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Abstract – In the article available means showed the way of the solution of combinatory tasks on transfer 

based on use of internal symmetry of the body given in a condition that, in turn, reflects close connection 
between objects of research of the theory of final groups and the combinatory analysis. A key step of the solution 
of similar tasks – heuristic finding of shifts. 

 
The theory of enumerations developed by Polya and other mathematicians is widely used in quantum 

physics, equipment, cybernetics, organic chemistry, biology. One of basic provisions of this theory is Burnside's 
lemma. That to formulate it, we will define concept of an orbit of permutation group. 

Let 0 1 1{α ε, α , ...,α }kG −= =  – permutation group on a set {1, 2, ..., }M n= . The subset O M⊂  is called 

as an orbit of group G , if:  
1) action of permutations of G  on the elements of O  does not bring them out of O ; 
2) any two elements of O  can be transformed into each other by some permutation of G . 
Burnside's lemma [1]. For any permutation group performed the equality 

α

1
( ) χ(α)

| | G

t G
G ∈

= ∑ , 

where χ(α)  – number of fixed points of permutations, ( )t G  – number of orbits of permutation G , acting on the 

set M . 
It's easy to prove that every permutation group has the orbit. It's clear that any two orbits of the group are 

either disjoint or coincide. It follows that the set M  is the union of disjoint subsets – orbits of the group G . In 
connection with the division M  into the orbit of the permutation group G , two questions arise. 

1) How many orbits has the group G on the set M ? 
2) What is the length of each of these orbits? 
The answer to the second question can be found using Lagrange's theorem. The answer to the first 

question gives Burnside's lemma. 
Consider the problem of the number of ways that you can paint the top of the cube in four colors. 
Discuss the condition and solution of this problem. One vertex can be painted in four ways. For other 

vertex coloring are all the same four ways that don't depend on the color of the remaining vertices. According to 
the rule works have 

 
ways of coloring the vertices of a cube in four colors. So it is possible to solve the problem, if we have all the 
vertices are different, that is, the cube is fixed in space and its vertices are numbered. 

If the cube can freely rotate, some ways of a coloring become isomorphic each other, that is at turns of a 
cube coincide (fig. 1). It is clear that when calculating ways for coloring the vertices are isomorphic options need 
to be exclude. 

Turns of a cube can be carried out round its axes of symmetry. The set of turns at which the cube itself is 
combined, forms group of symmetry under multiplication of turns. Turns are described by permutations. For 
example, the rotation of the cube in fig. 1 corresponds to a permutation 

1 2 3 4 5 6 7 8

5 1 4 8 6 2 3 7

 
 
 

(15 6 2)(3 4 8 7)= . 

Orbit of vertex will call a sequence of vertices obtained repeated performance of the same turning. A cycle 
is called the smallest sequence of vertices orbit that maps initial vertex into itself. For example:(15 6 2) – the 
cycle of vertex 1 at turn of a cube on a corner π/2 round an axis O1O2 (fig. 1). 

If as a result of turn color of vertex hasn't changed, it's called a fixed point of rotation. Otherwise – 
moving point. To apply Burnside's lemma to the solution of a task, you need to determine the number of fixed 
points of each permutation. 
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For example, concerning permutation α (12 3 4)(5 6 7 8)= , a coloring of vertices from one color and a 

coloring of vertices from two colors, in one of which are colored the vertices of the first cycle in the other - the 
vertices of the second cycle, will be fixed points. Count all the possible options: 

2 2
44 16 4A+ = = . 

Arguing similarly, we conclude that the number of fixed points of permutations α  equal 4k , where 
k – type permutation (sequence of lengths of cycles of decomposition of permutation in product of cycles). 

Let the cubes of the same size, which are fixed in space, having different coloring of the vertices form a 
set M . Then 8| | 4M = . 

We show that the group G  of rotations of the cube consists of 24 permutations. We number the vertices 
of the cube (fig. 2). 

In table 1 will write down permutations corresponding to rotations around the cube axes connecting 
opposite vertices (fig. 2). 

 

 
 

Fig. 2. Cube with axes connecting opposite vertices 
 

In table 2 we will place permutations corresponding to rotations the cube around axes a , b , c , 
connecting the centers of opposite faces (fig. 3). 

 

 
 

Fig. 3. Cube with axes connecting the centers of opposite faces 
 

Fig. 1. Rotate the cube on a corner π
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connecting the O1 and O2 centers of the opposite faces 
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Table 1 
 

axes angle permutation 
decomposition 

into product of cycles 
type 

permutation 

1-7 
2π

3
 

1 2 3 4 5 6 7 8

1 5 6 2 4 8 7 3

 
 
 

 (2 5 4)(3 6 8)(1)(7) 3, 3,1,1< >  

1-7 
4π

3
 

1 2 3 4 5 6 7 8

1 4 8 5 2 3 7 6

 
 
 

 (2 4 5)(3 8 6)(1)(7) 3, 3,1,1< >  

2-8 
2π

3
 

1 2 3 4 5 6 7 8

6 2 1 5 7 3 4 8

 
 
 

 (16 3)(4 5 7)(2)(8) 3, 3,1,1< >  

2-8 
4π

3
 

1 2 3 4 5 6 7 8

3 2 6 7 4 1 5 8

 
 
 

 (13 6)(4 7 5)(2)(8) 3, 3,1,1< >  

3-5 
2π

3
 

1 2 3 4 5 6 7 8

6 7 3 2 5 8 4 1

 
 
 

 (1 6 8)(2 7 4)(3)(5) 3, 3,1,1< >  

3-5 
4π

3
 

1 2 3 4 5 6 7 8

8 4 3 7 5 6 2 6

 
 
 

 (18 6)(2 4 7)(3)(5) 3, 3,1,1< >  

4-6 
2π

3
 

1 2 3 4 5 6 7 8

8 5 1 4 7 6 2 3

 
 
 

 (18 3)(2 5 7)(4)(6) 3, 3,1,1< >  

4-6 
4π

3
 

1 2 3 4 5 6 7 8

3 7 8 4 2 6 5 1

 
 
 

 (13 8)(2 7 5)(4)(6) 3, 3,1,1< >  

 
Table 2 

 

axes angle permutation 
decomposition 

into product of cycles 
type 

permutation 

a 
π

2
 

1 2 3 4 5 6 7 8

5 1 4 8 6 2 3 7

 
 
 

 (15 6 2)(3 4 8 7) 4, 4< >  

a π  
1 2 3 4 5 6 7 8

6 5 8 7 2 1 4 3

 
 
 

 (1 6) (2 5) (3 8) (4 7)  2, 2, 2, 2< >  

a 
3π

2
 

1 2 3 4 5 6 7 8

2 6 7 3 1 5 8 4

 
 
 

 (1 2 6 5)(3 7 8 4) 4, 4< >  

b 
π

2
 

1 2 3 4 5 6 7 8

5 6 2 1 8 7 3 4

 
 
 

 (15 8 4)(2 6 7 3) 4, 4< >  

b π  
1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1

 
 
 

 (18) (2 7) (3 6) (4 5)  2, 2, 2, 2< >  

b 
3π

2
 

1 2 3 4 5 6 7 8

4 3 7 8 1 2 6 5

 
 
 

 (1 4 8 5)(2 3 7 6) 4, 4< >  

 
c 

π

2
 

1 2 3 4 5 6 7 8

4 1 2 3 8 5 6 7

 
 
 

 (1 4 3 2)(5 8 7 6) 4, 4< >  

 
c 

π  
1 2 3 4 5 6 7 8

3 4 1 2 7 8 5 6

 
 
 

 (13) (2 4) (5 7) (6 8) 2, 2, 2, 2< >  

c 
3π

2
 

1 2 3 4 5 6 7 8

2 3 4 1 6 7 8 5

 
 
 

 (1 2 3 4)(5 6 7 8) 4, 4< >  
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Table 3 contains a permutation of the cube corresponds to a rotation around axes 1l , 2l , 3l , 4l , 5l , 6l , 
connecting the midpoints of opposite ribs (fig. 4). 

 

 
 

Fig. 4. Cube with axes connecting the midpoints of opposite edges 
 

Table 3 
 

axes angle permutation 
decomposition 

into product of cycles 
type 

permutation 

3l  π  
1 2 3 4 5 6 7 8

4 8 5 1 3 7 6 2

 
 
 

 (1 4) (2 8) (3 5) (6 7)  2, 2, 2, 2< >  

2l  π  
1 2 3 4 5 6 7 8

7 8 4 3 6 5 1 2

 
 
 

 (1 7) (2 8) (3 4) (5 6) 2, 2, 2, 2< >  

1l  π  
1 2 3 4 5 6 7 8

7 3 2 6 8 4 1 5

 
 
 

 (1 7) (2 3) (4 6) (5 8)  2, 2, 2, 2< >  

4l  π  
1 2 3 4 5 6 7 8

2 1 5 6 3 4 8 7

 
 
 

 (1 2) (3 5) (4 6) (7 8) 2, 2, 2, 2< >  

5l  π  
1 2 3 4 5 6 7 8

5 8 7 6 1 4 3 2

 
 
 

 (15) (2 8) (3 7) (4 6)  2, 2, 2, 2< >  

6l  π  
1 2 3 4 5 6 7 8

7 6 5 8 3 2 1 4

 
 
 

 (1 7) (2 6) (3 5) (4 8) 2, 2, 2, 2< >  

 
In Table 4we define thenumber of fixed pointsfor each type ofpermutations. 
 
Table 4 

 

typepermutation 
the number 

of permutations of this type 
number of fixed points 

1,1,1,1,1,1,1,1< >  1 48 
2, 2, 2, 2< >  9 44 
3, 3,1,1< >  8 44 

4, 4< >  6 42 
 
By Burnside's Lemma we obtain: 

8 4 4 21
( ) (4 9 4 8 4 6 4 ) 2916

24
t G = + ⋅ + ⋅ + ⋅ = . 

Consequently, there is a 2916 different ways of coloring the vertices of a cube in four colors. 
In article developed a method based on the use of Burnside's lemma, which allows the use of algebraic 

tools for solving problems on sets of a more general nature than the set of natural numbers, which are formulated 
and solved problems of classical combinatorics. 
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