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Abstract: Aging leads to a gradual decline of function in multiple organs. Cataract, glaucoma, diabetic
retinopathy, and age-related macular degeneration (AMD) are age-related ocular diseases. Because
their pathogenesis is unclear, it is challenging to combat age-related diseases. Cellular senescence is a
cellular response characterized by cell cycle arrest. Cellular senescence is an important contributor
to aging and age-related diseases through the alteration of cellular function and the secretion of
senescence-associated secretory phenotypes. As a driver of stress-induced premature senescence,
oxidative stress triggers cellular senescence and age-related diseases by inducing senescence markers
via reactive oxygen species and mitochondrial dysfunction. In this review, we focused on the
mechanism of oxidative stress-induced senescence in retinal cells and its role in the pathogenesis
of AMD.

Keywords: aging; age-related macular degeneration; cellular senescence; inflammation;
oxidative stress

1. Introduction

Aging is an inevitable and irreversible process characterized by deterioration at the cell,
organelle, tissue, and organ levels [1]. It is the primary risk factor for several cardiovascular,
neurodegenerative, immunological, musculoskeletal, and metabolic diseases [2]. As life
expectancy has increased, it is essential to develop prophylactics and therapeutics for
age-related diseases.

Age-related macular degeneration (AMD) is the most common retinal disease caused
by aging and is the leading cause of blindness in individuals over 60 years old [3]. The
projected number of patients with early- and late-stage AMD is increasing globally [4].
AMD impairs the central visual field by affecting the macula, the central part of the retina.
In the early stage, patients with AMD present with drusen, a lipoprotein-rich material in
the sub-retinal pigment epithelium (RPE) or beneath the neurosensory retinal space [5].
In the advanced stage, there are two types of AMD—dry and wet AMD [6]. Wet AMD
is characterized by choroidal neovascularization, which causes subretinal hemorrhage,
macular edema, and intravitreous hemorrhage. Dry AMD is a slowly progressive retinal
degeneration caused by irreversible photoreceptor death. Although these two phenotypes
have different clinical manifestations, both can lead to severe vision loss. Although AMD is
caused by complex interactions among genetic factors associated with lipid metabolism, the
inflammasome, the immune response, and environmental factors including dietary intake,
smoking, obesity, and light exposure, aging and age-associated factors are the primary
drivers of AMD [7]. Because its molecular pathogenesis is unknown, an understanding of
the pathological mechanism would facilitate the development of therapeutics for early and
late AMD.
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Oxidative stress is a key factor in AMD pathology, aging, and age-related diseases [8].
It induces damage to cells and organelles, leading to pathological signaling [9]. The result-
ing continuous and cumulative oxidative stress in retinal tissue triggers AMD [10]. As a
cellular response to oxidative stress, cellular senescence is an important contributor to aging
and age-related diseases [11]. It is characterized by cell cycle and proliferation arrest [12].
Given that the signaling network between oxidative stress and cellular senescence con-
tributes to the development of age-related diseases, oxidative stress is likely to trigger AMD
by inducing cellular senescence. Therefore, in this review, we focused on the relationship
between oxidative stress and cellular senescence and their effects on age-related diseases of
the retina.

2. Oxidative Stress and Cellular Dysfunction in the Eye

The development of age-related diseases is affected by numerous genetic and environ-
mental factors. Oxidative stress is a strong driver of age-related diseases irrespective of the
genetic and environmental factors [13]. Oxidative stress occurs from an imbalance between
the production of reactive oxygen species (ROS) and antioxidant defenses [14]. In aging,
antioxidants deteriorate, causing cellular and mitochondrial dysfunction by elevating in-
tracellular ROS. ROS are mainly produced in mitochondria, an organelle essential for the
synthesis of ATP (adenosine triphosphate) [15]. Excess ROS leads to cellular dysfunction
and pathologic conditions in various organs. ROS oxidize biological macromolecules such
as proteins, lipids, and nucleic acids (Figure 1) [16]. For instance, oxidative DNA damage
results in telomere shortening, DNA methylation, histone deacetylation, and mitochondrial
dysfunction, inducing transcriptomic changes associated with the aging process [17,18].
ROS also triggers the accumulation of ubiquitinated proteins by downregulating the 26S
proteasome. The resulting insufficient protein degradation leads to intracellular aggrega-
tion of the oxidized proteins [19].
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Figure 1. Biological roles of oxidative stress in cellular senescence in the retina.

Mitochondrial DNA (mtDNA) plays a pivotal role in oxidative stress-induced cellular
dysfunction. ROS generated in mitochondria damages mtDNA and other mitochondrial
constituents. ROS oxidize mtDNA, which leads to mitochondrial dysfunction [20]. Con-
versely, damaged mtDNA facilitates ROS production, resulting in mitochondrial dysfunc-
tion and the production of yet-more ROS. Via a positive feedback loop, oxidative stress
and mitochondrial dysfunction promote an inflammatory response via nuclear factor-κB
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(NF-κB) signaling by activating the NLRP3 inflammasome and cGAS/STING pathway,
ultimately resulting in chronic inflammation and age-related diseases [21,22].

The balance between ROS and antioxidants is maintained by multiple pathways.
NF-κB is a major signaling factor that responds to ROS. In mammals, NF-κB consists of
five proteins—p50, p52, p65/RelA, c-Rel, and RelB. ROS activates the multi-subunit IκB
kinase complex, which phosphorylates IκB [23], leading to its ubiquitin-dependent degra-
dation. Activated NF-κB translocates into the nucleus and activates target genes [24]. By
upregulating interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoat-
tractant protein (MCP)-1, C-X-C motif ligand (CXCL)1, and intercellular adhesion molecule
(ICAM-1), NF-κB promotes inflammation and angiogenesis.

A member of the basic leucine zipper transcription factor family, nuclear factor-
erythroid 2-related factor 2 (Nrf2) is a transactivator of multiple antioxidants [25]. Nrf2
maintains redox homeostasis by interacting with antioxidant response element (ARE). In
the homeostatic state, Nrf2 is ubiquitinated by Kelch-like ECH-associated protein 1 (Keap1),
a negative regulator of Nrf2. Under oxidative stress, conformational changes in Keap1 sta-
bilize Nrf2 and dissociate it from Keap1 [26]. As a result, Nrf2 binds to ARE, regulating the
expression of antioxidant and anti-inflammatory genes including glutathione peroxidase,
glutathione reductase, superoxide dismutase, heme oxygenase-1, thioredoxin reductase,
ferritin, and NAD(P)H quinone oxidoreductase 1 [27]. Through its transcriptomic activity,
Nrf2 reduces the ROS levels and oxidative stress [28]. However, Nrf2 activity decreases
with age, enhancing the susceptibility to oxidative stress [29]. Therefore, chronic oxidative
stress is implicated in aging-related diseases.

There are numerous studies that have investigated the biological roles of oxidative
stress on the pathogenesis of AMD. Among the retinal cells, RPE cells are particularly
associated with AMD pathobiology, and RPE cell dysfunctions by oxidative stress plays a
pivotal role in the development of AMD. RPE cells promote retinal homeostasis through
the blood–retina barrier (BRB), phagocytizing photoreceptor outer segments, and regu-
lating the retinoid cycle. Because aging degrades RPE function, it disrupts the BRB and
causes photoreceptor dysfunction. AMD patients exhibited decreased autophagosome
and autophagic markers, indicating that dysregulated autophagy in RPE cells leads to
AMD [30]. Therefore, insufficient autophagy in RPE cells causes ubiquitinated protein
aggregation and the accumulation of drusen [31]. These effects impair the RPE and trigger
the development of AMD. Oxidative stress by hydrogen peroxide induces mitochondrial
DNA damage and cell death [32–34], which triggers RPE cell dysfunctions. The targeted
deletion of Sod2 encoding manganese superoxide dismutase in RPE cells leads to increased
oxidative stress and dysfunctions in RPE cells and photoreceptors [35]. Dysfunctional RPE
cells by oxidative stress drives inflammation. ROS in RPE cells promote NF-κB signaling
and nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome [36,37],
which further upregulates IL-1β and IL-18 through the activation of caspase-1 [38]. ROS is
also associated with angiogenesis in the retina and choroid [39]. Briefly, ROS induces VEGF
expression in vascular endothelial cells, vascular smooth muscle cells, and macrophages.
Mechanistically, angiogenic response is mediated through hypoxia inducible factor 1α
(HIF-1α) [40]. Furthermore, VEGF induces ROS production and activates NADPH oxidase
in choroidal endothelial cells. The inhibition of NADPH oxidase suppresses a murine
laser induced choroidal neovascularization model [41], suggesting the close relationship
between oxidative stress and choroidal angiogenesis.

3. Molecular Biological Relationships between Oxidative Stress and
Cellular Senescence

Cellular senescence is the state of permanent cell cycle arrest, initially reported as a
limited proliferative potential of normal cells in culture [42]. Cellular senescence is caused
by various stressors such as oxidative stress, DNA damage, organelle stress, telomere
dysfunction, and aging [43]. Autophagy dysfunction, metabolic disturbance, abnormal
inflammatory response, and growth factors are important drivers of cellular senescence.
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Cellular senescence was formerly considered an intrinsic programmed response to adaption
and is essential for tumor suppression. Cellular senescence is also involved in maintaining
physiological homeostasis in wound repair, remodeling, and survival. The accumulation of
senescent cells triggers various age-related diseases such as Parkinson disease, Alzheimer
disease, pulmonary fibrosis, osteoarthritis, atherosclerosis, and age-related ocular dis-
eases (glaucoma and cataract) via a variety of molecular mechanisms [44]. Senescent cells
have an altered structure and organelle morphology and functionality. Senescence causes
cells to become enlarged, flat, multivacuolated, and multinucleated [45]. Mitochondria
and lysosomes control cellular senescence. Senescent cells exhibit impaired lysosomal
digestion, resulting in the accumulation of cellular garbage including protein aggregates
and lipofuscin [46]. Lysosome dysfunction impairs mitochondrial turnover. The result is
functionally deficient mitochondria, and increased ROS production and oxidative stress,
enhancing the synthesis of lipofuscin in a feedback loop [47]. Lipofuscin is produced by
senescent cells and its accumulation is a hallmark of cellular senescence [48–50]. Lipofuscin
is an aggregate of lipids, metals, and misfolded proteins, which constitute a lipoprotein-rich
material known as drusen. Lipofuscin accumulates in the lysosomes of senescent cells. Dur-
ing aging, DNA damage promotes intracellular lipofuscin accumulation [51]. Autophagy
dysfunction leads to the accumulation of lipofuscin in lysosomes. Intracellular lipofuscin,
together with other senescence markers such as SA β-Gal, accumulates in senescent cells of
various types [49,52]. As a manifestation of cellular senescence, oxidative stress promotes
the synthesis of lipofuscin. Senescent cells with intracellular lipofuscin show higher ROS
production and suppressed antioxidant defenses [53]. The inhibition of mitochondrial fis-
sion promotes lipofuscinogenesis, and a mitochondrion-targeted antioxidant (mitoTEMPO)
inhibited the accumulation of lipofuscin in human fibroblasts and HeLa cells [52].

There are three types of cellular senescence—replicative senescence, stress-induced
premature senescence (SIPS), and developmentally programmed senescence (DPS) [54].
In replicative senescence, the ability of somatic cells to divide diminishes due to repeated
cellular replication and telomere shortening [55]. SIPS is induced by various stressors (e.g.,
ultraviolet radiation, oxidative stress, and oncogene activity) [56]. DPS has developmental
and morphogenetic functions during embryonic development and has been proposed as the
evolutionary origin of senescence [57]. Oxidative stress triggers SIPS in various cell types,
considering that sustained oxidative stress induces cellular senescence and antioxidants
suppress cellular senescence (Figure 2) [11,58]. Hydrogen peroxide promotes cellular
senescence in vascular endothelial cells and fibroblasts [58,59]. In turn, senescent cells
produce high levels of ROS and have increased oxidative DNA damage [11,60], suggesting
a close relationship between oxidative stress and cellular senescence.
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Stressors such as DNA damage, telomere erosion, and oxidative stress trigger cellular
senescence by acting on the p16INk4a/Rb and p53/p21Cip1 pathway, leading to cell cycle
arrest. p16INK4a and p21Cip1 are cyclin-dependent kinase (CDK) inhibitors. Inhibition of
CDK arrests cell cycle progression from the G1 to S phase, preventing DNA replication [61].
They were discovered as tumor suppressors in tumors from various tissues, and loss of
p53, p16INK4a, or p19ARF leads to the inactivation of cellular senescence and malignant
transformation [62]. p16INK4a and p21Cip1 trigger general aging, cellular senescence, and
age-related disorders [63]. p16INK4a is encoded by CDK inhibitor 2A in the INK4a/ARF
locus on chromosome 9p21.3, which also encodes p19ARF [64]. p16INK4a binds to CDK4/6
and inhibits CDK4/6-cyclin D complex formation, decelerating the cell cycle by inhibit-
ing S phase by preventing the phosphorylation of hypophosphorylated retinoblastoma
protein (Rb) (p16INK4a/pRb pathway). Via these mechanisms, p16INK4a suppresses tumor
progression, and the loss of p16INK4a leads to malignancy and/or a higher grade of ma-
lignancy [65]. In addition, p16INK4a is associated with aging, apoptosis, cell invasion, and
angiogenesis. p16INK4a and p19ARF increase in the aged brain, heart, and lung tissues,
implicating p16INK4a and p19ARF in physiological aging and the deterioration of organ
function with age [66,67]. Moreover, selective elimination of p16INK4a positive cells ex-
tends the lifespan, suppresses tumorigenesis, and prevents age-related disorders including
cataract [68]. Therefore, cellular senescence associated with the p16INK4a/Rb pathway is a
critical driver of age-related diseases, and therapeutic removal of senescent cells (senolysis)
could prevent age-related diseases.

p21Cip1 is a cyclin-dependent kinase inhibitor encoded by CDK inhibitor 1A on chro-
mosome 6p21.2 [69]. p21Cip1 acts downstream of p53 (encoded by TP53). ROS activate the
p53/p21Cip1 pathway by triggering the DNA damage response. Upon DNA damage or
endogenous/exogenous stressors, p53 is activated and transcriptionally upregulates target
genes including p21Cip1 (p53/p21Cip1 pathway) [70]. p21Cip1 binds to CDK2 and CDK4/6,
causing cell cycle arrest at the G1 and S phases [71]. p21Cip1 contributes to DNA repair, the
modulation of apoptosis, and transcriptional regulation as well as cell cycle arrest [72].

Senescent cells have increased senescence-associated β-galactosidase (SA β-Gal) ac-
tivity. The evaluation of SA β-Gal activity is used to identify senescent cells. Cells with
replicative senescence or SIPS show β-galactosidase activity at pH 6.0, whereas normal
cells have β-galactosidase activity at pH 4.5 [73].

Oxidative stress upregulates senescence markers (Figure 2). Although the abundance
of senescence markers differs among tissues, p16Ink4a, p21Cip1, and SA β-Gal are acti-
vated by oxidative stress. For instance, p16Ink4a, p53/p21Cip1, and SA β-Gal activities are
increased in arterial endothelial, smooth muscle, and immune cells by oxidative stress,
triggering cardiovascular diseases [74]. Human peritoneal mesothelial cells show increased
expression of early population doubling level cDNA-1, p16Ink4a, and SA β-Gal activity
with increasing passage number, together with elevated ROS levels and reduced prolifer-
ation [75]. The activity of SA β-Gal, the expression of p53, and nuclear γH2AX foci are
increased in disc cells by hydrogen peroxide [76]. In human dental pulp cells, hydrogen
peroxide activates SA β-Gal activity, the p53/p21Cip1 pathway, and the secretion of several
inflammatory cytokines; collectively, these responses are termed the senescence-associated
secretory phenotype (SASP) [77].

Senescent cells secrete proinflammatory cytokines and growth factors such as IL-6, IL-8,
CXCL1, CXCL2, CSF-1, transforming growth factor (TGF)-β, matrix metalloproteinases
(MMPs), and vascular endothelial growth factor (VEGF) [78]. SASPs induce immune cell
recruitment and inflammation in an autocrine and/or paracrine manner. Additionally,
SASPs from senescent cells induce senescence in healthy cells [79]. Consequently, SASPs
ultimately promote parasenescence and chronic inflammation, leading to chronic inflam-
mation. SASPs are mediated by p38 mitogen-activated protein kinase, NF-κB, Notch, and
mammalian target of rapamycin (mTOR) signaling. NF-κB signaling is a primary inducer
of SASPs by oxidative stress [80]. Oncoprotein H-Ras V12 activates NF-κB signaling and
induces senescence in IMR-90 fibroblasts, upregulating inflammatory cytokines such as
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IL-6, IL-8, CXCL1, and ICAM-1 in a p65-dependent manner [81]. In terms of the relationship
between SASP and oxidative stress, Han et al. found that hydrogen peroxide promoted the
expression of suppressor of cytokine signaling 3, IL-1α, IL-1β, IL-6, IL-8, and C–C motif
chemokine ligand3 as well as senescence markers. The effect was suppressed by STAT3 or
NF-κB inhibitor [79]. Moreover, the suppression of NF-κB signaling bypasses senescence
induced by the p53/p21Cip1 pathway [82]. These findings implicate NF-κB signaling in
promoting senescence and the SASP.

Studies regarding the biological roles of Nrf2 in senescence have focused on its anti-
senescent effects. The expression and transcriptional activity of Nrf2 decline during aging
and Nrf2 contribute to lifespan extension [83–86]. Senescent cells exhibit a lower expression
of Nrf2, and Nrf2 silencing increases p16Ink4a expression and SA β-Gal activity [87]. Genetic
suppression of Keap1 decreased the senescence markers (p16Ink4a and p21Cip1) and SASPs
(IL-1 β, IL-6, and TNF-α) in old mice, and attenuated the aging phenotype in the salivary
glands [88]. Moreover, Nrf2 knockout promoted the expression of senescence markers
and SASP, aggravating inflammation in the hippocampus [89]. In turn, p21Cip1 inhibits
the degradation of Nrf2. Under oxidative stress, p21 binds to Nrf2 by interacting with
9DLG and 79ETGE motifs, stabilizing Nrf2 and activating signaling [90]. As a result, the
p21Cip1-Nrf2 axis contributes to neuroprotection and survival [91]. Although the biological
interactions are unclear, there is a close molecular relationship between cellular senescence
and the KEAP1-Nrf2 system [92].

mTOR also regulates the interaction between oxidative stress and cellular senescence.
As a critical regulator of immunity, mTOR promotes the innate inflammatory response by
regulating cytokines and chemokines [93]. mTOR signaling is involved in aging and age-
related diseases via complex molecular interactions [94]. The inhibition of mTOR extends
the lifespan by delaying age-related diseases and improving physical function [95,96].
mTOR upregulates inflammatory SASPs including IL-6, IL-8, and CXCL1. The production
of SASPs is regulated by translation of membrane-bound cytokine IL-1α, increasing NF-κB
activity [97]. mTOR inhibitors ameliorate senescence in immune cells [98]. Rapamycin
suppresses oxidative stress-induced senescence markers (p16Ink4a, p21Cip1, and SA β-Gal)
and SASPs (IL-6, TNF-α, CXCL1, MMP3, CCL9, and MCP2). The effects of rapamycin
on senescence are complex, and in part mediated by Nrf2. However, the mechanism is
apparently the p16Ink4a-independent pathway [99].

4. Roles of Oxidative Stress-Induced Cellular Senescence in Retina and Age-Related
Macular Degeneration

Senescence markers including p16INK4a and p19ARF, and p21Cip1 are essential for
fetal ocular development [100]. Taspase-1 knockout mice showed microphthalmia or
anophthalmia as well as craniofacial anomalies. In this model, p16INK4a and p19ARF

were upregulated, and genetic deletion of p16INK4a partially rescued the phenotype [101].
Genetic deletion of the INK4a or ARF locus led to defects in the hyaloid vascular system and
retinal dysplasia, as in human persistent hyperplastic primary vitreous, independently of
p53 [102–104]. In avians, retina SA β-Gal activity was observed in photoreceptors and RPE
during development [105]. In old human retina, p16INK4a is expressed in rods, ganglion
cells, amacrine cells, and horizontal cells. Moreover, p16INK4a and p21Cip1 are expressed
in retinal vascular vessels, elucidating the expression of canonical senescence markers in
retinal cells [106].

Based on the role of oxidative stress-induced cellular senescence in vitro [107], SIPS
induced by oxidative stress is implicated in the pathogenesis of AMD (Figure 3). Senescence
markers including SA β-Gal, p16INK4a, p21Cip1, and p53 are upregulated in animal AMD
models [108,109]. Senescent RPE cells were observed around drusen in primates [110],
and the expression of p16INK4a increased in RPE from patients with geographic atrophy
compared to age-matched controls [111]. Conversely, subretinal deposits morphologically
separate and disturb RPE cells in AMD patients, indicating that drusen facilitates RPE
dysfunction and senescence [112]. Oxidative stress drives senescence in RPE cells. Hydro-
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gen peroxide and cigarette smoke increase the expression of SA β-Gal, p16INK4a, p21Cip1,
γH2AX, and SASPs in ARPE-19 cells [113]. Hydrogen peroxide increased SA β-Gal activity
and several senescence markers including apolipoprotein J, connective tissue growth factor,
and fibronectin by upregulating TGF-β1 and TGF-β2 [114]. Mechanistically, hydrogen
peroxide-induced senescence in RPE cells activates the p53/p21Cip1 pathway by upreg-
ulating bone morphogenetic protein-4 in the RPE layer and thickened Bruch membrane
adjacent to drusen in retinal sections from early and late AMD patients [115]. Phagocytosis
of oxidized products also induces senescence in RPE cells. Oxidized photoreceptor outer
segments accelerate SIPS of RPE cells and the dysregulation of SASPs including TNF-α,
IL-8, VEGF, and CFH [113,116]. Westlund et al. reported that ARPE-19 cells loading pho-
tooxidized A2E by blue light exhibited the cell death of RPE cells and SASP secretion.
Apoptosis was upregulated by c-Abl and p53 and was suppressed by the inhibition of
TP53 [117].
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mTOR signaling is implicated in oxidative stress-induced senescence in RPE cells.
Senescent RPE cells with high cumulative population doubling have increased sensitivity
to mTORC1 signaling as a response to exogenous nutrient stimuli. Rapamycin suppressed
senescence in RPE cells by inhibiting SA-β-Gal activity and the expression of p16INK4a [118].
Activation of autophagy by rapamycin repressed SIPS, indicating that rapamycin sup-
presses oxidative stress-induced senescence in RPE cells.

Global genetic deletion of Nrf2 and peroxisome proliferator-activated receptor gamma
coactivator-1α triggered RPE degeneration associated with increased endoplasmic retic-
ulum stress in RPE cells and thickened Bruch’s membrane. The autophagy markers
p62/SQSTM1 and LC3B, and the oxidative stress marker 4-HNE (4-hydroxynonenal) were
upregulated in this mice model [119]. Nrf2 regulates autophagy and antioxidant responses
and mediates anti-inflammatory effects in RPE cells by interacting with p62 [120]. Inhibi-
tion of the synthesis of glutathione, an antioxidant downstream of Nrf2, in ARPE-19 cells
arrested the cell cycle at the G1 phase, and increased SA-β-Gal activity and SASPs includ-
ing IL-6 and IL-8 [121]. These findings suggest that Nrf2 suppresses AMD by inhibiting
oxidative stress-induced senescence. Several antioxidants exert beneficial effects against
cellular senescence via Nrf2 signaling [122]. Lutein repressed hydrogen peroxide-induced
ROS production and decreased SA-β-Gal activity in ARPE-19 cells, in part by upregulating
sirtuin (SIRT)-1, and SIRT3. Therefore, the effect of lutein on AMD progression is mediated
by its inhibition of oxidative stress and senescence [123].
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Although functional and morphological impairment of photoreceptors is a sign of
AMD, there are few reports of cellular senescence in photoreceptors. Miller et al. demon-
strated that a radiosensitizing anticancer agent CI-1010, (R)-alpha-[[(2-bromoethyl)amino]me
thyl]-2-nitro-1H-imidazole-1-ethanol monohydrobromide, which induces oxidative stress,
caused apoptosis of 661 W cells (an immortalized cone photoreceptor cell line derived from
the retinal tumor of a mouse) by activating caspase-3 [124]. Cell death is reportedly caused
by increased expression and phosphorylation of p53 in 661W cells. Therefore, oxidative
stress triggers photoreceptor senescence and results in apoptosis.

The innate immune system is crucial in homeostasis maintenance and senescent cell
clearance. Senescent cells activate and are cleared by NK cells, monocytes/macrophages,
and T cells in multiple tissues [125]. In other words, immune cells eliminate senescent
cells in a healthy state. However, the age-related decline in innate immune cell function
has deleterious effects, and failure to clear senescent cells leads to their accumulation,
aggravating senescence. Therefore, the age-related dysregulation and functional decline of
immune cells accelerates aging and age-related diseases. In terms of the innate immune
system, the alteration in biological functions declines with age, along with the accumulation
of senescent cells, and it leads to angiogenic and inflammatory response [126]. Senescent
and young macrophages enhanced and suppressed, respectively, choroidal neovascular-
ization in a mouse model [127]. As such, the dysregulation of immune activation with
age is a driver of AMD [128]. Aged retinal microglia show increased expression of C3 and
complement factors, which are risk factors for AMD [129]. Immunosenescence, also termed
immune-cell senescence, may be associated with the development of AMD.

Hydrogen peroxide induces the production of γH2AX in macrophages [130]. γ-Radiation
increases oxidative stress and the expression of p16INK4a and p21Cip1, SA-β-Gal, and SASPs
(CXCL1, CXCL2, TNF-α, and soluble ICAM-1) in macrophages in vitro, which was sup-
pressed by resolvin D1 [131]. Drusen components induce the production of IL-1β and
IL-18 in human peripheral blood mononuclear cells, partially by activating the NLRP3
inflammasome [132]. Therefore, oxidative stress in AMD accelerates immunosenescence
and inflammation. Additionally, aging facilitates cellular senescence and lipofuscin ac-
cumulation in immune cells [133]. Senescent microglia and/or macrophages migrate to
the subretinal space between the neurosensory retina and RPE cells with age. These cells
contain lipofuscin, implicating senescent immune cells in the aging retina [134].

In vivo, intravitreal injection of iron induces photoreceptor death and lipofuscin ac-
cumulation in RPE cells, mimicking geographic atrophy [135]. Liu et al. found that
intravitreal injection of ferric ammonium citrate induced the lipofuscin formation in
the outer segment of photoreceptors, RPE cells, and subretinal myeloid cells. Increased
8-hydroxy-2′-deoxyguanosine (8-OHdG), a DNA oxidation product, was found in RPE
cells. Carboxyethyl pyrrole was initially found in the photoreceptors and accumulated in
RPE cells and subretinal myeloid cells [136]. Malondialdehyde and oxidized phospholipids
were present in RPE cells and subretinal myeloid cells, suggesting that oxidative stress and
lipid peroxidation underlie lipofuscinogenesis and cellular senescence in an AMD model.

Cellular senescence is also associated with oxygen-induced retinopathy (OIR) as an
animal model of proliferative diabetic retinopathy. Senescent cells accumulate in retina
human proliferative diabetic retinopathy. In the OIR model, the retina expresses increased
senescent markers (p16INK4a p21Cip1, and SA-β-Gal) and SASPs including VEGF, IL-1β,
IL-6, TGFβ-1, and plasminogen activator inhibitor 1 (Pai1) [137]. Cells constituting vascular
units such as vascular endothelial cells, pericytes, astrocytes, and Müller glia were particu-
larly increased transcripts associated with cellular senescence [138], which suggested the
presence of senescent cells in neovascular tufts [139].

In terms of glaucoma as another age-related ocular disease, a genome-wide association
study found that p16INK4a loci is a strong risk factor gene for human primary open angle
glaucoma (POAG) [140]. Increased senescent cells are observed in the outflow pathway
and retinal ganglion cells (RGCs) in human glaucoma eyes, and the elevation of intraocular
pressure induces their senescence [141,142]. p16INK4a induce RGC senescence and death
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as a downstream of SIX6 [142]. Additionally, human eyes with acute primary angle-
closure express increased ROS, 8-OHdG, malondialdehyde, and SASPs such as IL-6, IL-8,
TNF-α, CCL2, GROα, MIP-1α, VEGF, IGFBP5, IGFBP7, and TGF-β 1 in aqueous humor.
Among them, IL-6, IL-8, CCL2, GROα, MIP-1α, IGFBP5, IGFBP7, and TGF-β 1 significantly
correlated with ROS, indicating that oxidative stress and cellular senescence are associated
with the pathology in cooperation with one another [143].

5. Senolytics Targeting Oxidative Stress-Induced Cellular Senescence

In several animal models, investigations to examine curative effects against AMD
targeting oxidative stress and cellular senescence have been performed. Several senolytic
strategies have been established in vivo and in vitro, based on selective elimination of
senescent cells by genetic means (INK-ATTAC, p16-3MR) [106,144], senolytic drugs [145],
or inhibiting SASPs to suppress chronic inflammation.

Senolysis suppresses OIR. The clearance of senescent cells facilitates healthy reparative
vascular remodeling, indicating that senescent vascular endothelial cells have detrimental
effects on pathological retinal angiogenesis. INK-ATTAC and a B-cell lymphoma-extra-large
(BCL-xL) inhibitor suppressed OIR in mice, suggesting senolysis to be a therapeutic target
in age-related retinal vascular diseases [138]. In fact, the B cell lymphoma-2 (BCL-2) family
(BCL-W, BCL-XL, and BCL-2) promotes the resistance of senescent cells to apoptosis [146,147].
The BCL-2 family has potential as a therapeutic target in AMD, and a phase 2 clinical
trial of the safety and efficacy of intravitreal injection of a BCL-xL inhibitor in patients
with neovascular AMD is ongoing [148]. Regarding glaucoma, the clearance of senescent
cells by p16-3MR transgenic mice, which show selective elimination of p16INK4a-positive
senescent cells, preserved the number of living retinal ganglion cells and visual function
in the presence of ocular hypertension [149]. Therefore, the clearance of senescent cells by
senolysis suppresses age-related ocular diseases.

Quercetin is a bioflavonoid with senolytic and anti-inflammatory effects. Quercetin
suppresses inflammatory cytokines via NF-κB signaling and inhibits cytotoxicity induced
by hydrogen peroxide by upregulating Nrf2 and its downstream factors in ARPE-19
cells [150,151]. Quercetin also suppressed cigarette smoke extract-induced apoptosis and
the expression of IL-1 β, IL-16, and IL-8, and upregulated Nrf2 in ARPE-19 cells [152],
suggesting that quercetin inhibits oxidative stress-induced senescence. The senolytic drug
dasatinib suppresses choroidal neovascularization, OIR, and retinal fibrosis [153,154]. Met-
formin, an AMPK activator, also has an anti-senescence effect [79]. Because metformin
decreases the risk of AMD [155], it may have a preventive effect on AMD. In vitro, met-
formin enhanced ARPE-19 cell viability under oxidative stress, reduced ROS production,
and increased Sirt1 and Nrf2 expression [156]. Mechanistically, metformin attenuated hy-
drogen peroxide-induced cell death, ROS production, and the collapse of the mitochondrial
membrane potential in RPE cells by activating autophagy [157]. Metformin also suppressed
pathological angiogenesis in an OIR model [137].

Fatty acids and their metabolites have antioxidant effects and suppress the progression
of AMD [158]. In AMD, amyloid-β accumulates as a component of drusen [159]. Amyloid-
β has a close molecular biological interaction with oxidative stress in a feedback loop [160].
Do et al. reported that elovanoids, which are synthesized from omega-3 very long chain
polyunsaturated fatty acids, repressed the oligomeric β-amyloid-induced pathological
upregulation of senescence markers (p16INK4a, p21 Cip1, and p53), SASP (IL-1β, VEGF, and
MMPs), and autophagy in RPE cells, and suppressed apoptosis genes in the neurosensory
retina [161].

6. Conclusions and Future Perspectives

Oxidative stress triggers cellular senescence, driving age-related diseases. The accumu-
lation of senescent retinal cells leads to AMD. Although oxidative stress-induced cellular
senescence is implicated in the pathogenesis of AMD, the mechanism is unclear. Further
studies should focus on the mechanistic aspects to elucidate the translational implications.
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