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Abstract
Biofilm is the most successful and widely distributed form of life on earth, it is not simply structured collections of cells 
attached to surfaces but is a dynamic complex biological system able to respond to environmental changes. The biofilm 
characteristics make it unique and central to microbial evolution and adaptation. The ability to establish biofilms is a key trait 
for microorganisms growing in extreme environments like extreme temperature, high radiation, acidic or alkaline pH values, 
heavy metal pollution, and high salinity. In this article, we report the main features of biofilm and how these characteristics 
make biofilms a successful survival strategy in extreme conditions. All aspects examined in this article help to explain why 
biofilms are a successful survival strategy in extreme conditions and why the ability to establish biofilms is a key trait for 
microorganisms growing in extreme environments.
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1  Introduction to microbial biofilm

Biofilm is the oldest most successful and widely distributed 
form of life on earth (Westall et al. 2001), in fact, current 
estimates suggest that up to 80% of bacterial and archaeal 
cells reside in biofilms (Flemming and Wuertz 2019). There 
are several evidence of biofilm formation in the fossil sam-
ples, putative biofilm microcolonies were discovered by 
morphology in the 3.3–3.4-billion-year-old South African 
Kornberg formation (Westall et al. 2001) and filamentous 
biofilms were found in the 3.2-billion-year-old deep-sea 
hydrothermal rocks of the Pilbara Craton, Australia. These 
data suggest that the ability to form biofilms is an ancient 
feature of prokaryotes. It is likely that biofilms provided 
homeostasis in the face of the unstable and harsh conditions 
of the primitive earth (pH and exposure to ultraviolet (UV) 
light, extreme temperatures) helping the development of 
complex interactions between individual cells. Hall-Stoodley 
and co-authors hypothesize that the catalytic and protective 
conditions offered by biofilm might have led to the concur-
rent development of both sessile and planktonic forms in 
biofilm cellular communities. These considerations suggest 

that biofilm characteristics have been acquired through bil-
lions of years of evolutionary adaptation.

Biofilms are ubiquitous and play critical roles in all global 
biogeochemical processes and natural and anthropogenic 
environments (Flemming and Wuertz 2019). Indeed, bio-
film communities are important for ecosystem functioning 
and nutrient cycling. The definition of biofilm as a microbial 
community is not limited to microbial films on surfaces but 
applies to multicellular microbial aggregates in general. It 
consists of a wide range of forms including, flocs, pellicles, 
slimes, microbial mats, microorganisms in soils, endolithic 
microbial populations (Flemming et al. 2021). Interestingly, 
biofilms growing in diverse environments are remarkably 
similar, indicating there are crucial convergent survival 
strategies that are partially given by structural properties; 
For example, biofilms growing in fast-moving water, like 
freshwater rivers or hydrothermal hot springs, tend to form 
filamentous biofilms regardless of whether they occur in 
hydrothermal photosynthetic mats, in the drainage run-off 
from acid mines or in rivers, while in quiescent waters bio-
film tends to have a mushroom structure characterized by no 
clear indication of flow direction.

The structural properties of biofilms are mainly related 
to the extracellular polymeric substances (EPS) contained 
in the biofilm matrix (Seviour et al. 2019). Although the 
main biofilm matrix component is water (up to 97%), it 
contains several microbial biopolymers including proteins, 
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exopolysaccharides, nucleic acids (RNA and extracellu-
lar DNA), and lipids, it may also contain minerals such as 
quartz, basalt, clay minerals. EPS forms a thick, muddy, 
hydrated matrix in which cohesion is based on multiple 
electrostatic forces, hydrogen bonds, and ionic interactions, 
which produce weak or strong networks (Flemming and 
Wingender 2010). The characteristics and composition of 
EPS generally establish the mechanical properties of bio-
films, which can range from rigid solids to viscous liquids, 
it sometimes has features of both solids and liquids and its 
actual mechanical response to forces is similar to that of 
a viscoelastic fluid. The properties of the EPS matrix let 
a good balance between structural stability and flexibil-
ity/adaptability that allows the development of structured 
microbial communities with emergent properties that are 
distinct from planktonic single cells (Flemming et al. 2016).

Microbial biofilms are not simply structured assemblages 
of cells that are attached to surfaces or/and to each other but 
is a dynamic complex biological system that evolves by a 
tightly controlled process (Zhou et al. 2020). The evolution 
of the biofilm is an endless cycle that numerous studies have 
summarized in several stages (Fig. 1). The first is character-
ized by a loose/transient association (via weak interactions 
such as the van der Waals forces) with the surface, followed 
by robust adhesion. Stages two and three involve coloniza-
tion, where microorganisms are irreversibly attached to the 
surface via stronger hydrophilic/hydrophobic interactions, 
and maturation. Stage four is characterized by a return to 
transient motility where biofilm cells are detached, due to 
interactions with either intrinsic or extrinsic factors, and dis-
seminated cells colonize other sites. The attachment stage is 
the beginning of a biofilm formation, while active detach is 

not the end, but the beginning of a new round of biofilm for-
mation, the endless recirculation of biofilm gives the micro-
organisms the ability to adapt to environmental fluctuations. 
Indeed, this remodeling is crucial for the biofilm to respond 
to changes in the environment.

2  Biofilm is a class of complex collective 
ecosystems more than a collection 
of individual cells

The classical approach in biofilm study starts from the idea 
that biofilm represents a sessile developmental stage in 
the life of unicellular microbial organisms. Based on this 
view, microorganisms experience a life cycle that involves 
both sessile and planktonic phases. The cycle begins with 
microbial attachment to an interface followed by micro-
colonies formation, biofilm maturation and cells disper-
sion, which is necessary for microorganism spreading and 
serve as inoculum for new biofilm initiation. This concept 
is recently defined the single-cell centric (Penesyan et al. 
2021). Penesyan and co-authors (2021) point out that this 
view derived from the history of research in microbiology, 
which is centered on planktonic single bacterial cells tradi-
tionally considered as the primary and main form of micro-
bial life. However, in recent years, it has become evident 
that most of bacteria and archaea exist as biofilms in their 
natural habitats (Flemming and Wuertz 2019). These data 
introduced a new biofilm-centric view of microorganisms 
in which single bacterial cells are considered an intermedi-
ate dispersal stage of multicellular aggregates. In line with 
this biofilm-centric view of microbial cells, Penesyan and 

Fig. 1  Model of microbial 
biofilm formation. Biofilm for-
mation consists of five distinct 
stages: attachment, coloniza-
tion, proliferation, maturation, 
and dispersion
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co-authors (2021) suggested that the biofilm, which con-
sists of multiple cells cooperating to create a differentiated 
structure, exhibits characteristics of multicellular organisms. 
It is known that cells within a multicellular organism have 
different specialized functions and distinct metabolic rates 
and that the transport of materials through such multicel-
lular organisms makes concentration gradients of oxygen or 
pH. It is established those multicellular systems can answer 
to environmental stimuli using complex regulatory mecha-
nisms that control the behavior of single-cell and coordinate 
their responses. All these features of a multicellular organ-
ism are perfectly superimposable with some properties of 
microbial biofilm.

Furthermore, several authors (Flemming et al 2016, 2021) 
describing the properties of biofilm report that it belongs to 
the class of complex collective ecosystems, such as coral 
reefs, forests, and beehives. Like such communities, micro-
bial biofilms play as “protective and internally homeostatic 
fortresses at a scale much larger than the living organisms 
who built them” and fall under the concept of “extended 
organisms”(Flemming et al. 2016).

2.1  Physiological heterogeneity

By generating a matrix, bacteria in biofilms create a physi-
cally distinct habitat that provides protection and produces 
nutrients and gases gradients (Flemming et al. 2016). These 
gradients create microenvironments with specific physical 
and chemical properties allowing the presence of micro-
organisms with very different physiological requirements 
(Flemming and Wingender 2010; Hung et al. 2013). In bio-
films present in shallow aquatic environments, for example, 
microorganisms are distributed according to their metabolic 
properties. The upper layers are dominated by aerobic organ-
isms that are exposed to light and oxygen, these aerobic cells 
respiring consume oxygen faster than it diffuses through the 
biofilm, which results in the formation of anaerobic zones in 
deep layers of the biofilm principally occupied by anaerobic 
microorganisms (Kragh et al. 2016). Physiological heteroge-
neity in biofilms allows the three-dimensional organization 
of mixed-species biofilms. In many cases, the presence of 
one group of organisms determines the ability of the other 
group to survive in the biofilm For example, phototrophic 
microorganisms generate and release organic substrates, and 
neighboring species use these substrates for their metabolic 
activity (Ward et al. 2008). In a mixed-species biofilm, a 
division of labor, based on their functional ability, between 
species belonging to a different taxonomic group is fre-
quently reported (van Gestel et al. 2015; Joshi et al. 2021).

A further advantage of biofilm as a collective organiza-
tion is the improved ability to acquire nutrients from the 
environment. It is achieved through resource capture and 

retention of cellular products and debris that can be used as 
a reservoir. This advantage is related to the matrix’s ability 
to promote the accumulation of nutrients (Flemming and 
Wingender 2010) and to create an extracellular digestion 
system made by different hydrolytic enzymes. Indeed, the 
hydrolytic enzymes present in the biofilm are not only a 
supply for the microorganisms that produce them but also 
become a resource for all members of the biofilm commu-
nity (Worm et al. 2000; Nicolaisen et al. 2012), this phe-
nomenon has been called the 'social function of extracellular 
hydrolysis' (Flemming et al. 2016).

2.2  Social interactions

Biofilms, as complex collective ecosystems, can regulate 
the behavior of the different cells via extracellular signaling. 
The organization of bacterial biofilms allows to a variety of 
organisms to interact, this enables the exchange not only of 
metabolites/substrate but also of signaling molecules. It is 
well established that microorganisms are capable of inter-
cellular communication (Heilmann and Götz 2010; Pereira 
et al. 2013; Zhou et al. 2015; Dong and Zhang 2016), this 
can occur by the exchange of small organic molecules or 
proteins, and also the transmission of electrical signals (Prin-
dle et al. 2015). The chemical signaling mechanisms imply 
the release of signaling molecules by bacteria in response 
to population size, and the sensing of these molecules by 
neighboring cells, to induce the coordinated expression of 
specific genes (Keller and Surette 2006). Therefore, this 
mechanism infers the accumulation of signaling molecules 
at high concentrations. Interestingly, in natural environ-
ments, such as the open ocean, individual planktonic cells 
are not supposed to meet such high concentrations of signal-
ing molecules. The biofilm providing a confined system in 
which signaling molecules can be concentrated facilitates 
intercellular communication (Seviour et al. 2019; Redfield 
2002).

Cell–cell communication and coordinated division of 
labor (van Gestel et al. 2015) have motivated the introduc-
tion of the anthropomorphic term ‘sociomicrobiology’ 
(Parsek and Greenberg 2005), in this view of biofilm com-
munity, both cooperative (Elias and Banin 2012) and com-
petitive (Rendueles and Ghigo 2012) interactions between 
cells can exist. Aminoacidic auxotrophy is a classic example 
of cooperation behavior by which cell communities reduce 
the collective metabolic problem of biosynthesis (Fredrick-
son 2015), these mutualistic interactions explain also the 
exchange of amino acids and sugars (Zelezniak et al. 2015). 
An interesting example of the cooperation between differ-
ent species in a biofilm is that of cyanobacteria and fungi in 
biofilms on desert rocks, in this consortium, the cyanobac-
teria supply nutrients for the fungi, which, in turn, release 
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essential metals from the rock that advantage the cyanobac-
teria (Gorbushina and Broughton 2009).

Competitive or neutral species–species interactions have 
been reported in biofilms (Foster and Bell 2012), the mecha-
nisms that characterize the competition include the produc-
tion of antibiotics, bacteriocins, extracellular membrane 
vesicles as weapons to reduce the competitor presence in 
the biofilm (Rendueles and Ghigo 2012). Although counter-
intuitive to the idea of a biofilm as a collective ecosystem or 
a unified multicellular entity, some authors suggest that com-
petitive behaviors may contribute to the biofilm community 
fitness and development (Penesyan et al. 2021). The abil-
ity of microorganisms to produce antimicrobial compounds 
can protect the all biofilm community against dangerous 
external colonizers/predators (Matz et al. 2008). Moreo-
ver, exposure to antimicrobial molecules can also induce 
the development of antimicrobial resistance within biofilm 
cells (Santos-Lopez et al. 2019) boosting their survival. In 
this view, the recent discovery of antimicrobial producer and 
antimicrobial-resistant microorganisms in a 13,000-year-old 
cave (Paun et al. 2021) underline that these microbial traits 
have evolved before the production and use of commercial 
antibiotics.

2.3  Protection and adaptation

It is widely accepted that biofilm formation offers protec-
tion of cells from hostile environmental conditions such 
as ultraviolet radiation, extreme pH, high salinity, extreme 
temperature, high pressure (Yin et al. 2019), and tolerance 
to desiccation (Flemming and Wingender 2010). In addition, 
biofilms have an enhanced resistance or tolerance to antibiot-
ics and other antimicrobial agents compared with planktonic 
cells. Biofilms can serve as a defence against antimicrobials 
substantially quenching the activity of antimicrobial sub-
stances that diffuse through the biofilm (Nicole et al. 2016) 
in a form of inhibition identified as diffusion–reaction inhibi-
tion (Daddi Oubekka et al. 2012), which can involve chela-
tion by the complex formation and/or enzymatic degradation 
of antimicrobials. In addition, slow growth within sections 
of the biofilm and the generation of dormant persister cells 
further increase the survival of cells to antibiotic actions 
(Stewart 2015).

Biofilms are not only a shield against external insults 
but can recognize and respond effectively to environmental 
stresses. In general, the time scales associated with different 
abiotic and biotic stresses can vary considerably, the stresses 
that occurs on intermediate time scales usually cause tran-
sient regulatory responses mediated by genetic regula-
tion mechanisms. In Listeria monocytogenes biofilms, for 
example, considerable modulation of protein abundance is 
observed as a function of temperature (Santos et al 2019). 
Diego O. Serra and Regine Hengge (Serra and Hengge 2014) 

examined how different stresses induce profound differences 
in biofilm physiology in terms of stratification of the matrix, 
microscopic architecture biophysical properties, and directly 
visible morphology of macrocolony biofilms.

Long-term exposure to constant stresses typically results 
in a process of mutation/selection that results in a progeny 
with new genetic characteristics. The biofilm features allow 
a rapid and efficient adaptation to long-term stress. Indeed, 
the high cell density that characterized the biofilm and accu-
mulation of mobile genetic elements within the matrix offers 
an ideal set of factors for efficient horizontal gene transfer 
(Fux et al. 2005). In addition, the matrix provides a stable 
physical environment for cell-to-cell contact ideal for plas-
mid conjugation, indeed conjugation has been demonstrated 
to be more effective in biofilms compared with free-living 
bacteria (Kumar et al. 2017). In biofilms, the accumulation 
of genomic changes allow microbial evolutionary processes 
to occur in a quite short period, and this creates new pheno-
types that have advantages within the biofilm environment 
(Penesyan et al. 2019), as reported in the case of the evo-
lution of mucoid phenotypes of Pseudomonas aeruginosa 
associated with increased persistence in chronic cystic fibro-
sis infections (Boucher et al. 1997).

Thus, biofilms provide a relatively stable and protected 
microenvironment for the cells where they can change and 
adapt to environmental conditions via transient changes in 
gene expression, as well as through permanent genomic 
changes that are fixed in populations under natural selection. 
These features make biofilms unique and central to microbial 
evolution and adaptation.

3  Biofilm as a successful survival strategy 
in extreme environments

On Earth, there are environmental niches characterized by 
conditions described as impossible, in the belief of the com-
mon life, for any biological activity. Exploration of these 
extreme terrestrial environments has turned up a different 
variety of microorganisms that not only live but also pros-
per, in these inhospitable niches (Amils et al. 2007; Gas-
ser et al. 2008). Microorganisms that can survive in these 
extreme environments are called extremophiles (Shu and 
Huang 2021), they are adapted for millions of years pros-
pering under adverse conditions like extreme temperature, 
up to the boiling point of water or temperatures below the 
water freezing point, high radiation, acidic or alkaline pH 
values, heavy metal pollution, and high salinity. Numerous 
taxonomic studies have discovered that these organisms are 
distributed in the three domains of life, Archaea, Bacteria, 
and Eukarya, and most of the microbial communities found 
in extreme environments are distributed and assembled in 
extensive biofilms and microbial mats.
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3.1  Extreme temperatures

Extreme temperature produces several challenges, from the 
structural damage produced by ice crystals at one extreme 
to the denaturation of biomolecules at the other edge, to face 
this extreme condition, the microorganisms evolved several 
peculiar adaptations.

In thermophiles, a modification of cell membranes by 
increasing the ratio of saturated to unsaturated fatty acids, 
for bacteria, or by adopting a lipid monolayer in the case 
of archaea was well documented (Lewin et al. 2013). Their 
ability to produce heat-shock proteins (Schlesinger 1990) 
and to maintain DNA stability by a high G + C content are 
reported (Lewin et al. 2013). At the other extreme, psychro-
philes can grow at very low temperatures by modifying the 
lipid composition of cell membranes to maintain fluidity 
(D’Amico et al. 2006) and by producing specialized mol-
ecules like the cold-shock proteins, antifreeze, ice-binding 
molecules and osmolytes (Parrilli et al. 2021). The obser-
vation that in environments characterized by extreme tem-
perature the microbial cells are frequently present as bio-
film indicated that also the ability to form biofilm is a key 
feature for colonizing these sites. As in the case of biofilm 
of alkaline spring Bison Pool in Yellowstone National Park 
(Shu and Huang 2021) or as the Chimney biofilm of Loki’s 
Castle (a deep-sea hydrothermal vents site) (Shu and Huang 
2021; Stokke et al. 2015). A study (Coleri Cihan et al. 2017) 
on the growth of different thermophilic bacteria at differ-
ent temperatures revealed that the cells can form biofilm 
and that its amount is temperature dependent. Similar works 
(Ricciardelli et al. 2019; Liao et al. 2016) on psychrophilic 
bacteria show temperature-dependent biofilm production. 
For Yin and co-authors (Yin et al. 2019) biofilm formation 
allows microorganisms to become more resilient to damage 
produced by temperature stress, since it acts as a “protec-
tive clothing” providing a fitting habitat for their survival in 
extreme temperature conditions. At high temperatures, the 
biofilm can withstand to the external high temperature and 
make the inside adapt for growth and reproduction, on the 
other hand, biofilm can also stabilize the inner environment 
when the outside is extremely cold, causing no freeze of the 
cells and enabling them to survive (Yin et al. 2019).

3.2  High radiation

Different environments on Earth are affected by several 
types of radiation, with the most extreme radiation arising 
from human-made radioactive-contaminated sites. Ioniz-
ing radiations as UV radiation, X-rays, or gamma rays can 
impact on microbial cells via direct and indirect (e.g., the 
formation of reactive oxygen species) actions (Greinert et al. 
2012). Radiation-resistant microorganisms have been shown 
to survive exposure to extreme radiation (kGy), including 

exposure to space conditions, for hundreds of days (De Vera 
et al. 2012). Microbial adaptions to radiation involve mainly 
genome redundancy (multiple copies of the genome), differ-
ences in DNA repair mechanisms (Byrne et al. 2014), use 
of smaller amino acids (Sghaier et al. 2013), production of 
pigments (Mojib et al. 2013), and accumulation of Mn(II) 
(Krisko and Radman 2013). Several studies (Panitz et al. 
2019; Elasri and Miller 1999) indicate that biofilm formation 
is another strategy for microorganisms to survive at radiation 
exposure. The presence of biofilms of naturally radioactive 
hydrothermal spring caves revealed that this way of life is 
suitable to an environment characterized by high radioactiv-
ity (Enyedi et al. 2019). Moreover, it was demonstrated by 
Frösler and co-authors (Frösler et al. 2017) that Deinococcus 
geothermalis DSM 11,300 biofilm is more UV tolerant than 
planktonic cells, the authors speculated that it is related to 
the ability of the biofilm matrix to retain reactive oxygen 
species produced by the photodissociation of water.

3.3  Extreme pH values and heavy metals

Highly acidic extreme environments are usually linked with 
volcanic activity and mining processes. The oxidation and 
dissolution of the sulfidic minerals exposed to water and 
oxygen are responsible for acid production (García-Moyano 
et al. 2012). As the same time, low pH increases the metal 
solubility in water, particularly cationic metals, so extremely 
acidic environments tend to have high concentrations of 
heavy metals. Several studies have identified several spe-
cific traits of acidophilic bacteria that partially explain their 
ability to survive at very low pH. They are characterized 
by a peculiar pH homeostasis strategy based on a restricted 
proton influx into the cytoplasm by highly impermeable cell 
membranes. Furthermore, acidophilic microorganisms can 
maintain intracellular pH using the buffering capacity of the 
cytoplasm to sequester or release protons. They repair DNA 
and protein damage caused by low pH by means of chaper-
ones that allow rapid and efficient repair (Baker-Austin and 
Dopson 2007).

Most of the microbial cells found in acidic extreme envi-
ronments are distributed and assembled in extensive biofilms 
(Souza-Egipsy et al. 2021). The chemoautotrophic biofilm 
within the Richmond Mine at Iron Mountain, United States, 
is one of the most studied biofilm evolved in highly acidic 
conditions (Denef et al. 2010). Studies on this biofilm, aimed 
at investigating the responses of acidophilic biofilm organ-
isms to different pH conditions, revealed pH-dependent 
niche differentiation and pH-variation in specific functional 
categories of the dominant species indicating that the main 
parameter that shapes the community composition is the pH 
(Belnap et al. 2011). This is clear example of how the physi-
ological heterogeneity of biofilm is a key element to survive 
in a hostile environment. Another feature of biofilm that is 
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essential in highly acidic extreme environments is the ability 
of the biofilm matrix to protect the cell from high concen-
trations of heavy metals. Harrison and co-author (Harrison 
et al. 2007) integrated the mechanisms of metal detoxifica-
tion in biofilms into a multifunctional model, their results 
suggest that numerous mechanisms can contribute to toler-
ance including metabolic heterogeneity, metal immobiliza-
tion, and complexing, reaction with siderophores, genetic 
mutations, and phenotypic variations.

Not only acidophiles but also alkaliphiles generally exist 
in biofilms (Li et al. 2018). The protection mediated by bio-
film matrix has a crucial role also in the defense against 
alkaline pH, the results of Charles and co-author showed 
that biofilm matrix by the sequestration of calcium protects 
alkaline pH values up to 13.0.

3.4  High salinity

Hypersaline environments, usually defined as having salt 
concentrations more than twice that of seawater, such as 
salt lakes and evaporation ponds used to produce salt from 
seawater, are found in different sites on the Earth. They are 
inhabited by a great diversity of microorganisms, called 
halophiles, adapted to life at high salt concentrations (Oren 
2015). Halophiles can maintain osmotic homeostasis by 
accumulating high levels of inorganic salts in the cytoplasm 
(Gunde-Cimerman et al. 2018), or they can achieve osmotic 
balance by biosynthesizing and/or accumulating organic and 
compatible osmotic solutes (Gunde-Cimerman et al. 2018). 
As with the previously described extreme environments also 
in the case of hypersaline environments microorganisms 
are mainly present in the biofilm community (Häusler et al. 
2014) and the ability to produce biofilm is related to salt 
concentration. For example, the bacterium isolated from a 
saline wetland in Morocco, Halomonas stenophila HK30, is 
able to form biofilm in a medium with 5% w/v salt (Amjres 
et al. 2015), and Kocuria flava AB402 and Bacillus vietnam-
ensis AB403, isolated from mangrove rhizosphere, produce 
a big quantity of EPS in salt stress conditions (Mallick et al. 
2018).

3.5  Low water activity and oligotrophic conditions

There are myriad environments on the surface of our planet 
that exhibit extremes in one or more physical or chemical 
conditions, for example, soda lakes are characterized by 
alkaline pH and high salinity, while in hot spring environ-
ments, high temperature, extreme pH, low oxygen availabil-
ity are present and low temperature and water availability are 
typical of the cryosphere.

In addition, several extreme environments are character-
ized by low water activity and oligotrophic conditions. Both 

aspects can be faced better by microorganisms organized 
in biofilm with respect to cells in planktonic conditions. 
Indeed, biofilm matrix confers a high tolerance to desicca-
tion, bacteria in the biofilm actively respond to desiccation 
by the production of EPS molecules (Weaver et al. 2015), 
which, due to the high amount of hydrated polymers in the 
EPS matrix, protects the biofilm from dryness by acting 
as a hydrogel that holds water (Flemming and Wingender 
2010). Several studies have concluded that biofilm produc-
tion is enhanced in poor nutrient conditions (Combrouse 
et al. 2013; Ricciardelli et al. 2019). These observations 
are explained by the ability of the biofilm to function as 
a complex sorbent system with different sorption mecha-
nisms. Furthermore, in biofilm are present several binding 
sites that works as both anionic and cationic exchangers, 
which implies that a very wide range of compounds can 
be caught and accumulated for potential use by cells in the 
biofilm, even when such substances are present at very low 
concentrations. This ability allows biofilms to grow even in 
highly oligotrophic environments (Battin et al. 2016).

4  Conclusions

All aspects examined (Fig. 2) in this article help to explain 
why biofilms are a successful survival strategy in extreme 
conditions and why the ability to establish biofilms is a key 
trait for microorganisms growing in extreme environments, 
but also induce the reader to ask: Is Biofilm a successful 
survival strategy in an extreme environment or the only pos-
sible one?

An interesting paper by Blanco et al. (2019) on the EPS 
composition in twenty phylogenetically different benthic 
biofilms from different extreme environments established 
that biofilms isolated from different environments, shar-
ing similar species composition, exhibited very different 
EPS characteristics and that microorganisms from the same 
environment achieve similar EPS compositions unrelatedly 
to their phylogeny. The circumstance that similar biofilm 
matrix properties are attained by phylogenetically differ-
ent organisms living in the same environment suggests the 
action of either convergent evolution over long time scales 
and/or horizontal gene transfer. This observation brings 
attention to the role of biofilms in microbial evolution and 
adaptation to new environments.

As partially summarized in this review, several scientific 
reports have shown that the biofilm mode of life stimu-
lates the occurrence of genotypic and phenotypic variants 
(Penesyan et al. 2019; McElroy et al. 2014). Such high diver-
sity has an inherent risk as a fraction of the new individuals 
could not be able to survive in a given environmental condi-
tion. In this situation, the supply of a protective environment, 
like biofilms, offers a huge advantage by allowing the new 
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generation to be protected from the external selection condi-
tions while continuing to undergo evolutionary processes. 
So, biofilms provide a protective environment in which the 
new individuals with reduced fitness to external stress or to 
the environmental changes, can collect mutations that bal-
ance any negative genetic changes. In this way the biofilm 
helps the microorganisms to adapt and evolve (Penesyan 
et al. 2021). Furthermore, the ability of biofilms to create 
gradients of selection conditions, from the maximum envi-
ronmental impact on the surface toward the minimum impact 
in the internal part of the biofilm, gives cells a unique oppor-
tunity to adapt before being exposed to the external environ-
ment by the process of biofilm dispersion. This process is 
markedly different from what occurs in other systems where 
the diversity is fixed without the possibility of changes and 
further selection before regeneration. This role of biofilms as 
diversity incubators where the dynamic process of generat-
ing genotypic and phenotypic variants occurs makes it the 
most successful strategy to colonize extreme environments 
and probably the only possible one.
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