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CANCER RESEARCH | GENOME AND EPIGENOME

The 5-Hydroxymethylcytosine Landscape of Prostate
Cancer
Martin Sj€ostr€om1,2,3, Shuang G. Zhao4,5, Samuel Levy6, Meng Zhang1,2, Yuhong Ning6, Raunak Shrestha1,2,
Arian Lundberg1,2, Cameron Herberts7, Adam Foye1,8, Rahul Aggarwal1,8, Junjie T. Hua1,2, Haolong Li1,2,
Anna Bergamaschi6, Corinne Maurice-Dror7,9, Ashutosh Maheshwari1,2, Sujun Chen10,11, Sarah W.S. Ng7,
Wenbin Ye10,11,12, Jessica Petricca10,11, Michael Fraser11,13, Lisa Chesner1,2, Marc D. Perry1,2,
Thaidy Moreno-Rodriguez1,2, William S. Chen1,2, Joshi J. Alumkal14, Jonathan Chou1,8, Alicia K. Morgans15,
Tomasz M. Beer16, George V. Thomas16,17, Martin Gleave7, Paul Lloyd6, Tierney Phillips6, Erin McCarthy6,
Michael C. Haffner18,19, Amina Zoubeidi7, Matti Annala7,20, Robert E. Reiter21,22, Matthew B. Rettig21,22,23,
Owen N. Witte24, Lawrence Fong1,8, Rohit Bose1,8,25,26, Franklin W. Huang1,8, Jianhua Luo27,
Anders Bjartell28,29, Joshua M. Lang30, Nupam P. Mahajan31, Primo N. Lara32,33, Christopher P. Evans33,34,
Phuoc T. Tran35, Edwin M. Posadas36, Chuan He37,38, Xiao-Long Cui37,38, Jiaoti Huang39, Wilbert Zwart40,
Luke A. Gilbert1,25,41, Christopher A. Maher31,42,43,44, Paul C. Boutros10,45,46, Kim N. Chi7, Alan Ashworth1,8,
Eric J. Small1,8, HoushengH. He10,11, AlexanderW.Wyatt7,47, DavidA. Quigley1,25,48, and Felix Y. Feng1,2,8,25

ABSTRACT
◥

Analysis of DNA methylation is a valuable tool to understand
disease progression and is increasingly being used to create
diagnostic and prognostic clinical biomarkers. While conversion
of cytosine to 5-methylcytosine (5mC) commonly results in
transcriptional repression, further conversion to 5-hydroxy-
methylcytosine (5hmC) is associated with transcriptional acti-
vation. Here we perform the first study integrating whole-
genome 5hmC with DNA, 5mC, and transcriptome sequencing
in clinical samples of benign, localized, and advanced prostate
cancer. 5hmC is shown to mark activation of cancer drivers and
downstream targets. Furthermore, 5hmC sequencing revealed
profoundly altered cell states throughout the disease course,
characterized by increased proliferation, oncogenic signaling,
dedifferentiation, and lineage plasticity to neuroendocrine

and gastrointestinal lineages. Finally, 5hmC sequencing of cell-
free DNA from patients with metastatic disease proved useful as a
prognostic biomarker able to identify an aggressive subtype of
prostate cancer using the genes TOP2A and EZH2, previously
only detectable by transcriptomic analysis of solid tumor
biopsies. Overall, these findings reveal that 5hmC marks epige-
nomic activation in prostate cancer and identify hallmarks of
prostate cancer progression with potential as biomarkers of
aggressive disease.

Significance: In prostate cancer, 5-hydroxymethylcytosine
delineates oncogene activation and stage-specific cell states and
can be analyzed in liquid biopsies to detect cancer phenotypes.

See related article by Wu and Attard, p. 3880
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Introduction
DNA methylation is a critical driver of cancer phenotypes. The

addition of a methyl group at the 5-carbon position of cytosine (5-
methylcytosine, 5mC) is associated with closed chromatin and
repressed gene expression (1). As part of the process to reverse
methylation, 5mC can be oxidized to 5-hydroxymethylcytosine
(5hmC) by the ten-eleven translocated (TET) family of enzymes. The
number of 5hmC modifications represents only a fraction of the total
methylation modifications but unlike 5mC, 5hmC is enriched at
transcriptionally active regions, such as gene bodies and the borders
of promoters and enhancers (1–4). 5hmCmodifications are associated
with active expression for many, but not all, genes and may mark
dynamically activated transcription rather than constitutively
expressed house-keeping genes (5). The location of 5hmC modifica-
tions is highly tissue specific, and a coordinated shift in 5hmC patterns
occurs throughout tissue differentiation. Specifically, 5hmC is reported
to mark chromatin in a poised state at developmentally regulated
genes (6), and 5hmC ismore frequently found in genes that drive tissue
differentiation and among tissue-specific transcription factors (7, 8).
5hmC may also be important in maintaining a pluripotent cell state
and tomark lineage commitment (7, 9–12). Both a global loss of 5hmC
and local increases of 5hmC in genes and enhancers have been
reported in cancer transformation and progression (13–19). The
analysis of 5hmC modifications may thus provide an opportunity to
assess epigenetic activation throughout cancer progression.

Prostate cancer is one of themost common cancers world-wide, and
metastatic castration-resistant prostate cancer (mCRPC) is the second
leading cause of cancer mortality among men. While a number of
studies have identified genomic drivers of mCRPC, recent studies
suggest that epigenomic alterations play an equally important role in
prostate cancer progression (20–24). However, the global and specific
5hmC changes that occur during prostate cancer initiation and
progression are still poorly understood. We therefore investigated the
5hmC landscape in prostate cancer by profiling 145 tumors (52
localized and 93 mCRPC samples). We integrated these data with
whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and
whole-genome bisulfite sequencing (WGBS) and linked the results to
5hmCprofiling in cell-free DNA from 79 prostate cancer patients. Our
findings reveal that 5hmC comprehensively marks epigenomic acti-
vation in prostate cancer and identifies hallmarks of prostate cancer
progression with potential as a noninvasive liquid biomarker of
aggressive disease.

Materials and Methods
Patients and samples
Samples from metastatic castration-resistant prostate cancer

Fresh-frozen metastatic castration-resistant tissue from meta-
static sites and normal adjacent tissue biopsy samples were collected

through a multi-institutional image-guided prospective biopsy trial
(NCT02432001) and DNA was extracted as previously described
(24, 25). Plasma sample collection and cell-free DNA (cfDNA)
extraction of matched cfDNA samples were performed as previ-
ously described (26). Plasma samples from men with mCRPC
before first line androgen signaling inhibitor therapy were collected
and DNA extraction was performed as previously described (27).

Samples from localized prostate cancer
Localized prostate cancer samples were collected as part of the CPC-

GENE cohort (Canadian Prostate Cancer Genome Network). Patient
selection, sample collection and processing procedures were per-
formed as previously described (22).

Samples from benign prostate
Raw 5hmC-seq data from benign prostate samples were obtained

from NCBI Gene Expression Omnibus (GEO) with accession number
GSE144530.

5-Hydroxymethylcytosine sequencing
Sequencing library preparation and 5hmC enrichment was per-

formed as described previously (28). In brief, cfDNA was normal-
ized to 10 ng total input, and 10–25 ng for tissue for each assay and
ligated to sequencing adapters. The adapter ligated library was
partitioned 80:20 to enable 5hmC enrichment and whole-genome
sequencing to be performed on each partition. 5hmC bases were
biotinylated via two-step chemistry and subsequently enriched by
binding to Dynabeads M270 Streptavidin (Thermo Fisher Scien-
tific). All libraries were quantified by Bioanalyzer dsDNA High
Sensitivity assay (Agilent Technologies Inc) and Qubit dsDNA
High Sensitivity Assay (Thermo Fisher Scientific) and normalized
in preparation for sequencing.

Sequencing of 5hmC-enriched libraries as well as input control
(equivalent to low-pass WGS) was done on an Illumina NextSeq550
with 75bp paired-end reads using version 2 reagent chemistry accord-
ing to the manufacturer’s instructions (Illumina). Twenty-four librar-
ies were sequenced per flow cell to yield approximately 20 million
paired-end reads.

Data processing of 5hmC-seq
Demultiplexing was performed using the Illumina BaseSpace

SequenceHub to generate sample-specific FASTQoutput, and FASTQ
files from different lanes were merged per sample. Reads were aligned
to GRCh38/hg38 (Illumina iGenomes GRCh38Decoy, containing
hsd1 decoys but not _ALT sequences) using bwa-mem (version
0.7.15-r1140 and 0.7.17-r1188). Aligned BAM files were marked for
duplicates using GATK Picard (version 2.23.8) and mapping quality
was assessed with Qualimap (version 2.2.1). Aligned BAM files were
further filtered for high-quality reads by removing duplicate reads
and keeping only properly mapped and paired reads with MAPQ >30
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(-f 0�003 -F 0xf0c -q 30). Orphan reads created by MAPQ filtering
were removed. Filtered, sorted, and indexed BAM files were used for
downstream analyses.

Peak calling was performed using MACS2 (version 2.2.6; ref. 29)
with 5hmC-enriched and input control samples and P value cut-off
was set to 0.00001 in paired-endmode usedwith default settings. Peaks
in blacklist regions from ENCODE (ENCFF419RSJ) and not on
chromosome 1–22, X and Y were removed. Peaks were annotated to
genomic regions and closest gene using theChIPseeker R package (30),
using promoter definition of -2000/þ500bp from transcription start
site (TSS) and the Gencode v28 transcript model annotation. Anno-
tated peak frequencies in genomic regions were averaged per sample
type for visualization.

5hmCgene body countswere extracted forGencode v28 genes using
featureCounts from the Rsubread package (31). Counts were calcu-
lated for the entire gene body from gene start to gene end allowing
multioverlap. Gene body counts were further standardized for
sequencing depth and gene length to transcripts per million (TPM).

5hmC enrichment analysis over genomic regions was performed
using NGSplot (v. 2.61; ref. 32) with both 5hmC-enriched sequencing
and input control on a per sample basis and then averaged per sample
type.

Previously published data
RNA-seq data was aligned with STAR and quantified at the gene

level for Gencode v28 transcripts as previously described (24). WGBS
and WGS data were acquired and processed as previously
described (24, 25, 33). Copy-number calls were extracted as average
copy number over the Gencode v28 gene regions from calls made by
copycat. Promoter methylation was calculated as the average CpG
methylation in a region -2000/þ500bp from gene start.

Raw sequence chromatin immunoprecipitation sequencing (ChIP-
seq) data for AR, FOXA1, HOXB13, H3K27ac, H3K4me3, H3K4me2
and H3K27me3 was downloaded from the Sequence Read Archive
(SRA; SRP194063; ref. 21). Reads with base quality score > 30 across all
bases were aligned using bwa-mem (0.7.17) to build GRCh38/hg38
(Illumina iGenomes). The aligned reads were deduplicated and peaks
were called using MACS2 (v.2.2.5), with a false discovery rate (FDR;
q value) threshold of 0.01. Peaks in genomic blacklisted regions
defined by ENCODE (ENCFF356LFX) were excluded and only peaks
that were enriched at least ten-fold over background were kept for
further analysis. Qualified peaks were merged using consensusSeekeR
(v.1.16) in which at least two samples had one peak in the same
region (34). Only samples with more than two epigenetic marks
available were included in this analysis.

ERG ChIP-seq data was downloaded from GEO (GSE14097;
ref. 35).

Data analysis
All downstream analyses were performed in R 3.6.3, using RStudio.
Differential 5hmC analysis was performed using raw gene body

counts and the DESeq2 R package (36), or the diffbind R package for
peak regions (37). For analysis of adenocarcinoma versus treatment-
emergent small cell neuroendocrine prostate cancer (t-SCNC), meta-
static site was included as covariable.

Gene set enrichment analyses (GSEA) were performed using the
pre-ranked method implemented in the fgsea R package using the
fgseaMultilevel function (38), and gene sets were retrieved from
themolecular signatures database (MSigDB; ref. 39) using themsigdbr
interface (version 7.2). Unless noted otherwise, GSEA was run using
the Cancer Hallmark Pathways, the Wikipathways, the neuroendo-

crine prostate cancer (NEPC) gene sets (40), the luminal/basal gene
sets (41), and the PCa-GI gene set (42).

For gene expression modeling, RNA-seq gene expression data was
log2(TPMþ1) transformed, scaled and thenmodeled as a linear model
of 5hmC-seq gene body counts [log2(TPMþ1) transformed and
scaled], promoter methylation (average CpG methylation), copy
number, and number of predicted activating or inactivation single
nucleotide variants (SNV) and structural variants (SV). Genes with
missing data or without variable gene expression or 5hmC levels were
set to NA.

Hierarchical clustering was performed using the top 10% varying
log2(TPMþ1) transformed 5hmC gene body counts from protein
coding genes, median centred and scaled per gene, and clustered
using Euclidean distance metric and ward.D2 linkage. Principal
component analysis was performed on log2(TPMþ1) transformed,
median centered and scaled 5hmC gene body counts for the 10% or
20% most variable protein-coding genes.

Transcription factor binding analysis was performed using
HOMER (version 4.11) findMotifsGenome.pl (43), with default set-
tings except ‘-size given’ to search in the entire peaks, and ‘-bg
consensus_peaks.bed’ to use all consensus peaks as background.
Significant upregulated peaks in the T2E-pos samples were filtered
by FDR < 0.01 and fold change > 1.0 for use in the motif search.

Mapping of peak enrichment to genomic regions and biological
pathways was performed using the GREAT tool (version 4.0.4), with
enriched peaks (FDR < 0.001 and fold change > 1.5) as input and the
entire genome as background (44).

A 5hmC classifier for tumor cell content was trained by first
selecting genes with strongest correlation between 5hmC gene body
counts and tumor cell content in tissue (P ≤ 0.05 and Bonferroni
adjusted q ≤ 0.00001), resulting in 877 genes. These genes were further
used to develop a linear model with elastic net regularization using the
glmnet and caret R packages.

5hmC TissueMap scores were generated as previously described (7).

Statistical analysis
Correlation was calculated using Spearman correlation if not

otherwise noted. Differences between groups were tested with the
Wilcoxon rank-sum test. FDR was calculated using the Benjamini–
Hochberg method when applicable.

Survival analyses were performed using the survival R package, with
visualization through the survminer package. Survival probability was
modeled using the Kaplan–Meier method, with endpoint time from
first-line androgen signaling inhibitor for mCRPC to death of any
cause. Hazard ratios weremodeled using theCox proportional hazards
model, and differences between groupswere tested using theWald test.
Multivariable Cox regression was performed including age at mCRPC
diagnosis, PSA at first-line ARSI, Hb at first-line ARSI, type of ARSI
(enzalutamide or abiraterone), docetaxel for metastatic hormone-
sensitive prostate cancer, time to CRPC from start of androgen
deprivation therapy (ADT), presence of visceral metastases and ct-
fraction (when applicable) as covariables.

All hypothesis testing was done with two-sided tests, when applicable.

Targeted sequencing of cell-free DNA
Somatic cfDNA variants (SNVs and indels) required ≥10 unique

sequencing reads and a variant allele fraction (VAF) of ≥1%. Base
substitutions required aminimum average readmapping quality of 10.
We additionally required the VAF of putative cfDNA variants to be
≥20� higher than the average same-position background error rate
calculated from a set of leukocyte control samples, and ≥3� higher
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than the paired germline DNA (gDNA) allele frequency. The paired
leukocyte sample must have had at least 20� raw sequencing depth at
that position. All variants were manually inspected in Integrative
Genomics Viewer, and protein-level consequences were predicted
using ANNOVAR (45). We removed putative variants with features
suggestive of sequencing artifacts, including an imbalance in forward/
reverse read representation, 50 or 30 read-end clustering, and variants in
genomic regions of low complexity. Copy number alterations were
called as previously described. Structural variants were called using a
split-read approach as previously described (https://github.com/
annalam/breakfast; ref. 46).

Germline variants required a minimum of 8 supporting unique reads
and a minimum VAF of 10%. We discarded germline variants with a
population frequency ≥0.5% in KAVIAR or ExAC databases (47, 48).
Only putatively deleterious germline variants (defined as frameshift
insertions/deletions, splice site mutations, or stopgain mutations) in
select DNA damage repair genes were considered.

Circulating tumor DNA (ctDNA) content was estimated as previ-
ously described (46). Briefly, we used each sample’s highest VAF
somatic mutation—excluding those on amplified genes (log-ratio
>0.2) or allosomes—as a surrogate for total ctDNA content. Because
VAF is elevated in cases of concomitant loss of heterozygosity (LOH),
we conservatively assumed associated LOH in all cases (even when the
precise copy number state was not resolvable due to low ctDNA
purity). In this circumstance, ctDNA fraction and highest mutation
VAF were related by the formula: ctDNA% ¼ 2/(1 þ VAF–1). In a
minority of samples with clear copy-number evidence of ctDNA
content but no detected somatic mutations, we instead leveraged the
heterozygous single nucleotide polymorphism (SNP) allele frequen-
cies in genes with apparent heterozygous loss.

In this study, we reported the somatic or germlinemutation status of
the following prostate-cancer driver genes: AKT1, APC, AR, ATM,
BRCA1, BRCA2, CDK12, CDK12, CTNNB1, FOXA1, KMT2C,
KMT2D, MSH2, MSH6, PIK3CA, PMS2, PTEN, RB1, SPOP, TP53,
or ZFHX3. For copy number alterations, we reported variants in AR,
ATM, BRCA1, BRCA2, CCND1, CDK12, CHD1, CLU, MSH2/6, MYC,
NCOA2, NKX3-1, PTEN, RB1, TP53, or MLH1.

Ethical approval
Samples from mCRPC patients were part of an Institutional

Review Board approved prospective biopsy cohort (NCT02432001)
and human studies were approved and overseen by the UCSF
Institutional Review Board. All individuals provided written
informed consent to obtain fresh tumor biopsies and to perform
comprehensive molecular profiling of tumor and germline samples.
Profiling of additional cfDNA samples from men with mCRPC was
approved by the University of British Columbia Clinical Research
Ethics Board with certificate number H18-00944 and all patients
provided written informed consent. Samples from localized prostate
cancer were part of the CPC-GENE cohort (Canadian Prostate
Cancer Genome Network). Written informed consent, following
guidelines from local Research Ethics Board (REB) and the Inter-
national Cancer Genome Consortium, was obtained at time of
clinical follow-up. Previously collected tumor tissues were used
according to University Health Network REB-approved study pro-
tocols (UHN 11-0024-CE). The study was performed in accordance
with the Declaration of Helsinki.

Code availability
Custom code used in the manuscript is available at https://github.

com/DavidQuigley.

Data availability
5hmC-sequencing and targeted cfDNA sequencing data created

during this study are available at the European Genome-Phenome
Archive (EGA) with study number EGAS00001004942. Benign
prostate 5hmC-sequencing data is available at GEO (GSE144530).
Whole-genome sequencing and RNA sequencing of mCRPC tissue
samples is available at dbGaP with study accession phs001648.v2.p1.
Whole-genome bisulfite sequencing data is available at SRA with
Bioproject number PRJNA479544. ChIP-seq data used is available at
GEO (GSE130408, GSE14097).

Results
5hmC-seq identifies prostate cancer–specific active
transcription beyond total methylation and DNA structural
variants

To investigate the global patterns of 5hmC in advanced pro-
state cancer, we profiled tissue samples from 93 men with mCRPC
using selective labeling of 5hmC modifications and pulldown
coupled with sequencing (5hmC-seq; ref. 28), and performed
an integrative analysis using WGS, RNA-seq, and WGBS data
from the same samples (Supplementary Fig. S1; Supplementary
Tables S1 and S2). The mCRPC tissue samples are part of a
well characterized multi-institutional prospective biopsy cohort
(NCT02432001; refs. 24, 25).

First, we explored the genome-wide 5hmC distribution in
mCRPC and found that 5hmC peaks were located primarily in
gene bodies and promoters (Fig. 1A). Since hypomethylated regions
(HMR) measured by WGBS may indicate active gene regulatory
regions (24), we compared the distribution of HMRs with 5hmC
peaks and found that 5hmC peaks were located in gene bodies
(exons or introns, excluding promoter overlap) more frequently
than HMRs (mean across samples 59% vs. 27%, Wilcoxon rank-sum
test P ¼ 5.1 � 10–32, Fig. 1A), while HMRs were more frequently
found in promoter regions (47% vs. 18%, Wilcoxon rank-sum test
P¼ 5.1� 10–32, Fig. 1A). Protein-coding genes with higher levels of
5hmC enrichment between the transcription start and end sites
had higher levels of gene transcription measured by RNA-seq
(Fig. 1B). 5hmC was also enriched at borders of CpG islands,
promoters, enhancers, and HMRs close to actively transcribed genes
(Supplementary Fig. S2).

Given that 5hmC enrichment was primarily found in gene bodies,
we next sought to quantify the association between 5hmC gene body
levels and gene expression.We calculated the correlation between gene
expression and 5hmC gene body levels, copy number and promoter
methylation by WGBS, respectively. 5hmC gene body levels had the
strongest correlation with gene expression (median Spearman r for
5hmC 0.38, copy number 0.24 and methylation �0.07, respectively,
P < 2.2� 10–16; Fig. 1C). To identify biological pathways where 5hmC
was most informative of RNA abundance, we performed a GSEA of
genes ranked by strength of correlation between 5hmC and gene
expression among the MSigDB Cancer Hallmark gene sets (39). The
most statistically enriched pathway was androgen response, indicating
that assessing 5hmC levels is informative of disease-specific genes, as
dysregulation of androgen receptor (AR) signaling is a major mech-
anism of achieving castration-resistance in prostate cancer (Supple-
mentary Fig. S3A; ref. 49).

We next tested if 5hmC-seq provides independent information
to WGBS and WGS for predicting gene expression by integrating
5hmC gene body levels with promoter methylation, gene copy num-
ber, SNVs, and SVs. The addition of 5hmC data significantly
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improved the prediction of RNA abundance for most protein coding
genes (FDR < 0.05 for 10,637/18,532 genes with complete data) and
increased the median model fit (adjusted R2, percent explained after
adjusting for number of predictors) by 0.12 when adding 5hmC
(0.22 vs. 0.10, P < 2.2 � 10–16), which is similar to a previous
report of 18% increase in prediction when combining 5hmC data
and 5mC data in human benign tissues (Fig. 1D; ref. 50). In line
with 5hmC modifications being most informative for disease rel-
evant pathways, the improvement of fit when adding 5hmC data
was considerably higher for genes overexpressed at the RNA level in
prostate cancer (0.35 vs. 0.12, P ¼ 1.1 � 10–17; ref. 24) and for genes
in the androgen response pathway (0.42 vs. 0.15, P ¼ 1.5 � 10–18;
Fig. 1D), as well as several other Cancer Hallmark gene sets
(Supplementary Fig. S3B). The scaled model coefficient, as a
measurement of additional information provided by 5hmC, was
also higher in the androgen response genes than other protein
coding genes (P ¼ 9.7 � 10–15; Fig. 1E).

Taken together, these analyses demonstrated that 5hmC levels are
associated with transcriptional activity and provide orthogonal data to
WGS and WGBS and is particularly informative for genes relevant in
prostate cancer.

5hmC identifies molecular hallmarks of prostate cancer
progression

To assess 5hmC changes associated with prostate cancer progres-
sion, we compared genome-wide 5hmC patterns in benign prostate
(N ¼ 5), localized castration-sensitive prostate cancer (N ¼ 52),
mCRPC (N¼ 93) and normal adjacent tissue (NT) tomCRPCbiopsies
(N ¼ 7). Global 5hmC patterns were more similar between benign
prostate and localized prostate cancer, while mCRPC had more
distinct patterns likely reflecting both disease stage and disease site
(Fig. 2A), and similar to previous observations of total methylation
using WGBS data (24). A differential 5hmC gene body analysis
between disease states identified genes in proliferative pathways to

Figure 1.

5hmC levels are enriched in gene bodies and are independently associatedwith gene expression inmCRPC.A, Location of hypomethylated regions definedbywhole-
genome bisulfite sequencing and location of 5hmC enrichment (peaks called by MACS2). Regions were mapped to Gencode v.28 transcripts per sample and the
frequencies averaged across 93 mCRPC samples. B, 5hmC enrichment in and around gene bodies for different gene expression levels. Protein coding genes were
assigned to expression quintile per sample and log2 5hmC enrichment over input control (similar to low-pass WGS without 5hmC enrichment) was calculated using
the NGSplot tool (32). 5hmC enrichment was then averaged across 93mCRPC samples. C, Correlation between promoter methylation (average CpGmethylation by
whole-genome bisulfite sequencing), gene copy number, and 5hmC gene body counts, and gene expression, respectively, for protein coding genes across the 93
mCRPC samples. Genes with missing data or with no RNA-seq counts were excluded. Dashed lines, median correlation per data type. D, Gene expression was
modeled for each gene by promoter methylation (PM), copy number (CN), SNVs, SVs, and 5hmC gene body counts (5hmC). Gene expression and 5hmC gene body
counts were scaled (transformed to Z-score) to give comparable coefficients. Gray boxes, adjusted R-square of the model without 5hmC; blue boxes, adjusted R-
square of the model including 5hmC. Analysis was done for 93 mCRPC samples. Boxplot shows median with hinges at 25th and 75th percentiles and whiskers at
largest/smallest value within 1.5 � interquartile range. E, The adjusted 5hmC coefficients for individual genes modeled as in D. Genes in the Hallmark androgen
response pathway are labeled black. P value was calculated by two-sided Wilcoxon rank-sum test for difference in scaled 5hmC coefficients between genes in the
androgen response pathway includingAR (N¼98) andall other protein codinggenes (N¼ 18,434). Boxplots showdistribution ofAR response genes vs. other protein
coding genes.
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have a progressive increase in 5hmC levels during tumor progression,
which was also observed for oncogenic pathways, such asMYC targets
and E2F targets (Fig. 2B). 5hmCwas increased in additional pathways
inmCRPC such asTGFb signaling and genes indicative of hypoxia, but
not in localized prostate cancer, further supporting a more profound
5hmC dysregulation in mCRPC than in localized prostate cancer.
Several known or putative driver genes were among the top hits,
including AR, EZH2, CDK1, TBX3, and HOXA13 (Supplementary
Fig. S4). These results were not restricted to individual metastatic sites
when stratifying the analysis for metastatic biopsy site, suggesting that
5hmC profiles associated with normal tissue types in the tumor
microenvironment were not driving these results (Supplementary
Fig. S5). Overall, these results using 5hmC-seq of DNA accurately
capture the prostate cancer stage specific changes recently described on
the transcriptional level (51).

Since 5hmC marked active regulatory regions in addition to gene
bodies (Supplementary Fig. S2), we next interrogated tumor state–
specific genome-wide 5hmCdifferences. Regions of 5hmC enrichment
in mCRPC compared with localized castration-sensitive prostate
cancer were distributed throughout the genome and were enriched

for regulatory regions and genes driving developmental programs
(Fig. 2C). These findings are in line with previous reports that
epigenetic reprogramming is associated with dedifferentiation
through reactivation of developmental programs during prostate
cancer progression (21). To further corroborate this observation, we
evaluated 5hmC levels at binding sites of the key prostate cancer
oncogenes AR, FOXA1 and HOXB13 and H3K27ac modifications
(frommCRPC xenograft data), and observed that 5hmC was enriched
at these loci in mCRPC samples (Fig. 2D), suggesting that 5hmC
marks the reported cistrome reprogramming associated with activa-
tion of developmental programs (21).

We further sought to explore 5hmC differences between subsets of
mCRPC. An unbiased hierarchical clustering of gene body 5hmC
levels identified three major clusters of samples (Fig. 2E). Cluster 1
consisted of samples that were previously characterized as t-SCNC,
an aggressive prostate cancer subtype low in androgen signaling and
with neuroendocrine features (52). Cluster 2 and 3 were hypo- and
hypermethylated as determined by WGBS, respectively; cluster 3
largely corresponded to the previously described hypermethylated
CpG methylator phenotype (CMP; ref. 24), with 18/20 CMP samples

Figure 2.

5hmCpatterns change at different states and subgroupsof prostate cancer.A,Unsupervisedvisualizationof global 5hmCpatterns for different prostate cancer states
using principal component analysis for gene body counts of the top 10% variable protein coding genes. Benign, benign prostate tissue; Localized, localized prostate
cancer; NT, normal adjacent tissue (tomCRPCbiopsy).B,Differential 5hmCgenebody analysis betweenmCRCP (N¼93) and localized prostate cancer (N¼ 52), and
localized prostate cancer and benign prostate (N¼ 5), respectively. Genes were ranked by the DESeq2 statistic and further analyzed by GSEA. Color represents the
normalized enrichment score (NES) and adjusted P values are shown for each pathway and state transition. Top significant pathways are shown.C,Differential 5hmC
analysis for consensus peaks between localized prostate cancer andmCRPC. 5hmC peaks called byMACS2 for each sample were unified to a consensus set of peaks
and used for differential analysis. Peaks with significant differences (FDR < 0.00001) are visualized per chromosome. Red, upregulation in mCRPC; blue,
downregulation in mCRPC. Horizontal bars on chromosomes represent protein coding gene density. The most significant upregulated peaks (FDR < 0.001 and fold
change > 1.5) in mCRPC were further analyzed by the GREAT tool for gene ontology biological processes, and the top 10 enriched biological processes by the
hypergeometric test are shown as an inset (44).D, 5hmC enrichment atAR, FOXA1, HOXB13, and H3K27ac sites previously reported inmCRPC xenografts (21). 5hmC
enrichmentwas calculated per sample and then averaged for localized prostate cancer (N¼52), normal adjacent tissue tomCRPCbiopsies (N¼ 7), andmCRPC tissue
samples (N¼ 93). E,Unsupervised hierarchical clustering ofmCRPC tissue samples using 5hmCgene body counts of the top 10%most variable protein coding genes.
Other, other metastatic soft tissue site. CMP, CpG methylator phenotype; Loc, localized prostate cancer.
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in cluster 3 (Fisher exact test P ¼ 6.9 � 10–12, Fig. 2E). Differential
5hmC analysis between t-SCNC and adenocarcinoma confirmed
known transcriptional differences such as lower 5hmC levels in genes
in the androgen response pathway (FDR ¼ 1.4 � 10–7), while genes
previously identified to be active in NEPC (40) were the most
upregulated (FDR ¼ 4.4 � 10–6), together with additional neuronal
gene sets (Supplementary Fig. S6).

In summary, these results suggest that 5hmC-seq can nominate
novel putative driver genes and identify the activation of programs
driving dedifferentiation, on top of recapitulating known molecular
hallmarks previously seen at the transcriptomic, genomic and meth-
ylation levels.

5hmC delineates lineage plasticity and transdifferentiation
Given that 5hmC has been suggested as a highly specific marker of

lineage commitment during tissue development, and that prostate
cancer can undergo lineage plasticity to escape AR-directed thera-
py (53), we next sought to evaluate 5hmC tissue specific markers in
prostate cancer. Tissue-specific 5hmC profiles were recently charac-
terized in a variety of normal tissues, leading to development of a
method named the 5hmC tissue map that uses these profiles to predict
tissue lineage based on 5hmC data (7). We applied this 5hmC Tissue
Map and found that localized prostate cancer samples were largely
classified as prostate tissue, which is consistent with the relatively
similar global 5hmC patterns observed between benign prostate and
localized disease (Fig. 3A). Normal tissue samples adjacent to met-
astatic biopsies were predicted to match that site’s tissue of origin (i.e.,
bone marrow or liver), as expected (Fig. 3A). mCRPC samples
retained varying levels of prostate-specific marks, and while mCRPC
samples with low tumor fraction had a higher score of biopsy tissue of
origin, loss of prostate-specific 5hmC marks was also observed for
samples with high tumor fraction (localized prostate cancer vs.

mCRPC P ¼ 0.021, Fig. 3A and B). All four t-SCNC samples in
this cohort had low 5hmC prostate scores (mCRPC adeno vs.
mCRPC t-SCNC P ¼ 0.0055, Fig. 3B). An additional one third of
the mCRPC samples had a low prostate score and gain of 5hmC
scores from gastrointestinal (GI) tissues (localized prostate cancer
vs. mCRPC P ¼ 0.0021, Fig. 3C). Aberrant activation of a GI gene
expression circuit (PCa-GI transcriptional signature) has been
previously suggested as a mechanism that enables cells to escape
androgen signaling dependence and become resistant to treatments
targeting AR (42). Expression of these PCa-GI genes were strongly
correlated with the 5hmC GI patterns (enrichment for stronger
correlation NES ¼ 3.34, adjusted P ¼ 1.4 � 10–20, Fig. 3D). Taken
together, our data support the use of 5hmC patterns to accurately
track prostate cancer lineage plasticity through loss of prostate
specific 5hmC patterns.

5hmC marks the activation of specific cancer driver genes and
transcriptional programs

Since 5hmC marks genes and regulatory regions corresponding
to transcriptional activity, we sought to further explore the detailed
5hmC patterns of key prostate cancer driver genes. The AR is the
primary therapeutic target in prostate cancer; copy number
increases affecting the AR gene body and distant enhancer produce
upregulation of AR expression in mCRPC after tumors escape
ADT (25). 5hmC marked the AR gene body in mCRPC, but not
in localized prostate cancer, and 5hmC was absent from the AR gene
body of t-SCNC tumors, corresponding to known AR activity levels
in these subsets of tumors (Fig. 4). Further, 5hmC marked the
known AR enhancers in mCRPC, including the putative novel
enhancers identified by hypomethylation called by WGBS
(24, 25), and 5hmC levels at these regions were positively correlated
with expression of AR.

Figure 3.

mCRPC lose prostate 5hmC marks and gain marks indicative of dedifferentiation and transdifferentiation. A, 5hmC tissue map scores were calculated for prostate
cancer tissue samples predicting similarity to various tissues. Benign, benign prostate tissue; Localized, localized prostate cancer; NT, normal adjacent tissue (to
mCRPC biopsy). Other, other metastatic soft tissue site. B, Box and whiskers plot for 5hmC tissue map prostate score for localized prostate cancer (N¼ 52), mCRPC
adenocarcinoma (N¼ 89), and t-SCNC (N¼4).C,Box andwhiskers plot for 5hmC tissuemap combinedgastrointestinal (GI) score (sumof the score in colon, gastric,
liver and pancreatic tissue) for localized prostate cancer (N ¼ 52) and mCRPC (N ¼ 93). Horizontal line is drawn at a 5hmC GI score of 0.25, which classifies
4% of localized prostate cancer and 34% of mCRPC as having gained 5hmC GI patterns, similar to what has been previously reported at the gene expression level
(42). D, GSEA for genes ranked by correlation between expression and the 5hmC GI score found the top pathway to be the previously described prostate
cancer GI transcriptional signature. NES, normalized enrichment score. Boxplot shows median with hinges at 25th and 75th percentiles and whiskers at
largest/smallest value within 1.5 � interquartile range.
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The pioneering factor FOXA1 modulates chromatin accessibil-
ity, directly interact with AR and shapes its signalling driving
prostate cancer tumor growth. FOXA1 activity can be altered either
by aberrations to the gene itself or of the surrounding regulatory
regions (54, 55). The FOXA1 gene body was hypomethylated, while
5hmC marked the region upstream of the TSS both in localized
prostate cancer and mCRPC (Supplementary Fig. S7). Several
FOXA1 downstream regulatory regions were hypomethylated and
marked by 5hmC, potentially indicating activity. Notably, FOXA1
is commonly mutated in localized prostate cancer (20), while AR is
frequently altered in response to ADT, and there are more altered
AR binding sites in mCRPC than altered FOXA1 sites (21). Thus,
the profoundly altered 5hmC patterns around AR in mCRPC vs.
localized prostate cancer and relatively similar FOXA1 patterns are

consistent with their reported degree of dysregulation at different
disease states.

To further analyze how 5hmCmarks different mechanisms of gene
activation, we studied the activating TMPRSS2-ERG fusion (T2E), a
somatic alteration present in �50% of prostate tumors (56). Through
this fusion, the promoter of the AR-regulated gene TMPRSS2 fuses
with the ETS-family transcription factor ERG, or other ETS-family
members, thus making ERG an AR-regulated gene. We found an
increase of 5hmC modifications in ERG downstream of the fusion
break end in T2E-positive samples (Fig. 5A–C), and ERG gene
expression and ERG 5hmC levels were higher in fusion positive
samples (Fig. 5D). When comparing global 5hmC patterns between
T2E positive and negative samples using differential peak analysis
and the HOMER motif analysis tool (43), we found regions with

Figure 4.

5hmCmarks activity of the androgen receptor locus. Integration ofmultiple layers of data for theAR locus. 5hmC represents peaks called byMACS2 for each sample.
HMR, hypomethylated regions called by whole-genome bisulfite sequencing per sample. CGI, CpG islands; r, Spearman correlation between 5hmC peaks and gene
expression, and methylation levels by whole-genome bisulfite sequencing, respectively. ChIP-seq from publicly available patient samples, patient-derived
xenografts, and cell lines. DUP, number of mCRPC samples with tandem duplications; PDX, patient-derived xenograft. Benign, benign prostate tissue; Localized,
localized prostate cancer; NT, normal adjacent tissue (to mCRPC biopsy); PCa, prostate cancer.
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increased 5hmC in T2E-positive samples to be strongly enriched in
ETS-family transcription factors binding motifs (Fig. 5E). A
detailed analysis of the canonical ERG target gene KCNS3 (57)
revealed that both gene expression and 5hmC gene body levels were
increased and that regions with significant 5hmC enrichment in and
around KCNS3 were predicted to harbor ERG binding motifs
(Supplementary Fig. S8A and S8B). Collectively, these data suggest
that 5hmC marks the activation of major driver genes in mCRPC,
both the gene bodies and regulatory sites, as well as downstream
target binding sites.

Prostate cancer–specific 5hmC patterns are detectable in
cfDNA

Given the evidence that 5hmC levels of DNA are informative of
transcriptional activity, activation of driver genes and programs, and
dedifferentiation of mCRPC, we next investigated whether 5hmC
levels in cfDNA were representative of the corresponding tumor
tissue. We performed 5hmC-seq on 15 cfDNA samples for which we
had a matching mCRPC biopsy profiled with 5hmC. Since cfDNA is a
mixture of DNA originating from the tumor (circulating tumor DNA,
ctDNA) and cfDNA from normal cells (mostly leukocytes), we first

hypothesized that we could use 5hmC patterns to predict the circu-
lating tumor fraction (ct-fraction) of cfDNA. The 5hmC-predicted ct-
fraction was strongly correlated with 5hmC tissue map prostate score
(r ¼ 0.89, P < 2.2 � 10–16) and anticorrelated with 5hmC tissue map
bone marrow score, as expected (r¼�0.84, P¼ 8.1� 10–5; Fig. 6A).
We further observed GI patterns in cfDNA from men with mCRPC
that paralleled those observed in tissue, and there was a positive
correlation between GI patterns in tissue and cfDNA (r ¼ 0.61,
P ¼ 0.018; Fig. 6B).

We next compared the correlation in gene body 5hmC levels
between tissue and cfDNA for all protein coding genes and found a
positive correlation for most genes (Fig. 6C). Samples with higher
predicted ct-fraction in cfDNA had a stronger association between
cfDNA and solid tumor 5hmC levels (r ¼ 0.59, P ¼ 0.024; Fig. 6D
and E). Unbiased clustering of matched cfDNA and tissue samples
demonstrated that cfDNA samples with higher predicted ct-fraction
were more frequently clustered together with their matched solid
tumor (Fig. 6F). Thus, these data indicate that 5hmC patterns in
cfDNA are representative of the individual mCRPC tumors, and, as is
the case with targeted sequencing and 5mC analysis of cfDNA (58, 59),
the concordance is stronger in patients with higher ct-fraction.

Figure 5.

Activating TMPRSS2-ERG fusions and the downstream cistrome are marked by 5hmC. A and B, 5hmC locations and hypomethylation at the ERG and TMPRSS2 loci.
5hmC levels are shown as frequency of samples, with a 5hmCpeak called byMACS2 at each position and hypomethylation as frequency of sampleswith aHMR called
from whole-genome bisulfite sequencing. Samples are split based on the presence of a TMPRSS2-ERG fusion (T2E). Red symbols mark the position of the 30 and 50

break-ends for each sample harboring a TMPRSS2-ERG fusion. C, Location of 5hmC peaks are shifted relative to the 30 break-end in TMPRSS2-ERG fusion positive
samples.D, ERG 5hmC gene body levels and gene expression per fusion status (T2E-negative,N¼ 53; T2E-positive,N¼ 40). Two of the T2E-negative samples had a
SLC45A3-ERG fusion. E, The top 10 enriched transcription factor bindingmotifs analyzed by HOMER for loci that have enriched 5hmC levels in TMPRSS2-ERG fusion–
positive samples. GEX, gene expression; T2E-pos, samples harboring a TMPRSS2-ERG gene fusion; T2E-neg, samples not harboring a TMPRSS2-ERG gene fusion.
Boxplot shows median with hinges at 25th and 75th percentiles and whiskers at largest/smallest value within 1.5 � interquartile range.
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5hmC is a potential liquid biomarker for mCRPC
To further evaluate 5hmC in cfDNA as a liquid biopsy biomarker in

mCRPC, we profiled an additional cohort of 64 cfDNA samples from a
series of clinically well-annotated patients before first-line androgen
signaling inhibitor therapy (ARSI; abiraterone or enzalutamide) with
both 5hmC-seq and a targeted cfDNA-panel (Supplementary
Table S3). First, we evaluated the global 5hmC patterns by performing

a principal component analysis and applying the 5hmCct-fraction and
tissue map classifiers to the cfDNA samples (Fig. 7A; Supplementary
Fig. S9A and S9B). The first principal component was associated with
ct-fraction, and the predicted ct-fraction from 5hmC was highly
correlated with the estimated ct-fraction from targeted cfDNA-seq
(r ¼ 0.83, P ¼ 1.1 � 10–17). 5hmC tissue map prostate score was
correlated with ct-fraction (r ¼ 0.84, P ¼ 1.8 � 10–18), while bone

Figure 6.

Concordance of 5hmCpatterns in 15matched tissue and cfDNA samples.A, Tissuemap scores for 15 cfDNA sampleswithmatched tissue 5hmC-sequencing available.
Predicted ct-fraction was determined using a novel 5hmC-classifier. Patients DTB-149 and DTB-216 had two paired samples at two different time points available
with 5hmC sequencing, but not other datamodalities andwere thus included in this paired analysis but not in integrative analyses.B, Scatterplot for tissuemap 5hmC
GI-score in tissue and cfDNA for the 15matchedpairs of samples.C, Spearman correlation between tissue 5hmCgenebody counts and cfDNAgenebody counts. Blue
dashed line, median correlation. D, Box and whiskers plot showing correlation for 5hmC gene body counts in tissue and cfDNA for matched pairs (N¼ 15, blue box)
and for average correlation to nonmatched pairs (N¼ 15, red box). E, Scatterplot for sample similarity of matched tissue and cfDNA samples (N¼ 15) measured by
Spearman correlation for 5hmCgene body counts of protein coding genes andpredicted ct-fraction by 5hmC levels.F,Hierarchical clustering ofmatched 5hmCgene
body counts in tissue and cfDNA samples using the top 10%most variable genes. Scaling (z-scores)was performed separately for cfDNA and tissue-derived samples.
ct-fraction/purity is estimated from 5hmC-sequencing (cfDNA samples) or fromWGS (tissue). Boxplot shows median with hinges at 25th and 75th percentiles and
whiskers at largest/smallest value within 1.5 � interquartile range.
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marrow score was anti-correlated (r¼�0.69, P¼ 3.7� 10–10). These
results highlight that 5hmC patterns are very specific for prostate
cancer-derived DNA enabling the accurate quantification of ct-frac-
tion, which is clinically informative as higher ct-fraction determined
by 5hmC-seq was strongly prognostic for outcome [Fig. 7B, per tertile
of ct-fraction, HR ¼ 1.6 (1.2–2.3), P ¼ 0.006], similar to ct-fraction
estimated from targeted DNA-seq (Supplementary Fig. S9C). We also
observed the gastrointestinal 5hmC patterns in cfDNA in this cohort
(Fig. 7A). One sample (UBC1) had a high ct-fraction, but did not
exhibit any prostate 5hmC patterns, and instead had higher scores of
colon, gastric, skin, and breast tissues. This sample harbored multiple
genomic alterations consistent with aggressive prostate cancer (deter-
mined by targeted cfDNA-seq in AR, MYC, NCOA2, RB1, TP53,
NKX3-1, BRCA2, and PTEN; Supplementary Table S3), suggesting

that dedifferentiation of aggressive mCRPC can be detected in cfDNA
by 5hmC-seq.

The number of altered pathways in aggressive prostate cancer is
prognostic (60); we therefore created a score in cfDNA using 5hmC-
seq inferred gain or loss of the eight most commonly altered prostate
cancer driver genes by targeted cfDNA-seq (AR, MYC, NCOA2, RB1,
TP53, BRCA2, PTEN, NKX3-1). This score was prognostic for overall
survival [per additional genomic event, HR¼ 1.5 (1.3–1.7), P¼ 8.1�
10–7, adjusted for ct-fraction and clinical covariables: HR¼ 1.3 (0.99–
1.7), P ¼ 0.057; Fig. 7C]. These results were concordant with those
obtained by targeted cfDNA-seq (Supplementary Fig. S9D).

Finally, we explored whether 5hmC-seq can be used to infer activity
of genes that are not commonly altered at the DNA level in prostate
cancer, rendering them opaque to current cfDNA-seq methods. We

Figure 7.

5hmC in cell-free DNA of patients with mCRPC. A, 5hmC tissue map scores for each of the 64 cfDNA samples taken before first-line androgen receptor signaling
inhibitor (enzalutamide or abiraterone) formCRPC. Circulating tumor fraction (ct-fraction)was estimated froma targeted cfDNA sequencing panel and by5hmC-seq
using a novel classifier based ongene body 5hmCcounts.B,Overall survival for patients split by tertiles of 5hmCpredicted ct-fraction.C,Overall survival based on the
number of genomic events inferred by 5hmC gene body counts of the eight most commonly altered genes by targeted cfDNA sequencing. Oncogenes (AR, MYC,
NCOA2) were considered gained if 5hmC gene body countswere in the upper quartile across samples, and tumor-suppressor genes (RB1, PTEN, TP53,BRCA2,NKX3-
1) were considered lost if 5hmC gene body countswere in the lowest quartile. Kaplan-Meier curves are visualized for 0–1, 2–3 and >3 events, andHRs are calculated as
mean for each additional event inferred. D, Overall survival based on 5hmC gene body levels of TOP2A and EZH2. Levels are split by quartiles across samples and
survival is contrasted between samples being in the top quartile for none, either, or both TOP2A and EZH2, as previously described for tissue gene expression (61). P
valueswere calculated by two-sidedWald test. Adjusted HRs are adjusted for ct-fraction, age atmCRPC diagnosis, PSA at first-lineARSI, Hb at first-line ARSI, type of
ARSI (enzalutamide or abiraterone), docetaxel for metastatic hormone-sensitive prostate cancer, time to CRPC from start of ADT, and presence of visceral
metastases.
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have previously shown that the tissue gene expression levels of the
genes TOP2A and EZH2 can identify an aggressive subgroup of
prostate cancer (61). EZH2 was one of the top differentially 5hmC
marked genes in mCRPC versus localized prostate cancer. Neither
gene is frequently altered by copy number changes in mCRPC; EZH2
had DNA alterations in 0.5% of 1465 samples, while TOP2A is not
commonly included in prostate cancer targeted panels (62). Using
5hmC levels in cfDNA, the previously described gene expression
classification of the combined genes was highly prognostic for overall
survival after adjusting for ct-fraction and clinical variables [adjusted
HR ¼ 2.6 (1.6–4.3), P ¼ 0.0002; Fig. 7D].

In summary, our data indicate that 5hmC-seq can be used to detect
cancer specific 5hmC patterns in cfDNA to accurately estimate ct-
fraction as well as to find specific gene activation of driver genes not
altered at the DNA level, thus potentially adding to current analyses of
cfDNA for advanced cancers.

Discussion
In this study, we have characterized the genome-wide 5hmC

landscape of prostate cancer at different disease states, comprehen-
sively modeled transcriptional regulation by integrating 5hmC-seq
with WGS, WGBS, and RNA-seq, and explored 5hmC-seq of cfDNA
as a liquid biomarker for advanced prostate cancer. To our knowledge,
this study represents the only integrated analysis of 5hmC with
genome-wide and epigenome-wide sequencing approaches in clinical
tumor samples, and the first study to comprehensively profile 5hmC
marks in a large cohort of cancer metastases. We found that 5hmC is a
marker of epigenomic activation throughout disease progression,
identifying distinct oncogenic signaling pathways that define disease
states as well as subgroups of advanced prostate cancer. 5hmC is
enriched not only at driver gene bodies but also at specific downstream
target genes and binding sites, further supporting 5hmC as a general
marker of epigenetic activation and cancer cell reprogramming.
Furthermore, 5hmC identifies dedifferentiation and lineage plasticity,
which are critical mechanisms of therapy resistance. We also dem-
onstrated that 5hmC analysis of cfDNA ofmCRPC patients accurately
detects prostate cancer specific 5hmC patterns that are prognostic.
Finally, 5hmC-seq may be used to develop liquid biomarkers for genes
not commonly altered at the DNA structural level.

Our data indicate that 5hmC can be used to assess the epigenomic
state of the tumor by identifying transcriptionally activated genes and
programs. These findings using 5hmC-seq are similar to the current
understanding of prostate cancer progression at the transcriptional
level (51), but critically do not require the isolation of RNA for gene
expression profiling and has potential for immediate translational
impact through the analysis of cfDNA. The role of 5hmC at these
locations is still under investigation, and while 5hmC is enriched at
regions undergoing active demethylation, 5hmC is also reported to be
stable enough for a possible transcription-promoting function (63).
Indeed, 5hmC is suggested to alter the binding affinity of DNA-binding
proteins resulting in “functional demethylation” (64). In our analysis,
5hmC marked driver genes, genes overexpressed as a consequence of
structural variants, downstream target genes and regulatory regions
associated with driver genes. This supports the role of 5hmC as an
epigenomic mark of oncogenic activation. Future mechanistic studies
will be crucial to further understand the biological role of dynamic
5hmC changes over time, and if it may directly promote transcription.

While we found that localized prostate cancer retained prostate
specific 5hmC patterns, advanced castration-resistant metastatic pros-
tate cancer appeared more dysregulated with variable loss of prostate

5hmC patterns. These changes may be associated with both the
progression from localized to metastatic disease, as well as the devel-
opment of castration resistance. All t-SCNCmCRPC samples lost their
prostate 5hmC patterns, but an additional one third of adenocarci-
noma mCRPC samples had low prostate 5hmC patterns and gain of
patterns associated with gastrointestinal tissue. While several epige-
nomic studies have been performed in prostate cancer, 5hmC appears
to more robustly mark unique lineages such as this gastrointestinal
subset. Moreover, 5hmC sequencing highlights developmental path-
ways shaping cancer progression and dedifferentiation that are not as
readily seenwith transcriptional profiling. This is consistentwith studies
of 5hmC in tissue differentiation that found that 5hmC marks key
genes associated with both maintaining pluripotency and lineage com-
mitment with 5hmC marking distinct programs at certain develop-
mental timepoints (11). Prostate cancer transdifferentiation has been
proposed as amechanism bywhich tumors acquire treatment resistance
to AR targeting agents by reducing dependence on androgen signaling.
This phenomenon has been studied in the context of a switch to a
small cell and/or neuroendocrine phenotype (53), but other mech-
anisms have been reported such as a lineage switch towards a gastro-
intestinal phenotype (42), and recent studies have confirmed the role
of the epigenome in regulating dedifferentiation in prostate cancer
(21, 65). Our data indicate that 5hmC analysis could further help
delineate mCRPC de- and transdifferentiation and could potentially
be used to track prostate cancer lineage plasticity in liquid biopsies.

In clinical practice, biopsies of prostate cancer metastases can be
difficult to obtain, and liquid biomarkers are more readily accessible.
While 5hmC-seq is concordant with common DNA alterations, it can
also infer activity of additional genes. We studied the previously
defined subgroup of tumors with high expression of TOP2A and
EZH2 (61), and we found that the classification in cfDNA by
5hmC-inferred activity levels of TOP2A and EZH2 was highly prog-
nostic. Given that neither TOP2A nor EZH2 commonly harbor
somatic changes in prostate cancer that can be detected by DNA
sequencing, this highlights the potential of 5hmC-seq to add to current
analyses of cfDNA in advanced cancers. Future studies will be impor-
tant to establish lower bounds for the amount of circulating tumor
DNA required to obtain consistent results from cfDNA analysis of
5hmC patterns. In total, our study establishes how 5hmC fits into the
genomic, epigenomic, and transcriptomic context of prostate cancer
progression and demonstrates the potential as a liquid biopsy platform
for clinical biomarker development.
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