Maximal Inequalities in Orlicz Spaces¹

Sonia Acinas

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (6300) La Pampa, Argentina sonia.acinas@gmail.com

Sergio Favier

Instituto de Matemática Aplicada San Luis CONICET and Departamento de Matemática Universidad Nacional de San Luis (5700) San Luis, Argentina sfavier@unsl.edu.ar

Abstract. Given non negative measurable real valued functions f and g, we get inequalities of the type $\int_{\Omega} \Psi(f) d\mu \leq K \int_{\Omega} \Psi(\frac{g}{c}) d\mu$, assuming weak type inequalities $\mu(\{f > a\}) \leq K \int_{\{f > a\}} \varphi(\frac{g}{a}) d\mu$ where $\varphi, \psi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ are nondecreasing functions related by \prec_N and where Ψ is a Young function given by $\Psi(x) = \int_0^x \psi(t) dt$. We apply these results to best approximation operators and sub additive operators.

Mathematics Subject Classification: Primary: 41A44, Secondary: 42B25

Keywords: Orlicz Spaces, Hardy-Littlewood maximal operator, best approximation operators, Φ -approximations, maximal inequalities

1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $\mathcal{M} = \mathcal{M}(\Omega, \mathcal{A}, \mu)$ be the set of all \mathcal{A} -measurable real valued functions.

By Φ we denote the set of functions $\varphi : \mathbb{R} \to \mathbb{R}$ which are nonnegative, even, nondecreasing on $[0, \infty)$, such that $\varphi(x) > 0$ for all x > 0, $\varphi(0+) = 0$ and $\lim_{t\to\infty} \varphi(t) = \infty$.

Let $\mathbb{R}_0^+ = [0, \infty)$. We say that a nondecreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies Δ_2 -condition, symbolically $\varphi \in \Delta_2$, if there exists a constant $\Lambda = \Lambda_{\varphi} > 0$ such that $\varphi(2a) \leq \Lambda \varphi(a)$ for all $a \geq 0$.

¹This paper was supported by CONICET and UNSL grants.

A nondecreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies ∇_2 -condition, symbolically $\varphi \in \nabla_2$, if there exists a constant $\lambda = \lambda_{\varphi} > 2$ such that $\varphi(2a) \ge \lambda \varphi(a)$ for all $a \ge 0$.

We claim that a nondecreasing function $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ satisfies Δ' -condition, symbolically $\varphi \in \Delta'$, if there exists a constant $K_1 > 0$ such that $\varphi(xy) \leq K_1 \varphi(x) \varphi(y)$ for all $x, y \geq x_0 \geq 0$.

If $x_0 = 0$ then we say that φ satisfies the Δ' -condition globally.

Let Φ be a Young function, that is, an even and convex function $\Phi : \mathbb{R} \to \mathbb{R}_0^+$ such that $\Phi(a) = 0$ iff a = 0.

Unless it makes a different statement, the Young function Φ is the one given by $\Phi(x) = \int_0^x \varphi(t) dt$, where $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is the right-continuous derivative of Φ .

If $\varphi \in \Phi$, we define

$$L^{\varphi}(\Omega, \mathcal{A}, \mu) = \left\{ f \in \mathcal{M} : \int_{\Omega} \varphi(tf) \, d\mu < \infty \text{ for some } t > 0 \right\}.$$

If φ is a Young function, then $L^{\varphi}(\Omega, \mathcal{A}, \mu)$ is an Orlicz Space (see [7]).

Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function such that $\varphi(0) = 0$ and let $f, g : \Omega \to \mathbb{R}^+_0$ be two fixed measurable functions.

Mazzone and Zó have proved in [6] that the Weak Type Inequality

(1.1)
$$\mu(\{f > a\}) \le \frac{C_w}{\varphi(a)} \int_{\{f > a\}} \varphi(g) \, d\mu \quad \text{for all } a > 0$$

implies, under some conditions, the inequality

(1.2)
$$\mu(\{f > a\}) \le \frac{C_w}{\varphi(a)} \int_{\{g > c.a\}} \varphi(g) \, d\mu$$

for all a > 0 and some $c \in (0, 1)$;

then, from (1.2), they reach the Strong Type Inequality

(1.3)
$$\int_{\Omega} \Psi(f) \, d\mu \le 2C_w \rho \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu$$

for a class of Young functions $\Psi \in C^1([0,\infty))$ whose derivative ψ is related, in some way, to φ .

We wish to develop a similar scheme leaving from a different weak type inequality, that is

(1.4)
$$\mu(\{f > a\}) \le C_w \int_{\{f > a\}} \varphi\left(\frac{g}{a}\right) d\mu, \quad \text{for all } a > 0;$$

moving on to other weak type inequality, different to (1.2), like

(1.5)
$$\mu(\{f > a\}) \le C_w \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu, \quad \text{for all } a > 0$$

and some c > 0; and finally to obtain a strong type inequality like

(1.6)
$$\int_{\Omega} \Psi(f) \, d\mu \le C_w K \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu$$

where K is a positive constant depending only on c and ρ .

2. Weak Type Inequalities

First, we state conditions to reach the Weak Type Inequality (1.5) from (1.4), as it has done in [6] to get (1.1) from (1.2).

Lemma 2.1. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function such that $\varphi(0) = 0$.

Suppose that f and g are nonnegative measurable functions satisfying (1.4). If $\varphi(0+) = 0$, then there exists a constant c > 0 such that

$$\mu(\{f > a\}) \le 2C_w \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu, \quad \text{for all } a > 0.$$

Proof. From the hypothesis, we choose c > 0 such that $1 - C_w \varphi(c) > \frac{1}{2}$. We write $\{f > a\} = (\{g \le ca\} \cap \{f > a\}) \cup (\{g > ca\} \cap \{f > a\})$, we split the integral in the right hand side of (1.4) on the sets $\{g \le ca\} \cap \{f > a\}$ and $\{g > ca\} \cap \{f > a\}$ and we employ the fact that φ is a nondecreasing function to obtain

$$\mu(\{f > a\}) \le C_w \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu + C_w \varphi(c) \mu(\{f > a\} \cap \{g \le ca\}).$$

Owing to $\mu(\{f > a\}) \le \mu(\{f > a\} \cap \{g \le ca\})$, we have

$$\mu(\{f > a\}) \le C_w \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu + C_w \varphi(c) \mu(\{f > a\}),$$

and consequently $[1 - C_w \varphi(c)] \mu(\{f > a\}) \leq C_w \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu.$ Since $1 - C_w \varphi(c) > \frac{1}{2}$, we get $\frac{C_w}{1 - C_w \varphi(c)} < 2C_w$ and eventually

$$\mu(\{f > a\}) \le 2C_w \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu \quad \forall a > 0.$$

Remark 1. If $c \ge 1$ in (1.5), then there exists $k \in (0, 1)$ such that

$$\mu(\{f > a\}) \le 2C_w \int_{\{g > ka\}} \varphi\left(\frac{g}{a}\right) d\mu \quad \forall a > 0.$$

Remark 2. In Lemma 2.1 we **only** demand $\varphi(0+) = 0$ regardless of the condition $\varphi(rx) \leq \frac{1}{2}\varphi(x)$ for a constant $r \in (0, 1)$ and for all x > 0 which is essential to prove Lemma 2.2 in [6].

Next, we exhibit measurable functions $f, g: \Omega \to \mathbb{R}_0^+$, and a nondecreasing function $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ such that $\varphi(0) = 0$ and $\varphi(0+) = 0$ verifying (1.5), that is,

$$\mu(\{f > a\}) \le K_1 \int_{\{g > c_1a\}} \varphi\left(\frac{g}{a}\right) d\mu$$

for all a > 0 and for a pair of constants $K_1 > 0$ and $c_1 > 0$; while, (1.2) does not hold, i.e, the following inequality

$$\mu(\{f > a_1\}) \le \frac{C}{\varphi(a_1)} \int_{\{g > ca_1\}} \varphi(g) \, d\mu$$

is false for some $a_1 > 0$ and for any pair of positive constants C and c.

Let $\Omega = \mathbb{R}_0^+$, $\varphi(x) = e^x - 1$ and $g(x) = \frac{1}{2}\chi[0, 1]$ where $\mu = |.|$ is the Lebesgue measure. For a fixed number c > 0, we have

$$\int_{\{g>ca\}} \varphi\left(\frac{g}{a}\right) dx = \begin{cases} \varphi(\frac{1}{2a}) & \text{if } a < \frac{1}{2c} \\ 0 & \text{if } a \ge \frac{1}{2c} \end{cases}$$

The function $F(a) = \varphi(\frac{1}{2a})$ is decreasing, continuous and it also satisfies $\lim_{a \to \infty} F(a) = 0$ y $F(0+) = \infty$.

Let
$$f(x) = \begin{cases} F^{-1}(x) & \text{if } x > \varphi(c) \\ \frac{1}{2c} & \text{if } 0 < x \le \varphi(c) \end{cases}$$
, then $|\{f > a\}| = \begin{cases} F(a) & \text{if } a < \frac{1}{2c} \\ 0 & \text{if } a \ge \frac{1}{2c} \end{cases}$

Consequently, (1.5) is true with $c = 2C_w = 1$.

On the other hand, if $a < \frac{1}{2c}$ then $\int_{\{g > \tilde{c}a\}} \frac{\varphi(g)}{\varphi(a)} dx = \frac{\varphi(\frac{1}{2})}{\varphi(a)}$.

Therefore, for every pair of positive constants K and c there exists $a: 0 < a < \min\{\frac{1}{2\tilde{c}}; \frac{1}{2c}\}$ such that

$$K \int_{\{g > \tilde{c}.a\}} \frac{\varphi(g)}{\varphi(a)} \, dx < \int_{\{g > \tilde{c}a\}} \varphi\left(\frac{g}{a}\right) \, dx$$

since $\frac{\varphi(\frac{1}{2a}).\varphi(a)}{\varphi(\frac{1}{2})} \to \infty$ as $a \to 0$. Hence, (1.2) is not verified.

We also reach, in some cases, inequalities (1.5) and (1.4) from inequalities (1.2) and (1.1) respectively.

Proposition 2.2. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function such that $\varphi(0) = 0$ and assume $\varphi \in \Delta'$. Suppose f and g are nonnegative measurable functions. Then, (1.2) implies (1.5) and (1.1) implies (1.4).

Proof. It follows straightforward from $\varphi \in \Delta'$ globally and $\varphi(a) > 0$ for any a > 0.

3. Strong Type Inequality

Let us recall a concept introduced in [6]

Definition 3.1. A function $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ is quasi-increasing iff there exists a constant $\rho > 0$ such that $\frac{1}{x} \int_0^x \eta(t) dt \le \rho \eta(x)$ for all $x \in \mathbb{R}^+$. We will call ρ the q.i constant.

From the previous definition Mazzone and Zó, in [6], established

Definition 3.2. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$.

 $\varphi \prec \psi$ iff $\frac{\psi}{\varphi}$ is a quasi-increasing function; that is, iff there exists a constant $\rho > 0$ such that

$$\frac{1}{x} \int_0^x \frac{\psi(t)}{\varphi(t)} \, dt \le \rho \frac{\psi(x)}{\varphi(x)} \ \text{for all } x \in \mathbb{R}^+.$$

In Theorem 2.4 in [6], the authors employed relation \prec to get a strong type inequality like (1.6). Consequently, with the aim of following an analogous pattern, we define

Definition 3.3. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$. $\varphi \prec_N \psi$ iff $\{\psi(x)\varphi(\frac{\alpha}{x})\}_{\alpha \in \mathbb{R}^+}$ is a collection of quasi-increasing functions with the same q.i constant; namely, iff there exists a constant $\rho > 0$ such that

$$\frac{1}{x}\int_0^x \psi(t)\varphi\left(\frac{\alpha}{t}\right)dt \le \rho\psi(x)\varphi\left(\frac{\alpha}{x}\right) \text{ for all } x \in \mathbb{R}^+ \text{ and for all } \alpha \in \mathbb{R}^+.$$

First, we notice that \prec is always a reflexive relation while \prec_N is not. In fact, for any $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ there exists $\rho \ge 1 > 0$ such that

$$\frac{1}{x} \int_0^x \frac{\varphi(t)}{\varphi(t)} dt \le \rho \frac{\varphi(x)}{\varphi(x)} \text{ for all } x \in \mathbb{R}^+; \text{ that is to say, } \varphi \prec \varphi.$$

However, if $\varphi(x) = x(x+1)$ there does not exist $\rho > 0$ such that

$$\frac{1}{x} \int_0^x t(t+1)\frac{\alpha}{t} \left(\frac{\alpha}{t}+1\right) dt \le \rho x(x+1)\frac{\alpha}{x} \left(\frac{\alpha}{x}+1\right)$$

for all $\alpha \in \mathbb{R}^+$ and for all $x \in \mathbb{R}^+$. Hence, $\varphi \not\prec_N \varphi$.

Next, we set sufficient conditions to assure the relation \prec_N .

Proposition 3.4. Let φ , $\psi : \mathbb{R}^+ \to \mathbb{R}^+$. If $H(x) = \psi(x)\varphi(\frac{\alpha}{x})$ is a nondecreasing function from \mathbb{R}^+ into itself for all $\alpha > 0$, then $\varphi \prec_N \psi$.

Proof. It follows straightforward from $0 < H(t) \le H(x) \ \forall t \in (0, x)$ due to H(x) is a nondecreasing function on $(0, \infty)$.

The following result follows straightforward from the definitions of \prec and \prec_N .

Proposition 3.5. Let $\varphi, \psi, M : \mathbb{R}^+ \to \mathbb{R}^+$ nondecreasing functions.

- a) If $\varphi \prec_N \psi$, then $\varphi \prec_N M \psi$.
- b) If $\varphi \prec \psi$, then $\varphi \prec M\psi$.

Proposition 3.4 claims that every nondecreasing function is a quasi-increasing one; in addition, a nonincreasing function may be a quasi-increasing one because Lemma 3.1 in [6] establishes

Let $\eta : \mathbb{R}^+ \to \mathbb{R}^+$ be a nonincreasing function. If η satisfies $\eta(\frac{x}{2}) \leq K\eta(x)$ with K < 2, then η is quasi-increasing.

Thus, from this last result, we obtain

Proposition 3.6. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function. If $\varphi \in \Delta_2$ with $\Lambda_{\varphi} < 2$, then

- a) $\{\varphi(\frac{\alpha}{x})\}_{\{\alpha \in \mathbb{R}^+\}}$ is a collection of quasi-increasing functions with the same q.i constant.
- b) $\frac{1}{\varphi(x)}$ is a quasi-increasing function.

Example 3.7. $\{\ln(\sqrt[3]{\frac{\alpha}{x}}+1)\}_{\alpha\in\mathbb{R}^+}$ is a collection of quasi-increasing functions with the same q.i constant and $\frac{1}{\ln(\sqrt[3]{x}+1)}$ is quasi-increasing.

Remark 3. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$ be nondecreasing functions.

a) If $\{\varphi(\frac{\alpha}{x})\}_{\{\alpha \in \mathbb{R}^+\}}$ is a collection of quasi-increasing functions with the same q.i constant, then $\varphi \prec_N \psi$.

b) If $\frac{1}{\varphi(x)}$ is a quasi-increasing function on \mathbb{R}^+ , then $\varphi \prec \psi$.

Proposition 3.8. Let $\Phi(x) = \int_0^x \varphi(t) dt$ and $\Psi(x) = \int_0^x \psi(t) dt$. Let $\Psi(x)\Phi(\frac{\alpha}{x})$ be a nonincreasing function for all $\alpha \in \mathbb{R}^+$, $\Phi \in \Delta_2$ and $\Psi \in \nabla_2$. If $\lambda_{\Psi}^{-1}\Lambda_{\Phi} < 2$, then we have $\Phi \prec_N \Phi$.

Proof. As $\Phi \in \Delta_2$, $\exists \Lambda_{\Phi} > 0$ such that $\Phi(2x) \leq \Lambda_{\Phi} \Phi(x) \quad \forall x > 0$; and due to $\Psi \in \nabla_2$, $\exists \lambda_{\Psi} > 0$ such that $\Psi(2x) \geq \lambda_{\Psi} \Psi(x) \quad \forall x > 0$. Consequently, we have

$$\Psi\left(\frac{x}{2}\right)\Phi\left(\frac{2\alpha}{x}\right) \le \lambda_{\Psi}^{-1}\Lambda_{\Phi}\Psi(x)\Phi\left(\frac{\alpha}{x}\right) \quad \forall \alpha \in \mathbb{R}^{+} \text{ and } \forall x > 0.$$

By hypothesis $\Psi(x)\Phi(\frac{\alpha}{x})$ is a nonincreasing function $\forall \alpha \in \mathbb{R}^+$ then, by application of Lemma 3.1 in [6], $\{\Psi(x)\Phi(\frac{\alpha}{x})\}_{\{\alpha\in\mathbb{R}^+\}}$ is a collection of quasi-increasing functions with the same q.i constant iff $\Phi \prec_N \Psi$.

Right afterwards, we state conditions under which relations \prec and \prec_N are simultaneously valid.

Proposition 3.9. Let Φ_1 and Φ_2 be two Young functions restricted to \mathbb{R}^+ and let φ_{1+} , φ_{2+} be their right derivatives.

If Φ_1 , $\Phi_2 \in \Delta_2$, we have $\Phi_1 \prec \Phi_2$ iff $\varphi_{1+} \prec \varphi_{2+}$ and $\Phi_1 \prec_N \Phi_2$ iff $\varphi_{1+} \prec_N \varphi_{2+}$

Proof. To begin with, we obtain some inequalities which will be employed later. As Φ_1 and Φ_2 are Young functions restricted to \mathbb{R}^+ and φ_{1+} and φ_{2+} are their right derivatives, we get

(3.1)
$$\frac{x}{K_2}\varphi_{2+}(x) \le \Phi_2(x) \le x\varphi_{2+}(x) \quad \forall x \in \mathbb{R}^+$$

and

(3.2)
$$\frac{\alpha}{K_1 x} \varphi_{1+}\left(\frac{\alpha}{x}\right) \le \Phi_1\left(\frac{\alpha}{x}\right) \le \frac{\alpha}{x} \varphi_{1+}\left(\frac{\alpha}{x}\right) \quad \forall x \in \mathbb{R}^+ \text{ and } \forall \alpha \in \mathbb{R}^+.$$

 \Rightarrow) If $\Phi_1 \prec_N \Phi_2$, then $\exists \rho_1 > 0$ such that

$$\frac{1}{x} \int_0^x \Phi_2(t) \Phi_1\left(\frac{\alpha}{t}\right) dt \le \rho_1 \Phi_2(x) \Phi_1\left(\frac{\alpha}{x}\right) \quad \forall x \in \mathbb{R}^+ \text{ and } \forall \alpha \in \mathbb{R}^+.$$

From (3.1), (3.2) and the hypothesis, $\exists R_1 = K_1 K_2 \rho_1 > 0$ such that

$$\frac{1}{x} \int_0^x \varphi_{2+}(t) \cdot \varphi_{1+}\left(\frac{\alpha}{t}\right) dt \le R_1 \varphi_{2+}(x) \varphi_{1+}\left(\frac{\alpha}{x}\right) \quad \forall x \in \mathbb{R} \text{ and } \alpha \in \mathbb{R}^+$$

Therefore, $\varphi_{1+} \prec_N \varphi_{2+}$.

 $\Leftarrow) \text{ If } \varphi_{1+} \prec_N \varphi_{2+}, \text{ then } \exists \rho_2 > 0 \text{ such that}$

$$\frac{1}{x} \int_0^x \varphi_{2+}(t) \varphi_{1+}\left(\frac{\alpha}{t}\right) dt \le \rho_2 \varphi_{2+}(x) \varphi_{1+}\left(\frac{\alpha}{x}\right) \forall x \in \mathbb{R}^+ \text{ and } \forall \alpha \in \mathbb{R}^+.$$

From (3.1), (3.2) and the hypothesis, $\exists R_2 = K_1 K_2 \rho_2 > 0$ such that

$$\frac{1}{x} \int_0^x \Phi_2(t) \Phi_1\left(\frac{\alpha}{t}\right) dt \le R_2 \Phi_2(x) \Phi_1\left(\frac{\alpha}{x}\right) \quad \forall x \in \mathbb{R}^+ \text{ and } \forall \alpha \in \mathbb{R}^+.$$

Therefore, $\Phi_1 \prec_N \Phi_2$.

The following result follows straightforward from the definitions

Proposition 3.10. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$. Let $p \in \mathbb{R}$. If $\varphi(x) = x^p$, then $\varphi \prec \psi$ iff $\varphi \prec_N \psi$.

The following result is an immediate consequence of Proposition 3.6 and Remark 3.

Proposition 3.11. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function. If $\varphi \in \Delta_2$ with $\Lambda_{\varphi} < 2$, then $\varphi \prec \psi$ and $\varphi \prec_N \psi$.

Proposition 3.12. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$. If there exist constants $0 < K_1 \leq K_2$ such that $K_1 \leq \varphi(x)\varphi(\frac{\alpha}{x}) \leq K_2$ for all $\alpha > 0$ and for all x > 0, then $\varphi \prec \psi$ iff $\varphi \prec_N \psi$.

Proof. From the hypothesis, there exist $0 < K_1 \leq K_2$ such that

(3.3)
$$\frac{1}{K_1}\varphi\left(\frac{\alpha}{x}\right) \ge \frac{1}{\varphi(x)} \text{ and } \varphi\left(\frac{\alpha}{x}\right) \le \frac{K_2}{\varphi(x)} \quad \forall \alpha > 0 \text{ and } \forall x > 0.$$

 \Rightarrow) Due to $\varphi \prec \psi$, $\exists \rho > 0$ such that

$$\frac{1}{x} \int_0^x \frac{\psi(t)}{\varphi(t)} dt \le \rho \frac{\psi(x)}{\varphi(x)} \quad \forall x > 0$$

and therefore, by (3.3), $\exists K_3 = \frac{K_2}{K_1}\rho > 0$ such that

$$\frac{1}{x} \int_0^x \psi(t) \varphi\left(\frac{\alpha}{t}\right) dt \le K_3 \psi(x) \varphi\left(\frac{\alpha}{x}\right) \ \forall \alpha > 0 \ \text{and} \ \forall x > 0 \ \text{iff} \ \varphi \prec_N \psi.$$

 \Leftarrow) Due to $\varphi \prec_N \psi$, $\exists \rho > 0$ such that

$$\frac{1}{x} \int_0^x \psi(t) \varphi\left(\frac{\alpha}{t}\right) dt \le \rho \psi(x) \varphi\left(\frac{\alpha}{x}\right) \quad \forall \alpha > 0 \text{ and } \forall x > 0$$

and then, by (3.3), $\exists K_3 = \frac{K_2}{K_1}\rho > 0$ such that

$$\frac{1}{x} \int_0^x \frac{\psi(t)}{\varphi(t)} dt \le K_3 \frac{\psi(x)}{\varphi(x)} \quad \forall x > 0 \text{ iff } \varphi \prec \psi.$$

Example 3.13. Let $\varphi(t) = \begin{cases} \frac{1}{2}\sin t + \frac{1}{2} & \text{for } 0 < t < \frac{\pi}{2} \\ 1 & \text{for } t \ge \frac{\pi}{2} \end{cases}$

then
$$\varphi\left(\frac{\alpha}{t}\right) = \begin{cases} \frac{1}{2}\sin\left(\frac{\alpha}{t}\right) + \frac{1}{2} & \text{for } t > \frac{\alpha}{\pi} \\ 1 & \text{for } \frac{2\alpha}{\pi} \ge t \ge 0 \end{cases}$$

and consequently $0 < \frac{1}{4} \le \varphi(t)\varphi\left(\frac{\alpha}{t}\right) \le 1 \quad \forall \alpha > 0 \text{ and } \forall t > 0; \text{ thus } \varphi \prec_N \varphi$ owing to $\varphi \prec \varphi$.

If we soften the hypothesis in the preceding proposition, we achieve

Proposition 3.14. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$. If $\varphi \prec_N \psi$ and there exist constants $0 < K_1 \leq K_2$ such that $K_1 \leq \varphi(x)\varphi(\frac{1}{x}) \leq K_2$ for all x > 0, then $\varphi \prec \psi$.

Proof. From the hypothesis, there exist $0 < K_1 \leq K_2$ such that

(3.4)
$$\frac{1}{K_1}\varphi\left(\frac{1}{x}\right) \ge \frac{1}{\varphi(x)} \text{ and } \varphi\left(\frac{1}{x}\right) \le \frac{K_2}{\varphi(x)} \quad \forall x > 0$$

Due to $\varphi \prec_N \psi$, $\exists \rho > 0$ such that

$$\frac{1}{x} \int_0^x \psi(t) \varphi\left(\frac{\alpha}{t}\right) dt \le \rho \psi(x) \varphi\left(\frac{\alpha}{x}\right) \quad \forall \alpha > 0 \text{ and } \forall x > 0;$$

now we choose $\alpha = 1 > 0$, we get

$$\frac{1}{x} \int_0^x \psi(t)\varphi\left(\frac{1}{t}\right) dt \le \rho\psi(x)\varphi\left(\frac{1}{x}\right) \ \forall x > 0$$

and then, employing (3.4), $\exists K_3 = \frac{K_2}{K_1}\rho > 0$ such that

$$\frac{1}{x} \int_0^x \frac{\psi(t)}{\varphi(t)} dt \le K_3 \frac{\psi(x)}{\varphi(x)} \quad \forall x > 0 \text{ iff } \varphi \prec \psi.$$

Example 3.15. $x + \ln(x+1) \prec_N x$ and $x + \ln(x+1) \prec x$. It is remarkable that functions of this example **belong to** Φ .

Proposition 3.16. Let $\varphi, \psi : \mathbb{R}^+ \to \mathbb{R}^+$. If $\frac{\psi}{\varphi}$ and $\varphi(\frac{\alpha}{x})\psi(x)$ are two nonincreasing functions for all $\alpha > 0, \varphi \in \Delta_2$, $\psi \in \nabla_2$ and $\frac{\Lambda_{\varphi}}{\lambda_{\psi}} < 2$; then $\varphi \prec \psi$ and $\varphi \prec_N \psi$.

Proof. It follows in the same way as Proposition 3.8.

Remark 4. The advantage of this statement resides in the fact that φ and ψ could be any nondecreasing functions.

Now, we reach a strong type inequality from a weak type one and provided that the involved functions are related by \prec_N .

Theorem 3.17. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function such that $\varphi(0) = 0$.

Let f and g be nonnegative measurable functions satisfying

$$\mu(\{f > a\}) \le 2C_w \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu \quad \text{for all } a > 0 \text{ and some } c > 0.$$

Let Ψ be a $C^1([0,\infty))$ Young function and let $\psi = \Psi'$; and, assume that $\varphi \prec_N \psi$. Then

(3.5)
$$\int_{\Omega} \Psi(f) \, d\mu \le 2C_w C_q \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu$$

where C_q is a constant that depends only on ρ and c.

Proof. It follows the same pattern of the proof of Theorem 2.4 in [6]. First, we write $\int_{\Omega} \Psi(f) d\mu$ using the distribution function of f; then, we apply the Weak Type Inequality of the hypothesis and Fubini's Theorem, obtaining the next chain of inequalities

$$\int_{\Omega} \Psi(f) \, d\mu = \int_{0}^{\infty} \psi(a) \mu(\{f > a\}) \, da \le 2C_w \int_{0}^{\infty} \psi(a) \left(\int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu \right) \, da = 2C_w \int_{\Omega} \left(\int_{0}^{c^{-1}g} \psi(a) \varphi\left(\frac{g}{a}\right) da \right) \, d\mu.$$

As $\varphi \prec_N \psi$ we get

$$\int_{0}^{c^{-1}g} \psi(a)\varphi\left(\frac{g}{a}\right) da \le \rho.\varphi(c)(c^{-1}g)\psi(c^{-1}g) = C_q(c^{-1}g)\psi(c^{-1}g)$$

being $C_q = \rho \varphi(c)$, and consequently

$$2C_w \int_{\Omega} \left(\int_0^{c^{-1}g} \psi(a)\varphi\left(\frac{g}{a}\right) da \right) d\mu \le 2C_w \int_{\Omega} C_q(c^{-1}g)\psi(c^{-1}g) d\mu.$$

Due to $\Psi(x) = \int_0^x \psi(t) dt$ where $\psi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is nondecreasing, we have $\Psi(x) \ge \int_{\frac{x}{2}}^x \psi(t) dt \ge \frac{x}{2} \psi(\frac{x}{2})$, so

$$2C_w \int_{\Omega} C_q(c^{-1}g)\psi(c^{-1}g) \, d\mu \le 2C_w C_q \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu.$$

Finally
$$\int_{\Omega} \Psi(f) \, d\mu \le 2.C_w C_q \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu.$$

Now we can obtain new versions of Corollaries 2.6, 2.7 and 2.8 in [6] as follows.

Corollary 3.18. Let f and g be nonnegative measurable functions. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\varphi(0) = 0$, let Ψ be a $C^1([0,\infty)) \cap \Delta_2$ Young function and let $\psi = \Psi'$; then $\int_{\Omega} \Psi(f) d\mu \leq C \int_{\Omega} \Psi(g) d\mu$ where the positive constant C is independent of f and g if

- 1. $\varphi(0+) = 0$, (1.4) and $\varphi \prec_N \psi$; or
- 2. (1.5), $\Phi \in \Delta_2$ such that $\varphi = \Phi'_+$ and $\Phi \prec_N \Psi$; or
- 3. (1.4), $\Phi \in \Delta_2$ such that $\varphi = \Phi'_+$ and $\Phi \prec_N \Psi$.

Proof. (1) From Lemma 2.1 and the fact that $\Psi \in \Delta_2$.

- (2) By Proposition 3.9, Theorem 3.17 and the fact that $\Psi \in \Delta_2$.
- (3) By application of Lemma 2.1 and point (2).

Remark 5. In points (1) and (3) we did not require $\Phi \in \nabla_2$ which is an indispensable condition to prove Corollaries 2.6 and 2.8 in [6].

In the following theorem, we also obtain a strong type inequality although (1.4) or (1.5) do not hold for all a > 0 and provided that we consider a Finite Measure Space.

Theorem 3.19. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function such that $\varphi(0) = 0$. Let f and g be nonnegative measurable functions satisfying

$$\mu(\{f > a\}) \le K_1 \int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu,$$

for all $a \ge a_0 > 0$ and some $K_1 > 0$ and some c > 0. Let Ψ be a $C^1([0,\infty))$ Young function such that $\psi = \Psi'$ and assume that $\varphi \prec_N \psi$, then

$$\int_{\Omega} \Psi(f) \, d\mu \le K_2 + K_3 \int_{\Omega} \Psi\left(\frac{2}{c}g\right) \, d\mu$$

where $0 < K_3$ and $0 < K_2 = \psi(a_0)\mu(\Omega)$ are independent of f and g.

Proof. Let $a_0 > 0$. We write $\Omega = \{f > a_0\} \cup \{f \le a_0\}$, then

$$\int_{\Omega} \Psi(f) \, d\mu = \int_{\{f > a_0\}} \Psi(f) \, d\mu + \int_{\{f \le a_0\}} \Psi(f) \, d\mu$$

First we suppose $f > a_0$, we rewrite the $\int_{\Omega} \Psi(f) d\mu$ and, due to the Weak Type Inequality in the hypothesis is valid $\forall a \geq a_0$, we have

$$\int_{\Omega} \Psi(f) \, d\mu = \int_{\Omega} \left(\int_{0}^{a_{0}} \psi(a) \, da \right) d\mu + \int_{\Omega} \left(\int_{a_{0}}^{f} \psi(a) \, da \right) d\mu$$

We recall $\Psi(f) = \int_0^f \psi(a) \, da$ and we take $K_2 = \mu(\Omega)\psi(a_0)$ to obtain

$$\int_{\Omega} \left(\int_0^f \psi(a) \, da \right) d\mu \le K_2 + \int_{\Omega} \left(\int_{a_0}^f \psi(a) \, da \right) d\mu.$$

Now, we apply Fubini's Theorem and the hypothesis to produce

$$\int_{\Omega} \left(\int_{a_0}^{f} \psi(a) \, da \right) d\mu = \int_{a_0}^{\infty} \psi(a) \left(\int_{\{f > a\}} d\mu \right) da =$$
$$\int_{a_0}^{\infty} \psi(a) \mu(\{f > a\}) \, da \le K_1 \int_{a_0}^{\infty} \psi(a) \left(\int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu \right) da$$

Again, we employ Fubini's Theorem to express

$$K_1 \int_{a_0}^{\infty} \psi(a) \left(\int_{\{g > ca\}} \varphi\left(\frac{g}{a}\right) d\mu \right) da = K_1 \int_{\Omega} \left(\int_{a_0}^{c^{-1}g} \psi(a) \varphi\left(\frac{g}{a}\right) da \right) d\mu;$$

because of $\psi(a)\varphi(\frac{g}{a})$ being a nonnegative function on $[0,\infty)$, we get

$$K_1 \int_{\Omega} \left(\int_{a_0}^{c^{-1}g} \psi(a)\varphi\left(\frac{g}{a}\right) da \right) d\mu \le K_1 \int_{\Omega} \left(\int_{0}^{c^{-1}g} \psi(a)\varphi\left(\frac{g}{a}\right) da \right) d\mu.$$

From here the proof is similar to the one developed in Theorem 3.17; and eventually,

$$\int_{\Omega} \Psi(f) \, d\mu \le K_2 + K_3 \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu \quad \text{where} \quad K_3 = K_1 C_q.$$

If $f \leq a_0$,

$$\int_{\Omega} \Psi(f) \, d\mu \le \int_{\Omega} \left(\int_{0}^{a_{0}} \psi(a) \, da \right) d\mu = \mu(\Omega) \Psi(a_{0}) = K_{2}$$

because $\Psi(f) = \int_0^f \psi(t) dt$ with $\psi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ a nondecreasing function. Combining the two previous results, we obtain

$$\int_{\Omega} \Psi(f) \, d\mu \leq 2K_2 + K_3 \int_{\Omega} \Psi\left(\frac{2}{c}g\right) d\mu$$

where $K_3 = K_1 C_q$ y $K_2 = \mu(\Omega) \Psi(a_0)$.

4. Inequalities for Best Approximation Operators

A subset $\mathcal{L} \subset \mathcal{A}$ is a σ -lattice iff \emptyset , $\Omega \in \mathcal{L}$ and \mathcal{L} is closed under countable unions and intersections.

Set $L^{\Phi}(\mathcal{L})$ for the set of \mathcal{L} -measurable functions in $L^{\Phi}(\Omega)$.

A function $g \in L^{\Phi}(\mathcal{L})$ is called a best Φ -approximation to $f \in L^{\Phi}$ iff

$$\int_{\Omega} \Phi(f-g) \, d\mu = \min_{h \in L^{\Phi}(\mathcal{L})} \int_{\Omega} \Phi(f-h) \, d\mu$$

We denote by $\mu(f, \mathcal{L})$ the set of all the best Φ -approximants to f. It is well known that for every $f \in L^{\Phi}$, $\mu(f, \mathcal{L}) \neq \emptyset$, see [5].

Recall that a Young function Φ such that $\frac{\Phi(x)}{x} \to 0$ as $x \to 0$ and $\frac{\Phi(x)}{x} \to \infty$ as $x \to \infty$ is called an N-function.

Let Φ be a derivable *N*-function and let $\varphi = \Phi'$, then $\varphi : \mathbb{R}_0^+ \to \mathbb{R}_0^+$ is a right continuous, nondecreasing function that satisfies $0 < \varphi(x) < \infty$ for all $x \in (0, \infty), \, \varphi(0) = 0$ and $\lim_{x \to \infty} \varphi(x) = \infty$ ([4] and [7]).

If $f \in L^{\Phi}$, we will write \overline{f} for the best Φ -approximation to $f \in L^{\Phi}$. Given two functions f and g, we denote $f \vee g$ $(f \wedge g)$ the pointwise maximum (minimum) of the functions.

Assume that $\Phi \in C^1 \cap \Delta_2$ is strictly convex, then the function $\Phi' = \varphi$ also fulfills the Δ_2 -condition.

Let $f \in L^{\varphi}$ and let *n* be a fixed positive number.

Thus, we define $(-n \lor f)$ as the increasing limit of $((-n \lor f) \land m)$ as $m \to \infty$. And, the decreasing limit of $(-n \lor f)$ as $n \to \infty$ will be, by definition, the Extended Best Approximation Operator of f from L^{Φ} to L^{φ} , which will denote $\overline{f_e}$.

In [2] Favier and Zó obtained

Theorem 4.1. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space. Let $\Phi \in C^1 \cap \Delta_2$ be a strictly convex <u>N</u>-function and assume $\varphi = \Phi'$. Let $f \in L^{\varphi}$ such that $f \geq 0$ and let $\overline{f_e}$ be the Extension of the Best Approximation Operator to L^{φ} .

If there exists a constant c > 0 such that $\varphi(x + y) \leq c[\varphi(x) + \varphi(y)]$ for all $x, y \geq 0$, then

$$\mu(\{\overline{f_e} > a\}) \leq \frac{c+1}{\varphi(a)} \int_{\{\overline{f_e} > a\}} \varphi(f) \, d\mu \quad \text{for all } a > 0.$$

We begin proving an equivalence similar to Lemma 4.1 in [6] and Lemma 2.5 in [2].

Proposition 4.2. Let $\varphi : \mathbb{R}^+ \to \mathbb{R}^+$ be a nondecreasing function. $\varphi \in \Delta_2$ iff there exists c > 0 such that $\varphi(x+y) \leq c[\varphi(x)+\varphi(y)]$ for all $x, y \geq 0$. $\begin{array}{l} Proof. \Rightarrow) \text{ If } \varphi \in \Delta_2, \text{ then } \exists c > 0 \text{ such that } \varphi(2x) \leq c\varphi(x) \ \forall x \geq 0. \\ \text{Let } x, y \geq 0, \text{ then } x \leq y \text{ ó } x \geq y. \\ \text{Without any loss of generality, let us assume } x \geq y; \text{ then,} \\ \varphi(x+y) \leq \varphi(2x) \leq c\varphi(x) \leq c\varphi(x) + c\varphi(y) = c[\varphi(x) + \varphi(y)]. \\ \Leftrightarrow) \text{ If } \exists c > 0 \text{ such that } \varphi(x+y) \leq c[\varphi(x) + \varphi(y)] \ \forall x, y \geq 0; \text{ for } x = y \geq 0 \\ \text{ we have } \varphi(2x) \leq 2c\varphi(x) \ \forall x \geq 0, \text{ i.e. } \varphi \in \Delta_2. \end{array}$

Due to every Δ' -function is a Δ_2 -function (see [7]), it is also true $\varphi \in \Delta'$ (globally) implies the existence of a constant c > 0 such that $\varphi(x + y) \leq c[\varphi(x) + \varphi(y)]$ for all $x, y \geq 0$.

In consequence, if we demand $\varphi \in \Delta'$ globally, by Theorem 4.1 and Proposition 2.2, we obtain the Weak Type Inequality (1.4) with f and g replaced by $\overline{f_e}$ and $f \in L^{\varphi}$ respectively.

Moreover, if φ is a continuous function such that $\varphi(0) = 0$, by Lemma 2.1, we reach (1.5) for $\overline{f_e}$. That is,

Theorem 4.3. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space.

Let $\Phi \in C^1 \cap \Delta_2$ a strictly convex *N*-function and assume $\varphi = \Phi'$. Suppose $f \in L^{\varphi}$ and $f \geq 0$; and, let $\overline{f_e}$ be the Extension of the Best Approximation Operator to L^{φ} .

If $\varphi \in \Delta'$ globally, then

$$\mu(\{\overline{f_e} > a\}) \le K \int_{\{\overline{f_e} > a\}} \varphi\left(\frac{f}{a}\right) d\mu \text{ for all } a > 0;$$

and, there also exists a constant c > 0 such that

$$\mu(\{\overline{f_e} > a\}) \le 2K \int_{\{f > ca\}} \varphi\left(\frac{f}{a}\right) d\mu \text{ for all } a > 0.$$

Now, if $\varphi \in \Delta'$ globally, from Theorems 4.3 and 3.17, we get

Theorem 4.4. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space. Let $\Phi \in C^1 \cap \Delta_2$ a strictly convex N-function and let $\varphi = \Phi'$. Suposse $f \in L^{\varphi}$ and $f \geq 0$; and, let $\overline{f_e}$ be the Extension of the Best Approximation Operator to L^{φ} . Let $\Psi \in C^1([0, \infty))$ be a Young function and let $\psi = \Psi'$. If $\varphi \in \Delta'$ globally and $\varphi \prec_N \psi$, then

(4.1)
$$\int_{\Omega} \Psi(\overline{f_e}) \, d\mu \le K_2 \int_{\Omega} \Psi\left(\frac{2}{c}f\right) \, d\mu$$

where $K_2 > 0$ is independent of the function f.

Remark 6. In [2], Favier and Zó obtained strong type inequalities like (1.6) for $\overline{f_e}$ with Ψ belonging to specific classes of functions. However, the Strong Type Inequality for $\overline{f_e}$ is not characterized.

Now, we consider another maximal operator related with the best approximation operator.

Suppose that \mathcal{L}_n is an increasing sequence of σ -lattices, i.e $\mathcal{L}_n \subset \mathcal{L}_{n+1}$ for all $n \in \mathbb{N}$.

Let $f \in L^{\Phi}$ such that $f \geq 0$ and let f_n be any selection of functions in $\mu(f, \mathcal{L}_n)$. In [6] it is defined the maximal function $f^* = \sup f_n$.

Let Φ be a Young function such that $\hat{\Phi} \in \Delta_2 \cap \nabla_2$ being

$$\hat{\Phi}(x) = \int_0^x \hat{\varphi}(t) dt$$
 with $\hat{\varphi}(x) = \varphi_+(x) - \varphi_+(0) \operatorname{sign}(x)$

and φ_+ the right-continuous derivative of Φ .

In Theorem 1.1 in [6], Mazzone and Zó proved that f^* satisfies

(4.2)
$$\mu(\{f^* > a\}) \le \frac{C}{\varphi_+(a)} \int_{\{f > ca\}} \varphi_+(f) \, d\mu$$

for all a > 0 and some C > 0; they also stated that if $\varphi_+(0) = 0$, then

(4.3)
$$\mu(\{f^* > a\}) \le \frac{C}{\varphi_+(a)} \int_{\{f^* > a\}} \varphi_+(f) \, d\mu \text{ for all } a > 0.$$

In the proof of the case $\varphi_+(0) = 0$, the authors did not employ the fact that $\hat{\Phi} \in \nabla_2$; nevertheless, this condition became essential to get (4.2).

For this reason, we assume $\varphi_+(0) = 0$ and $\varphi_+ \in \Delta'$ globally and then we get a weak type inequality like (1.4) where $f = f^*$ and g = f.

Moreover, if φ_+ is a right continuous function, we apply Lemma 2.1 and we obtain (1.5) for $f = f^*$ and g = f. That is,

Theorem 4.5. Let Φ be a Young function such that φ_+ is the right continuous derivative of Φ .

If $\varphi_+(0) = 0$ and $\varphi_+ \in \Delta'$ globally, then

(4.4)
$$\mu(\{f^* > a\}) \le K \int_{\{f^* > a\}} \varphi_+\left(\frac{f}{a}\right) d\mu \text{ for all } a > 0;$$

and, it is also true

(4.5)
$$\mu(\{f^* > a\}) \le K \int_{\{f > ca\}} \varphi_+\left(\frac{f}{a}\right) d\mu$$

for all a > 0 and some c > 0.

In consequence, if $\varphi_+ \in \Delta'$ globally and $\varphi_+(0) = 0$, by Theorem 4.5, f^* satisfies a weak type inequality like (1.4) and, from Theorem 3.17, we get

Theorem 4.6. Let $(\Omega, \mathcal{A}, \mu)$ be a finite measure space.

Let Φ be a Young function such that φ_+ is its right-continuous derivative; suppose $\varphi_+ \in \Delta'$ globally and $\varphi_+(0) = 0$.

Let \mathcal{L}_n be an increasing sequence of σ -lattices and consider $f \in L^{\Phi}$ such that $f \geq 0$ and let f_n be any selection of functions in $\mu(f, \mathcal{L}_n)$ and $f^* = \sup f_n$.

Let $\Psi \in C^1([0,\infty))$ be a Young function with $\psi = \Psi'$. If $\varphi \prec_N \psi$, then

(4.6)
$$\int_{\Omega} \Psi(f^*) \, d\mu \le K_2 \int_{\Omega} \Psi\left(\frac{2}{c}f\right) d\mu$$

where K_2 is a positive constant independent of the function f.

We point out that the Young functions Φ whose right-continuous derivatives $\varphi_+ \in \Delta'$ globally and satisfy $\varphi_+(0) = 0$ can be considered for the above Theorem while, for Theorem 1.1 in [6], we need $\hat{\Phi}(x) \in \nabla_2$.

5. Inequalities for Sub Additive Operators

The following result follows by a standard procedure as Remark (1), page 38, in [1], and Lemma 3.1 in [2].

Proposition 5.1. Let $T : L^1(\mathbb{R}^n) \to \mathcal{M}(\mathbb{R}^n)$ be a subaddive operator, $f \in L^1(\mathbb{R}^n)$ and $\varphi \in \Phi$ such that $\varphi(0) = 0$. Assume

(5.1)
$$|\{x \in \mathbb{R}^n : |T(f)(x)| > \lambda\}| \le C \int_{\mathbb{R}^n} \varphi\left(\frac{Cf(x)}{\lambda}\right) dx$$

for all $\lambda > 0$ and some C > 0 independent of f; and, suppose

$$(5.2) ||Tf||_{\infty} \le ||f||_{\infty}$$

Then

$$|\{x \in \mathbb{R}^n : |T(f)(x)| > \lambda\}| \le C \int_{\{x:|f(x)| > \frac{\lambda}{2}\}} \varphi\left(\frac{2Cf(x)}{\lambda}\right) dx$$

for all $\lambda > 0$; and, being the constant C independent of the function f.

Next, from Proposition 5.1 and Theorem 3.17, we get

Theorem 5.2. Let $T : L^1_{loc}(\mathbb{R}^n) \to \mathcal{M}_{ed}(\mathbb{R}^n)$ be a subadditive operator, $f \in L^1_{loc}(\mathbb{R}^n)$ and $\varphi \in \Phi$ such that $\varphi(0) = 0$. Suppose

(5.3)
$$|\{x \in \mathbb{R}^n : |T(f)(x)| > \lambda\}| \le C \int_{\mathbb{R}^n} \varphi\left(\frac{Cf(x)}{\lambda}\right) dx$$

for all $\lambda > 0$ and some C > 0 independent of the function f; and, assume $\|Tf\|_{\infty} \leq \|f\|_{\infty}$.

Let
$$\Psi$$
 be a $C^{1}([0,\infty))$ Young function and let $\psi = \Psi'$
If $\varphi \prec_{N} \psi$, then $\int_{\mathbb{R}^{n}} \Psi(|T(f)|) dx \leq K \int_{\mathbb{R}^{n}} \Psi(4f) dx$.

Hereafter, we consider the Hardy Littlewood Maximal Operator M defined over cubes $Q \subset \mathbb{R}^n$ and given by the formula

$$M(f)(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q f(t) dt \text{ for } f \in L^1_{loc}(\mathbb{R}^n).$$

Kokilashvili and Krbec, in [3], introduced the following concept

Definition 5.3. A function $\varphi : [0, \infty) \to \mathbb{R}$ is said to be quasiconvex on $[0, \infty)$ if there exist a convex function ω and a constant c > 0 such that $\omega(t) \leq \varphi(t) \leq c\omega(ct)$ for all $t \in [0, \infty)$.

Next, we employ previous definition to establish sufficient conditions for the validity of a weak type inequality for M.

Theorem 5.4. Let $\varphi \in \Phi$.

If φ is quasiconvex on $[0,\infty)$, there exists a constant C > 0 such that

(5.4)
$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le C \int_{\mathbb{R}^n} \varphi\left(\frac{Cf(x)}{\lambda}\right) dx$$

for all $f \in L^1_{loc}(\mathbb{R}^n)$ and for all $\lambda > 0$.

Proof. By Lemma 1.2.4 in [3], $\exists c > 0$ such that

$$|\{x \in \mathbb{R}^n : M(g)(x) > \lambda\}| \le \frac{c}{\varphi(\lambda)} \int_{\mathbb{R}^n} \varphi(cg(x)) \, dx$$

 $\forall g \in L^1_{loc}(\mathbb{R}^n)$ and $\forall \lambda > 0$ iff φ is a quasiconvex function. Choosing $\lambda = 1$ and next $g = \frac{f}{\lambda}$, with $f \in L^1_{loc}(\mathbb{R}^n)$ and $\lambda > 0$, we have

$$\left|\left\{x \in \mathbb{R}^n : M\left(\frac{f}{\lambda}\right)(x) > 1\right\}\right| \le \frac{c}{\varphi(1)} \int_{\mathbb{R}^n} \varphi\left(\frac{cf(x)}{\lambda}\right) dx.$$

As M is a homogeneous operator,

$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le \frac{c}{\varphi(1)} \int_{\mathbb{R}^n} \varphi\left(\frac{cf(x)}{\lambda}\right) dx;$$

and, since $\varphi \in \Phi$, $\exists C = \max\{c; \frac{c}{\varphi(1)}\} > 0$ such that

$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le C \int_{\mathbb{R}^n} \varphi\Big(\frac{C}{\lambda} f(x)\Big) \, dx$$

 $\forall f \in L^1_{loc}(\mathbb{R}^n) \text{ and } \forall \lambda > 0.$

However, the quasiconvexity is not a necessary condition to hold (5.4). Let $\psi(x) = \begin{cases} x^p & \text{if } x \ge 0\\ (-x)^p & \text{if } x < 0 \end{cases}$ for $p \ge 1$,

then $\psi \in \Phi$ and ψ is quasiconvex on $[0, \infty)$. By Theorem 5.4, there exists a constant c > 0 such that

$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \psi\left(\frac{cf(x)}{\lambda}\right) dx$$

for all $f \in L^1_{loc}(\mathbb{R}^n)$ and for all $\lambda > 0$.

Now, we consider the function
$$\varphi(x) = \begin{cases} x^p & \text{if } x \ge 1\\ x^{\frac{1}{p}} & \text{if } 0 \le x < 1\\ (-x)^p & \text{if } x \le -1\\ (-x)^{\frac{1}{p}} & \text{if } -1 < x < 0 \end{cases}$$

for p > 1, which begins to Φ and $0 \le \psi(x) \le \varphi(x)$ for all $x \in \mathbb{R}$. So

$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \varphi\left(\frac{cf(x)}{\lambda}\right) dx$$

 $\forall \lambda > 0 \text{ and } \forall f \in L^1_{loc}(\mathbb{R}^n), \text{ but } \varphi \text{ is not a quasiconvex function.}$ Hence, the converse of Theorem 5.4 is not true.

With the aim of relaxing the hypothesis of quasiconvexity in Theorem 5.4, we derive some properties of functions belonging to Φ .

Let a > 0. We denote Φ_a the set of functions $\varphi : (-a, a) \to \mathbb{R}$ which are nonnegative, even, nondecreasing on [0, a), such that $\varphi(x) > 0$ for all x > 0 and $\varphi(0+) = 0$.

The following two lemmas can be easily proved from the hypothesis.

Lemma 5.5. Let $\psi \in \Phi$. If there exists $x_v : 0 < x_v \leq x_0$ such that ψ is convex on $(0, x_v)$, then there exist a convex function $\omega \in \Phi_{x_0}$ such that $\omega(x) \leq \psi(x)$ on $(0, x_0)$.

Lemma 5.6. Let $\psi \in \Phi$ and $x_0 > 0$. Suppose $\psi(x) \ge c_1 x$ for all $x \in [x_0, \infty)$ and there exists a subinterval $(x_1, x_2) \subseteq (0, x_0)$, with x_1 not necessarily zero, such that $\psi(x) \le c_1 x$ for all $x \in (x_1, x_2)$. If ψ is a concave function on $(0, x_v) \subseteq (0, x_0)$, then $\psi(x_v -) \le c_1 x_0$.

Lemma 5.7. Let $\psi \in \Phi$. If there exist constants $c_1 > 0$ and $x_0 \ge 0$ such that $\psi(x) \ge c_1 x$ for all $x \in [x_0, \infty)$, and there exists a subinterval $(0, x_v) \subseteq (0, x_0)$ where ψ is either a convex or a concave function; then, there exists a convex function $\varphi \in \Phi$ that verifies $\varphi(x) \le \psi(x)$ for all x > 0.

Proof. According with the behavior of ψ on the interval $(0, x_0)$, we build a convex function $\varphi \in \Phi$ such that $\varphi(x) \leq \psi(x) \quad \forall x > 0$.

- A) If $x_0 = 0$, then $\varphi(x) = c_1 \cdot x$.
- B) If ψ is a concave function on $(0, x_v) \subseteq (0, x_0)$, by Lemma 5.5, there exists a convex function $\omega \in \Phi_{x_0}$ such that $0 < \omega(x) \le \psi(x) \ \forall x \in (0, x_0)$. - If $0 < \omega'_+(0) \le c_1$, then $r_0(x) = \omega'_+(0).x$ is the tangent line to $\omega(x)$ on (0,0) and it verifies $r_0(x) \le \omega(x) \le \psi(x) \ \forall x \in (0, x_0), \ r_0(x) \le c_1.x$ $\forall x \in [x_0, \infty)$ and $r_0 \in \Phi$. Thus, $\varphi(x) = r_0(x)$.
 - If $\omega'_+(0) = 0$, then $\exists x_w \in (0, x_0)$ such that $0 < \omega'_-(x_w) \le c_1$. Let r_1 be the tangent line to $\omega(x)$ on $(x_w, \omega(x_w))$, in consequence $r_1(x) \le \psi(x)$ $\forall x \in [x_w, x_0)$; and, we also have $r_1(x) \le c_1 . x \ \forall x \in [x_0, \infty)$. Therefore, the convex function

$$\varphi(x) = \begin{cases} \omega(x) & \text{if } x \in (0, x_w) \\ r_1(x) & \text{if } x \in [x_w, \infty) \end{cases}$$

belongs to Φ and verifies $\varphi(x) \leq \psi(x) \ \forall x > 0$.

- If $\nexists x_w \in (0, x_0)$ such that $0 < \omega'_-(x_w) \le c_1$ and $\omega'_+(0) > c_1$, then $r_2(x) = \omega'_+(0).x$ is the tangent line to $\omega(x)$ on (0,0) that satisfies

 $c_1.x < r_2(x) \le \omega(x) \le \psi(x) \ \forall x \in (0, x_0);$ we also have $\psi(x) \ge c_1.x$ $\forall x \ge x_0$ and $r_2 \in \Phi$. Therefore, $\varphi(x) = c_1.x$.

- C) Assume $\exists x_v \in (0, x_0)$ such that $\psi(x)$ is a concave function on $(0, x_v) \subseteq (0, x_0)$.
 - If $\psi(x) \ge c_1 \cdot x \quad \forall x \in (0, x_0)$ and due to $\psi(x) \ge c_1 \cdot x \quad \forall x \ge x_0$, then $\psi(x) \ge c_1 \cdot x \quad \forall x > 0$. Therefore, $\varphi(x) = c_1 \cdot x$.
 - If ψ is concave on $(0, x_v) \subseteq (0, x_0)$ and $\psi(x) \leq c_1 \cdot x \ \forall x \in (x_1, x_2) \subseteq (0, x_0)$ where x_1 is not necessarily 0; then, by Lemma 5.6, $\psi(x_v) \leq c_1 \cdot x_0$.
 - If $x_v = x_0$, we have $\psi(x_0 1) \leq c_1 \cdot x_0$ and let $r_3(x) = \frac{\psi(x_0 1)}{x_0} \cdot x$ be the chord between (0, 0) and $(x_0, \psi(x_0 1))$ then $r_3(x) \leq \psi(x) \leq c_1 \cdot x \ \forall x \in (0, x_0)$; it is also true that $r_3(x) \leq c_1 \cdot x \ \forall x \geq x_0$. Thus $\varphi(x) = r_3(x)$.
 - If $x_v < x_0$ and $\psi(x)$ concave on $(0, x_v)$, we define $\psi_c(x) = \begin{cases} \psi(x) & \text{if } x \in (0, x_v) \\ \psi(x_v) & \text{if } x \in [x_v, x_0) \end{cases}$

satisfies
$$\psi_c(x) \leq \psi(x) \quad \forall x \in (0, x_0).$$

Moreover $\psi_c(x)$ is concave on $(0, x_0)$, then $r_4(x) = \frac{\psi(x_v)}{x_0} x$ is the chord between (0, 0) and $(x_0, \psi_c(x_0))$ and verifies $r_4(x) \leq \psi_c(x)$ $\forall x \in (0, x_0)$; we also have $r_4(x) \leq c_1 x$ $\forall x \geq x_0$. Thus, $\varphi(x) = r_4(x)$.

In consequence, we achieve another way to obtain (5.4); namely,

Theorem 5.8. Let $\psi \in \Phi$. Suppose there exist constants $c_1 > 0$ and $x_0 \ge 0$ such that $\psi(x) \ge c_1 x$ for all $x > x_0$, and there exists a subinterval $(0, x_v) \subseteq$ $(0, x_0)$ where ψ is either a convex or a concave function. Then, there exists a constant c > 0 such that

(5.5)
$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \psi\left(\frac{cf(x)}{\lambda}\right) dx$$

for all $f \in L^1_{loc}(\mathbb{R}^n)$ and for all $\lambda > 0$.

that

Proof. Let $\psi \in \Phi$. Assume $\exists x_0 \geq 0$, $c_1 > 0$ such that $\psi(x) \geq c_1 x \ \forall x > x_0$; and, there exists a subinterval $(0, x_v) \subseteq (0, x_0)$ where ψ is either a convex or a concave function.

Then, by Lemma 5.7, there exists a convex function $\varphi \in \Phi$ such that $\varphi(x) \leq \psi(x) \quad \forall x > 0$; therefore,

(5.6)
$$c \int_{\mathbb{R}^n} \varphi\left(\frac{cf(x)}{\lambda}\right) dx \le c \int_{\mathbb{R}^n} \psi\left(\frac{cf(x)}{\lambda}\right) dx.$$

Due to any convex function is a quasiconvex one (see Lemma 1.1.1 in [3]), we apply Theorem 5.4 to φ and we get

(5.7)
$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \varphi\left(\frac{cf(x)}{\lambda}\right) dx.$$

Eventually, from (5.6) and (5.7), we have

$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \psi\left(\frac{cf(x)}{\lambda}\right) dx.$$

Moreover, we also find a necessary condition for the validity of the Weak Type Inequality (5.5).

Theorem 5.9. Let $\psi \in \Phi$. If there exists a constant c > 0 such that

$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \psi\left(\frac{cf(x)}{\lambda}\right) dx$$

for all $f \in L^1_{loc}(\mathbb{R}^n)$ and for all $\lambda > 0$, then there exist $c_1 > 0$ and $x_0 \ge 0$ such that $\psi(x) \geq c_1 x$ for all $x > x_0$.

Proof. We follow the idea of [3] to prove Lemma 1.2.4.

Let $0 < t_1 < t_2$, $I = \left\{ x = (x_1, ..., x_n) \in \mathbb{R}^n : 0 < x_i < \left(\frac{t_1}{t_n}\right)^{\frac{1}{n}}, i = 1, ..., n \right\}$ then $I \subset (0,1)^n$ and $|I| = \frac{t_1}{t_2} < 1$; and, put $f(x) = t_2 \chi_I(x)$. For any $x \in (0,1)^n$, we have $M(f)(x) > t_1$ and thus

 $|\{x \in \mathbb{R}^n : M(f)(x) > t_1\}| \ge 1.$ (5.8)

From the hypothesis, $\exists c > 0$ such that

$$|\{x \in \mathbb{R}^n : M(f)(x) > \lambda\}| \le c \int_{\mathbb{R}^n} \psi\left(\frac{cf(x)}{\lambda}\right) dx$$

 $\forall f \in L^1_{loc}(\mathbb{R}^n)$ and $\forall \lambda > 0$; so, choosing I, f and λ as in the beginning and in (5.8), $\exists c > 0$ such that

$$1 \le |\{x \in \mathbb{R}^n : M(f)(x) > t_1\}| \le c \int_{\psi} \left(c\frac{t_2}{t_1}\right) dx = c\psi\left(c\frac{t_2}{t_1}\right)\left(\frac{t_1}{t_2}\right)$$

and hence $\frac{t_2}{t_1} \leq c\psi(c\frac{t_2}{t_1})$. Due to $t_1 < t_2$ and naming $x = c\frac{t_2}{t_1}$, we get $\frac{x}{c^2} \leq \psi(x) \ \forall x > c$; therefore, $\exists c_1 = c^{-2} > 0 \text{ and } x_0 = c > 0 \text{ such that } c_1 x \leq \psi(x) \ \forall x > x_0.$

References

- [1] M. de Guzmán (1975): Differentiation of Integrals in \mathbb{R}^n . Springer-Verlag, Berlin-Heidelberg-New York.
- S. Favier, F. Zó (2001): Extension of the best approximation operator in Orlicz spaces [2]and weak-type inequalities. Abstract and Applied Analysis, 6: 101-114.
- [3] V. Kokilashvili, M. Krbec (1991): Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific, Singapore.
- [4] M. A. Krasnosel'skii and Ya. B. Rutickii (1961): Convex Functions and Orlicz Spaces. P. Noordhoff Ltd. Groningen The Netherlands
- [5] D. Landers, L. Rogge (1980): Best approximants in L_{Φ} -spaces. Z. Wahrsch. Verw. Gabiete, **51**: 215-237.

- [6] F.D. Mazzone, F. Zó (2009): On Maximal Inequalities Arising in Best Approximation.
 J. Inequal. Pure and Appl. Math., 10(2), Art. 58, 10 pp. issn: 1443-5756, Victoria University, Australia.
- [7] M. Rao, Z. Ren (1991): Theory of Orlicz Spaces. Marcel Dekker, Inc. New York.

Received: March, 2012