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Abstract— In the article available means showed the wathefsolution of combinatory tasks on transfer
based on use of internal symmetry of the body gimea condition that, in turn, reflects close contien
between objects of research of the theory of fimalips and the combinatory analysis. A key stepesolution
of similar tasks — heuristic finding of shifts.

The theory of enumerations developed by Polya ahdramathematicians is widely used in quantum
physics, equipment, cybernetics, organic chemigiigipgy. One of basic provisions of this theonBisrnside's
lemma. That to formulate it, we will define conceptan orbit of permutation group.

Let G ={a, =¢,a,, ...,a,_,} — permutation group on a skt ={1, 2,...,n}. The subseD 0 M is called

asan orbit of groupG, if:
1) action of permutations o& on the elements d® does not bring them out @ ;
2) anytwo elements o® can be transformed into each other by some petiontaf G .
Burnside's lemmal1]. For any permutation group performed the equality

-1
t(G) = Te IaDZ(;x(a) :

where (o) — number of fixed points of permutationz) — number of orbits of permutatio® , acting on the

setM .

It's easy to prove that every permutation groupthasorbit. It's clear that any two orbits of threwp are
either disjoint or coincide. It follows that thetskl is the union of disjoint subsets — orbits of theup G. In
connection with the divisioM into the orbit of the permutation grop, two questions arise.

1) How many orbits has the gro@on the setM ?

2) What is the length of each of these orbits?

The answer to the second question can be foundyusigrange's theorem. The answer to the first
guestion gives Burnside's lemma.

Consider the problem of the number of ways thatgemu paint the top of the cube in four colors.

Discuss the condition and solution of this problédme vertex can be painted in four ways. For other
vertex coloring are all the same four ways that'tddepend on the color of the remaining verticescagkding to
the rule works have

4-4-..-4=4" =65536
\__V_f
B paz
ways of coloring the vertices of a cube in fouraesl So it is possible to solve the problem, if weeve all the
vertices are different, that is, the cube is fikedpace and its vertices are numbered.

If the cube can freely rotate, some ways of a éafpbecome isomorphic each other, that is at tofres
cube coincide (fig. 1). It is clear that when cédting ways for coloring the vertices are isomocpbjptions need
to be exclude.

Turns of a cube can be carried out round its akeyrmmetry. The set of turns at which the cubdfiise
combined, forms group of symmetry under multiplicatof turns. Turns are described by permutatidits.
example, the rotation of the cube in fig. 1 coroes}s to a permutation

[1234567

=(1562)(3487.
51486 2 3

Orbit of vertexwill call a sequence of vertices obtained repegtdormance of the same turnikgcycle
is called the smallest sequence of vertices ohait maps initial vertex into itself. For examgle5 6 2) — the
cycle of vertex 1 at turn of a cube on a conti@rround an axi®©; 0, (fig. 1).

If as a result of turn color of vertex hasn't cheghgit's calleda fixed pointof rotation. Otherwise —
moving point To apply Burnside's lemma to the solution of gktayou need to determine the number of fixed
points of each permutation.
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Fig. 1. Rotate the cube on a cordearound the symmetry axis
2

connecting th&®; andO, centers of the opposite faces

For example, concerning permutatior=(1234)(56 7 8, a coloring of vertices from one color and a

coloring of vertices from two colors, in one of whiare colored the vertices of the first cyclelia bther - the
vertices of the second cycle, will be fixed poirf@sunt all the possible options:

4+ A2 =16= £,

Arguing similarly, we conclude that the number dfetl points of permutations. equal 4, where
k —type permutatiorfsequence of lengths of cycles of decompositiopesmutation in product of cycles).

Let the cubes of the same size, which are fixesbice, having different coloring of the verticesfa
setM . Then|M F 4.

We show that the grou of rotations of the cube consists of 24 permutetidVe number the vertices
of the cube (fig. 2).

In table 1 will write down permutations corresparglito rotations around the cube axes connecting
opposite vertices (fig. 2).
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Fig. 2. Cube with axes connecting opposite vertices

In table 2 we will place permutations correspondtogrotations the cube around axés b ¢
connecting the centers of opposite faces (fig. 3).

Fig. 3. Cube with axes connecting the centers pbejie faces

120



MATERIALS OF VII JUNIOR RESEARCHERS’ CONFERENCE

2015

ICT, Electronics, Programming

Table 1
axes angle ermutation decomposition type
9 P into product of cycles permutation
on 123 4567 :
- 254)(368)()(7 <3,3,1,1>
1-7 3 [156 4873 (254)(368)()(7.
4n 1234567 ‘
- 245)386)()(7 <3,3,1,1>
17 3 {1 4 85 2 37 ( ) o
on 12345867 ‘
- 163)(457)(2)@8 <3,3,11>
2-8 3 [6 2157 3 4 ( ) N2)e®
I 1 23 4567 :
- = 136)(475)(2)@8 <3,3,11>
28 3 (3 2 6 7415 3 ( X )2)@
2n 1 2345867 '
- = 168)(274)?3)5 <3,3,11>
3-5 (67325843 168)(274)3)(5,
An 1 234567 :
- = 186)(247)(3)(5 <3,3,1L1>
35 3 [8 4 3756 2 3 ( X 3G
2n 1 234586 7 ‘
- = 183)(257)(4)(6 <3,3,1L1>
46 3 [8 5147 6 2 3 (183)( e
4n 1 234586 7 ‘
46 | = (3 S8 426 5 (138)(27 5)(4)(6 <3311
Table 2
axes angle ermutation decomposition type
9 P into product of cycles permutation
1 23 456 7
a T (1562)(3487 <4,4>
2 51 486 2 3 :
1 23456 7
16)(25) (38) (47 <2,2,2,2>
a | = [65872143 (16) (25) (38) (47)
a 3 1234567 (1265)(3784 <4,4>
2 2 6 731528 ‘
1 23 456 7
b T (1584)(2673 <4,4>
2 56 21873 ‘
1 23 4567
18)(27)(36) (45 <2,2,2,2>
b n (87654323 18)(27)(36) (45)
b 3 1234567 (1485)(2376 <4,4>
2 4 378126 '
r 1234567 (1432)(5876 <4, 4>
c 2 4 1 2 3 85 6 '
1 234586 7
. T (3 412 785 3 13)(24)(57) (68) <2,2,2,2>
1 23 456 7
3n ,
c > (2 3416 7 8 3 (1234)5678 <4,4>
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Table 3 contains a permutation of the cube cormedpdo a rotation around axés |,, I, 1,, |5, g,
connecting the midpoints of opposite ribs (fig. 4).

I!j L e .' .'\_‘_‘

Fig. 4. Cube with axes connecting the midpointspgosite edges

Table 3
axes angle permutation . decomposition type
into product of cycles permutation
15 m i z 2 i g 3 ; j (14)(28)(35)(67) <2,2,2,2>
l, T ; 2 Z 3 : g I j (17)(28)(34)(56) <2,2,2 2>
I, T ; 2 2 : : i Z 3 (17)(23)(46) (58) <2,2,2,2>
l, T ; i : : 2 i ; j (12)(35)(46)(78) <2,2,2,2>
lg m é 2 ? : i 2 ; j (15) (28)(37) (4 6) <2,2,2,2>
ls n ; 2 2 g 2 g I j (17)(26) (35) (48) <2,2,2, 2>

In Table 4we define thenumber of fixed pointsfocletype ofpermutations.

Table 4
typepermutation of perthTtZtri](;Jnns]boefrthis type number of fixed points
<1,1,1,1,1,1,1% 1 £
<2,2,2,2> 9 £
<3,31,1> 8 4
<4,4> 6 L

By Burnside's Lemma we obtain:
t(G) :2—14(48 +9%' + 84 + 614 F 291

Consequently, there is a 2916 different ways obitog the vertices of a cube in four colors.

In article developed a method based on the useudfidie's lemma, which allows the use of algebraic
tools for solving problems on sets of a more gdneture than the set of natural numbers, whicH@maulated
and solved problems of classical combinatorics.

REFERENCES

Kanyxuus, JI.A. TIpeo6pa3zoBanus u nepecranoBku / JI.A. Kanyxuun, B.1. Cymaunckuii ; nep. ¢ ykp. —M. : Hayka, 1979. —
112c.

122



