8.81 ± 53.56 kg ha-1 day-1 
 
 

β2   -0.03 ± 0.07   -0.33 ± 0.74  

Rainfall J to M β1 with no WT  0.70 ± 0.16    7.41 ± 7.59 kg ha-1 mm-1 
 
 

β2 with no WT  -0.05 ± 0.20   -0.003 ± 0.01  

Rainfall J to M x water 
table 

β1 with WT  0.11 ± 0.20   -1.27 ± 8.33 kg ha-1 mm-1 
β2 with WT  0.06 ± 0.20    0.004 ± 0.01  
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Water table 
 

 for Argiudoll  0.26 ± 0.54      276 ± 1022 kg ha-1 

Water table x soil type 
 

 for Hapludoll  1.34 ± 0.46  1708 ± 487 kg ha-1 

Soil type  for Hapludoll  -1.42 ± 0.31 -1515 ± 333 kg ha-1 
       

 

Table 5. List of tested commercial genotypes, their maturity group, cycle length, and 

yield effect. Maturity group IIIL refers to III long, IVM refers to IV medium, and IVL 

refers to IV long. 

Genotype 
 

Maturity group Cycle differences to R7 Yield difference over mean 

  days kg ha-1 
    

DM40R16  IIIL 0    75 
DM4612  IVM 4 -183 
DM46R18  IVM 4   231 
DM50i17 IVL 8 -123 

        

 

 


