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Abstract: The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of interna-
tional experts to discuss new research opportunities for the prevention, detection, and intervention
of myocarditis in May 2021. These experts reviewed the current state of science and identified key
gaps and opportunities in basic, diagnostic, translational, and therapeutic frontiers to guide future
research in myocarditis. In addition to addressing community-acquired myocarditis, the workshop
also focused on emerging causes of myocarditis including immune checkpoint inhibitors and SARS-
CoV-2 related myocardial injuries and considered the use of systems biology and artificial intelligence
methodologies to define workflows to identify novel mechanisms of disease and new therapeutic
targets. A new priority is the investigation of the relationship between social determinants of health
(SDoH), including race and economic status, and inflammatory response and outcomes in myocarditis.
The result is a proposal for the reclassification of myocarditis that integrates the latest knowledge of
immunological pathogenesis to refine estimates of prognosis and target pathway-specific treatments.

Keywords: myocarditis; dilated cardiomyopathy; viral myocarditis; cytokines; macrophages; lymphocytes;
cardiac magnetic resonance; heart biopsy; heart failure; NHLBI workshop in myocarditis

1. Introduction

The World Health Organization (WHO) defines myocarditis as an inflammatory dis-
ease of the myocardium and is diagnosed by established histological, immunological, and
immunohistochemical criteria [1]. However, the established criteria have low sensitivity
and poor prognostic value, and they do not integrate current understanding of immuno-
logical homeostatic and regulatory functions with disease phenotypes. The plasticity of
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immune and stromal cells and their cell–cell interactions in three dimensions can now be
more accurately quantified in myocardial health and disease states. These insights can
be integrated with genomic patterns through systems biology and artificial intelligence
algorithms to identify new immunophenotypes and therapeutic targets. From a clinical
presentation perspective, the 2013 European Society of Cardiology (ESC) position state-
ment on myocarditis describes an acute coronary syndrome in the absence of angiographic
obstructive epicardial coronary artery disease often associated with chest pain, a respira-
tory or gastrointestinal infection, and electrocardiographic changes, as well as possible
right and/or left ventricular dysfunction and elevated troponin levels. Advances in tissue
imaging with echocardiography, magnetic resonance imaging, and positron emission to-
mography have led to higher rates of suspected and diagnosed cases of myocarditis and
a need to integrate multimodality imaging tools into refined prognostic algorithms. At
the same time, highly translational animal models and human studies are providing new
insights into molecular mechanisms that can be leveraged to create novel imaging markers.
These advances in basic and clinical science are occurring within a framework of social
disparities, which also affects clinical outcomes.

The workshop, “Meeting the Challenges of Myocarditis: New Opportunities for
Prevention, Detection, and Intervention Workshop,” held by the NHLBI on May 3, 4 and 6,
2021 discussed major advances in myocarditis research and identified key knowledge gaps
in diagnostic, therapeutic, basic science, and translational frontiers for myocarditis. Here,
we report on the challenges and opportunities discussed during the workshop, elaborating
on a previously published Executive Summary [2].

2. Etiologies of Myocarditis

Most cases of myocarditis have been attributed to viral infections. The incidence of
myocarditis is estimated to be 6.1 in men and 4.4 in women per 100,000 persons between
ages 35 and 39 [3]. The mechanism of cardiac damage might be in part driven by the type
of virus that infects the myocardium. Enteroviruses, herpesviruses, and adenoviruses are
commonly found in myocarditis biopsies [4]. Other viruses, such as parvovirus B19. can
persist in the cardiomyocytes with an unknown consequence to myocarditis pathogen-
esis [5]. It is important to distinguish between myocarditis caused by viral infection or
associated with a virus presence and further enhance our knowledge of viral presence and
cause of myocarditis. This includes the use of polymerase chain reaction (PCR) to detect
viral genome in the heart since this technique cannot distinguish virus in the tissue from
a virus in the blood without simultaneous testing of peripheral blood. Some viruses are
also ubiquitous and present in a fraction of healthy hearts at autopsy. SARS-CoV-2 has
been also shown to induce an acute cardiac injury, reflected by an elevated serum level
of cardiac troponin, in severe COVID-19 patients [6]. The presence of SARS-CoV-2 in the
heart is associated with increased myeloid cells density [7,8]. Cardiac injury could be also
caused indirectly by cytokines or immune dysregulation. However, classic lymphocytic
myocarditis is rarely found in COVID-19 autopsies [9]. Alternative mechanisms of injury
such as platelet-rich microthrombi and direct proarrhythmic effects of viral proteins have
been reported in COVID-19 decedents [10].

Other less common causes of myocarditis are parasitic, bacterial, and fungi infec-
tions, as well as toxins and hypersensitivity reactions. Immune checkpoint inhibitors (ICI)
myocarditis occurs in 0.3 to 1% of ICI- treated cancer patients with up to a 50% reported
mortality [11,12]. Although myocarditis after vaccination for influenza, hepatitis B, and vari-
cella [13–16] is rare, mRNA COVID-19 vaccines (mRNA-1273 [Moderna], and BNT162b2
[Pfizer]) have been reported to trigger myocarditis with an estimated risk of 3.8 per 100,000
in males and 0.5 in 100,000 females [17,18]. Young males between 16 and 29 years of age
had the highest incidence of post-mRNA vaccine myocarditis at 10.7 cases per 100,000 [19].
Histologically, the post-COVID-19-vaccine myocarditis is characterized by cardiomyocyte
damage and mixed inflammatory infiltration with scattered eosinophils [19,20]. The my-
ocarditis incidence is usually observed several days after the second vaccination (or after
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the first vaccination in people with a previous COVID-19 infection). Although 76% or more
of these cases have little to no impairment of left ventricle systolic function and patients
recover within days, understanding the mechanism of this injury is of great interest in the
COVID-19 pandemic [19].

Autoimmune inflammation causes giant cell myocarditis and, in some cases, eosinophilic
myocarditis [21–26]. Myocarditis is associated with high morbidity when associated with
systemic autoimmune diseases, such as Sjögren’s disease, systemic lupus erythematous,
and vasculitis [27,28]. In addition, sarcoidosis, an inflammatory granulomatous disease,
can affect the heart [29]. The precise mechanism by which acute viral infection progresses to
chronic autoimmune myocarditis is incompletely characterized, but may involve molecular
mimicry between viral and cardiac antigens as well as potential bystander effects during
antigen presentation [30,31]. Results from a mouse model of Coxsackievirus-induced my-
ocarditis suggests that autoimmune inflammation develops as a sequela of a virus infection
with anti-cardiac antibodies induced by the viral infection and prolonged myocarditis after
viral clearance in susceptible mice strains.

Gaps and Opportunities in Myocarditis Etiology:

• Although viruses are the most common cause of myocarditis, RT-PCR and genomic
sequencing testing for viruses in biopsies may not correlate with active infection.

• Therefore, greater understanding is needed of the mechanisms of specific viruses
for myocarditis pathogenesis. Specifically, research is needed to understand the
factors which determine when acute viral myocarditis progresses to an autoimmune
cardiomyopathy in humans.

• Understanding the mechanism of mRNA vaccine-induced myocarditis is important
for the use of this technology to prevent COVID-19 and to understand the risks of
other vaccines based on the same technology.

• It is critical to understand the broader scope of pathogenesis of inflammatory myocar-
dial diseases in general is critical.

3. Pathogenesis of Myocarditis

The pathogenic process of myocarditis is often driven by activated immune cells,
cytokines, and chemokines [32]. Identifying key mechanisms that can either propagate or
protect against myocarditis still requires a more granular understanding of the role of rele-
vant immune cells. The heart contains subsets of tissue-resident macrophages with different
ontologies that can be repopulated through either the recruitment of circulating mono-
cytes or local self-renewal. During the disease process, monocytes infiltrate the heart and
produce macrophages with diverse and seemingly opposite functions. Macrophages help
maintain immune homeostasis, but they can also contribute to pathologic inflammation.
The interplay between cardiac stromal cells and monocytes has been described recently [33].
The types of monocytes infiltrating the heart and the in situ differentiation of these cells
are driving the fibrotic process in mouse models [34,35]. Advances in myocardial biology
and immunology will likely pave the way for newer insights into the roles of the various
myeloid cells in myocarditis. For example, CCR2+Ly6Chi inflammatory macrophages were
shown to drive post-myocarditis fibrosis and development of dilated cardiomyopathy
(DCM) [35]. Derived from extra-embryonic hematopoietic progenitors, cardiac resident
immune cells produce growth factors and are key regulators of coronary development,
angiogenesis, and cardiac tissue repair in the diseased heart [36–38]. They may drive
inflammatory responses by generating cytokines, oxidative species, and chemokines that
trigger neutrophil and monocyte infiltration [36–38].

The recruitment of immune cells to the inflamed or injured myocardium is dynamic
as well as cell-type specific and context dependent. Genetic, chimeric, and computational
tools have shown that under homeostatic conditions, a diverse population of macrophage
and dendritic cell subpopulations gain temporary residency within the injured heart,
proliferate within cardiac tissue transiently, and are continually replaced by circulating
progenitors [39–41]. We have some evidence about divergent roles of subtypes of monocytes
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in myocarditis, but the full relevance of such transcriptional plasticity of monocytes in
the context of myocarditis is still unclear [33]. In addition, environmental influences
can promote inflammatory responses, especially in genetically susceptible individuals, as
recently demonstrated in the activation of cardiac myosin-specific T-helper cells in the
intestine by a mimic peptide from a common commensal Bacteroides species in patients
with particular HLADQA1*/B1* alleles [42].

Therefore, understanding the regulatory switch between cardiac inflammatory and
reparative responses to viral infection is critical yet remains elusive. Long thought to be
primarily inflammatory, neutrophils can also regulate inflammation and warrant further
study. Although T cell-mediated damage occurs via CD8+ T cells that recognize major
histocompatibility complex (MHC) I on infected cardiomyocytes, immune equilibrium
is mediated by various T cell subsets. While significant strides in understanding of how
Th1, Th2, Th17, T regs, and other T cell subtypes respond to viral infection and modulate
inflammation and fibrosis have been made, more work is still needed (Figure 1) [34,43–51].
The etiology of the myocarditis dictates the immune profile found in the myocardium. Viral
myocarditis is driven by a Th1 response, and the histological profile is mostly lymphocytic
with inflammatory monocytes being the predominant cell type in the myocardium. The
Th17 response plays a role in autoimmune myocarditis and this type of response drives
the post-myocarditis dilated cardiomyopathy (DCM) [34,35,52]. IL-17A acts on cardiac
fibroblasts and induces the production of cytokines and chemokines in subtype of cardiac
fibroblasts that direct immune cells such as neutrophils and inflammatory monocytes to
traffic to the heart and differentiate to inflammatory subtype there [35]. Even response to
Th2 can lead to cardiac damage with eosinophils as the main effector cells [53]. Similar to
the response to Th17, in Th2 driven myocarditis, fibroblasts also play a major role in the
chemotaxis of the effector cells, eosinophils, by the production of chemokines eotaxins [54].
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Figure 1. T helper cell pathways leading to three subtypes of myocarditis. Viral myocardi-
tis activating Th1 pathway driven by IL-12 induces IFNγ production and CD8+ T cells as the
main effector cells. Hypersensitivity myocarditis is induced by Th2 pathway driven by cytokines
(IL-4, IL5, and IL13), mast cells, eosinophils, and B cells. Autoimmune myocarditis is driven by the
Th17 pathway, with the IL17A/ F, and GM-CSF as the main cytokines inducing neutrophil and
inflammatory monocyte responses.
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Similarly, B cells are heterogeneous and have both antibody-dependent and antibody-
independent functions [55]. While cardiotoxic autoantibodies have been detected in animal
models of viral myocarditis, it remains unclear whether such autoantibodies are pathogenic
in humans [56–58]. Besides recognizing specific antigen, antibodies can also regulate inflam-
mation via Fc receptors. Moreover, antibody-independent B cell functions may be critical to
the development of myocarditis and DCM. B cells are sources of abundant cytokines (such
as IL-10) and growth factors (such as GM-CSF). B cells can express Toll-like receptors (TLRs)
and present antigens. It is therefore essential to clarify the roles of antibody-dependent and
antibody-independent B cell functions in viral and autoimmune myocarditis.

Overreactive innate immune response can contribute to cardiac inflammation as well,
especially when pericarditis is also present, as was shown by IL-33 induced pericarditis [59,60].
Interestingly, IL-33 induced perimyocarditis can develop by activation of innate lymphoid
(ILC) cells without contribution of adaptive immune system [60]. The ILCs have a unique
profile in the heart, which only underscores the need to understand the overall role of
innate immune response in myocarditis and cardiac injury.

It is important to consider sex differences in myocarditis because men are more likely
than women to develop myocarditis and DCM [61,62]. Most immune cells express sex
hormone receptors [63], and studies using mouse models of myocarditis with viral infection
have shown increased inflammation in males and important roles for sex hormones and
TLRs, especially TLR2 and TLR4, in the pathogenesis of the disease [61,64–67]. Males in both
mice and human have elevated levels of CD11b+ immune cells, sera soluble suppression
of tumorigenesis-2 (sST2) and Th17-type immune responses during myocarditis [52,61,
68,69]. Furthermore, mouse studies of viral myocarditis have shown that testosterone
increases myocardial inflammation, while estradiol reduces it [61,65,70–72]. Thus, in
addition to defining the immune cell landscape, examining sex and age differences in viral
and experimental autoimmune myocarditis animal models will be critical.

Gaps and Opportunities in Pathogenesis of Myocarditis:

• Further research into the role of innate and adaptive immune response in myocarditis
and cardiac injury in both viral and autoimmune myocarditis is essential for the
discovery of new diagnostics and treatments for myocarditis.

• Cardiac injury during the COVID-19 pandemic has revealed gaps in the knowledge
of cardiac inflammation including the heterogeneity of cellular signaling, temporal
sequence and regulation of inflammatory processes in cardiac tissues. New diagnostic
methods including single cell sequencing linked to deep clinical phenotyping are needed
to advance out understanding and identify new and potentially druggable targets.

• Lack of systemic and heart-specific immunophenotyping tools that can be deployed
at the bedside are needed to understand distinct mechanism-based subgroups and
develop more specific treatment strategies with acceptable risks.

4. Animal Models

The current understanding of the pathogenesis of myocarditis comes largely from
mouse models. Two Coxsackievirus B3 (CVB3) models are widely used. The first model
can induce severe myocarditis and death of the infected mice within the first week, while
the second model utilizes less severe heart-passaged CVB3 that allows a study of dilated
cardiomyopathy phase [73,74]. Autoimmune myocarditis similar to human giant cell my-
ocarditis can be modeled as experimental autoimmune myocarditis (EAM) [75,76]. The
EAM is induced by immunization with an alpha myocyte heavy chain (αMHC) peptide
emulsified in an adjuvant such as complete Freund’s adjuvant in susceptible strains of mice,
such as A/J, Balb/c and SWXJ mice [33,34,46,53,77,78] (Figure 2). The EAM models all
induce a Th17 response in the heart with neutrophils and inflammatory monocytes, leading
to cardiac inflammation, cardiac fibrosis and dilated cardiomyopathy in susceptible mice.
Troponin-induced myocarditis has also been developed [79]. Eosinophilic myocarditis
mouse models as EAM in mice that overexpress IL-5 under the CD3δ promoter or mice
deficient in both IL-17A and IFNγ (IL17A-/-IFNγ-/-) have been also described [80]. Re-
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cently, a spontaneous mouse mutant displays hypereosinophilia and develops eosinophilic
myocarditis that results in sudden, premature death of the animals [81]. In addition,
spontaneous myocarditis develops in PD-1 knockout (KO) mice on the MLR-Faslpr/lpr back-
ground [82]. Pharmacological models and genetic mouse models of myocarditis induced
by ICIs have also been in development; such models are essential for understanding the
pathogenesis of this rare but serious complication [83]. Despite the availability of these
models, additional models reflecting the diverse etiologies, pathogenesis and outcomes of
myocarditis are needed. Additional viral myocarditis models are essential to understand
viral-induced cardiac injury as was clearly shown by the COVID-19 pandemic.
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Figure 2. Experimental autoimmune myocarditis murine model. In the EAM model, cardiac
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on day 0 and day 7. The immune response, the histological changes, and the genetic susceptibility
observed in EAM are similar to giant cell myocarditis. #: The numbers are identifying the epitope of
myosin heavy chain (MYHC) used for the induction of myocarditis.

Gaps and Opportunities in Animal:

• A broader spectrum of myocarditis models of different etiologies are needed to under-
stand emerging causes of myocarditis including COVID-19 myocarditis, ICI-induced
myocarditis, and an mRNA vaccine-induced myocarditis.

• Efforts to standardize myocarditis animal models across different labs would improve
the translatability of the basic research to bedside medicine.

• Higher utilization of an in vitro approach and organelles development would aid the
study of some aspects of myocarditis pathogenesis.
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5. Genetic Regulation of Myocarditis

Polymorphisms in MHC are among the strongest predisposing genetic factors in
autoimmune diseases in general, and serologic and molecular analyses suggest a significant,
but inconsistent correlation of DCM with MHC class II antigens, particularly HLA-DR4,
DQ5, and DQ8 [84,85]. Further, specific immune response associated genes related to
autoimmune myocarditis have been identified, including genes for CD45, cardiac actin,
cardiac β-myosin heavy chain, cardiac troponin T, CTLA-4, ICOS, TLR-3, and interferon-
induced transmembrane protein 3 (IFITM3), PD-1 [86–88]. Interestingly, viral myocarditis
may also have genetic underpinnings. Elimination of the Coxsackievirus-Adenovirus
Receptor (CAR) in adult hearts has been shown to block virus entry into the heart and
to prevent contractile dysfunction. The increased expression of CAR is associated with
increased incidence of both myocarditis and DCM [89]. Even more importantly, associations
of acute myocarditis with familial inherited cardiomyopathies were discovered, including
genes involved with arrhythmogenic right ventricular cardiomyopathy that play a role
in cardiomyocytes sarcomere, nuclear membrane, Z-disc, desmosome, and ion channels,
such as DSP, DSG2, PKP2, TTN DYSF, and TNNI3 (encoding desmoplakin, desmoglein
2, plakophilin-2, titin, dysferin and troponin I type 3, respectively) [90–94]. These new
discoveries demonstrate that genetic predisposition to all types of myocarditis should be
examined further. It is essential that the consequences for the susceptibility to myocarditis
and differences in immune response be examined using in vivo and in vitro models. An
example of such follow-up investigation is a study examining how dystrophin affects
susceptibility to Coxsackievirus [95]. Most of the available data about genetic predisposition
to myocarditis come from case reports or small case series underlining the urgent need for
large, prospective multi-center studies on the genetic underpinnings of myocarditis.

Gaps and Opportunities in Genetic Regulation of Myocarditis:

• The role of non-immune genes in susceptibility to all types of myocarditis including
viral myocarditis should be further studied.

• It is essential to examine the clinical consequences for the susceptibility to myocarditis
and differences in immune response using in vivo and in vitro models.

• Prospective multi-center studies on the genetic role in myocarditis susceptibility are
needed to capture the impact on disease severity and long terms outcomes.

• The establishment of an international myocarditis registry to collect genetic informa-
tion and link it to patients’ clinical phenotypes and outcomes might be an important
and initial step toward advancing research in genetic regulation of myocarditis.

6. Clinical Presentation

The diversity of clinical presentations of myocarditis and variable criteria for histologi-
cal and imaging diagnosis have created challenges to the identification of useful therapeutic
interventions. The workshop participants identified a need to improve classification of
myocarditis into specific types and incorporate the heterogeneity of the disease into diag-
nostic and clinical criteria. This effort would specifically aim to standardize and integrate
endomyocardial biopsy, imaging, laboratory, and clinical criteria for the understanding and
management of myocarditis.

The heart consists of a complex cellular network including myocytes, fibroblasts, and
immune cells with molecular and functional relationships [96]. These relationships have
been probed with traditional histology and immunohistology, but the insights gained from
these efforts have led to few meaningful advances in myocarditis treatment. New systems
of classification based on a deeper knowledge of the cellular architecture, genetics, and
epigenetic modifications of single cells within health and various disease states are needed
to establish a new foundation for cardiac immune homeostasis and immunopathology.

Clinical myocarditis phenotypes have established prognostic value. For example,
hemodynamic compromise with cardiogenic shock, the presence of ventricular arrhythmias,
high-grade heart block, female sex and lower left and right ventricular systolic function
increase the risk of subsequent death or heart transplantation [97,98]. However, the features
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on heart biopsy histology and cardiovascular magnetic resonance imaging (MRI) that
guide therapy are limited to a few uncommon conditions, such as giant cell or eosinophilic
myocarditis. The presence of viral genomes and certain regulatory microRNA or cytokine
patterns in heart may further refine these risks [4]. Larger studies in diverse populations
with high dimensional phenotyping are needed to achieve greater functional recovery and
reduce clinically meaningful adverse events.

Addressing social determinants of cardiovascular outcomes is essential to reduce
the societal burden on myocarditis. The impact of social determinants of health (SDoH),
including systems to identify and treat illnesses, socioeconomic position, and race, is
established for traditional risk factors and outcomes in cardiovascular diseases [99]. More
recently, SDoH have also been implicated in altering the patients’ immune function and
inflammatory response, and these observations have driven new hypotheses regarding
disparities in COVID-19 related outcomes [100]. Within the United States, the counties with
the highest rates of myocarditis are in regions of the country with high rates of general risk
factors for cardiovascular disease. However, minimal research has been conducted on the
role of SDoH in myocarditis risk, treatment, and outcomes.

Gaps and Opportunities in Clinical Presentation:

• A specific and sensitive mechanism-based diagnostic criteria that refines the detection
of myocarditis across the spectrum of clinical presentations is a high priority gap.

• Efforts to quantify the impact of SDoH (e.g., using PhenX Toolkit or other survey or
screening tools) on cardiovascular outcomes in myocarditis outcomes are necessary.

• Validation of tools to capture patient reported outcomes and quantitate psychosocial
aspects of heath are needed to assess disease burden in diverse populations.

7. Diagnostic Imaging for Myocarditis

Given the non-specific and variable clinical presentation of patients with myocarditis, cardio-
vascular imaging plays an important role in diagnostic and therapeutic decision-making. The most
common imaging modalities, i.e., echocardiography, nuclear cardiology—specifically positron
emission tomography (PET), and cardiovascular magnetic resonance (CMR), demonstrate
differing capabilities to assess overall ventricular structure and systolic function, localize
associated wall motion abnormalities, detect inflammatory tissue changes (e.g., edema,
hyperactive metabolism, hyperemia, and pericardial effusion), and identify necrosis and
fibrosis (Table 1 provides a succinct overview of these modalities). Because inflammation
itself is a non-specific response to any myocardial injury, the clinical history and current
status are important, as such contextual information allows a determination of pre-test
likelihood, which in turn provides the range of the estimated post-test likelihood and
eventual management decisions. Beyond diagnosis and treatment, cardiovascular imaging
may provide prognostic information that better identifies which patients require closer
monitoring and follow-up.

Echocardiography is often an initial choice of cardiac imaging to obtain an overview
of ventricular size and function and plays a special role in the assessment of myocarditis
because of its easy availability and ability to be employed as a bedside technique in emer-
gency settings. Yet, in the absence of wall motion abnormalities not explained by acute
ischemia, echocardiography lacks the sensitivity to detect inflammatory markers, thus lim-
iting its clinical utility. Data are limited on specific diagnostic criteria for echocardiography
in patients with suspected myocarditis; however, over the clinical course of myocarditis,
echocardiography may also be used to monitor structural and functional changes in the
heart. Newer methods, such as speckle tracking strain imaging, allow assessments of
global longitudinal strain or global circumferential strain as indicators of left ventricular
dysfunction [101]. Deformation is affected by myocardial wall properties (e.g., hypertrophy,
fibrosis, infiltration, and inflammation) [102]. Differentiation of endocardial versus the
epicardial strain abnormalities seen commonly in myocarditis, as well as the location of the
abnormality (inferolateral and anterolateral segments are often affected in myocarditis) may
help to differentiate myocarditis from ischemic heart disease [103]. Strain has been shown
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to have additional prognostic value above ejection fraction in patients with peripartum
cardiomyopathy, which may have an inflammatory component similar to myocarditis [104].
A combined approach of routine measures of systolic function, Doppler measures of di-
astolic function, and new measures of myocardial strain may potentially be useful as the
initial step in patients with suspected myocarditis. Additional attention to right ventricular
structure and function may also play a role in identifying some myocarditis etiologies
(e.g., Chagas disease) [105].

Table 1. An Overview of Imaging Modalities Used in the Evaluation of Patients Presenting with
Myocarditis.

Transthoracic Echocardiography Positron Emission Tomography Cardiovascular
Magnetic Resonance

Ventricular volumes, myocardial
mass, systolic function +++ ++ ++++

Ventricular strain,
myocardial mechanics ++++ ++ +++

Inflammation ++ ++++ ++++

Fibrosis/Infiltration ++ +++ ++++

Pericardium/Pericardial effusion +++ ++ ++++

Alternate diagnoses of chest
pain syndromes ++ +++ ++++

Cost Inexpensive Most expensive Increasingly affordable;
cost-effective

Strengths

Portable, widely accessible in
most medical institutions, rapid
assessment of systolic function
and wall motion abnormalities

Highly validated in inflammatory
state; molecular and

metabolic characterization

High spatial resolution, highly
reproducible, volumetric
coverage, multi-faceted
tissue characterization

Limitations Dependence on optimal acoustic
window, nonspecific findings

Exposure to ionizing radiation
with use of nuclear tracers, special

preparation required

Specific Hardware/software
requirements with fewer centers

of excellence available;
claustrophobia, use of
gadolinium contrast

A higher number of “+” symbols indicates a higher strength or utility in the category.

Positron emission tomography (PET) imaging uses injected radioactive tracers to
provide quantitative information on blood flow and shows a relative augmentation of
regional metabolism associated with inflammation. PET is non-invasive and not subject
to sampling error as opposed to biopsy. Compared to CMR, PET’s high expense, use of
radioactive substances, and lower spatial resolution limit its widespread use. Nonetheless,
PET is a highly sensitive molecular imaging modality with potential for more specific
identification of inflammatory cells [106]. Currently, it is being used to identify presence
of active inflammation and responses to therapy in cardiac sarcoidosis [107]. Still in a
preclinical phase is work identifying macrophage subtypes and their role that are associated
with disease progression. The role of macrophages in inducing arrhythmia also provides
another area of potential interest. Early research includes investigation into the expression
of specific surface markers by macrophages and their suitability for imaging, identification
of the best macrophage or receptor-related target for imaging (e.g., chemokine receptor,
somatostatin receptor, folate receptor, and translocator protein), and identification of the
best targeting strategy (e.g., fluorodeoxyglucose, nanoparticles, antibodies to macrophage
surface antigen receptors, or small molecules) [108].

Cardiovascular Magnetic Resonance (CMR) imaging is seen by many as the gold
standard cardiovascular imaging technique with additional unique capabilities, especially
for non-invasive myocardial tissue characterization for which a variety of techniques are
used, including novel techniques such as T1/T2 mapping and extracellular volume map-
ping [109]. The updated 2018 Lake Louise criteria for CMR assessment of myocardial
inflammation [110] incorporated mapping as novel techniques, and recent studies have con-
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firmed strong diagnostic accuracy of the updated criteria in patients with a high suspicion
for acute myocarditis. CMR and specifically the presence of irreversible injury as defined
by late gadolinium enhancement (LGE) also have strong prognostic value in patients with
suspected myocarditis [111]. Newer techniques, such as extracellular volume fraction,
have also shown promise in predicting cardiovascular events [112]. However, CMR is
still hampered by a lack of experienced staff in many imaging centers and the perceived
complexity of the exam itself when compared to other modalities. Additionally, more
work is needed in standardizing validated CMR markers and protocols into routine clinical
practice to facilitate multi-center studies and inter-hospital communication.

Future areas for development in all cardiovascular imaging include the potential
of employing artificial intelligence (AI), specifically deep learning, for identifying novel
inflammation-specific biomarkers as well as patterns of combinations thereof. Integration
of clinical knowledge and pre-test probability with imaging data may improve diagnostic
yield but may also be incorporated into a risk prediction model. Combining imaging
methods (e.g., PET-CMR) may provide additional insights into the pathophysiology of
myocarditis. All modalities have the potential to target specific cells and proteins of inflam-
mation: echocardiography using molecular bubble contrast; PET focusing upon metabolic
macrophages; and CMR utilizing nanoparticles of iron oxide [106,113]. Imaging-directed
endomyocardial biopsy may improve the sampling diagnostic yield (e.g., interventional
CMR methods). Further work is required to better phenotype myocarditis and estab-
lish criteria for the different infectious, autoinflammatory, rheumatologic, and oncologic-
therapy-induced etiologies. Finally, to successfully translate the newer imaging methods
into real-world practice, there exists the need for robust multi-center clinical trials and
myocarditis patient registries in order to evaluate the impact of these diagnostic imaging
procedures on clinical outcomes.

Gaps and Opportunities in Diagnostic Imaging for Myocarditis:

• The nonspecific presentation of myocarditis mandates improved discriminatory diag-
nostic testing using molecular targets for specific etiologies.

• Molecular targets of inflammation should be leveraged to improve the specificity of
imaging methods.

• Integration of clinical imaging and immunological data within AI-assisted risk predic-
tion models should be explored to improve risk assessment models.

8. New Diagnostic and Therapeutic Targets for Myocarditis

Systems biology and network medicine approaches are rapidly evolving to gain fur-
ther mechanistic information from complex datasets generated by advanced phenotyping
with high-resolution “multi-omics” screening from animal models of myocarditis and more
importantly from individual myocarditis patients [114]. Application of network principles
(e.g., the protein–protein interaction network or ‘interactome’) may someday address the
current challenges in applying precision medicine diagnostics and therapeutics [115]. Map-
ping gene/protein variants and differentially expressed proteins relevant to myocarditis
to create unique ‘reticulotypes’, such as individually curated clinical and molecular data,
may identify optimal drug targets or facilitate the rational repurposing of approved drugs
whose targets may be closely linked to pathways relevant to unique patients with myocardi-
tis [116]. In addition, proteomics has an emerging role in the diagnosis of myocarditis.
The evidence of circulating biomarkers indicating inflammation, such as c-reactive protein
(CRP), ST2, myocardial injury (troponins), and autoantibodies directed against cardiac
proteins, suggests that myocarditis has a broad systemic impact in affected individuals.
The proteomics methodology can be applied to precisely quantify circulating proteins or
identify autoantigen/antibodies in plasma or dried blood samples from self-remote blood
sampling devices [117].

The emerging roles of next generation sequencing (e.g., sc-RNAseq and advanced
proteomics including spatial expression) are needed to improve the ability of classification
to predict outcomes and identify therapeutic targets [118]. These new tools are poised to
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delineate the importance of resident cardiac macrophages in myocarditis and explore the
therapeutic potential of modulating their activation and effector functions. Potential areas
of focus could include the influence of different cardiac resident macrophage populations
on innate and adaptive immune responses, tissue repair and remodeling, pathogen clear-
ance, and autoimmunity. Further investigations into the contributions of immune cells to
basal myocardial homeostasis (independent of classical acute inflammation), and cardiac
alterations that are possibly associated with immune anomalies such as that seen with
age or chronic infection are warranted. It is critical to leverage unbiased technologies that
identify immune cell subpopulations and utilize genetic tools that separate the function of
closely related cell types or identify the evolutionary conserved immune subsets and path-
ways between mice and humans in various models of cardiac injury. Such approaches may
facilitate the understanding of the plasticity of monocytes, dendritic cells, and macrophages
in the diverse natural histories of myocarditis.

Regarding systems biology approaches to myocarditis, there are ongoing challenges
in reliably generating data on individual patients’ genetic variation, gene expression and
regulation, as well as environmental factors. Integrating these data with clinical information
on phenotype, imaging, and lab values is essential to gain insights of comprehensive net-
works that are relevant to myocarditis. Scalable strategies to overcome operational logistical
hurdles in data sharing, privacy protection, and data integrity/quality/reliability of patient
information, as well as promotion of workforce development and team science in the clinical
practice settings are desperately needed. Additionally, there is a critical need to translate
such sophisticated analytical approaches to bedside clinical applications, and to demonstrate
enhanced clinical value for managing and preventing patients with myocarditis.

The COVID-19 pandemic has demonstrated that new viruses can cause myocarditis
and cardiac damage with more complex pathogenesis. In addition, new mRNA vaccines
will be used more broadly for other viruses, and there is an urgent need to understand
the pathogenesis of the rare myocarditis side effect that they can cause. In addition, recent
reports place myocarditis as a critical adverse event of using ICIs during cancer therapy.
New ICIs therapies are soon to be approved or are in clinical trials. They will also likely be
used in combinations with other toxin modalities and more myocarditis cases may develop
as an adverse reaction. There is an urgent need to understand the role of ICIs in cardiac
immune homeostasis, model the ICI-induced myocarditis in vivo, and define biomark-
ers of susceptibility to this cardiac injury. It was shown that in genetically susceptible
individuals, elevated Bacteroides-specific CD4+ T cell and B cell responses contributed to
myocarditis [119]. There is a need to further elucidate the spatiotemporal events unleashed
by microbiome-driven activation of cross-reactive CD4+ T cells underlying inflammatory
cardiomyopathy. It is also conceivable that manipulation of the microbiome in those af-
fected with or at risk of developing acute myocarditis (such as patients receiving ICIs) may
represent a promising strategy to dampen and/or prevent the severe cardiac inflammation
observed in these patients [119] (Figure 3).

Furthermore, perturbations in autonomous elimination and replacement of dysfunc-
tional mitochondria by a dense network of macrophages in the heart via membrane-
surrounded large vesicles (“exophers”) can display activation of inflammasomes, au-
tophagy, and metabolic dysfunction during inflammatory reactions, such as those seen
during myocarditis [120,121]. Chimeric antigen receptor engineered T cells (CAR T cells)
could be used to target pathologic cardiac fibroblasts that express Fibroblast Activation
protein [122]. These studies showed that adoptive transfer of T cells that express a chimeric
antigen receptor against fibroblast activation protein led to a significant reduction in cardiac
fibrosis and restoration of function in an angiotensin II/phenylephrine induced model of
cardiac injury [122]. These studies emphasize the emerging role of novel cell therapies for
cardiac diseases.
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Gaps and Opportunities in New Diagnostic and Therapeutic Targets for Myocarditis:

• Proteomic studies on archived samples of patients with myocarditis should be in-
tegrated with genetic data and cardiac imaging to deep phenotype patients with
myocarditis and guide the development of new diagnostic and therapeutic targets.

• An improved understanding through model systems and patients at risk for devel-
oping of ICI-associated myocarditis are needed to dissect the pathogenesis of ICI
myocarditis and design the next generation of treatment trials.
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Figure 3. Immune regulation of coxsackievirus B3-induced myocarditis. Coxsackievirus B3 has the
ability to infect cardiomyocytes. The innate immune system including ILCs, NK cells, macrophages,
and dendritic cells in the heart is activated after the release of damage-associated molecular patterns
(DAMPs). Cardiac stroma cells such as fibroblasts are also activated. Together with the immune cells,
they release chemokines and cytokines that attract other immune cells from circulation. In addition,
bone marrow is activated and increases hematopoiesis by the heart-derived mediators such as IL-1β,
GM-CSF, and DAMPs. The gut is a possible other source of inflammatory cells such as Th17 cells that
could have been primed by gut microbiota.

9. Summary

The NHLBI workshop on myocarditis highlighted existing gaps and opportunities
in diagnosis, treatment, and understanding of the myocarditis pathogenesis, including
sex differences in myocarditis incidence and outcomes. These recommendations form the
foundation for the next step, which is the development of a new classification scheme for
myocarditis that integrates current understanding of cardiac immunology. Some of these
gaps became apparent due to the COVID-19 pandemic with new disorders of SARS-CoV2-
induced myocarditis and post-COVID-19 mRNA vaccine myocarditis. Major conclusions
from this workshop include the need to deepen our knowledge of pathogenesis of these
new etiologies of myocarditis in order to develop etiology-specific diagnostic tests and
treatments. Given the potential of mRNA-based technologies for preventing other infec-
tious diseases in the future, understanding the mRNA-vaccine-induced myocarditis is of a
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paramount public health importance. A second conclusion is the urgent need for a better
understanding of cardiac injury associated with ICIs. Given the high mortality and growing
number of ICIs used for cancer therapies, it is essential to understand the susceptibility of
such myocarditis and to identify biomarkers for an early diagnosis. Improved in vitro and
in vivo models will help better discern the detailed roles of innate and adaptive immune
responses in myocarditis. Advanced molecular tools, such as single-cell sequencing and
proteomics, will allow phenotyping of immunological myocarditis subtypes. The interplay
of genetic susceptibility to myocarditis has become an important new area that will require
further investigation. Detailed recommendations for management are beyond the scope
of this workshop; yet the translational multicenter studies utilizing archived samples of
patients with myocarditis that we propose will impact management. Most importantly,
this workshop concludes that clinical treatment trials that combine insights from genetics,
tissue analysis at the single-cell level, and cardiac imaging to phenotype patients with
myocarditis and a spectrum of inflammatory myocardial diseases are feasible today and
essential to identify new diagnostic and therapeutic targets to reduce the societal burden
of myocarditis.
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