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Abstract. Given non negative measurable real valued functions f and g,
we get inequalities of the type

∫
ΩΨ(f) dµ ≤ K

∫
ΩΨ( g

c ) dµ, assuming weak
type inequalities µ({f > a}) ≤ K

∫
{f>a} ϕ( g

a) dµ where ϕ, ψ : R+
0 → R+

0 are
nondecreasing functions related by ≺N and where Ψ is a Young function given
by Ψ(x) =

∫ x
0 ψ(t) dt. We apply these results to best approximation operators

and sub additive operators.
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1. Introduction

Let (Ω,A, µ) be a measure space and let M = M(Ω,A, µ) be the set of all
A-measurable real valued functions.

By Φ we denote the set of functions ϕ : R → R which are nonnegative,
even, nondecreasing on [0,∞), such that ϕ(x) > 0 for all x > 0, ϕ(0+) = 0
and lim

t→∞
ϕ(t) = ∞.

Let R+
0 = [0,∞). We say that a nondecreasing function ϕ : R+

0 → R+
0

satisfies ∆2-condition, symbolically ϕ ∈ ∆2, if there exists a constant Λ =
Λϕ > 0 such that ϕ(2a) ≤ Λϕ(a) for all a ≥ 0.

1This paper was supported by CONICET and UNSL grants.
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A nondecreasing function ϕ : R+
0 → R+

0 satisfies ∇2-condition, symbolically
ϕ ∈ ∇2, if there exists a constant λ = λϕ > 2 such that ϕ(2a) ≥ λϕ(a) for all
a ≥ 0.

We claim that a nondecreasing function ϕ : R+
0 → R+

0 satisfies ∆′-condition,
symbolically ϕ ∈ ∆′, if there exists a constant K1 > 0 such that ϕ(xy) ≤
K1ϕ(x)ϕ(y) for all x, y ≥ x0 ≥ 0.
If x0 = 0 then we say that ϕ satisfies the ∆′-condition globally.

Let Φ be a Young function, that is, an even and convex function Φ : R → R+
0

such that Φ(a) = 0 iff a = 0.
Unless it makes a different statement, the Young function Φ is the one given
by Φ(x) =

∫ x
0 ϕ(t) dt, where ϕ : R+

0 → R+
0 is the right-continuous derivative of

Φ.
If ϕ ∈ Φ, we define

Lϕ(Ω,A, µ) =
{
f ∈ M :

∫

Ω

ϕ(tf) dµ < ∞ for some t > 0
}
.

If ϕ is a Young function, then Lϕ(Ω,A, µ) is an Orlicz Space (see [7]).

Let ϕ : R+ → R+ be a nondecreasing function such that ϕ(0) = 0 and let
f, g : Ω→ R+

0 be two fixed measurable functions.
Mazzone and Zó have proved in [6] that the Weak Type Inequality

µ({f > a}) ≤ Cw

ϕ(a)

∫

{f>a}
ϕ(g) dµ for all a > 0(1.1)

implies, under some conditions, the inequality

µ({f > a}) ≤ Cw

ϕ(a)

∫

{g>c.a}
ϕ(g) dµ(1.2)

for all a > 0 and some c ∈ (0, 1);
then, from (1.2), they reach the Strong Type Inequality

∫

Ω

Ψ(f) dµ ≤ 2Cwρ

∫

Ω

Ψ
(2

c
g
)

dµ(1.3)

for a class of Young functions Ψ ∈ C1([0,∞)) whose derivative ψ is related, in
some way, to ϕ.

We wish to develop a similar scheme leaving from a different weak type
inequality, that is

µ({f > a}) ≤ Cw

∫

{f>a}
ϕ
(g

a

)
dµ, for all a > 0;(1.4)

moving on to other weak type inequality, different to (1.2), like

µ({f > a}) ≤ Cw

∫

{g>ca}
ϕ
(g

a

)
dµ, for all a > 0(1.5)
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and some c > 0; and finally to obtain a strong type inequality like
∫

Ω

Ψ(f) dµ ≤ CwK

∫

Ω

Ψ
(2

c
g
)

dµ(1.6)

where K is a positive constant depending only on c and ρ.

2. Weak Type Inequalities

First, we state conditions to reach the Weak Type Inequality (1.5) from
(1.4), as it has done in [6] to get (1.1) from (1.2).

Lemma 2.1. Let ϕ : R+ → R+ be a nondecreasing function such that ϕ(0) =
0.
Suppose that f and g are nonnegative measurable functions satisfying (1.4).
If ϕ(0+) = 0, then there exists a constant c > 0 such that

µ({f > a}) ≤ 2Cw

∫

{g>ca}
ϕ
(g

a

)
dµ, for all a > 0.

Proof. From the hypothesis, we choose c > 0 such that 1 − Cwϕ(c) > 1
2 .

We write {f > a} = ({g ≤ ca} ∩ {f > a}) ∪ ({g > ca} ∩ {f > a}), we split
the integral in the right hand side of (1.4) on the sets {g ≤ ca} ∩ {f > a}
and {g > ca} ∩ {f > a} and we employ the fact that ϕ is a nondecreasing
function to obtain

µ({f > a}) ≤ Cw

∫

{g>ca}
ϕ
(g

a

)
dµ + Cwϕ(c)µ({f > a} ∩ {g ≤ ca}).

Owing to µ({f > a}) ≤ µ({f > a} ∩ {g ≤ ca}), we have

µ({f > a}) ≤ Cw

∫

{g>ca}
ϕ
(g

a

)
dµ + Cwϕ(c)µ({f > a}),

and consequently [1 − Cwϕ(c)]µ({f > a}) ≤ Cw

∫

{g>ca}
ϕ
(g

a

)
dµ.

Since 1 − Cwϕ(c) > 1
2 , we get Cw

1−Cwϕ(c) < 2Cw and eventually

µ({f > a}) ≤ 2Cw

∫

{g>ca}
ϕ
(g

a

)
dµ ∀a > 0.

Remark 1. If c ≥ 1 in (1.5), then there exists k ∈ (0, 1) such that

µ({f > a}) ≤ 2Cw

∫

{g>ka}
ϕ
(g

a

)
dµ ∀a > 0.

Remark 2. In Lemma 2.1 we only demand ϕ(0+) = 0 regardless of the con-
dition ϕ(rx) ≤ 1

2ϕ(x) for a constant r ∈ (0, 1) and for all x > 0 which is
essential to prove Lemma 2.2 in [6].
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Next, we exhibit measurable functions f, g : Ω→ R+
0 , and a nondecreasing

function ϕ : R+ → R+ such that ϕ(0) = 0 and ϕ(0+) = 0 verifying (1.5), that
is,

µ({f > a}) ≤ K1

∫

{g>c1a}
ϕ
(g

a

)
dµ

for all a > 0 and for a pair of constants K1 > 0 and c1 > 0; while, (1.2) does
not hold, i.e, the following inequality

µ({f > a1}) ≤
C

ϕ(a1)

∫

{g>ca1}
ϕ(g) dµ

is false for some a1 > 0 and for any pair of positive constants C and c.

Let Ω = R+
0 , ϕ(x) = ex−1 and g(x) = 1

2χ[0, 1] where µ = |.| is the Lebesgue
measure. For a fixed number c > 0, we have

∫

{g>ca}
ϕ
(g

a

)
dx =

{
ϕ( 1

2a) if a < 1
2c

0 if a ≥ 1
2c .

The function F (a) = ϕ( 1
2a) is decreasing, continuous and it also satisfies

lim
a→∞

F (a) = 0 y F (0+) = ∞.

Let f(x) =

{
F−1(x) if x > ϕ(c)
1
2c if 0 < x ≤ ϕ(c)

, then |{f > a}| =

{
F (a) if a < 1

2c

0 if a ≥ 1
2c

.

Consequently, (1.5) is true with c = 2Cw = 1.

On the other hand, if a < 1
2c then

∫

{g>c̃a}

ϕ(g)

ϕ(a)
dx =

ϕ(1
2)

ϕ(a)
.

Therefore, for every pair of positive constants K and c there exists a : 0 <
a < min{ 1

2c̃ ;
1
2c} such that

K

∫

{g>c̃.a}

ϕ(g)

ϕ(a)
dx <

∫

{g>c̃a}
ϕ
(g

a

)
dx,

since
ϕ( 1

2a).ϕ(a)

ϕ(1
2)

→ ∞ as a → 0. Hence, (1.2) is not verified.

We also reach, in some cases, inequalities (1.5) and (1.4) from inequalities
(1.2) and (1.1) respectively.

Proposition 2.2. Let ϕ : R+ → R+ be a nondecreasing function such that
ϕ(0) = 0 and assume ϕ ∈ ∆′. Suppose f and g are nonnegative measurable
functions. Then, (1.2) implies (1.5) and (1.1) implies (1.4).

Proof. It follows straightforward from ϕ ∈ ∆′ globally and ϕ(a) > 0 for any
a > 0.
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3. Strong Type Inequality

Let us recall a concept introduced in [6]

Definition 3.1. A function η : R+ → R+ is quasi-increasing iff there exists a

constant ρ > 0 such that
1

x

∫ x

0

η(t) dt ≤ ρη(x) for all x ∈ R+. We will call ρ

the q.i constant.

From the previous definition Mazzone and Zó, in [6], established

Definition 3.2. Let ϕ,ψ : R+ → R+.
ϕ ≺ ψ iff ψ

ϕ is a quasi-increasing function; that is, iff there exists a constant
ρ > 0 such that

1

x

∫ x

0

ψ(t)

ϕ(t)
dt ≤ ρ

ψ(x)

ϕ(x)
for all x ∈ R+.

In Theorem 2.4 in [6], the authors employed relation ≺ to get a strong type
inequality like (1.6). Consequently, with the aim of following an analogous
pattern, we define

Definition 3.3. Let ϕ,ψ : R+ → R+.
ϕ ≺N ψ iff {ψ(x)ϕ(α

x )}α∈ + is a collection of quasi-increasing functions with
the same q.i constant; namely, iff there exists a constant ρ > 0 such that

1

x

∫ x

0

ψ(t)ϕ
(α

t

)
dt ≤ ρψ(x)ϕ

(α
x

)
for all x ∈ R+ and for all α ∈ R+.

First, we notice that ≺ is always a reflexive relation while ≺N is not.
In fact, for any ϕ : R+ → R+ there exists ρ ≥ 1 > 0 such that

1

x

∫ x

0

ϕ(t)

ϕ(t)
dt ≤ ρ

ϕ(x)

ϕ(x)
for all x ∈ R+; that is to say, ϕ ≺ ϕ.

However, if ϕ(x) = x(x + 1) there does not exist ρ > 0 such that

1

x

∫ x

0

t(t + 1)
α

t

(α
t

+ 1
)

dt ≤ ρx(x + 1)
α

x

(α
x

+ 1
)

for all α ∈ R+ and for all x ∈ R+. Hence, ϕ ,≺N ϕ.

Next, we set sufficient conditions to assure the relation ≺N .

Proposition 3.4. Let ϕ, ψ : R+ → R+.
If H(x) = ψ(x)ϕ(α

x ) is a nondecreasing function from R+ into itself for all
α > 0, then ϕ ≺N ψ.

Proof. It follows straightforward from 0 < H(t) ≤ H(x) ∀t ∈ (0, x) due to
H(x) is a nondecreasing function on (0,∞).
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The following result follows straightforward from the definitions of ≺ and
≺N .

Proposition 3.5. Let ϕ, ψ, M : R+ → R+ nondecreasing functions.

a) If ϕ ≺N ψ, then ϕ ≺N Mψ.
b) If ϕ ≺ ψ, then ϕ ≺ Mψ.

Proposition 3.4 claims that every nondecreasing function is a quasi-increasing
one; in addition, a nonincreasing function may be a quasi-increasing one be-
cause Lemma 3.1 in [6] establishes

Let η : R+ → R+ be a nonincreasing function.
If η satisfies η(x

2 ) ≤ Kη(x) with K < 2, then η is quasi-increasing.

Thus, from this last result, we obtain

Proposition 3.6. Let ϕ : R+ → R+ be a nondecreasing function.
If ϕ ∈ ∆2 with Λϕ < 2, then

a) {ϕ(α
x )}{α∈ +} is a collection of quasi-increasing functions with the same

q.i constant.
b) 1

ϕ(x) is a quasi-increasing function.

Example 3.7. {ln( 3
√

α
x +1)}α∈ + is a collection of quasi-increasing functions

with the same q.i constant and 1
ln( 3√x+1)

is quasi-increasing.

Remark 3. Let ϕ,ψ : R+ → R+ be nondecreasing functions.
a) If {ϕ(α

x )}{α∈ +} is a collection of quasi-increasing functions with the same
q.i constant, then ϕ ≺N ψ.
b) If 1

ϕ(x) is a quasi-increasing function on R+, then ϕ ≺ ψ.

Proposition 3.8. Let Φ(x) =
∫ x
0 ϕ(t) dt and Ψ(x) =

∫ x
0 ψ(t) dt.

Let Ψ(x)Φ(α
x ) be a nonincreasing function for all α ∈ R+, Φ ∈ ∆2 and Ψ ∈ ∇2.

If λ−1
Ψ ΛΦ < 2, then we have Φ ≺N Φ.

Proof. As Φ ∈ ∆2, ∃ ΛΦ > 0 such that Φ(2x) ≤ ΛΦΦ(x) ∀x > 0; and due to
Ψ ∈ ∇2, ∃ λΨ > 0 such that Ψ(2x) ≥ λΨΨ(x) ∀x > 0. Consequently, we have

Ψ
(x

2

)
Φ

(2α

x

)
≤ λ−1

Ψ ΛΦΨ(x)Φ
(α

x

)
∀α ∈ R+ and ∀x > 0.

By hypothesis Ψ(x)Φ(α
x ) is a nonincreasing function ∀α ∈ R+ then, by applica-

tion of Lemma 3.1 in [6], {Ψ(x)Φ(α
x )}{α∈ +} is a collection of quasi-increasing

functions with the same q.i constant iff Φ ≺N Ψ.

Right afterwards, we state conditions under which relations ≺ and ≺N are
simultaneously valid.

Proposition 3.9. Let Φ1 and Φ2 be two Young functions restricted to R+ and
let ϕ1+, ϕ2+ be their right derivatives.
If Φ1, Φ2 ∈ ∆2, we have Φ1 ≺ Φ2 iff ϕ1+ ≺ ϕ2+ and Φ1 ≺N Φ2 iff ϕ1+ ≺N ϕ2+

.
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Proof. To begin with, we obtain some inequalities which will be employed later.
As Φ1 and Φ2 are Young functions restricted to R+ and ϕ1+ and ϕ2+ are their
right derivatives, we get

x

K2
ϕ2+(x) ≤ Φ2(x) ≤ xϕ2+(x) ∀x ∈ R+(3.1)

and
α

K1x
ϕ1+

(α
x

)
≤ Φ1

(α
x

)
≤ α

x
ϕ1+

(α
x

)
∀x ∈ R+ and ∀α ∈ R+.(3.2)

⇒) If Φ1 ≺N Φ2, then ∃ ρ1 > 0 such that

1

x

∫ x

0

Φ2(t)Φ1

(α
t

)
dt ≤ ρ1Φ2(x)Φ1

(α
x

)
∀x ∈ R+ and ∀α ∈ R+.

From (3.1), (3.2) and the hypothesis, ∃R1 = K1K2ρ1 > 0 such that

1

x

∫ x

0

ϕ2+(t).ϕ1+

(α
t

)
dt ≤ R1ϕ2+(x)ϕ1+

(α
x

)
∀x ∈ R and α ∈ R+

Therefore, ϕ1+ ≺N ϕ2+.

⇐) If ϕ1+ ≺N ϕ2+, then ∃ ρ2 > 0 such that

1

x

∫ x

0

ϕ2+(t)ϕ1+

(α
t

)
dt ≤ ρ2ϕ2+(x)ϕ1+

(α
x

)
∀x ∈ R+ and ∀α ∈ R+.

From (3.1), (3.2) and the hypothesis, ∃R2 = K1K2ρ2 > 0 such that

1

x

∫ x

0

Φ2(t)Φ1

(α
t

)
dt ≤ R2Φ2(x)Φ1

(α
x

)
∀x ∈ R+ and ∀α ∈ R+.

Therefore, Φ1 ≺N Φ2.

The following result follows straightforward from the definitions

Proposition 3.10. Let ϕ,ψ : R+ → R+.
Let p ∈ R. If ϕ(x) = xp, then ϕ ≺ ψ iff ϕ ≺N ψ.

The following result is an immediate consequence of Proposition 3.6 and
Remark 3.

Proposition 3.11. Let ϕ : R+ → R+ be a nondecreasing function.
If ϕ ∈ ∆2 with Λϕ < 2, then ϕ ≺ ψ and ϕ ≺N ψ.

Proposition 3.12. Let ϕ,ψ : R+ → R+.
If there exist constants 0 < K1 ≤ K2 such that K1 ≤ ϕ(x)ϕ(α

x ) ≤ K2 for all
α > 0 and for all x > 0, then ϕ ≺ ψ iff ϕ ≺N ψ.

Proof. From the hypothesis, there exist 0 < K1 ≤ K2 such that

1

K1
ϕ
(α

x

)
≥ 1

ϕ(x)
and ϕ

(α
x

)
≤ K2

ϕ(x)
∀α > 0 and ∀x > 0.(3.3)
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⇒) Due to ϕ ≺ ψ, ∃ρ > 0 such that

1

x

∫ x

0

ψ(t)

ϕ(t)
dt ≤ ρ

ψ(x)

ϕ(x)
∀x > 0

and therefore, by (3.3), ∃K3 = K2
K1
ρ > 0 such that

1

x

∫ x

0

ψ(t)ϕ
(α

t

)
dt ≤ K3ψ(x)ϕ

(α
x

)
∀α > 0 and ∀x > 0 iff ϕ ≺N ψ.

⇐) Due to ϕ ≺N ψ, ∃ρ > 0 such that

1

x

∫ x

0

ψ(t)ϕ
(α

t

)
dt ≤ ρψ(x)ϕ

(α
x

)
∀α > 0 and ∀x > 0

and then, by (3.3), ∃K3 = K2
K1
ρ > 0 such that

1

x

∫ x

0

ψ(t)

ϕ(t)
dt ≤ K3

ψ(x)

ϕ(x)
∀x > 0 iff ϕ ≺ ψ.

Example 3.13. Let ϕ(t) =

{
1
2 sin t + 1

2 for 0 < t < π
2

1 for t ≥ π
2

then ϕ
(α

t

)
=

{
1
2 sin(α

t ) + 1
2 for t > 2α

π

1 for 2α
π ≥ t ≥ 0

and consequently 0 <
1

4
≤ ϕ(t)ϕ

(α
t

)
≤ 1 ∀α > 0 and ∀t > 0; thus ϕ ≺N ϕ

owing to ϕ ≺ ϕ.

If we soften the hypothesis in the preceding proposition, we achieve

Proposition 3.14. Let ϕ, ψ : R+ → R+.
If ϕ ≺N ψ and there exist constants 0 < K1 ≤ K2 such that K1 ≤
ϕ(x)ϕ( 1

x) ≤ K2 for all x > 0, then ϕ ≺ ψ.

Proof. From the hypothesis, there exist 0 < K1 ≤ K2 such that

1

K1
ϕ
(1

x

)
≥ 1

ϕ(x)
and ϕ

(1

x

)
≤ K2

ϕ(x)
∀x > 0.(3.4)

Due to ϕ ≺N ψ, ∃ρ > 0 such that

1

x

∫ x

0

ψ(t)ϕ
(α

t

)
dt ≤ ρψ(x)ϕ

(α
x

)
∀α > 0 and ∀x > 0;

now we choose α = 1 > 0, we get

1

x

∫ x

0

ψ(t)ϕ
(1

t

)
dt ≤ ρψ(x)ϕ

(1

x

)
∀x > 0
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and then, employing (3.4), ∃K3 = K2
K1
ρ > 0 such that

1

x

∫ x

0

ψ(t)

ϕ(t)
dt ≤ K3

ψ(x)

ϕ(x)
∀x > 0 iff ϕ ≺ ψ.

Example 3.15. x + ln(x + 1) ≺N x and x + ln(x + 1) ≺ x.
It is remarkable that functions of this example belong to Φ.

Proposition 3.16. Let ϕ, ψ : R+ → R+.
If ψ

ϕ and ϕ(α
x )ψ(x) are two nonincreasing functions for all α > 0, ϕ ∈ ∆2,

ψ ∈ ∇2 and Λϕ

λψ
< 2; then ϕ ≺ ψ and ϕ ≺N ψ.

Proof. It follows in the same way as Proposition 3.8.

Remark 4. The advantage of this statement resides in the fact that ϕ and ψ
could be any nondecreasing functions.

Now, we reach a strong type inequality from a weak type one and provided
that the involved functions are related by ≺N .

Theorem 3.17. Let ϕ : R+ → R+ be a nondecreasing function such that
ϕ(0) = 0.
Let f and g be nonnegative measurable functions satisfying

µ({f > a}) ≤ 2Cw

∫

{g>ca}
ϕ
(g

a

)
dµ for all a > 0 and some c > 0.

Let Ψ be a C1([0,∞)) Young function and let ψ = Ψ′; and, assume that
ϕ ≺N ψ. Then

∫

Ω

Ψ(f) dµ ≤ 2CwCq

∫

Ω

Ψ
(2

c
g
)

dµ(3.5)

where Cq is a constant that depends only on ρ and c.

Proof. It follows the same pattern of the proof of Theorem 2.4 in [6].
First, we write

∫
ΩΨ(f) dµ using the distribution function of f ; then, we apply

the Weak Type Inequality of the hypothesis and Fubini’s Theorem, obtaining
the next chain of inequalities

∫

Ω

Ψ(f) dµ =

∫ ∞

0

ψ(a)µ({f > a}) da ≤

2Cw

∫ ∞

0

ψ(a)

(∫

{g>ca}
ϕ
(g

a

)
dµ

)
da = 2Cw

∫

Ω

(∫ c−1g

0

ψ(a)ϕ
(g

a

)
da

)
dµ.

As ϕ ≺N ψ we get
∫ c−1g

0

ψ(a)ϕ
(g

a

)
da ≤ ρ.ϕ(c)(c−1g)ψ(c−1g) = Cq(c

−1g)ψ(c−1g)
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being Cq = ρϕ(c), and consequently

2Cw

∫

Ω

(∫ c−1g

0

ψ(a)ϕ
(g

a

)
da

)
dµ ≤ 2Cw

∫

Ω

Cq(c
−1g)ψ(c−1g) dµ.

Due to Ψ(x) =
∫ x

0 ψ(t) dt where ψ : R+
0 → R+

0 is nondecreasing, we have
Ψ(x) ≥

∫ x
x
2
ψ(t) dt ≥ x

2ψ(x
2 ), so

2Cw

∫

Ω

Cq(c
−1g)ψ(c−1g) dµ ≤ 2CwCq

∫

Ω

Ψ
(2

c
g
)

dµ.

Finally

∫

Ω

Ψ(f) dµ ≤ 2.CwCq

∫

Ω

Ψ
(2

c
g
)

dµ.

Now we can obtain new versions of Corollaries 2.6, 2.7 and 2.8 in [6] as
follows.

Corollary 3.18. Let f and g be nonnegative measurable functions.
Let ϕ : R+ → R+ such that ϕ(0) = 0, let Ψ be a C1([0,∞)) ∩∆2 Young func-

tion and let ψ = Ψ′; then

∫

Ω

Ψ(f) dµ ≤ C

∫

Ω

Ψ(g) dµ where the positive

constant C is independent of f and g if

1. ϕ(0+) = 0, (1.4) and ϕ ≺N ψ; or
2. (1.5), Φ ∈ ∆2 such that ϕ = Φ

′
+ and Φ ≺N Ψ; or

3. (1.4), Φ ∈ ∆2 such that ϕ = Φ
′
+ and Φ ≺N Ψ.

Proof. (1) From Lemma 2.1 and the fact that Ψ ∈ ∆2.
(2) By Proposition 3.9, Theorem 3.17 and the fact that Ψ ∈ ∆2.
(3) By application of Lemma 2.1 and point (2).

Remark 5. In points (1) and (3) we did not require Φ ∈ ∇2 which is an
indispensable condition to prove Corollaries 2.6 and 2.8 in [6].

In the following theorem, we also obtain a strong type inequality although
(1.4) or (1.5) do not hold for all a > 0 and provided that we consider a Finite
Measure Space.

Theorem 3.19. Let (Ω,A, µ) be a finite measure space.
Let ϕ : R+ → R+ be a nondecreasing function such that ϕ(0) = 0.
Let f and g be nonnegative measurable functions satisfying

µ({f > a}) ≤ K1

∫

{g>ca}
ϕ
(g

a

)
dµ,

for all a ≥ a0 > 0 and some K1 > 0 and some c > 0.
Let Ψ be a C1([0,∞)) Young function such that ψ = Ψ′ and assume that
ϕ ≺N ψ, then ∫

Ω

Ψ(f) dµ ≤ K2 + K3

∫

Ω

Ψ
(2

c
g
)

dµ

where 0 < K3 and 0 < K2 = ψ(a0)µ(Ω) are independent of f and g.
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Proof. Let a0 > 0. We write Ω = {f > a0} ∪ {f ≤ a0}, then
∫

Ω

Ψ(f) dµ =

∫

{f>a0}
Ψ(f) dµ +

∫

{f≤a0}
Ψ(f) dµ.

First we suppose f > a0, we rewrite the
∫
ΩΨ(f) dµ and, due to the Weak Type

Inequality in the hypothesis is valid ∀a ≥ a0, we have
∫

Ω

Ψ(f) dµ =

∫

Ω

(∫ a0

0

ψ(a) da

)
dµ +

∫

Ω

(∫ f

a0

ψ(a) da

)
dµ.

We recall Ψ(f) =
∫ f

0 ψ(a) da and we take K2 = µ(Ω)ψ(a0) to obtain
∫

Ω

(∫ f

0

ψ(a) da

)

dµ ≤ K2 +

∫

Ω

(∫ f

a0

ψ(a) da

)

dµ.

Now, we apply Fubini’s Theorem and the hypothesis to produce
∫

Ω

(∫ f

a0

ψ(a) da

)
dµ =

∫ ∞

a0

ψ(a)

(∫

{f>a}
dµ

)
da =

∫ ∞

a0

ψ(a)µ({f > a}) da ≤ K1

∫ ∞

a0

ψ(a)

(∫

{g>ca}
ϕ
(g

a

)
dµ

)

da.

Again, we employ Fubini’s Theorem to express

K1

∫ ∞

a0

ψ(a)

(∫

{g>ca}
ϕ
(g

a

)
dµ

)
da = K1

∫

Ω

(∫ c−1g

a0

ψ(a)ϕ
(g

a

)
da

)
dµ;

because of ψ(a)ϕ( g
a) being a nonnegative function on [0,∞), we get

K1

∫

Ω

(∫ c−1g

a0

ψ(a)ϕ
(g

a

)
da

)
dµ ≤ K1

∫

Ω

(∫ c−1g

0

ψ(a)ϕ
(g

a

)
da

)
dµ.

From here the proof is similar to the one developed in Theorem 3.17; and
eventually,

∫

Ω

Ψ(f) dµ ≤ K2 + K3

∫

Ω

Ψ
(2

c
g
)

dµ where K3 = K1Cq.

If f ≤ a0,
∫

Ω

Ψ(f) dµ ≤
∫

Ω

(∫ a0

0

ψ(a) da

)

dµ = µ(Ω)Ψ(a0) = K2

because Ψ(f) =
∫ f
0 ψ(t) dt with ψ : R+

0 → R+
0 a nondecreasing function.

Combining the two previous results, we obtain
∫

Ω

Ψ(f) dµ ≤ 2K2 + K3

∫

Ω

Ψ
(2

c
g
)

dµ

where K3 = K1Cq y K2 = µ(Ω)Ψ(a0).
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4. Inequalities for Best Approximation Operators

A subset L ⊂ A is a σ-lattice iff ∅, Ω ∈ L and L is closed under countable
unions and intersections.
Set LΦ(L) for the set of L-measurable functions in LΦ(Ω).

A function g ∈ LΦ(L) is called a best Φ-approximation to f ∈ LΦ iff
∫

Ω

Φ(f − g) dµ = min
h∈LΦ(L)

∫

Ω

Φ(f − h) dµ.

We denote by µ(f,L) the set of all the best Φ-approximants to f .
It is well known that for every f ∈ LΦ, µ(f,L) ,= ∅, see [5].

Recall that a Young function Φ such that Φ(x)
x → 0 as x → 0 and Φ(x)

x → ∞
as x → ∞ is called an N -function.

Let Φ be a derivable N -function and let ϕ = Φ′, then ϕ : R+
0 → R+

0 is a
right continuous, nondecreasing function that satisfies 0 < ϕ(x) < ∞ for all
x ∈ (0,∞), ϕ(0) = 0 and lim

x→∞
ϕ(x) = ∞ ([4] and [7]).

If f ∈ LΦ, we will write f for the best Φ-approximation to f ∈ LΦ.
Given two functions f and g, we denote f ∨ g (f ∧ g) the pointwise maximum
(minimum) of the functions.
Assume that Φ ∈ C1 ∩ ∆2 is strictly convex, then the function Φ′ = ϕ also
fulfills the ∆2-condition.

Let f ∈ Lϕ and let n be a fixed positive number.
Thus, we define (−n ∨ f) as the increasing limit of ((−n ∨ f) ∧ m) as m → ∞.
And, the decreasing limit of (−n ∨ f) as n → ∞ will be, by definition, the
Extended Best Approximation Operator of f from LΦ to Lϕ, which will denote
fe.

In [2] Favier and Zó obtained

Theorem 4.1. Let (Ω,A, µ) be a finite measure space.
Let Φ ∈ C1 ∩∆2 be a strictly convex N-function and assume ϕ = Φ′.
Let f ∈ Lϕ such that f ≥ 0 and let fe be the Extension of the Best Approxi-
mation Operator to Lϕ.
If there exists a constant c > 0 such that ϕ(x + y) ≤ c[ϕ(x) + ϕ(y)] for all
x, y ≥ 0, then

µ({fe > a}) ≤ c + 1

ϕ(a)

∫

{fe>a}
ϕ(f) dµ for all a > 0.

We begin proving an equivalence similar to Lemma 4.1 in [6] and Lemma
2.5 in [2].

Proposition 4.2. Let ϕ : R+ → R+ be a nondecreasing function.
ϕ ∈ ∆2 iff there exists c > 0 such that ϕ(x+y) ≤ c[ϕ(x)+ϕ(y)] for all x, y ≥ 0.
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Proof. ⇒) If ϕ ∈ ∆2, then ∃ c > 0 such that ϕ(2x) ≤ cϕ(x) ∀x ≥ 0.
Let x, y ≥ 0, then x ≤ y ó x ≥ y.
Without any loss of generality, let us assume x ≥ y; then,
ϕ(x + y) ≤ ϕ(2x) ≤ cϕ(x) ≤ cϕ(x) + cϕ(y) = c[ϕ(x) + ϕ(y)].
⇐) If ∃ c > 0 such that ϕ(x + y) ≤ c[ϕ(x) + ϕ(y)] ∀x, y ≥ 0; for x = y ≥ 0
we have ϕ(2x) ≤ 2cϕ(x) ∀x ≥ 0, i.e, ϕ ∈ ∆2.

Due to every ∆′-function is a ∆2-function (see [7]), it is also true ϕ ∈
∆′(globally) implies the existence of a constant c > 0 such that ϕ(x + y) ≤
c[ϕ(x) + ϕ(y)] for all x, y ≥ 0.
In consequence, if we demand ϕ ∈ ∆′ globally, by Theorem 4.1 and Proposition
2.2, we obtain the Weak Type Inequality (1.4) with f and g replaced by fe

and f ∈ Lϕ respectively.
Moreover, if ϕ is a continuous function such that ϕ(0) = 0, by Lemma 2.1, we
reach (1.5) for fe. That is,

Theorem 4.3. Let (Ω,A, µ) be a finite meaure space.
Let Φ ∈ C1 ∩∆2 a strictly convex N-function and assume ϕ = Φ′.
Suppose f ∈ Lϕ and f ≥ 0; and, let fe be the Extension of the Best Approxi-
mation Operator to Lϕ.
If ϕ ∈ ∆′ globally, then

µ({fe > a}) ≤ K

∫

{fe>a}
ϕ
(f

a

)
dµ for all a > 0;

and, there also exists a constant c > 0 such that

µ({fe > a}) ≤ 2K

∫

{f>ca}
ϕ
(f

a

)
dµ for all a > 0.

Now, if ϕ ∈ ∆′ globally, from Theorems 4.3 and 3.17, we get

Theorem 4.4. Let (Ω,A, µ) be a finite measure space.
Let Φ ∈ C1 ∩∆2 a strictly convex N-function and let ϕ = Φ′.
Suposse f ∈ Lϕ and f ≥ 0; and, let fe be the Extension of the Best Approxi-
mation Operator to Lϕ.
Let Ψ ∈ C1([0,∞)) be a Young function and let ψ = Ψ′.
If ϕ ∈ ∆′ globally and ϕ ≺N ψ, then

∫

Ω

Ψ(fe) dµ ≤ K2

∫

Ω

Ψ
(2

c
f
)

dµ(4.1)

where K2 > 0 is independent of the function f .

Remark 6. In [2], Favier and Zó obtained strong type inequalities like (1.6)
for fe with Ψ belonging to specific classes of functions. However, the Strong
Type Inequality for fe is not characterized.
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Now, we consider another maximal operator related with the best approxi-
mation operator.
Suppose that Ln is an increasing sequence of σ-lattices, i.e Ln ⊂ Ln+1 for all
n ∈ N.
Let f ∈ LΦ such that f ≥ 0 and let fn be any selection of functions in µ(f,Ln).
In [6] it is defined the maximal function f ∗ = sup

n
fn.

Let Φ be a Young function such that Φ̂ ∈ ∆2 ∩ ∇2 being

Φ̂(x) =

∫ x

0

ϕ̂(t) dt with ϕ̂(x) = ϕ+(x) − ϕ+(0)sign(x)

and ϕ+ the right-continuous derivative of Φ.
In Theorem 1.1 in [6], Mazzone and Zó proved that f ∗ satisfies

µ({f ∗ > a}) ≤ C

ϕ+(a)

∫

{f>ca}
ϕ+(f) dµ(4.2)

for all a > 0 and some C > 0; they also stated that if ϕ+(0) = 0, then

µ({f ∗ > a}) ≤ C

ϕ+(a)

∫

{f∗>a}
ϕ+(f) dµ for all a > 0.(4.3)

In the proof of the case ϕ+(0) = 0, the authors did not employ the fact that
Φ̂ ∈ ∇2; nevertheless, this condition became essential to get (4.2).
For this reason, we assume ϕ+(0) = 0 and ϕ+ ∈ ∆′ globally and then we get
a weak type inequality like (1.4) where f = f ∗ and g = f .
Moreover, if ϕ+ is a right continuous function, we apply Lemma 2.1 and we
obtain (1.5) for f = f ∗ and g = f . That is,

Theorem 4.5. Let Φ be a Young function such that ϕ+ is the right continuous
derivative of Φ.
If ϕ+(0) = 0 and ϕ+ ∈ ∆′ globally, then

µ({f ∗ > a}) ≤ K

∫

{f∗>a}
ϕ+

(f

a

)
dµ for all a > 0;(4.4)

and, it is also true

µ({f ∗ > a}) ≤ K

∫

{f>ca}
ϕ+

(f

a

)
dµ(4.5)

for all a > 0 and some c > 0.

In consequence, if ϕ+ ∈ ∆′ globally and ϕ+(0) = 0, by Theorem 4.5,
f ∗satisfies a weak type inequality like (1.4) and, from Theorem 3.17, we get

Theorem 4.6. Let (Ω,A, µ) be a finite measure space.
Let Φ be a Young function such that ϕ+ is its right-continuous derivative;
suppose ϕ+ ∈ ∆′ globally and ϕ+(0) = 0.
Let Ln be an increasing sequence of σ-lattices and consider f ∈ LΦ such that
f ≥ 0 and let fn be any selection of functions in µ(f,Ln) and f ∗ = sup

n
fn.
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Let Ψ ∈ C1([0,∞)) be a Young function with ψ = Ψ′.
If ϕ ≺N ψ, then

∫

Ω

Ψ(f ∗) dµ ≤ K2

∫

Ω

Ψ
(2

c
f
)

dµ(4.6)

where K2 is a positive constant independent of the function f .

We point out that the Young functions Φ whose right-continuous derivatives
ϕ+ ∈ ∆′ globally and satisfy ϕ+(0) = 0 can be considered for the above
Theorem while, for Theorem 1.1 in [6], we need Φ̂(x) ∈ ∇2.

5. Inequalities for Sub Additive Operators

The following result follows by a standard procedure as Remark (1), page
38, in [1], and Lemma 3.1 in [2].

Proposition 5.1. Let T : L1(Rn) → M(Rn) be a subaddtive operator, f ∈
L1(Rn) and ϕ ∈ Φ such that ϕ(0) = 0. Assume

|{x ∈ Rn : |T (f)(x)| > λ}| ≤ C

∫

n

ϕ
(Cf(x)

λ

)
dx(5.1)

for all λ > 0 and some C > 0 independent of f ; and, suppose

‖Tf‖∞ ≤ ‖f‖∞.(5.2)

Then

|{x ∈ Rn : |T (f)(x)| > λ}| ≤ C

∫

{x:|f(x)|> λ
2 }
ϕ
(2Cf(x)

λ

)
dx

for all λ > 0; and, being the constant C independent of the function f .

Next, from Proposition 5.1 and Theorem 3.17, we get

Theorem 5.2. Let T : L1
loc(Rn) → Med(Rn) be a subadditive operator, f ∈

L1
loc(Rn) and ϕ ∈ Φ such that ϕ(0) = 0. Suppose

|{x ∈ Rn : |T (f)(x)| > λ}| ≤ C

∫

n

ϕ
(Cf(x)

λ

)
dx(5.3)

for all λ > 0 and some C > 0 independent of the function f ; and, assume
‖Tf‖∞ ≤ ‖f‖∞.
Let Ψ be a C1([0,∞)) Young function and let ψ = Ψ′.

If ϕ ≺N ψ, then

∫

n

Ψ(|T (f)|) dx ≤ K

∫

n

Ψ(4f) dx.

Hereafter, we consider the Hardy Littlewood Maximal Operator M defined
over cubes Q ⊂ Rn and given by the formula

M(f)(x) = sup
x∈Q

1

|Q|

∫

Q

f(t) dt for f ∈ L1
loc(Rn).
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Kokilashvili and Krbec, in [3], introduced the following concept

Definition 5.3. A function ϕ : [0,∞) → R is said to be quasiconvex on
[0,∞) if there exist a convex function ω and a constant c > 0 such that
ω(t) ≤ ϕ(t) ≤ cω(ct) for all t ∈ [0,∞).

Next, we employ previous definition to establish sufficient conditions for the
validity of a weak type inequality for M .

Theorem 5.4. Let ϕ ∈ Φ.
If ϕ is quasiconvex on [0,∞), there exists a constant C > 0 such that

|{x ∈ Rn : M(f)(x) > λ}| ≤ C

∫

n

ϕ
(Cf(x)

λ

)
dx(5.4)

for all f ∈ L1
loc(Rn) and for all λ > 0.

Proof. By Lemma 1.2.4 in [3], ∃ c > 0 such that

|{x ∈ Rn : M(g)(x) > λ}| ≤ c

ϕ(λ)

∫

n

ϕ(cg(x)) dx

∀g ∈ L1
loc(Rn) and ∀λ > 0 iff ϕ is a quasiconvex function.

Choosing λ = 1 and next g = f
λ , with f ∈ L1

loc(Rn) and λ > 0, we have
∣∣∣
{
x ∈ Rn : M

(f

λ

)
(x) > 1

}∣∣∣ ≤
c

ϕ(1)

∫

n

ϕ
(cf(x)

λ

)
dx.

As M is a homogeneous operator,

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

ϕ(1)

∫

n

ϕ
(cf(x)

λ

)
dx;

and, since ϕ ∈ Φ, ∃C = max{c; c
ϕ(1)} > 0 such that

|{x ∈ Rn : M(f)(x) > λ}| ≤ C

∫

n

ϕ
(C

λ
f(x)

)
dx

∀f ∈ L1
loc(Rn) and ∀λ > 0.

However, the quasiconvexity is not a necessary condition to hold (5.4).

Let ψ(x) =

{
xp if x ≥ 0

(−x)p if x < 0
for p ≥ 1,

then ψ ∈ Φ and ψ is quasiconvex on [0,∞).
By Theorem 5.4, there exists a constant c > 0 such that

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

∫

n

ψ
(cf(x)

λ

)
dx

for all f ∈ L1
loc(Rn) and for all λ > 0.

Now, we consider the function ϕ(x) =






xp if x ≥ 1

x
1
p if 0 ≤ x < 1

(−x)p if x ≤ −1

(−x)
1
p if −1 < x < 0
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for p > 1, which begins to Φ and 0 ≤ ψ(x) ≤ ϕ(x) for all x ∈ R. So

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

∫

n

ϕ
(cf(x)

λ

)
dx

∀λ > 0 and ∀f ∈ L1
loc(Rn), but ϕ is not a quasiconvex function.

Hence, the converse of Theorem 5.4 is not true.

With the aim of relaxing the hypothesis of quasiconvexity in Theorem 5.4,
we derive some properties of functions belonging to Φ.

Let a > 0. We denote Φa the set of functions ϕ : (−a, a) → R which are
nonnegative, even, nondecreasing on [0, a), such that ϕ(x) > 0 for all x > 0
and ϕ(0+) = 0.

The following two lemmas can be easily proved from the hypothesis.

Lemma 5.5. Let ψ ∈ Φ. If there exists xv : 0 < xv ≤ x0 such that ψ is convex
on (0, xv), then there exist a convex function ω ∈ Φx0 such that ω(x) ≤ ψ(x)
on (0, x0).

Lemma 5.6. Let ψ ∈ Φ and x0 > 0. Suppose ψ(x) ≥ c1x for all x ∈ [x0,∞)
and there exists a subinterval (x1, x2) ⊆ (0, x0), with x1 not necessarily zero,
such that ψ(x) ≤ c1x for all x ∈ (x1, x2).
If ψ is a concave function on (0, xv) ⊆ (0, x0), then ψ(xv−) ≤ c1x0.

Lemma 5.7. Let ψ ∈ Φ. If there exist constants c1 > 0 and x0 ≥ 0 such that
ψ(x) ≥ c1x for all x ∈ [x0,∞), and there exists a subinterval (0, xv) ⊆ (0, x0)
where ψ is either a convex or a concave function; then, there exists a convex
function ϕ ∈ Φ that verifies ϕ(x) ≤ ψ(x) for all x > 0.

Proof. According with the behavior of ψ on the interval (0, x0), we build a
convex function ϕ ∈ Φ such that ϕ(x) ≤ ψ(x) ∀x > 0.

A) If x0 = 0, then ϕ(x) = c1.x.
B) If ψ is a concave function on (0, xv) ⊆ (0, x0), by Lemma 5.5, there

exists a convex function ω ∈ Φx0 such that 0 < ω(x) ≤ ψ(x) ∀x ∈ (0, x0).
– If 0 < ω′

+(0) ≤ c1, then r0(x) = ω′
+(0).x is the tangent line to ω(x) on

(0, 0) and it verifies r0(x) ≤ ω(x) ≤ ψ(x) ∀x ∈ (0, x0), r0(x) ≤ c1.x
∀x ∈ [x0,∞) and r0 ∈ Φ. Thus, ϕ(x) = r0(x).

– If ω′
+(0) = 0, then ∃xw ∈ (0, x0) such that 0 < ω′

−(xw) ≤ c1. Let r1 be
the tangent line to ω(x) on (xw,ω(xw)), in consequence r1(x) ≤ ψ(x)
∀x ∈ [xw, x0); and, we also have r1(x) ≤ c1.x ∀x ∈ [x0,∞). Therefore,
the convex function

ϕ(x) =

{
ω(x) if x ∈ (0, xw)
r1(x) if x ∈ [xw,∞)

belongs to Φ and verifies ϕ(x) ≤ ψ(x) ∀x > 0.
– If ! xw ∈ (0, x0) such that 0 < ω′

−(xw) ≤ c1 and ω′
+(0) > c1, then

r2(x) = ω′
+(0).x is the tangent line to ω(x) on (0, 0) that satisfies
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c1.x < r2(x) ≤ ω(x) ≤ ψ(x) ∀x ∈ (0, x0); we also have ψ(x) ≥ c1.x
∀x ≥ x0 and r2 ∈ Φ. Therefore, ϕ(x) = c1.x.

C) Assume ∃xv ∈ (0, x0) such that ψ(x) is a concave function on (0, xv) ⊆
(0, x0).
– If ψ(x) ≥ c1.x ∀x ∈ (0, x0) and due to ψ(x) ≥ c1.x ∀x ≥ x0, then
ψ(x) ≥ c1.x ∀x > 0. Therefore, ϕ(x) = c1.x.

– If ψ is concave on (0, xv) ⊆ (0, x0) and ψ(x) ≤ c1.x ∀x ∈ (x1, x2) ⊆
(0, x0) where x1 is not necessarily 0; then, by Lemma 5.6 , ψ(xv−) ≤
c1.x0.

– If xv = x0, we have ψ(x0−) ≤ c1.x0 and let r3(x) = ψ(x0−)
x0

.x be the
chord between (0, 0) and (x0,ψ(x0−)) then r3(x) ≤ ψ(x) ≤ c1.x ∀x ∈
(0, x0); it is also true that r3(x) ≤ c1.x ∀x ≥ x0. Thus ϕ(x) = r3(x).

– If xv < x0 and ψ(x) concave on (0, xv), we define

ψc(x) =

{
ψ(x) if x ∈ (0, xv)

ψ(xv−) if x ∈ [xv, x0)
that satisfies ψc(x) ≤ ψ(x) ∀x ∈ (0, x0).
Moreover ψc(x) is concave on (0, x0), then r4(x) = ψ(xv−)

x0
.x is the

chord between (0, 0) and (x0,ψc(x0−)) and verifies r4(x) ≤ ψc(x)
∀x ∈ (0, x0); we also have r4(x) ≤ c1.x ∀x ≥ x0. Thus, ϕ(x) = r4(x).

In consequence, we achieve another way to obtain (5.4); namely,

Theorem 5.8. Let ψ ∈ Φ. Suppose there exist constants c1 > 0 and x0 ≥ 0
such that ψ(x) ≥ c1x for all x > x0, and there exists a subinterval (0, xv) ⊆
(0, x0) where ψ is either a convex or a concave function. Then, there exists a
constant c > 0 such that

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

∫

n

ψ
(cf(x)

λ

)
dx(5.5)

for all f ∈ L1
loc(Rn) and for all λ > 0.

Proof. Let ψ ∈ Φ. Assume ∃x0 ≥ 0, c1 > 0 such that ψ(x) ≥ c1x ∀x > x0;
and, there exists a subinterval (0, xv) ⊆ (0, x0) where ψ is either a convex or a
concave function.
Then, by Lemma 5.7, there exists a convex function ϕ ∈ Φ such that ϕ(x) ≤
ψ(x) ∀x > 0; therefore,

c

∫

n

ϕ
(cf(x)

λ

)
dx ≤ c

∫

n

ψ
(cf(x)

λ

)
dx.(5.6)

Due to any convex function is a quasiconvex one (see Lemma 1.1.1 in [3]), we
apply Theorem 5.4 to ϕ and we get

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

∫

n

ϕ
(cf(x)

λ

)
dx.(5.7)
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Eventually, from (5.6) and (5.7), we have

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

∫

n

ψ
(cf(x)

λ

)
dx.

Moreover, we also find a necessary condition for the validity of the Weak
Type Inequality (5.5).

Theorem 5.9. Let ψ ∈ Φ. If there exists a constant c > 0 such that

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

∫

n

ψ
(cf(x)

λ

)
dx

for all f ∈ L1
loc(Rn) and for all λ > 0, then there exist c1 > 0 and x0 ≥ 0 such

that ψ(x) ≥ c1x for all x > x0.

Proof. We follow the idea of [3] to prove Lemma 1.2.4.

Let 0 < t1 < t2, I =
{
x = (x1, ...., xn) ∈ Rn : 0 < xi <

(t1
t2

) 1
n
, i = 1, ..., n

}

then I ⊂ (0, 1)n and |I| = t1
t2

< 1; and, put f(x) = t2χI(x).
For any x ∈ (0, 1)n, we have M(f)(x) > t1 and thus

|{x ∈ Rn : M(f)(x) > t1}| ≥ 1.(5.8)

From the hypothesis, ∃c > 0 such that

|{x ∈ Rn : M(f)(x) > λ}| ≤ c

∫

n

ψ
(cf(x)

λ

)
dx

∀f ∈ L1
loc(Rn) and ∀λ > 0; so, choosing I, f and λ as in the beginning and in

(5.8), ∃c > 0 such that

1 ≤ |{x ∈ Rn : M(f)(x) > t1}| ≤ c

∫

ψ

(
c
t2
t1

)
dx = cψ

(
c
t2
t1

)(t1
t2

)

and hence t2
t1
≤ cψ(c t2

t1
).

Due to t1 < t2 and naming x = c t2
t1

, we get x
c2 ≤ ψ(x) ∀x > c; therefore,

∃c1 = c−2 > 0 and x0 = c > 0 such that c1x ≤ ψ(x) ∀x > x0.
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