<@ sustainability

Article

Parametric and Non-Parametric Analyses for Pedestrian Crash
Severity Prediction in Great Britain

Maria Rella Riccardi 1*(2, Filomena Mauriello 1, Sobhan Sarkar 29, Francesco Galante 1{2, Antonella Scarano

and Alfonso Montella !

check for
updates

Citation: Rella Riccardi, M.;
Mauriello, F,; Sarkar, S.; Galante, F.;
Scarano, A.; Montella, A. Parametric
and Non-Parametric Analyses for
Pedestrian Crash Severity Prediction
in Great Britain. Sustainability 2022,
14, 3188. https://doi.org/10.3390/
sul14063188

Academic Editor: Ripon Kumar

Chakrabortty

Received: 4 February 2022
Accepted: 4 March 2022
Published: 8 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1

Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II,
80125 Naples, Italy; filomena.mauriello@unina.it (F.M.); francesco.galante@unina.it (EG.);
antonella.scarano@unina.it (A.S.); alfonso.montella@unina.it (A.M.)

Information Systems & Business Analytics, Indian Institute of Management Ranchi, Ranchi 834 008, India;
sobhan.sarkar@iimranchi.ac.in

*  Correspondence: maria.rellariccardi@unina.it; Tel.: +39-081-7683977

Abstract: The study aims to investigate the factors that are associated with fatal and severe vehicle-
pedestrian crashes in Great Britain by developing four parametric models and five non-parametric
tools to predict the crash severity. Even though the models have already been applied to model the
pedestrian injury severity, a comparative analysis to assess the predictive power of such modeling
techniques is limited. Hence, this study contributes to the road safety literature by comparing
the models by their capabilities of identifying the significant explanatory variables, and by their
performances in terms of the F-measure, the G-mean, and the area under curve. The analyses were
carried out using data that refer to the vehicle-pedestrian crashes that occurred in the period of
2016-2018. The parametric models confirm their advantages in offering easy-to-interpret outputs
and understandable relations between the dependent and independent variables, whereas the non-
parametric tools exhibited higher classification accuracies, identified more explanatory variables,
and provided insights into the interdependencies among the factors. The study results suggest
that the combined use of parametric and non-parametric methods may effectively overcome the
limits of each group of methods, with satisfactory prediction accuracies and the interpretation of the
factors contributing to fatal and serious crashes. In the conclusion, several engineering, social, and
management pedestrian safety countermeasures are recommended.

Keywords: random parameter multinomial logit; ordered logit; association rules; classification trees;
random forests; artificial neural networks; support vector machines; pedestrian crashes

1. Introduction

The identifying factors that affect the crash injury severity, and understanding how
these factors affect the injury severity, are critical in the planning and implementation of
highway safety improvement programs. There is also great emphasis on serious injury
crashes in the EU Road Safety Policy Framework 2021-2030 [1], which has the target
of halving the serious injuries by 2030, and the goal of enhancing the accessibility and
safety of vulnerable road users. Moreover, the number of pedestrians that were injured
or that are dead as a consequence of vehicle—pedestrian crashes is increasing over time.
As an example, in Great Britain, the proportion of fatal and severe injuries that involved
pedestrians increased from 22.5% in 2011, to 28.9% in 2019 [2].

Since the risk factors that are associated with pedestrian-related crashes on trans-
portation networks are usually different than those for motor vehicles, further actions are
strongly needed to improve pedestrian safety. The main aim of our study is to investigate
the factors that are associated with fatal and severe pedestrian crashes in Great Britain by
developing four parametric models and five non-parametric tools in order to explore the co-
existence of the pedestrian, driver, vehicle, roadway, and environmental factors. When the
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interactions between these factors and the severity are co-considered and co-investigated,
the severe injury causes and the related solutions can be better identified [3], which can
assist in the selection of appropriate safety countermeasures in order to contribute to the
EU goals. Furthermore, in order to provide support for the choice of the appropriate
prediction method, the nine parametric and non-parametric methods are compared by their
capabilities of identifying the significant explanatory variables that affect the crash severity,
and by their performances. Finally, the study also addresses the issue of the imbalanced
distributions of the crash severity levels. A small proportion of fatal crashes is a common
feature of most crash datasets [4] and, hence, many researchers merge fatal crashes with
severe crashes in order to gain better performances from the implemented models [5-7].
However, in our study, we decided not to join fatal and serious injury crashes together in
order to identify both of the factors that contribute to fatal and serious injury crashes. The
unbalanced data issue was treated by introducing weights, which forced the estimator to
learn on the basis of the importance (which is based on the weight) that was given to a
particular severity level.

2. Prior Research

The analysis of prior research highlights the presence of two main groups of meth-
ods that are usually implemented in crash severity analyses. The two groups consist of
parametric models and non-parametric tools.

Among the parametric models, the most widely used is the multinomial logit (MNL)
model (e.g., [8-10]). However, over the past decade, several studies have highlighted
some multinomial logit methodological limitations that could affect the study results with
erroneous inferences and biased crash predictions [11,12]. Indeed, the multinomial logit
model does not account for the unobserved heterogeneity, which forces the effects of the
observable variables to be the same across all observations. Consequently, the model may
be misspecified, and the estimated parameters may be biased and inefficient.

Thus, methodological approaches have been performed in order to gain more precise
estimations by explicitly accounting for the observation-specific variations in the effects
of the explanatory variables [13,14]. Among them, the random parameter (or simply the
“mixed” parameter) model allows the parameters to vary across individual crashes, which
range from negative to positive, and which are of varying magnitudes [15].

On the other hand, by recognizing the ordinal nature of the crash severity data, other
studies have been conducted by performing ordered response models [12,16]. Thus, among
the most popular discrete choice approaches, discrete ordered probability methods (such
as ordered logit models) have shown great appeal. Yamamoto et al. [17] further suggest
that the traditional unordered models may provide unbiased estimates of the parameters,
especially in cases of missing data and under-reporting. Despite the ordinal nature of the
injury severity variable, many researchers [18-20] point out that the traditional ordered
response structure may impose a certain kind of monotonic effect of the independent
variables on the injury severity levels. A chance to overcome the ordered logit model
limitation comes with the mixed ordered response logit model, which generalizes the
standard ordered response model, allows the flexibility of the effects of the covariates on
the threshold value for each ordinal category, and captures the heterogeneous effects [21].

Hence, both the ordered and unordered models have their benefits and limitations,
and the choice of one method over the others is governed by the availability and char-
acteristics of the data and involves considering the trade-offs [16]. However, all of the
parametric models suffer fundamental limitations, such as the presumption of the crash
data distribution, and their restrictions on the linear relationship between the severity out-
comes and the explanatory variables. Furthermore, it is also well known that no-injury and
minor injury crashes are very rarely reported to the police [14,16], and an outcome-based
model may result in biased parameter estimates when traditional statistical estimation
techniques are used, which limits the ability to manage road safety. Another downside of
the traditional statistical models is related to their difficulties in handling and processing
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very large amounts of data, so that, in the last few years, data-driven methods have been
applied to crash analyses in an attempt to overcome the issue.

Free from a priori parametric assumptions [5], data-driven methods, which are also
known as “non-parametric algorithms”, include association rules (ARs), classification
trees (CTs), random forests (RFs), artificial neural networks (ANNSs), and support vector
machines (SVMs). Association rules discovery (which is also known as the “supervised
association mining technique”) has been widely used to discover patterns from crash
databases [22-24]. Classification trees have already been developed to uncover the patterns
that influence the crash severity for different road users in several papers [25]. Recently,
other researchers have implemented the random forest in lieu of the classification tree since
it considers an ensemble of trees instead of one [26,27]. Another tree-structure algorithm is
the ANN tool [28], which has been used to investigate vehicle-pedestrian crashes. Among
the non-parametric methods, there is also an increasing interest in using the SVM tool to
investigate the patterns that contribute to the pedestrian crash severity [29], which is due to
the straightforward algorithm abilities that the tool has demonstrated in providing a better
prediction performance than other traditional methods.

The parametric and non-parametric model limitations in predicting the fatal and
serious injury crashes in the presence of imbalanced data have been demonstrated by
several studies [30,31]. To date, two common approaches have been proposed over the
years to address the problem [32,33]: (1) The application of learning approaches at the algo-
rithm level, and then, the calculation of the performance measures on the original dataset;
and (2) Sampling techniques that are used at the database level. The latter implies both
oversampling and undersampling. Oversampling replicates the instances from the minor
class, and it repeats them until all of the classes have an equal frequency. Undersampling
discards the majority class instances until the majority class reaches the size of the minor
classes. It only considers the closeness of the data, and the intrinsic characteristics are not
taken into consideration [34]. The main drawback of the two sampling techniques is that
they change the original dataset by creating a new distorted sample around the decision
boundary of the majority and minority classes. Table 1 provides a summary of the key
literature findings.

Table 1. Summary of the key literature findings.

Issue References

The MNL is the most widely used model to investigate the crash
contributory factors.
The MNL limits the effect of each attribute so that they are the same across

[8-10]

all observations. [11,12]
Random parameter models overcome the limits of the fixed formulation of

the MNL. [13-15]
Multinomial parametric models do not consider the ordered nature of the [16,17]
crash severity. ’
Standard ordered models impose a monotonic effect of the independent [18,20]
variables on all the injury severity levels. !
Random parameter models overcome the limits of the fixed formulations [11-15,21]

of the standard unordered and ordered models.
All parametric models require a priori assumptions. [14]
Non-parametric models do not require a priori assumptions and they [13]
handle large amounts of data.

Limited prediction abilities of both parametric and non-parametric models

in the presence of imbalanced data. [30,31]

3. Crash Data

The crash data that was used in this study refer to the crashes that occurred in Great
Britain in the three-year period of 2016-2018. The detailed road safety data were collected in
the STATS19 dataset that is provided by the Department of Transport. The crash information
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was collected by the police at the scene of the crash, or it was reported by a member of
the public at a police station. All of the reported crashes occurred on public highways
(including footways), and they included crashes with at least one vehicle (or a vehicle
in collision with a pedestrian) that was involved, and that resulted in personal injury.
Originally, the crash data were provided in three subsets that reported the crash, the
vehicle, and the casualty-related information. In order to obtain a unique set of information,
the three subsets were merged by using the crash index as a key reference. Finally, only
the pedestrian crashes (67,356 pedestrian crashes, or 17.3% of the total crashes) were
considered. The final dataset was rearranged by using 34 explanatory variables, as is
shown in the Appendix A section, Tables A1-A6. The variables were divided into: crash
(Tables A1 and A?2); vehicle (Tables A3 and A4); driver (Table A5); and pedestrian (Table A6)
characteristics. Several of the categories were aggregated and recoded in order to avoid
extremely small occurrences, to remove redundant information, and to make the models
easier to interpret.

The Great Britain crash database provides three different crash severity levels: slight
injury, serious injury, and fatal crashes. The crash severity is classified according to the
injury severity of the most seriously injured person involved in the crash. A fatal crash is
a crash where at least one person dies within 30 days of the crash. A serious injury crash
is a crash where a person is detained in the hospital as an “in-patient”, or where a person
suffers from any of the following injuries: fractures, concussion, internal injuries, burns,
severe cuts, severe general shock that requires medical treatment, and injuries that result
in death within 30 days of the crash. Lastly, it is considered that a slight injury of a minor
character, such as a sprain (which includes a neck whiplash injury), a bruise or a cut that
is not judged to be severe, or a slight shock that requires roadside attention, are injuries
for which medical treatment is not required. In our database, the crash severities were as
follows: fatal (n = 1366; 2.0% of the total crashes); serious (n = 16,359; 24.3% of the total
crashes); and slight (n = 49,631; 73.7% of the total crashes).

4. Method

In our study, the crash severity is assumed to be the dependent variable. The investi-
gation of the contributory factors that affect the crash severity was carried out using para-
metric and non-parametric models. The methodological process is presented in Figure 1.
Figure 1 also contains information on the kinds of outputs that were provided by each
group of models. Furthermore, links to the paper sections are provided as well.

4.1. Parametric Models
4.1.1. General Issues

Econometric models, which are also referred to as “discrete choice models”, are widely
used in crash severity analyses. These models use the theoretical utility (Ujj), which, in
the context of road safety applications, represents the propensity that a crash (i) will be
recorded with a severity level (j), following the expression reported below [35]:

Ujj = Vy + ¢ ¢y

where Vj; is the systematic component; and ¢;; is the disturbance term.

The crash severity, as a three-level variable, is very adaptable to econometric models
with both unordered and ordered formulations. Indeed, each level of crash severity is
linked to: (1) The increasing severity of the most seriously injured person that is involved
in the crash; and to (2) The increasing costs in terms of the human, medical, and damage
factors, which involve losses in terms of the life years and the quality of life. Thus, the crash
severity has an ordinal nature, which could be addressed by performing the analysis with
the ordered formulation. In this study, we used both unordered and ordered logit models.
Furthermore, both unordered and ordered models were used in the standard formulation
with fixed parameters, as well as in the formulation with random parameters (Figure 2).
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The random parameter models allow the effects of the independent variables to vary across
different observations (i.e., the crashes in our study).

Great Britain STATS19 crash database
M=385 238
Study period=2016-2018

Vehicle-pedestriancrashes
N=67,356

Section 3

Data pre-processing
Section 3

Parametricmodels Mon-parametric models
Section 4.1 Section 4.2
Importance of variables
Significantexplanatory variables
£ P v Trees
Odds Ratios
Rules
Section 5.1 Section 5.2

Performance Metrics

F-measure

Safety countermeasures
Section §

Figure 1. Methodological process.

All of the models were estimated by maximum likelihood stepwise methods. The
forward stepwise approach to choosing a model begins with a null model, and it adds
terms sequentially until further additions do not improve the fit. At each stage, it selects
the term that produces the greatest improvement in the fit [36,37].
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[ Parametric Models ]

Unordered Ordered

Multinomial

Logit

Random Random Parameters
Ordered Logit

Parameters Ordered Logit

Figure 2. Parametric models that were used in the study.

For choosing the correct model, the likelihood ratio (LR) test is estimated as part of the
random ordered /unordered model in order to determine the significance of the random
formulation relative to the standard ordered /unordered logit model. The LR test compares
the likelihood of the mixed model to the likelihood of the standard model:

LR test = —2log (T) = —2(log Lypixep — log Lst) 2)
where Lyxep is the likelihood of the mixed model; and Lgy is the likelihood of the fixed
parameter model.

The likelihood ratio test statistic has an approximate x? distribution, with k (the
number of predictors) degrees of freedom. If the LR test p-value is less than 0.05, the
random parameter logit model is superior to the standard model, with over 95% confidence.
This indicates that the random parameter multinomial logit model provides a statistically
superior fit relative to the traditional fixed parameter model [38].

Cross-validation was used to determine the generalizability and the overall utility of
the prediction models.

All of the explanatory variables were transformed into dummy variables through a
complete disjunctive decoding process. The predictors with multiple categories (k) were
converted to a series of indicator variables (dummy variables) with k—1 variables, and
the k-th dummy variable was not inserted into the model in order to avoid incurring the
problem of perfect multicollinearity. All of the indicator variables were used to estimate the
four logistic regression models and were tested for inclusion. Each indicator variable was
assessed for its importance to the injury severity by using the z-test, with a significance
level of 10%. All four models were developed using the STATA software.

4.1.2. Multinomial Logit Model

The crash severity analysis can be carried out by considering the three classes (slight
injury, serious injury, and fatal crashes) as the possible discrete outcomes. In the general
case of a multinomial logit model for the crash injury severity outcomes, the propensity of
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the crash (i) (i=1, ..., I) towards the severity category (j) j=1, ... ,]) is represented by
the severity propensity function [14]:

U = Vi + & = Bixij + & @)

where Vj; is the systematic component;

gjj is the disturbance term, which is assumed to be independently and identically distributed
following the Type I generalized extreme value distribution (i.e., the Gumbel distribution),
with the mean equal to zero and the variance equal to one, and the scale parameter is
n [14,39];

xjj is a (K X 1) column vector of K exogenous attributes (geometric variables, environ-
mental conditions, driver characteristics, etc.) that affects the pedestrian injury severity
level (j); and

Bjis a (K x 1) column vector of the estimable parameters for the crash severity category (j).

For a standard multinomial logit, the utility is linear in 3, and then Vj; = B;x;;. Each

[Sj represents the estimated impact of the variable, Xjj, on the response variable, y,. The
standard multinomial logit formulation takes the following form:

o(Bixij+ej)

- 4
Z:)le e(Binj+£ij) @

In a standard multinomial logit formulation, the 3s are assumed to be fixed across
the observations, and the standard multinomial logit model is considered to be a fixed
parameter model.

The factor exp(3) is the odds ratio (OR), and it indicates the relative amount by which
the odds of the outcome increase (OR > 1) or decrease (OR < 1) when the value of the
corresponding indicator variable is 1.

4.1.3. Random Parameter Multinomial Logit Model

The random parameter multinomial logit model, which is also known as the “mixed
multinomial logit model”, is the generalized form of the multinomial logistic regression
model, in which the coefficients of any of the variables are not limited to a fixed value but
are allowed to vary across observations, or the analyst-specified groups of observations.
This specification is the same as for the standard logit, except that, instead of being fixed,
the 3 varies among the observations. The 3 coefficients are random and can be decomposed
into their means and standard deviations [11]:

U = Vi + & = B{x;j + &ij; B} = B+ B ©)

where Vij; is the systematic component; ¢ is the disturbance term, which is assumed to be
independently and identically distributed across the crash severity levels and the crashes;
xij is a (K x 1) column vector of K exogenous attributes (geometric variables, environmental
conditions, driver characteristics, etc.) that are specific to the crash (i) and that affect
the pedestrian injury severity level (j); Bj’ is a crash-specific (K x 1) column vector of the
corresponding parameters that varies across the crashes on the basis of the unobserved
crash-specific attributes; b are the means of the B’ random coefficients; and Ej are the
standard deviations of the B’ random coefficients.

Hence, the standard multinomial logit hypotheses are relaxed (i.e., the mixed logit does
not exhibit independence from the irrelevant alternatives), and one or more parameters can
be randomly distributed in the mixed model. Indeed, the presence of correlations between
the unobserved characteristics of each observation violates the disturbance independence
assumptions for the error terms, which leads to erroneous parameter estimates, whereas the
random parameter model addresses the unobserved heterogeneity within the parameters
that vary across the individual observations. If unobserved heterogeneity is allowed, then
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Bj is a vector with a continuous density function, which means that the unconditional
probability of an individual (i) experiencing the severity level (j) from the set of severity
outcomes (J) is obtained by considering the integrals of the standard multinomial logit
probabilities over the density of the parameters, and it can be expressed in the form [40]:

. B
Pi(j) = [ <5 f(B0)dp ©)
. Z]QB]XIJ

where x;; is a (K x 1) column vector of K exogenous attributes (geometric variables, envi-
ronmental conditions, driver characteristics, etc.) that are specific to the crash (i), and that
affect the pedestrian injury severity level (j); (5]{ is a crash-specific (K x 1) column vector of
the corresponding parameters that varies across the crashes on the basis of the unobserved
crash-specific attributes; f ($|0) is the density function of the  coefficients; and 6 is a
vector of the parameters that describes the density function of the 3 coefficients in terms of
the mean and the variance.

The random multinomial logit probability is expressed as the weighted average of the
probability that is evaluated with the multinomial logit formula at different values of 3,
with the weights provided by the density function (f(3)). The standard multinomial logit is
a special case of the mixed logit formulation because if 3; = b for each observation, there is
no crash-specific unobserved heterogeneity among the data, and the random parameter
model coincides with the standard multinomial logit with fixed parameters (b), and f(3) =1
for Bj=b, while it is 0 for 3; # b.

4.1.4. Ordered Logit Model

The multinomial logit model disregards the ordered nature of the injury severity levels
and treats them as independent alternatives; thus, the ordering information is lost [21]. The
model is based on the cumulative probabilities of the response variables, and it is assumed
that the logit of each cumulative probability is a linear function of the covariates, with
regression coefficients that are constant across the response categories. In this case, the
effects of the explanatory variables on the severity levels are assumed to be fixed across
the observations. In other words, ordered logistic regression assumes that the coefficients
that describe the relationship between the lowest versus all of the higher categories of
the dependent variable (which is the crash severity in our study) are the same as those
that describe the relationship between the next lowest category and all of the higher
categories. This is also called the “proportional odds assumption”, “the parallel regression
assumption”, or the “grouped continuous model” [41]. Assuming that the severity of
a crash is an ordered discrete variable with j categories (slight, serious, and fatal), three
levels are given meaningful numeric values, usually 0, 1, ... , ] (J is the upper limit). Slight,
serious, and fatal might be labeled as “0”, “1”, and “2”, respectively, and the numerical
values represent a ranking so that, for the crash severity, the “1” label is more severe than
the “0” label in a qualitative sense, and the difference between the “2” and the “1” is not the
same as for that between the “1” and the “0”. In this case, although the numerical outcomes
are merely the labels of the non-quantitative outcomes, the analysis will nonetheless have
a regression-style motivation [42]. The severity propensity function is assumed as it is
reported in Equation (7), and the ordinal response (y;) can be expressed as:

0if —co < Uj < pyy
yi =4 Jifp-1 <Uj < @)
]lf }J.],l <Uj < +o0

where y; represents the upper threshold for the injury severity (J); -1 represents the
lower threshold for the injury severity (J); and ; and ;1 are the values of the cutoff, or
the cut-points.
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The cumulative probability can be written as [41]:

p e(ﬁfxijJrSij*Hj)
i) = 1 +e(f5]-’Xij+Eij*Hj)’

i=1,2,...,]-1 8)

4.1.5. Random Parameter Ordered Logit Model

The random parameter ordered logit model allows the thresholds in the ordered logit
model to vary on the basis of both the observed, as well as the unobserved, characteristics.
It also accommodates the unobserved heterogeneity in the effects of the exogenous vari-
ables on the injury propensity and on the threshold values through a suitable specification
of the thresholds that relaxes the restriction of identical thresholds [21]. As for the mixed
multinomial logit model, Equation (10) determines the probability that the crash (i) will
result in the injury-severity level (j). Hence, both the 3s and the threshold (i) can systemat-
ically vary across crashes because of the observed and unobserved factors: in an ordered
random parameter logit model, the thresholds also consist of a systematic component and
unobserved disturbance error terms, which thus allows for unobserved variability and
randomness in the thresholds, as is expressed by the formula below:

Wi = Vj+ 1 )

where V;j is a systematic component; and T is the unobserved disturbance error term.
Finally, the likelihood function for the individual (i) represents the probability of the
injury severity that will be experienced by that individual, and it can be evaluated as:

P~ [~ 0)dp— 121 (10
0= [ e P IORI =12

Therefore, in order to account for these circumstances, a random parameter ordered
logit model was developed to capture the unobserved heterogeneity, which is achieved by
adding a randomly distributed error term.

4.2. Non-Parametric Models

Five popular non-parametric algorithms, namely, association rules, classification trees,
random forests, artificial neural networks, and support vector machines, were used to
predict the injury severities of the pedestrian crashes. As data-driven and non-parametric
methods, the machine learning algorithms do not require any a priori assumptions about
the relationships between the variables.

4.2.1. Association Rules

As a descriptive—analytic methodology, the association rules are used for extracting
knowledge from large datasets by generating rules that have the form: A—B. Each rule
contains at least one pattern, which is called the “antecedent” (A), as well as a “consequent”
(B). In our study, the latter consists of the fatal or serious injury severities. The a priori
algorithm (which was introduced by Agrawal et al. [43]) generates rules by using simple
and repetitive steps, and by examining all of the candidate item-sets in order to find the
frequent item-sets, until no new ones can be produced. All of the valid rules satisfy the
support, confidence, and lift thresholds, where the support is the percentage of the entire
dataset that is covered by the rule (Equation (11)), the confidence measures the reliability
of the inference of the rule (Equation (12)), and the lift is a measure of the statistical
interdependence of the rule (Equation (13)):

#ANB)

S(A—B) = = ,S(A)zi;S(B):@; (11)
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Confidence = M (12)

- s(A)
Lift = oA~ B) (13)

(S(A) x 5(B))

where S(A—B) is the support of the association rule; S(A) is the support of the antecedent;
S(B) is the support of the consequent; #(A—B) is the number of crashes, where both
Conditions A and B occur; #(A) is the number of crashes with A as the antecedent; #(B) is
the number of crashes with B as the consequent; and N is the total number of crashes in
the dataset.

A rule with a single antecedent and a single consequent is defined as a “two-item rule”;
similarly, a rule with two antecedents and a single consequent is defined as a “three-item
rule”. Each rule with n + 1 items is validated by verifying that each variable produces a lift
increase (LIC). The LIC ensures that each additional item in the rules leads to an increase in
terms of the lift.

The rules with only one item in the antecedent are used as a starting point, and
the rules with more items are selected over simpler ones by verifying that each variable
produces a lift increase (LIC) that is not smaller than 1.05 [44]. The LIC ensures that each
additional item in the rules leads to an increase in terms of the lift. The LIC is calculated

as follows:
Lifta

Lifta |

LIC = (14)
where A, _1 is the antecedent of the rule with n—1 items; and A, is the antecedent of the
rule with n items.

The threshold values of the support (S), the confidence (C), and the lift (L) were set as
follows: S > 0.1%; C > 4.0%; L > 1.2; and LIC > 1.05. The association rules were performed
in the R-CRAN software environment using the package, “arules”.

4.2.2. Classification Trees

A classification tree is a nonlinear tool and an oriented graph, where the root node
is divided into leaf nodes by an explanatory variable that is also called the “splitter”. All
of the independent variables are candidates for the splits at each internal node of the tree.
However, only the predictor that provides the best partition is chosen. In our study, we
developed the CART algorithm, which was introduced by Breiman et al. [45], and the
impurity at each node was assessed by the Gini reduction criterion (the higher the value of
the Gini index, the higher the homogeneity of the node that is due to the split), which can
be calculated as follows:

iv(t) =1- Y p(lt)? (15)
)

where P(j | t) is the proportion of the observations in the node (t) that belong to the class (j).
If a node is “pure”, all of the observations in the node belong to one class, and the
impurity of that node is zero.
The total impurity of any tree (T) is defined as follows:

iv(T) = L iv(0p(0) (16)

teT

where iy(t) is the impurity of the node (t); p(t) = N(t)/N is the weight of the node (t); N(t) is
the number of observations that fall in the node (t); N is the total number of observations;
and T is the set of terminal nodes of the tree (T).

By definition, the terminal nodes present low degrees of impurity compared with the
root node.

The total impurity of the tree is reduced by finding, at each node of the tree, the best
partition of the observations into disjoint classes, which are externally heterogeneous and
internally homogeneous.
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The choice of the best classification rule was made through the V-fold cross-validation
estimate. The initial set (S) is randomly divided into a V > 2-fold (S, forv=1,2...,V).
The corresponding estimate of the error rate is given by:

N,
Lich

(ACART

Y)Y

ER,CART _ N
v

(17)

where YCART(Xi) is the predicted class for the i" observation; X; is the vector of the
descriptors of the ith observation; Y; is the class label of the it" observation; and Ny is the
numerosity of the set (Sy).

The estimate of the error rate, which is based on cross-validation (ER), is obtained by
combining the individual estimates for all the possible subsets (Sy).

Zx;lERVCART

ER =
\Y%

(18)

The tree growing was stopped on the basis of two criteria: (1) If the reduction in the
Gini measures was less than a prespecified minimum fixed value that was equal to 0.0001
(default value); and (2) If the maximum number of levels of the tree were equal to 4. These
parameters were chosen to minimize the error rate.

The class assigned to each node was selected according to the greatest value of the
posterior classification ratio (PCR) that was evaluated for that node. The PCR compares the
classification of the terminal nodes of the tree with the classification of the root node, and it
is calculated as follows [24]:

. p(lt)
PCR(j|t) = — = (19)
P (jltroot )
where p(j | t) is the proportion of the observations in the node (t) that belong to the class (j);
and tyoot is the root node of the tree.

One of the outputs that is provided by the CART technique is the variable importance,
which defines the variable’s ability to influence the model. The relative importance of the
variable (VI) (X;) is calculated as follows:

Vi=Y ., NIS) Aiy(t,s) (20)

where VI represents the relative importance of the variable (X;); Aiy(t,s) is the reduction in
the Gini index that is obtained by splitting the variable (X;) at the node (t); N is the total
number of observations; and T is the number of nodes in the tree.

The classification trees were carried out with SPSS software.

4.2.3. Random Forests

Classification trees, despite their advantages, have sometimes been found to generate
unstable predictions given certain perturbations; thus, in order to improve the stability,
Breiman [46] proposed the RF method. RFs are an ensemble of B trees {T1(X), ... , Tg(X)},
where X; = {xi1, ..., Xjp} is a p-dimensional vector of the descriptors or properties that are
associated with the i crash. The ensemble produces B outputs {Y1 = T1(X), ... , Yp = Tg(X)},
where Y, b=1,...,B,is the prediction for a crash by the bth tree. The outputs of all of the
trees are aggregated to produce one final prediction: Y. For classification problems, Y is the
class that is predicted by the majority of the trees.

Given the data on a set of n crashes, D = {(X1, Y1), ..., X, Yn)}, where X; is a vector
of the descriptors, and Y; is the corresponding class label for the ith crash, withi=1,...,n.
The algorithm proceeds as follows:

1. A bootstrap sample, which creates a random sample with a replacement from the
original sample, with the sample size (N;) replicated B times.
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2. For each bootstrap sample, the growing of a tree uses the CART algorithm, and
chooses, at each node, the best split among a randomly selected subset of descriptors;
3. Repeat the above steps until B trees are generated.

However, it has been shown that there is a potential overestimate of the true prediction
error, depending on the choices of the random forest hyperparameters, such as the number
of trees (B), and the number of descriptors. To reduce the true prediction error, the out-
of-bag estimate of the error rate (EROOP) was estimated by varying the B and the number
of descriptors:

i (YOOB (Xi) # Yi)

EROOB _
N

(21)

where Y°°° (X;) is the predicted class for the i crash; X; is the vector of the descriptors of
the ith crash; Y; is the class label of the it crash; and N is the total number of crashes.

The values of the number of trees and the number of descriptors were chosen so that
the EROVP tends to stabilize around the minimum value.

The variable importance measure for the variable, Xj, (VI (xj)), is computed as the sum
of the importances over all of the trees in the forest:

)

(22)
ntrees

VI(x)
where Vit (xj) is the variable importance of the t™ tree that is calculated using Equation (20);
and ntrees is the number of trees.
The RF was performed in the R-CRAN software environment using the packages,
“randomPForest”, and “randomForestSRC”.

4.2.4. Artificial Neural Networks

As is the classification tree and the RF, the ANN is also an oriented graph that is
inspired by a biological neural network. Similar to the structure of the human brain, the
ANN models consist of neurons in complex and nonlinear forms. The ANN models work
by creating a nonlinear relationship between the dependent and independent variables,
depending on a set of experimental data. The neurons are connected to each other by
weighted links. ANNs consist of a layer of input nodes and a layer of output nodes that are
connected by one or more layers of hidden nodes. The input-layer nodes pass information
to the hidden-layer nodes by firing the activation functions, and the hidden-layer nodes
fire, or remain dormant, depending on the evidence that is presented. The hidden layers
apply weighting functions to the evidence, and, when the value of a particular node or set
of nodes in the hidden layer reaches a certain threshold, the value is passed to one or more
nodes in the output layer.

The technique creates a feed-forward multilayer perceptron ANN, which consists of
multiple nodes (or neurons) that are organized into three or more layers, with a backprop-
agation learning process to minimize the classification errors. In our study, a three-layer
network was implemented, as previous studies suggest that ANNs with singular hidden
layers are less likely to be trapped at a local minimum [47,48]. Thus, the information flows
from the input layer, passes through the hidden layer, and then flows to the output layer
to produce a classification. The hidden layer has 1 + Zgzl kp neurons (consider a dataset
that contains P independent variables that are classified on the k,, potential risk factors
that have effects on the crash severity), and each risk factor is represented by a node, while
another constant node is included, which represents the bias. The output layer has three
neurons, which accord with the three severity levels in the study.
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The neurons of the input layer transfer information to the hidden layer through the
hyperbolic tangent activation function, and from the hidden layer to the output layer
through the softmax function.

L I
z = softmax ij tanh 2 Wio kp (23)
=1 p=1

1)

where ] is the number of neurons in the hidden layer; w. .’ is the connection weight between

the hidden node (j,j =1, ... ]) and the input node (p, p =1,...,P); kp are the factors; and
)

wj(2 is the weight of the connection between the output node (z) and the hidden node (j).
In the output layer, Z = 3 nodes expresses the severity outcomes that are predicted by
the ANN, and y; is the ith observed response in the dataset. If, for the ith crash, yi = z, then
z =1, while z = 0 if otherwise.

The connection weights were estimated by using a backpropagation learning process
to minimize the classification errors. Standard backpropagation is a gradient descent
algorithm in which the network weights are moved along the negative of the gradient of
the performance function. The combination of weights that minimize the error function
is considered to be a solution to the learning problem. The backpropagation algorithm

proceeds as follows:

1. The backpropagation algorithm starts with random weights, and the goal is to adjust
them to reduce this error until the ANN learns the training data;

2. If the expected output is not obtained, backward propagation begins. The difference
between the actual and the expected outputs is calculated recursively and step by
step, and the error is returned through the original link access;

3.  The weight and the value of each neuron are then modified and are transmitted
successively to the input layer, and the forward multilayer perceptron restarts.

These two processes (forward multilayer perceptron and backpropagation error) are
repeated so that the error gradually decreases. The goal is to minimize the error by adjusting
the weights so that the optimum weights are obtained after the error backpropagation.

The gradient (G) of a weighting to the error, the total error (E), and the total mean
square errors (ep) are defined as:

OF
G=15- (24)
E= Zep (25)

1 & _p\2
=3 kg(ﬁ = (26)

where w is one of the network weightings (wp|, Wjp, Wy;); yi is the actual output; and VE is
the expected output.
The adjustment of the weight is calculated as:

AW"Y = -G + aAw°d (27)

where AwW"®¥ is the present adjustment for the weighting or for the threshold; Aw°! is the

immediate past value of its counterpart; o is a dynamic coefficient, and it takes a value in
the range of between 0 and 1; and G is the gradient of a weighting to the error.

This procedure was applied to the categorical data after transforming the categorical
variables into dummy variables through a complete disjunctive decoding process. The
predictors with multiple categories (k) were converted into a series of indicator variables
(dummy variables) with k variables.

Moreover, the k-fold cross-validation procedure was used in each modeling phase of
the ANN.
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The importance of a specific explanatory variable is determined by identifying all of
the weighted connections between the nodes of interest. All of the weights that connect
the specific input node, which passes through the hidden layer to the specific response
variable, are identified. This is repeated for all of the other explanatory variables, until all
of the weights that are specific to each input variable are determined.

The ANN was performed with the SPSS software.

4.2.5. Support Vector Machines

A SVM, which was developed by Cortes and Vapnik [49], is used to develop an
optimal separating hyperplane to categorize the observations into several groups, while
maximizing the margin between the decision boundaries and minimizing the empirical
error. The predictors are defined as the vectors (X; = {xi1, ... , Xjp}), where p represents the
full set of crash-related variables, and the outcome is defined as yy, which represents the
injury severity levels of the crashes. Hence, the plane constitutes the decision boundaries,
and the hyperplane is a p—1 dimensional plane. The decision boundaries may or may
not be linear, depending on the pre-set kernel function. The radial basis function (RBF) is
the most commonly used for crash severity analyses since it is capable of capturing the
nonlinearity relationships between the crash severity and the explanatory variables [50]:

K (X;, X)) =exp (—y 1X; = Xj1%),y>0 (28)

¢ where X; and X; are the vectors of the explanatory variables for the ith and the j crashes;
| Xi—Xj |2 is the Euclidean distance between the two crashes, X; and X;; and y = 1/02,
where o7 is the variance of the samples selected by the model as support vectors.

The development of the SVM model also depends on the penalty parameter (C) of the
error term. It controls the trade-off between smooth decision boundaries, and the correct
classification of the points, and it is calculated as follows:

A (YSVM(Xi) # Yi)

ERSYW —
N

(29)

where YSVM(Xi) is the predicted class for the i" crash; X; is the vector of the descriptors of
the ith crash; Y; is the lass label of the it crash; and N is the total number of crashes.

To determine the separability of the optimal hyperplane, a grid search was used
for the joint optimization of the C and y parameters and for the feature selection. This
approach methodically builds and evaluates a model for each combination of algorithm
parameters (y and C) that are specified in a grid. For each model, the classification error
was used as a performance measure. The combination of the hyperparameters with the
lower classification error was chosen in order to develop the optimal hyperplane.

To effectively combine these parameters, and to avoid overfitting, the cross-validation
method was used for each developed model, which provided information about how well
the SVM generalizes, specifically in terms of the range of expected errors.

The variables that contribute to the separability of the optimal hyperplane provide an
indication of the relative importances of the variables to the separation.

The SVM was performed in the R-CRAN software environment using the packages,
“caret” and “e1071”.

4.3. Dealing with Imbalanced Data

The study data are characterized by imbalanced classes, with order ratios of 2:100 for
the fatal crashes, and of 25:100 for the serious injury crashes. The issues that are relative
to the classification performance with imbalanced data have been highlighted in previous
studies (e.g., [30,31,33,51]).

To take into account the skewed distribution of the classes, different weights were
given to both the majority and minority classes. The difference in the weights influenced
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the classification of the classes during the learning phase. The whole purpose is to penalize
the misclassification that is made by the minority class by setting a higher class weight
and, at the same time, reducing the weight for the majority class. The weight was assigned
so that the response variable was equally distributed among the categories. The class
weights are inversely proportional to their respective frequencies [52-54]. Each weight can
be assessed as follows:

Nerashes
Wi = e X Ny (30)
where k is the number of the crash severity level, with 1 = slight injury; 2 = serious injury;
and 3 = fatal; wy is the weight that is assigned to the respective level of severity (k); Ncrashes
is the total number of crashes in the dataset; n. = 3, which is equal to the number of crash
severity levels that are considered in the study; and Ny is the number of crashes with a
severity level (k).

4.4. Comparison among the Models

A classifier aims to minimize the false positive rates (which represent Type I errors)
and the false negative rates (which represent Type II errors), which maximizes the true
negative and positive rates. Among the common performance metrics that are used to
evaluate the classification performance, the accuracy and the error rate are the most widely
used. However, when the distribution of the response variable is extremely imbalanced,
the accuracy has certain limitations. The error rate suffers from similar drawbacks. First, it
is easy to obtain high accuracies (or low error rates) under highly imbalanced problems.
Secondly, these classifiers assume that the errors are of equal value, which is not true
for the imbalanced data, where misclassifying the instances of the minority classes (fatal
and serious injury crashes) is generally much costlier than misclassifying the instances
of the majority class (slight injury crashes) [55,56]. Moreover, the correct classification of
the factors that contribute to fatal and serious injury crashes is a far cry from the correct
identification of the factors that contribute to slight injury crashes.

Hence, we chose to assess the multiparameter indicators, namely, the F-measure, the
G-mean, and the area under the curve (AUC), in order to evaluate the performances of the
implemented models in a single measure.

The performance measures are expressed as follows [33]:

TN
Accm = ——— = ifici 1
cc TN £ FP specificity (31)
where Acc™ is the true negative rate, which is also known as the “specificity”; TN is the
number of true negatives; and FP is the number of false positives.

TP
Acct = TP+ EN Recall = sensitivity (32)
where Acc™ is the true positive rate, which is also known as the “recall”, or the “sensitivity”;
TP is the number of true positives; and FN is the number of false negatives.

1
G—mean = (Acc™ X Acct)? (33)
.. TP
Precision = m (34)

(1 + [32> x Precision x Recall

F — measure = (35)

Precision + Recall

where f is a coefficient for adjusting the relative importance of the precision and recall,
which is set at a value that is equal to 1.
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The G-mean combines the performances of the positive and negative classes, whereas
the F-measure combines the cases that are correctly classified with the Type I and Type
II errors. Indeed, when the errors increase, the F-measure decreases. The F-measure is
also the weighted harmonic mean of the precision and recall (which are both referred to
as the “minority class”), and a high F-measure usually indicates the model’s good overall
performance. The AUC is the area under the receiving operating curve (ROC), and it is
a widely used graphical plot that illustrates the ability of a classifier that is assessed by
plotting the true positive rate (TPR) (which is also known as the “sensitivity”) on the vertical
axis against the false positive rate (FPR) (which is also known as the “specificity”) on the
horizontal axis at various threshold settings. When the ROC curve is created, the AUC
can be assessed. The AUC represents the probability that the classifier correctly identifies
an observation that is randomly selected among the positive cases. An AUC value varies
between 0 and 1. An AUC greater than 0.60 is considered satisfactory [57].

Once the performance metrics for each class are evaluated, the final values are the
weighted mean, in which the relative frequencies of the classes on the data are their
weights [58].

5. Results
5.1. Parametric Models

All the explanatory variables that are reported in the appendix section (Tables A1-A6)
were tested for inclusion in the econometric models. The estimation results are reported
in Tables 2-5. The variable indicators that are not statistically significant at the 0.10 level
of significance, either for the fatal crashes or for the serious injury crashes, were removed
from the tables.

Table 2. Multinomial logit model: parameter estimates and goodness-of-fit measures.

Fatal Serious
Variabl

anable Estimate OR Std. Err. P> |zl Estimate OR Std. Err. P> |zl
Intercept —5.215 0.005 0.129 <0.001 —1.529 0.217 0.031 <0.001
Number of vehicles (“1 vehicle”
as baseline)
2 0.682 1.978 0.106 <0.001 0.183 1.201 0.042 <0.001
>3 1.170 3.222 0.187 <0.001 0.498 1.645 0.091 <0.001
First Road class (“C” as baseline)
B 0.091 1.095 0.031 0.004
A 0.558 1.747 0.067 <0.001 0.095 1.100 0.022 <0.001
Motorway 0.979 2.662 0.263 <0.001 0.484 1.623 0.230 0.035
Speed limit (“20 mph”
as baseline)
30 mph 0.382 1.465 0.125 0.002 0.073 1.076 0.037 0.044
40 mph 1.384 3.991 0.163 <0.001 0.565 1.759 0.057 <0.001
>50 mph 2.227 9.272 0.164 <0.001 0.638 1.893 0.064 <0.001
Area (“Urban” as baseline)
Rural 0.347 1.415 0.086 <0.001
Junction detail (“T or staggered junction” as baseline)
Not at junction —0.034 0.967 0.015 0.021
Roundabout —0.353 0.703 0.187 0.059 —0.082 0.921 0.048 0.091

Pedestrian-crossing human control (“None within 50 m” as baseline)

School-crossing patrol —0.204 0.815 0.120 0.089

Pedestrian-crossing physical facilities (“None within 50 m”

as baseline)

Zebra —0.743 0.476 0.169 <0.001 —0.212 0.809 0.037 <0.001
Pelican 0.254 1.289 0.094 0.007 0.114 1.121 0.033 0.001
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Table 2. Cont.

Fatal Serious

Estimate OR Std. Err. P> lzl Estimate OR Std. Err. P> lzl

Variable

Lighting (“Daylight” as baseline)

Darkness 1.090 2.974 0.066 <0.001 0.290 1.336 0.022 <0.001
Pavement (“Dry” as baseline)

Wet or damp 0.142 1.153 0.078 0.069 0.049 1.050 0.027 0.075
Snow —0.877 0.416 0.306 0.004

Day of week (“Weekday”

as baseline)

Weekend 0.356 1.428 0.066 <0.001 0.126 1.134 0.023 <0.001

Vehicle maneuver (“Moving off”
as baseline)

Going ahead 1.126 3.083 0.073 <0.001 0.505 1.657 0.026 <0.001
Turning maneuver 0.140 1.150 0.035 <0.001
Reversing maneuver —0.152 0.859 0.044 0.001

Vehicle skidding and overturning
(“No” as baseline)

Yes 1.165 3.206 0.117 <0.001 0.480 1.616 0.056 <0.001
Vehicle type (“Car” as baseline)

Bicycle —1.290 0.275 0.366 <0.001 0.141 1.151 0.064 0.028
Bus 0.710 2.034 0.164 <0.001

PTW < 500 —1.122 0.326 0.224 <0.001 —0.103 0.902 0.051 0.044
Truck 1515 4.549 0.124 <0.001

Vehicle towing and articulation (“No towing/articulation”
as baseline)
Articulated vehicle 1.228 3.414 0.221 <0.001 0.855 2.351 0.141 <0.001

Vehicle propulsion code (“Petrol”

as baseline)

Heavy oil vehicles 0.284 1.328 0.072 <0.001 0.170 1.185 0.033 <0.001
Hybrid vehicles —0.466 0.628 0.283 0.100 —0.289 0.749 0.062 <0.001

Vehicle age (“<15 years”
as baseline)
>15 years 0.327 1.387 0.128 0.011 0.213 1.237 0.043 <0.001

Driver gender (“Male”
as baseline)
Female —0.293 0.746 0.078 <0.001

Driver age (“35-44 years”

as baseline)

<24 years 0.596 1.815 0.091 <0.001 0.272 1.313 0.030 <0.001
25-34 years 0.293 1.340 0.076 <0.001 0.145 1.156 0.024 <0.001

Pedestrian gender (“Male”
as baseline)
Female —0.155 0.856 0.064 0.015 —0.072 0.931 0.019 <0.001

Pedestrian age (“35-44 years”
as baseline)

0-14 years —0.837 0.433 0.137 <0.001
15-24 years —0.534 0.586 0.105 <0.001
25-34 years —0.303 0.739 0.103 0.003
45-54 years 0.154 1.166 0.031 <0.001
55-64 years 0.633 1.883 0.110 <0.001 0.417 1.517 0.033 <0.001
65-74 years 1.295 3.651 0.111 <0.001 0.770 2.160 0.035 <0.001

>75 years 2.578 13.171 0.092 <0.001 1.111 3.037 0.034 <0.001
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Table 2. Cont.

Fatal Serious
Variabl
arlable Estimate OR Std. Err. P> Izl  Estimate OR Std. Err. P> |zl

Log likelihood null model —48,217.27
Log likelihood full model —40,469.52
R*McFadden 0.161
AlC 81,079.04
BIC 81,717.28

Note: “Slight injury” was the severity outcome baseline, and its severity function was constrained to zero.

Table 3. Random parameter multinomial logit model: parameter estimates and goodness-of-

fit measures.

Fatal Serious
Variabl
anable Estimate ~ OR  Std.Er. P> Izl Estimatt ~OR  Std.Exr. P> Izl

Intercept —5.364 0.005 0.196 <0.001 —1.041 0.353 0.043 <0.001
Number of vehicles (“1 vehicle”
as baseline)
2 0.735 2.085 0.117 <0.001 0.175 1.191 0.042 <0.001
>3 1.218 3.380 0.199 <0.001 0.493 1.637 0.090 <0.001
First Road class (“C” as baseline)
B 0.108 1.114 0.032 0.001
A 0.577 1.781 0.072 <0.001 0.104 1.110 0.022 <0.001
Motorway 1.043 2.838 0.284 <0.001 0.448 1.565 0.215 0.037
Speed limit (“20 mph”
as baseline)
30 mph 0.423 1.527 0.137 0.002 0.051 1.052 0.030 0.088
40 mph 1.478 4384 0.178 <0.001 0.524 1.689 0.055 <0.001
>50 mph 2431 11.370 0.186 <0.001 0.582 1.790 0.061 <0.001
Area (“Urban” as baseline)
Rural 0.377 1.458 0.096 <0.001
Junction detail (“T or staggered junction” as baseline)
Not at junction —0.044 0.957 0.021 0.035
Roundabout —2.477 0.084 0.966 0.010 —0.107 0.899 0.059 0.069

Pedestrian-crossing human control (“None within 50 m” as baseline)

School-crossing patrol —0.207 0.813 0.123 0.093

Pedestrian-crossing physical facilities (“None within 50 m”

as baseline)

Zebra —0.781 0.458 0.188 <0.001 —0.231 0.794 0.039 <0.001
Pelican 0.280 1.323 0.098 0.004 0.103 1.108 0.030 0.001

Lighting (“Daylight” as baseline)

Darkness 1.164 3.203 0.076 <0.001 0.289 1.335 0.022 <0.001
Pavement (“Dry” as baseline)

Wet or damp 0.153 1.165 0.075 0.041 0.040 1.041 0.023 0.078

Snow —1.045 0.352 0.359 0.004

Day of week (“Weekday”

as baseline)

Weekend 0.373 1.452 0.074 <0.001 0.123 1.131 0.023 <0.001
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Table 3. Cont.

Fatal Serious

Estimate OR Std. Err. P> lzl Estimate OR Std. Err. P> lzl

Variable

Vehicle maneuver (“Moving off”
as baseline)

Going ahead 0.831 2.296 0.154 <0.001 0.513 1.670 0.027 <0.001
Turning maneuver 0.143 1.154 0.037 <0.001
Reversing maneuver —0.255 0.775 0.051 <0.001

Vehicle skidding and overturning
(“No” as baseline)

Yes 1.266 3.457 0.133 <0.001 0.450 1.568 0.054 <0.001
Vehicle type (“Car” as baseline)

Bicycle —1.427 0.240 0.403 <0.001 0.223 1.250 0.067 0.001
Bus 0.634 1.885 0.147 <0.001

PTW < 500 —1.288 0.276 0.254 <0.001 -0.112 0.894 0.053 0.033
Truck 1.674 5.333 0.151 <0.001

Vehicle towing and articulation (“No towing/articulation”
as baseline)
Articulated vehicle 1.272 3.568 0.234 <0.001 0.833 2.300 0.141 <0.001

Vehicle propulsion code (“Petrol”

as baseline)

Heavy oil vehicles 0.284 1.328 0.072 <0.001 0.170 1.185 0.033 <0.001
Hybrid vehicles —0.466 0.628 0.283 0.100 —0.289 0.749 0.062 <0.001

Vehicle age (“<15 years”
as baseline)

>15 years 0.317 1.373 0.086 <0.001 0.153 1.165 0.023 <0.001
Driver gender (“Male”

as baseline)

Female —0.343 0.710 0.092 <0.001

Driver age (“35-44 years”

as baseline)

<24 years 0.635 1.887 0.101 <0.001 0.294 1.342 0.031 <0.001
25-34 years 0.336 1.399 0.084 <0.001 0.152 1.164 0.025 <0.001

Pedestrian gender (“Male”
as baseline)
Female —0.156 0.856 0.070 0.027 —0.097 0.908 0.020 <0.001

Pedestrian age (“35-44 years”
as baseline)

0-14 years —0.884 0.413 0.148 <0.001

15-24 years —0.592 0.553 0.116 <0.001

25-34 years —0.342 0.710 0.114 0.003

45-54 years 0.157 1.170 0.031 <0.001
55-64 years 0.668 1.950 0.118 <0.001 0.426 1.531 0.033 <0.001
65-74 years 1.367 3.924 0.120 <0.001 0.785 2.192 0.035 <0.001
>75 years 2.279 9.767 0.223 <0.001 0.297 1.346 0.179 0.097
Standard deviation of random

parameter

Going-ahead vehicle maneuver 0.997 2.710 0.195 <0.001

Roundabout 2.583 13.237 0.643 <0.001

Pedestrian age > 75 years 3.853 47.134 1.036 <0.001
Log likelihood null model —48,217.21

Log likelihood full model —39,565.46

R?>McFadden 0.179

AIC 79,274.93

BIC 79,931.41
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Table 4. Ordered logit model: parameter estimates and goodness-of-fit measures.

Variable Estimate OR Std. Err. P> |zl
Number of vehicles (“1 vehicle” as baseline)
2 0.262 1.300 0.039 <0.001
>3 0.613 1.846 0.083 <0.001
First road class (“C” as baseline)
B 0.108 1.114 0.030 <0.001
A 0.172 1.188 0.021 <0.001
Motorway 1.003 2.726 0.184 <0.001
Speed limit (“20 mph” as baseline)
30 mph 0.076 1.079 0.029 0.008
40 mph 0.615 1.850 0.051 <0.001
>50 mph 1.079 2.942 0.056 <0.001
Junction detail (“T or staggered junction” as baseline)
Not at junction —0.046 0.955 0.020 0.021
Roundabout —0.099 0.906 0.055 0.071
Pedestrian-crossing human control (“None within 50 m” as baseline)
School-crossing patrol —0.244 0.783 0.120 0.042
Pedestrian-crossing physical facilities (“None within 50 m” as baseline)
Zebra —0.226 0.798 0.037 <0.001
Pelican 0.103 1.108 0.028 <0.001
Lighting (“Daylight” as baseline)
Darkness 0.409 1.505 0.021 <0.001
Pavement (“Dry” as baseline)
Wet or damp 0.047 1.048 0.022 0.035
Snow —0.236 0.790 0.091 0.010
Day of week (“Weekday” as baseline)
Weekend 0.150 1.162 0.022 <0.001
Vehicle maneuver (“Moving off” as baseline)
Going ahead 0.587 1.799 0.023 <0.001
Turning maneuver 0.187 1.206 0.032 <0.001
Vehicle skidding and overturning (“No” as baseline)
Yes 0.607 1.835 0.051 <0.001
Vehicle type (“Car” as baseline)
Bus 0.184 1.202 0.046 <0.001
PTW <500 —0.158 0.854 0.051 0.002
Truck 0.462 1.587 0.066 <0.001
Vehicle towing and articulation (“No towing/articulation” as baseline)
Yes 1.260 3.525 0.129 <0.001
Vehicle propulsion code (“Petrol” as baseline)
Heavy oil vehicles 0.119 1.126 0.022 <0.001
Hybrid vehicles —0.340 0.712 0.071 <0.001
Vehicle age (“<15 years” as baseline)
>15 years 0.232 1.261 0.042 <0.001
Driver age (“35-44 years” as baseline)
<24 years 0.304 1.355 0.029 <0.001
25-34 years 0.155 1.168 0.024 <0.001
Pedestrian gender (“Male” as baseline)
Female —0.080 0.923 0.019 <0.001




Sustainability 2022, 14, 3188 21 of 44
Table 4. Cont.

Variable Estimate OR Std. Err. P>lzl
Pedestrian age (“35-44 years” as baseline)
0-14 years —-0.171 0.843 0.025 <0.001
45-54 years 0.233 1.262 0.031 <0.001
55-64 years 0.516 1.675 0.033 <0.001
65-74 years 0.895 2.447 0.035 <0.001
>75 years 1.393 4.027 0.033 <0.001
Cut points
Cutl 2.381 0.039
Cut2 5.385 0.049
Log likelihood null model —48,217.27
Log likelihood full model —41,017.92
R*McFadden 0.149
AIC 82,101.85
BIC 82,402.74

Table 5. Random parameter ordered logit model: parameter estimates and goodness-of-fit measures.

Variable Estimate OR Std. Err. P> Izl
Number of vehicles (“1 vehicle” as baseline)
2 0.195 1.215 0.039 <0.001
>3 0.571 1.770 0.083 <0.001
First road class (“C” as baseline)
B 0.110 1.116 0.030 0.001
A 0.150 1.162 0.021 <0.001
Motorway 0.925 2.522 0.184 <0.001
Speed limit (“20 mph” as baseline)
30 mph 0.090 1.094 0.029 0.002
40 mph 0.627 1.872 0.052 <0.001
>50 mph 1.029 2.798 0.061 <0.001
Junction detail (“T or staggered junction” as baseline)
Not at junction —0.057 0.945 0.020 0.004
Roundabout —0.133 0.875 0.056 0.017
Pedestrian-crossing human control (“None within 50 m” as baseline)
School-crossing patrol —0.274 0.760 0.121 0.024
Pedestrian-crossing physical facilities (“None within 50 m” as baseline)
Zebra —0.228 0.796 0.037 <0.001
Pelican 0.122 1.130 0.028 <0.001
Lighting (“Daylight” as baseline)
Darkness 0.336 1.399 0.021 <0.001
Pavement (“Dry” as baseline)
Wet or damp 0.071 1.074 0.022 0.001
Snow —0.240 0.787 0.091 0.009
Day of week (“Weekday” as baseline)
Weekend 0.133 1.142 0.022 <0.001
Vehicle maneuver (“Moving off” as baseline)
Going ahead 0.536 0.025 <0.001
Turning maneuver 0.203 0.035 <0.001
Vehicle skidding and overturning (“No” as baseline)
Yes 0.593 1.809 0.051 <0.001
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Table 5. Cont.

Variable Estimate OR Std. Err. P> Izl
Vehicle type (“Car” as baseline)
Bus 0.142 1.153 0.046 0.002
PTW < 500 —0.149 0.862 0.051 0.004
Truck 0.424 1.528 0.066 <0.001
Vehicle towing and articulation (“No towing/articulation” as baseline)
Yes 1.299 3.666 0.129 <0.001
Vehicle propulsion code (“Petrol” as baseline)
Heavy oil vehicles 0.209 1.232 0.020 <0.001
Hybrid vehicles —0.252 0.777 0.070 <0.001
Vehicle age (“<15 years” as baseline)
>15 years 0.237 1.267 0.042 <0.001
Driver age (“35—44 years” as baseline)
<24 years 0.332 1.394 0.029 <0.001
25-34 years 0.171 1.186 0.023 <0.001
Pedestrian gender (“Male” as baseline)
Female —0.074 0.929 0.021 <0.001
Pedestrian age (“35-44 years” as baseline)
0-14 years —0.391 0.676 0.032 <0.001
45-54 years 0.334 1.397 0.037 <0.001
55-64 years 0.602 1.826 0.039 <0.001
65-74 years 0.305 1.357 0.040 <0.001
>75 years 1.000 2.718 0.036 <0.001
Standard deviation of random parameter
Pedestrian age > 75 years 0.580 1.786 0.036 <0.001
Cut points
Cutl 0.827 0.014
Cut2 3.828 0.035
Log likelihood null model —48,217.27
Log likelihood full model —40,068.60
R®McFadden 0.169
AIC 80,209.10
BIC 80,537.34

5.1.1. Multinomial Logit Model

There were 20 statistically significant explanatory variables, and 41 significant indicator
variables that were associated with these categorical variables (Table 2). The model’s
McFadden Pseudo R? is equal to 0.16. The most influential variable is the pedestrian age.
Compared to young pedestrians (35-44 years), the elderly pedestrians (aged 75 years or
more) had increased probabilities of fatal crashes, with an OR of 13.17. Another significant
indicator is speed limits > 50 mph., for which the indicator exhibited an OR equal to 9.27.

5.1.2. Random Parameter Multinomial Logit Model

The results for both the fixed and random variables are reported in Table 3. The
log-likelihood at zero (—48,217) and at convergence (—39,565) give a McFadden R? of 0.18,
which is a good result. It is also the highest value that is exhibited among the parametric
models that were performed in this study. The goodness-of-fit results and the LR test
results show that the random model provides a significant improvement compared to the
fixed parameter model. The x? of the LR test is 1808.11, with 3 degrees of freedom, and
a p-value < 0.001, which shows that the random parameter multinomial logit model is
superior to the standard multinomial logit model, with over 99.9% confidence. Three of
the indicator variables show normally distributed random parameters, with statistically
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significant standard deviations, which indicates a significant unobserved heterogeneity
in the data (Table 3). These variables are: (1) Going-ahead vehicle maneuvers (fatal);
(2) Roundabouts (fatal); and (3) A pedestrian age greater or equal to 75 (serious injury).
In the prediction of fatal severity, the indicator variable, “roundabout”, shows a normal
distribution, with a mean of —2.477, and a standard deviation of 2.583. This means that, for
83.1% of the crashes at roundabouts, the probability of the fatal outcome decreased, while,
for 16.9% of the observations, the probability of a fatal outcome increased. Similarly, the
indicator variable, “going-ahead maneuver”, shows a normal distribution, with a mean
of 0.831, and a standard deviation of 0.997. This means that, for 79.8% of the observations
with vehicles that maneuvered going ahead, the probability of a fatal outcome increased,
while, for 20.2% of the observations, the probability of a fatal outcome decreased. In the
prediction of severe injury, the indicator variable, “pedestrian age > 75”, shows a normal
distribution, with a mean of 0.297, and a standard deviation of 3.852. This means that,
for 53.1% of the observations with pedestrian ages > 75, the probability of severe injury
increased, while, for 46.9% of the observations, the probability of severe injury decreased.
The fixed coefficients of the random parameter multinomial logit were similar in sign and
magnitude to the standard multinomial model.

5.1.3. Ordered Logit Model

The ordered logit model was carried out to capture the ordinal nature of the response
variable. A positive (or negative) parameter implied the likelihood (or unlikelihood) of a
severe injury, with an increasing value of the explanatory variable, and a reduction in the
likelihood of a slight injury. There were 18 statistically significant explanatory variables,
and 35 significant indicator variables that were associated with these categorical variables
(Table 4). The model’s McFadden Pseudo R? is equal to 0.15, which is the lowest value of
fit that is exhibited by the parametric models in the study. Consistent with the unordered
models, the most influential variable was the “pedestrian age”, which is also the case in the
ordered logit model.

5.1.4. Random Parameter Ordered Logit Model

The results for both the fixed and the random variables are reported in Table 5. The
goodness-of-fit results and the LR test results show that the random model provides a
significant improvement compared to the fixed parameter model. The X2 of the LR test is
1832.61, with 1 degree of freedom, and a p-value < 0.001, which shows that the random
parameter ordered logit model is superior to the standard ordered logit model, with over
99.9% confidence.

One indicator variable showed normally distributed random parameters, with statisti-
cally significant standard deviation, which indicates significant unobserved heterogeneity
in the data (Table 5). This variable is the “pedestrian age > 75”. In the prediction of both
the fatal and severe injury severities, the indicator variable, “pedestrian age > 75”, showed
a normal distribution, with a mean of 0.258, and a standard deviation of 0.580. This means
that, for 67.8% of the observations with pedestrian ages > 75, the probability of the most
severe injury increased, while, for 32.8% of the observations, the probability decreased.
Similar to the unordered models, the fixed coefficients of the random parameter ordered
logit model were similar in sign and magnitude to the standard ordinal model.

5.2. Non-Parametric Models
5.2.1. Association Rules

The a priori algorithm generated 254 rules with the fatal crash as the consequent, and
475 rules with the serious injury crash as the consequent. Furthermore, the extracted rules
exhibited, at most, three items as antecedents. Among the rules with the fatal crash as
the consequent, 97 rules include the “pedestrian age > 75" as the first antecedent, 53 rules
include “vehicle engine capacities (CCs) not smaller than 3000+”, 33 rules include “rural
area”, 26 rules include “vehicle skidding and overturning”, and 15 include “lighting equal
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to darkness—no lighting”. Table 6 contains a selection of the high-lift rules with the fatal
crash as the consequent. The pedestrian age also generated a considerable number of
significant rules for the serious injury crash as the consequent. Out of the 475 rules with
the serious injury crash as the consequent, 237 rules exhibited the “pedestrian age” as the
first item, which were followed by 74 rules with the “number of pedestrians involved in a
crash”, and “driver age < 25”, with 33 rules.

Table 6. Association rules with the fatal crash as the consequent.

ID Antecedents S% C% L LIC
Rule Item 1 Item 2 Item 3
1 Vehicle towing and articulation = Yes 0.14 28.87  14.24 n.a.
Lighting =
Darkness—no lighting 0.33 17.80 8.78 n.a
Lighting = o
>
3 Darkness—no lighting Speed limit > 50 mph 0.29 30.06  14.82 1.69
4 Speed limit > 50 mph 0.51 16.74 8.25 n.a.
5 Speed limit > 50 mph Day of week = Weekend 0.16 18.41 9.08 1.10
6 Vehicle type = Truck 0.30 13.64 6.73 n.a.
7 Vehicle skidding and 021 763 376 na
overturning = Yes
8 Pedestrian age > 75 years 0.56 7.46 3.68 n.a.
. Lighting =
9 Pedestrian age > 75 years Darkness—lights lit 0.15 13.96 6.88 1.87
. Lighting = Vehicle 1st point of
10 Pedestrian age > 75 years Darkness—lights lit impact = Front 0.12 16.94 8.35 1.21
. Lighting = Driver home
>
11 Pedestrian age > 75 years Darkness—lights lit area = Urban 0.11 14.72 7.26 1.05
12 Pedestrian age > 75 years Lighting = Vehicle age > 15years 011 1468 724  1.05
ge =70y Darkness—lights lit §e =Y ' ' ' '
13 Pedestrian age > 75 years Vehld? Maneuver = 0.37 12.30 6.07 1.65
Going ahead
14 Pedestrianage > 75years " ericie Maneuver = Pavement = Wet 011 1414 697 115
Going ahead or damp
. Vehicle Maneuver = Vehicle propulsion
15 Pedestrian age > 75 years Going ahead - Petrol 0.18 13.87 6.84 1.13
. Vehicle Maneuver = Junction detail =
> . . . .
16 Pedestrian age > 75 years Going ahead T or staggered 0.12 13.42 6.62 1.09
17 Pedestrianage > 75 years  Venicle Ist point of 040 1041 513 140
impact = Front
18 Pedestrianage > 75years  'onucle Istpointof - junction control =Notat 1 396 549 126
impact = Front junction or within 20 m
19 Pedestrian age > 75 years V?hlde st point of Vehicle propu}smn - 0.17 12.71 6.27 1.22
impact = Front Heavy oil
20 Pedestrian age > 75 years Ve.hlcle Lst point of Vehicle age > 15 years 0.30 11.18 5.51 1.07
impact = Front
21 Pedestrian age > 75 years  Day of week = Weekend 0.14 9.76 4.81 1.31
22 Pedestrian age > 75 years  Day of week = Weekend Driver gender =M 0.10 11.09 5.47 1.14
Driver journey purpose
23 Pedestrian age > 75 years = Journey as part 0.16 9.70 4.79 1.30
of work
24 Pedestrianage > 75 years | ovement=Wet 015 888 438 119
or damp
25 Pedestrian age > 75 years " chicie Propulsion = 025 88 435 118
Heavy oil
26 Pedestrian age > 75 years Driver gender =M 0.43 8.74 431 1.17
27 Pedestrian age > 75 years ~ Pedestrian gender =M 0.31 8.47 417 1.13
28 Pedestrian age > 75 years  Driver age = 25-34 years 0.11 8.10 3.99 1.09
29 Vehicle engine capacity 035 6.89 3.40 na

(CC) = 3000+
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Table 6. Cont.
D Antecedents S% C% L LIC
Rule Item 1 Item 2 Item 3
Vehicle engine capacity .
> . . . .
30 (CC) = 3000+ Speed limit > 50 mph 0.10 39.53  19.49 5.74
. . . Driver journey purpose
31 Vehicle engine capacity = Journey as part 031 817 403 119
(CC) = 3000+
of work
Vehicle engine capacity . _
32 (CC) = 3000+ Driver gender =M 0.33 7.33 3.61 1.06
33 Area = Rural 0.68 5.71 2.82 n.a.
34 Area = Rural Number of vehicles = 2 0.10 10.15 5.00 1.78
35 Area = Rural Day of week = Weekend 0.22 8.04 3.96 1.41
Table 7 contains the strongest rules that predict serious crashes.
Table 7. Association rules with serious crashes as the consequent.
D Antecedents 5% C% L LIC
Rule Item 1 Item 2 Item 3
36 Number of pedestrians 0.14 4248 175 na
involved > 2
37 Pedestrian age > 75 years 2.82 37.35 1.54 n.a.
38 Pedestrian age > 75 years Vehicle age > 15 years 0.18 46.88 1.93 1.26
39 Pedestrian age > 75 years  Driver journey purpose = Commuting to/from work ~ 0.26 44.53 1.83 1.19
40  Pedestrian age > 75 years Pavement = Wet 074 4293 177 115
or damp
41 Pedestrian age > 75 years Driver age > 75 years 0.29 42.49 1.75 114
42 Pedestrian age > 75 years Driver home area = 0.22 42.30 1.74 1.13
Small town
43 Pedestrian age > 75 years Pedestrian-crossing physical facilities = Zebra 0.20 41.77 1.72 112
Pedestrian-crossing
44 Pedestrian age > 75 years physical facilities Driver gender =M 0.15 46.70 1.92 1.12
= Zebra
45 Pedestrian age > 75 years Vehicle type = Van 0.27 40.77 1.68 1.09
. . B Junction control =
46 Pedestrian age > 75 years Vehicle type = Van T or staggered 0.11 48.10 1.98 1.18
. . Junction control = Give
> = . . . .
47 Pedestrian age > 75 years Vehicle type = Van way/uncontrolled 0.15 45.02 1.85 1.10
48 Pedestrian age > 75 years  'Cruc€ propulsion code 123 4068 167  1.09
= Petrol
49 Pedestrian age > 75 years Pedestrian gender = F 1.58 40.54 1.67 1.09
50 Vehicle Skidding and 097 3537 146 na
Overturning = Yes
51 Speed limit = 40 mph 1.23 34.73 1.43 n.a.
52 Speed limit = 40 mph Day of week = Weekend 0.32 39.63 1.63 1.14
Pedestrian age =
53 65-74 years 2.22 33.41 1.38 n.a
Pedestrian age = — _ .
54 65-74 years Driver journey purpose = Commuting to/from work ~ 0.21 4222 1.74 1.26
Pedestrian age = . _
55 65-74 years Driver age = 0-24 years 0.27 39.57 1.63 1.18
Pedestrian age = . B .
56 65-74 years Driver age = 0-24 years Vehicle age > 15 years 0.22 42.44 1.75 1.07
57 Pedestrian age = Pavement = Wet 0.63 37.63 155 113

65-74 years

or damp
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Table 7. Cont.
D Antecedents S% C% L LIC
Rule Item 1 Item 2 Item 3
Lighting =
58 Darkness—no lighting 0.61 33.20 1.37 n.a
Lighting = .
> . . . .
59 Darkness—no lighting Speed limit > 50 mph 0.34 35.51 1.46 1.07
60 Weather = Raining + 031 3109 128 na
high winds
61 Driver age = 0-24 years 3.06 29.32 1.21 n.a.
62 Driver age = 0-24 years Speed limit > 50 mph 0.14 38.56 1.59 1.31
63 Driver age = 0-24 years Speed limit > 50 mph Ve'hlcle Ist point of 0.10 41.72 1.72 1.08
impact = Front
64 Driver age = 0-24 years Day of week = Weekend 0.81 31.21 1.29 1.06
Lighting =
65 Darkness—lights unlit 022 29.32 121 na
5.2.2. Classification Tree
The classification tree is reported in Figure 3. The tool generated 15 terminal nodes,
10 of which predicted fatal crashes, 3 of which predicted serious crashes, and 2 of which
predicted slight injury crashes. The posterior classification ratio (PCR) was assessed for
all the nodes, but it was reported only for the terminal nodes in order to understand how
representative each terminal node is in relation to the predicted class. Node 17 and Node
19 exhibited very high PCRs (13.10 and 17.45, respectively), which implies the robustness
of both terminal nodes for the “fatal” classification.
Node 0
Fatal = 1,366 2.0%
Serious = 16,359 24.3%
Slight = 49,631 73.7%
N = 67,356 100.0 %
Speed limit
Improvement=0,042
40,>50 30, 20, missing
Node 1
Fatal = 10.6%
Pt = 6.6%
Speed limit Pedestrian age
Improvement=0,004 Improvement=0,031
40 =50 65-74, =75 <65, missing
Node 3 Node 4 Node 6
Fatal = 5.4% Fatal = 16.7% Slight =77.5%
Pt =35% Pt = 3.0% Pt =80.0%
Pedestrian age Lighting Vehicle manoeuvre Lighting
Improvement=0,001 Improvement=0,002 Improvement=0,005 Improvement=0,006
Going ahead, Turning, reversing,
3‘15 | o014 missing Daylight Darkness moving off Overtakir‘ng, other, missing Dayligt‘u Darkness
Node 7 Node 8 Node 9 Node 10 Node 11 Node 12 Node 13 Node 14
Fatal = 6.5% Serious=0.4% Fatal = 8.3% Fatal = 27.0% Fatal =7.3% Serious= 33.9% Slight = 79.4% Serious=25.3%
Pt =2.8% Pt =0.7% Pt 1.7% Pt 1.4% Pt = 6.6% Pt 6.8% Pt =56.0% Pt = 24.0%
PCR =1.25

Vehicle 1*! point of impact

Vehicle type
Improvement=0,001

Improvement=0,001

Bicycle, car,

Vehicle 1% point of impact
Improvement=0,001 p 0,002 p

Pedestrian age Vehicle type Vehicle type Vehicle manoeuvre
,002 ,004

pi 2

Bus, PTW<500,

Front, noimpact, |  Nearsideloffside,  PTW=500] priy<500. van, Front, back, | Nearsideloffside, Bicycle, car, truck, other, All others Going ahead, | Tuming lefuright/U, |
missing back truck, bus | ooy, missing 10 impact missing 6574 >75 PTW=500, van missing Truck | vehicles overtaking | reversing, moving off
| \ | \ \
§ Node 15 Node 16 Node 17 Node 18 Node 19 Node 20 Node 21 Node 22 Node23 Node 24 Node 25 Node 26 Node 27 Node 28
Fatal = 8.1% Fatal =3.0% Fatal =26.6% [| Fatal =5.7% Fatal = 35.4% Fatal = 9.7% || Fatal=4.2% Fatal= 10.3% || Serious=34.4%|| Fatal= 8.6% Fatal= 4.2% Slight= 79.5% || Serious=29.0%|| Slight=80.7%
Pt =19% Pt =0.9% Pt = 02% || Pt 1.5% Pt = 0.9% Pt =04% || Pt =32% Pt = 3.4% Pt =62%||Pt =0.6% Pt 1.1% || Pt =54.9%|| Pt =153%|| Pt = 8
PCR =4.02 PCR = 1.46 PCR=13.10 PCR =2.81 PCR=17.45 PCR =4.80 PCR =2.08 PCR=5.08 PCR =1.42 PCR =423 PCR =2.09 PCR=1.08 PCR =120 PCR=1.10

Darkness includes: darkness—lights lit, darkness—lighting unknown, darkness—lights unlit, and darkness—no lighting; All other vehicles includes vehicle type equal to: bus, bicycle, car, PTW<500, PTW2500, van, other, and missing.

Figure 3. Classification tree.
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The analysis of the variable importance (Figure 4) identified four variables as having
the most influence on the classification accuracy of the pedestrian crash severity: (1) The
speed limit; (2) The pedestrian age; (3) The lighting; and (4) The area.

0% 20% 40% 60%  80% 100%
Speed limit
Pedestrian Age
Lighting
Area
Vehicle Towing and Articulation
Road Type
Vehicle Manoeuvre
1st Road Class
Vehicle Type
Pedestrian Movement
Vehicle 1st Point of Impact
Junction Detail

Pedestrian Location

Vehicle Engine Capacity (CC)

Figure 4. Classification tree variable importances.

5.2.3. Random Forests

Initially, a RF was implemented, which generated 500 trees. However, the hyperparameter-
tuning process provided the RF optimal number of trees as 42. Then, the RF was performed
again, and the most important predictors that were associated with the fatal and severe
pedestrian crashes were determined. The importance of each explanatory variable is
assessed by observing how the prediction error increases when the data that are not in
the bootstrap sample (what Breiman calls, “OOB data”) are permuted for that variable,
while all of the others are left unchanged. The score rankings of the explanatory variable
importances are provided in Figure 5 below. According to the Gini impurity, four variables
were identified as having the most influence on the classification process of fatal pedestrian
crashes: the vehicle maneuver, the pedestrian age, the vehicle’s first point of impact, and
the driver gender, whereas, as far as serious crashes are concerned, the RF highlights the
severe impact on the pedestrian crash severity of factors such as the vehicle maneuver
and the driver gender, and it also identifies as critical the presence of “vehicle towing and
articulation”, and of the vehicle type.
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Fatal

0% 20% 40% 60% 80% 100%

Vehicle Manoeuvre I

Serious

0 80% 100%

X
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Vehicle Manoeuvre
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Vehicle 1st Point of Impact
Driver Gender

Driver Age

1st Road Class

Driver Home Area
Weather

Pedestrian Movement
Junction Detail
Pedestrian Gender
Vehicle Propulsion Code
Vehicle Age

2nd Road Class

Driver Journey Purpose

Pedestrian...

Pedestrian IMD Decile

Vehicle Junction Location

Vehicle Towing and...
Driver Gender
Vehicle Type
Speed limit
Lighting

Vehicle 1st Point of ...
Driver Home Area
Driver Age
Driver IMD Decile
Pedestrian Location
Area
Road Type
Vehicle Propulsion Code
1st Road Class

Pedestrian...
Vehicle Age
Junction Detail

Junction Control

Pedestrian Gender

Figure 5. RF variable importance for fatal and serious crashes.

5.2.4. Artificial Neural Networks

The ANN tool generated a graph that contains 26 factors and 132 neurons in the input
layer (excluding the bias unit), and 13 hidden nodes in the hidden layer, whereas the output
layer had three neurons that represented the three injury levels.

The input and hidden layers were linked through the hyperbolic tangent transfer
functions, whereas the transfer function between the hidden layer and the output layer
was the softmax function. A total of 13 factors exhibited high impacts on the pedestrian
crash severity (Figure 6), with normalized importances greater than 50%: the driver and
pedestrian ages; the vehicle engine; the lighting; the vehicles’ first point of impact; the speed
limit; the vehicle maneuver; the vehicle type; the area; the first road class; the weather; the
junction detail; and the pedestrian-crossing physical facilities.

5.2.5. Support Vector Machine Model

The SVM model was performed with the RBF kernel function. The model returned
19,909 support vectors, which defined the complex hyperplane. The SVM model provides
the visualization of the most relevant features through nonlinear kernels that are necessary
to carrying out the classification process. The importance of the predictors that were
exhibited by the tool (Figure 7) was used to compare the SVM output with the outputs of
the other non-parametric algorithms that were implemented in the study. The SVM model
identified four predictors, which mostly contributed to the correct classification of the
pedestrian crash severity: the first road class; the pedestrian age; the pedestrian-crossing
physical facilities; and the junction detail.
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Figure 6. ANN variable importance.
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Figure 7. SVM variable importance.
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5.3. Model Comparisons

In this section, the comparisons among the nine implemented methods are provided,
with an analysis of both the significant explanatory variables that affect the crash severity
(qualitative evaluation), as well as of the model performances (quantitative evaluation).

5.3.1. Significant Explanatory Variables and Effects on Crash Severity

The results of the parametric and non-parametric models highlight that the non-
parametric models tend to uncover more hidden correlations among the data than the
parametric models.

A total of 19 variables are significant in both the parametric and the non-parametric
models, and 1 variable is identified only by the first group of models, whereas 7 variables
turn out to be important in the non-parametric classification process.

The same variables are significant with reference to both fatal as well as serious in-
juries, except for the vehicle propulsion code (which is significant only for the fatal severity)
and the number of pedestrians involved (which is significant only for serious injuries).
The “pedestrian-crossing human control” is the variable that is significant only in the
econometric model, while the variables that are significant only in the machine learning al-
gorithms are the “driver home area”; the driver journey purpose; the number of pedestrians
involved; the vehicle’s first point of impact; the vehicle engine capacity; the weather; and
the junction control. In the appendix, we summarize the significant explanatory variables
that are associated with an increase in the crash severity. Table A7 contains the variables
that associated with an increase in the fatal crash probability, while Table A8 contains the
variables that are associated with an increase in the serious crash probability.

Pedestrian Characteristics

All of the methods found a correlation between the pedestrian age and gender, with
both fatal and serious crashes. The results indicate that elderly pedestrians (at least
65 years old) are very exposed to the most serious crashes, even though the parametric
models and the association rules highlight “pedestrians > 75” as the most vulnerable once
in a crash. The pedestrian age was also among the strongest predictors in the classification
tree, the RF, the ANN, and the SVM variable importance lists, with over a 50% influence
on the classification. As far as the pedestrian gender is concerned, only the parametric
methods and the association rules found greater propensities of male pedestrians towards
the most serious crashes.

Driver Characteristics

The driver gender was among one of the most important predictors that were identified
by the RF for fatal crashes. The result was consistent with the association rule results and
all of the parametric models, which identified males as the drivers that are most likely to
be involved in fatal and serious crashes. Very young drivers (age < 24 years) also showed
great propensities towards the most severe crashes. The relation was identified by all
the parametric models (both in fatal and serious crashes) and the association rules (in
serious crashes). Furthermore, the driver age was the most important predictor among the
variable importances that was exhibited by the ANN. Furthermore, only the association
rules identified aspects related to the driver’s purpose of the journey and the driver’s home
area. “Journey as part of work” and “commuting to/from work” were considered critical,
both for fatal and serious pedestrian crashes.

Vehicle Characteristics

All of the parametric models and the association rules identified a significant effect of
old vehicles (vehicle age > 15 years) on the most serious crashes. The parametric models
provide positive coefficients for both fatal and serious crashes, and the results are consistent
with the association rules. The vehicle type involved in a pedestrian crash affects the
pedestrian outcome. Specifically, a pedestrian struck by a truck has a higher injury risk.
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The results were highlighted by all of the methods. A further risk for pedestrian safety was
the presence of articulated vehicles, and the factor was identified by the association rules as
the strongest two-item rule for fatal crashes. The relation was confirmed by the parametric
models and the RF. By the parametric models, heavy oil vehicles were also identified as
affecting the crash severity, with positive coefficients, whereas hybrid vehicles exhibited
reductions in the crash severity. However, the association rules also found an association of
fatal crashes to vehicles with petrol propulsion. Furthermore, the ANN tool identified the
vehicle engine capacity as affecting the pedestrian crash severity.

Roadway Characteristics

The parametric models identified the increase in the speed limit as a contributory
factor towards increasing the crash severity. The speed limit was also the first split for
the classification tree growth, with higher speed limits associated with fatal crashes. The
association rules identified high-lift rules with the fatal severity as the consequent, and
a speed limit > 50 mph as the antecedent. The speed limit was also identified as one of
the most important predictors by the ANN, with 70% importance. All of the models also
pointed to the “first road class equal to A” and “rural areas” as patterns that influence the
crash severity, and this may be due to their correlations with higher speed limits.

Junction Characteristics

Pelican, puffin, toucan, or similar nonjunction pedestrian light crossings were found
to increase the pedestrian crash severity. As far the junction detail is concerned, the econo-
metric models did not provide the factors that influence the severity levels. By contrast,
the association rules found that T or staggered junctions, or give-way/uncontrolled in-
tersections, affected fatal and serious crashes in the presence of elderly pedestrians and
van vehicles.

Environmental Characteristics

The day of the week, the lighting, the pavement, and the weather at the time of the
crash were significant variables. The results indicate that the weekend is a predictor of fatal
and serious crashes in both the parametric and the non-parametric models. In particular,
this result of the parametric models was confirmed by the association rules. Darkness
that is due to the absence of lights, or to inadequate lighting, increases the likelihood of
the most severe crashes. The pavement condition affects the crash severity, particularly
when it is wet or damp. The parametric models and the association rules found consistent
results. The weather conditions were only highlighted by the ANN, which associates 60%
of the importance in the classification to the weather variable. However, neither the other
non-parametric models nor the parametric models confirm this result.

Crash Characteristics

The number of vehicles involved in the crash played a pivotal role. All of the para-
metric models show an increase in the probability of both fatal and serious injuries with
multivehicle crashes. The relation was also captured by the association rules (Rule 34,
L =5.00). A frontal vehicle impact was identified as critical by the association rules, and
this was confirmed by the RF and ANN tools. The association rules further identified the
association of the number of pedestrians involved in the crash with serious crashes, and
the association was identified only by the association rules. The generated two-item rule is
the strongest one for serious crashes.

5.3.2. Measures of Performance

The performances of the models were evaluated by the F-measure, the G-mean, and
the AUC. The results are shown in Tables 8 and 9. Table 8 reports the performance measures
that were exhibited by the parametric models, both in their standard formulations, without
applying any treatment to the imbalanced data, as well as in their weighted formulations,
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after the implementation of the weighted approach that is presented in Section 4.3. Table 9
reports the performance measures of the non-parametric algorithms in the standard and
weighted formulations. After the implementation of the weighted approach, all of the
methods exhibited a relevant improvement in the classification performances, except
for the association rules, where the weighted formulation did not significantly affect
the model’s performances. The comparison among the different models shows several
interesting results.

Table 8. Measures of the performances of the standard and weighted parametric models.

Standard Parametric Models Weighted Parametric Models

MNL RPMNL OL RPOL MNL RPMNL OL RPOL

Fatal
F-measure 0.16 0.23 0.00 0.02 0.28 0.53 0.00 0.16
G-mean 0.32 0.38 0.04 0.10 0.50 0.65 0.04 0.33
AUC 0.86 0.87 0.85 0.86 0.87 0.94 0.85 0.85
Serious
F-measure 0.06 0.32 0.05 0.14 0.21 0.41 0.41 0.40
G-mean 0.17 0.46 0.17 0.28 0.36 0.58 043 0.58
AUC 0.62 0.63 0.61 0.63 0.62 0.68 0.61 0.62
Averaged performances

F-measure 0.06 0.31 0.05 0.13 0.22 0.42 0.38 0.38
G-mean 0.18 0.45 0.16 0.27 0.37 0.59 0.40 0.56
AUC 0.64 0.65 0.63 0.64 0.64 0.70 0.63 0.63

Table 9. Measures of performances of standard and weighted non-parametric algorithms.

Standard Non-Parametric Algorithms Weighted Non-Parametric Algorithms
AR CT RF ANN SVM AR CT RF ANN SVM
Fatal

F-measure 0.05 0.00 0.02 0.04 0.01 005 016 057 0.18 0.95
G-mean 036 0.00 0.09 0.15 0.07 036 072 077 0.66 0.96
AUC 079 080 023 0.83 0.76 079 082 0.88 0.78 0.88

Serious

F-measure 039 011 0.00 0.13 0.03 039 029 090 0.26 0.95
G-mean 054 024 0.04 0.27 0.12 054 046 092 0.43 0.96
AUC 058 0.61 0.56 0.61 0.55 058 047 071 0.76 0.76

Averaged performances

F-measure 0.36 0.10  0.00 0.12 0.02 0.36 028 0.87 0.25 0.95
G-mean 0.53 022  0.05 0.26 0.11 0.53 048 091 0.45 0.96
AUC 0.59 0.63 0.53 0.63 0.56 0.59 049 0.72 0.76 0.77

As far as the parametric models are concerned, the multinomial logit (fixed parameters)
and random parameter multinomial logit (mixed parameters) models exhibited better
classification performances, compared with their ordered versions (ordered logit and
random parameter ordered logit models). Furthermore, the ordered logit model showed
a poor ability in correctly classifying fatal crashes, even after the weighting procedure.
Our results are consistent with previous studies [12,18]. The random parameter models
(both the random parameter multinomial logit model and the random parameter ordered
logit model) relax the restrictive assumption of the fixed model structure, which allows
the exogenous variables to vary over the threshold parameters and to outperform their
standard fixed parameter variants (multinomial logit and ordered logit models). Finally,



Sustainability 2022, 14, 3188

33 of 44

our results found out that, among all the parametric models that were implemented in the
study, the random parameter multinomial logit model has the best predictive performances
(on average, an F-measure equal to 0.42, a G-mean equal to 0.59, and an AUC equal to 0.70),
and it provides additional insights into the distribution of the parameters (by capturing
attributes with mixed effects).

As far as the non-parametric tools are concerned, the SVM outperformed the other
methods, and it is the best-fit model, according to the F-measure, the G-mean, and the
AUC, both for fatal and serious injury crashes. The model reached an accuracy in both the
correct positive and negative case classifications that is equal to 95%. The RF exhibited
performances that were only slightly worse to the SVM, with accuracies in both the positive
and negative cases of 77% in the fatal classification, and of 92% in the serious injury crashes.
The association rules and the classification tree exhibited similar performances, with a
better performance of the classification tree in predicting fatal crashes (a G-mean equal
to 0.72, and an AUC equal to 0.82), and better performance of the association rules in
predicting severe injury crashes (a G-mean equal to 0.59, and an AUC equal to 0.58).

Overall, the non-parametric algorithms outperformed the parametric models, and the
best performances were reached by the SVM and the RF.

6. Discussion and Conclusions

This study presents the results of a comprehensive analysis of four parametric models
and five non-parametric tools to investigate the factors that contribute to fatal and serious
injury crashes in Great Britain. Even though the models have already been applied to
model the pedestrian injury severity, a comparative analysis of the predictive power of
such modeling techniques is limited.

With regard to the parametric models, the multinomial logit model outperformed
the ordered logit model. The main explanation for this difference is that ordered proba-
bility models place a strict restriction on how the exogenous variables affect the outcome
probabilities. Previous studies [59] have already found the inconsistent estimates that
were produced by the ordered logit model produced inconsistent estimates, as well as the
elasticity effects that were constrained to be monotonic, from the lowest category of severity
to the highest. This implies that the ordered logit model does not allow the probabilities
of both the highest and lowest severity levels to increase or decrease. Thus, in order to
increase the probability of the highest severity class (which is the “fatal” class in this study),
a decrease in the probability of the lowest severity levels (which is “slight” in this study)
is observed, and vice versa. Our study confirms that implementing the ordered crash
severity nature on logistic regression models does not necessarily improve their predictive
performances across all the severity levels, as the relationships between the predictors and
the crash severity outcomes might not be monotonic.

As was expected, the random parameter models (the random parameter multinomial
logit and random parameter ordered logit models) were statistically superior to their
standard formulations, as they could accommodate the unobserved heterogeneity among
the observations. Furthermore, their use provides evidence of the existence of heterogeneity
among the data.

The likelihood ratio test shows that the random parameter multinomial logit model
is superior to the standard multinomial logit model, with over 99.9% confidence. Similar
results are also observed between the random parameter ordered logit model and the
standard ordered logit model.

The significant variables that impacted the pedestrian crash severity in the standard
logit models were tested for heterogeneity in the random parameter models: the random
parameter multinomial logit identified two random variables (the “going-ahead vehicle
maneuver” and the “roundabout”) in predicting fatal crashes, and one random variable
(the “pedestrian age greater > 75”) that affect the serious crashes. The random parameter
ordered logit, instead, found one random variable (the “pedestrian age > 75”) that impacted
both of the severity levels. The presence of such variability in the effect of the variables
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across the sample population highlights the need to account for the potential unobserved
heterogeneity, as this will improve our understanding, reduce erroneous inferences and
predictions, and provide more accurate and informative results. Finally, in terms of the
statistical fit, the value of the McFadden R? was the highest for the random parameter
multinomial logit model, which indicates that the model statistically outperformed the
other parametric models.

As far as the non-parametric methods are concerned, these models produced better
prediction performances than the parametric models. The SVM outperformed the other
methods, and it was the best fit model according to the F-measure, the G-mean, and the
AUC, both for fatal and serious injury crashes. The RF also exhibited high predictive
performances. However, the interpretability of the results of some of the non-parametric
models is lower compared to the parametric models. For instance, a common output of the
non-parametric models is the importance that the independent variables exhibit during the
classification process. Even though the results of the most important variables that were
identified by the non-parametric tools provide interesting information as well as a ranking
of the most explanatory variables, the variable importance does not provide information
about the directions and magnitudes of their impacts. Nevertheless, some algorithms also
offer other interesting outputs. This is the case of the classification tree and the RF, which
can both be graphically displayed as trees. Their structure enhances comprehension, with
intuitive results. The association rules identify the specific patterns that are associated with
pedestrian crashes and assign strength to the co-occurrence of several factors that affect the
crash severity. For instance, the contributory factors that are associated with pedestrian
crashes are the patterns with higher lift values, which can be considered as the parameters
for determining the significance of the patterns from the base condition [23]. Furthermore,
the rule structure allows for a clear framework of the attribute combinations.

Several factors were found to significantly increase the probability of fatal and serious
injuries in pedestrian—vehicle crashes. Nineteen variables were significant, both in the
parametric models as well as in the non-parametric algorithms, with one variable that was
significant only in the parametric models, and seven variables that were significant only in
the non-parametric algorithms. This means that the non-parametric algorithms uncover
more hidden correlations among the data than the parametric models.

The type of vehicle that is involved in a pedestrian crash influences the crash sever-
ity. As is found in previous studies [8,60], the presence of a truck increases the crash
severity because of the larger mass and the greater stiffness, the larger area of impact for
pedestrians, the higher bumper height, the blunter geometry, and the longer stopping
distances compared to other vehicles. Furthermore, the presence of articulated vehicles
has been identified as a contributor to the most severe pedestrian crashes. The direct
link of fatal/serious crashes with trucks, as well as with articulated vehicles, suggests the
importance of planning specific routes for trucks. In order to avoid the transit of heavy
vehicles in places that are highly frequented by pedestrians, it is crucial to establish a road
hierarchy that gives the highest priority to pedestrians, and then to the other road users.
Another relevant aspect is the point of the first impact in a crash. The frontal impacts
resulted in more severe crashes, compared to all other kinds of impacts. This finding is also
consistent with previous studies [20]. Rural areas and higher speed limits characterize the
roads where the most severe crashes occurred. This may be a consequence of the typical
rural road configuration, which has higher vehicle speeds combined with fewer separated
facilities for pedestrians, such as sidewalk paths and trails, compared to urban areas.

As is found in previous studies [8,61], young drivers increase the probability of fatal
and serious crashes. A possible explanation is that older drivers tend to drive more carefully
and at lower speeds. Hence, as motorists become older, pedestrians are more likely to
suffer no injuries once in a crash. Male drivers were also more likely to be involved in
the most serious crashes, and our results confirm previous findings [22,62]. These factors
may reflect the typically more aggressive way of driving of young male drivers. To reduce
pedestrian crashes, programs are essential to the enforcement of the existing traffic laws
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and ordinances for drivers. Furthermore, safety education should be integrated with school
programs, and targeted safety campaigns should be a priority government task.

As was expected, the pedestrian crashes occurred during the night or under low-
light conditions, which increased the likelihood of fatal consequences [63]. The driver
may fail to see a pedestrian at night, and this was also associated with frontal vehicle
impacts. This pattern highlights the importance of improving the pedestrian conspicuity.
Babi¢ et al. [64] found that drivers showed more active eye movements after noticing
pedestrians in reflective vests than they did after noticing pedestrians in non-reflective
clothing. Other than reflective clothes and markings, some studies [65,66] have examined
elements of clothing (electroluminescent panels) that may be useful supplements since
they are visible even when a pedestrian is not illuminated by approaching headlamps.
Nevertheless, roads should be effectively illuminated as well, especially in areas where
there is a high probability of observing pedestrians, such as in the proximity of pedestrian
crossings. Furthermore, although pedestrian crashes are more likely to occur during the
week, it is during the weekend that crashes are more likely to be severe. This may be due to
more relaxed or distracted driver/pedestrian behaviors. The elderly pedestrians were more
prone to severe outcomes relative to the younger individuals, once in a crash. This is due
to the decrease in their perception and reaction times, and to the increase in their physical
vulnerability and fragility and the suffering of various medical conditions, all of which
contribute to their higher injury risk propensity [63]. Low-speed areas may be employed
during the weekend to avoid the conflict between motor vehicles and pedestrians. The
solution may be especially applied in areas with relevant pedestrian activities, especially
for elderly pedestrians.

With consideration to the different contributory factors that are identified and their
magnitudes, a combination of engineering, social, and management strategies, as well
as appropriate safety countermeasures, should be implemented in order to effectively
moderate pedestrian crash severities, and to increase the perceived safety of walking.

In conclusion, the joint use of parametric methods and non-parametric algorithms
may provide powerful insights into the factors that contribute to fatal and serious crashes.
The performance metrics demonstrate that each group of methods has its pros and cons.
The parametric models confirm their advantages in offering easy-to-interpret outputs and
understandable relations between the dependent and independent variables, whereas the
non-parametric tools exhibit higher classification accuracies, and the ability to highlight
hidden relations among the data. The study results show that the combined use of econo-
metric methods and machine learning algorithms may effectively represent a satisfactory
trade-off between the predictive ability of the classifier and its ability to clearly explain the
phenomenon that is being investigated.
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Appendix A

Table Al. Descriptive statistics related to crash data (Part A).

Fatal Serious Slight Total

Variable N % N % N % N %
First Road Class
Motorway 47 32.2 49 33.6 50 34.2 146 0.2
A 747 33 5941 26.2 16,013 70.5 22,701 33.7
B 128 1.8 1819 25.7 5129 72.5 7076 10.5
C 78 1.6 1067 22.0 3712 76.4 4857 7.2
Missing 366 1.1 7483 23.0 24,727 75.9 32,576 48.4
Road Type
Dual carriageway 296 5.2 1653 28.9 3763 65.9 5712 8.5
Single carriageway 990 1.8 13,285 244 40,200 73.8 54,475 80.9
One-way street 43 1.1 833 21.3 3026 77.5 3902 5.8
Roundabout 15 1.4 236 21.5 846 77.1 1097 1.6
Slip road 12 24 97 19.6 387 78.0 496 0.7
Missing 10 0.6 255 15.2 1409 84.2 1674 2.5
Second Road Class
Motorway 5 17.9 9 32.1 14 50.0 28 0.0
A 97 1.8 1284 23.6 4051 74.6 5432 8.1
B 46 2.3 492 24.5 1471 73.2 2009 3.0
C 34 1.6 486 22.6 1631 75.8 2151 3.2
Missing 439 1.7 6553 24.7 19,574 73.7 26,566 39.4
n.a. 745 24 7536 24.2 22,891 734 31,172 46.3
Speed Limit
20 mph 74 0.9 1840 21.9 6476 77.2 8390 12.5
30 mph 821 1.5 13,007  23.9 40,697 74.6 54,525 81.0
40 mph 129 54 829 34.7 1429 59.9 2387 3.5
>50 mph 342 16.7 681 33.3 1020 49.9 2043 3.0
Missing 0 0.0 2 18.2 9 81.8 11 0.0
Junction Detail
Tor staggered 366 17 5472 248 16240 736 22,078 328
junction
Crossroads 108 1.9 1411 24.6 4208 735 5727 8.5

More than 4 arms

14 1.6 199 234 638 75.0 851 1.3
(not roundabout)
Mini-roundabout 6 1.0 128 21.5 462 77.5 596 0.9
Roundabout 34 1.8 467 24.1 1438 74.2 1939 2.9
Slip road 27 7.2 103 27.5 244 65.2 374 0.6
Private drive or 25 1.7 325 219 1135 764 1485 22
entrance
Not at junction 745 2.4 7536 24.2 22,891 73.4 31,172 46.3
Other junction 41 15 697 25.0 2051 73.5 2789 4.1
Missing 0 0.0 21 6.1 324 93.9 345 0.5
Junction Control
Authorized person 2 0.6 60 17.9 273 81.5 335 0.5
Auto traffic signal 163 2.1 1939 25.5 5514 724 7616 11.3
Give way/uncontrolled 451 1.7 6669 24.8 19,792 73.5 26,912 40.0
Stop sign 3 0.9 64 199 254 79.1 321 0.5

Not at junction or

o 747 2.3 7627 23.7 23,798 74.0 32,172 47.8
within 20 m
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Table A2. Descriptive statistics related to crash data (Part B).

Fatal Serious Slight Total
Variabl
ariable N % N % N % N %

Area

Rural 457 57 2149 26.9 5392 67.4 7998 11.9
Urban 909 1.5 14,208 239 44,232 74.5 59,349 88.1
Missing 0 0.0 2 222 7 77.8 9 0.0
Pedestrian-Crossing Human Control

School-crossing patrol 2 0.4 88 17.8 403 81.7 493 0.7
None within 50 m 1345 2.1 15,918 24.6 47,494 73.3 64,757 96.1
Other 14 1.3 232 21.7 824 77.0 1070 1.6
Missing 5 0.5 121 11.7 910 87.8 1036 1.5

Pedestrian-Crossing Physical Facilities

No physical crossing 931 21 10567 241 32387 738 43885 652
facilities within 50 m

Central refuge 67 2.7 702 28.1 1725 69.2 2494 3.7
Footbridge/subway 8 6.2 48 36.9 74 56.9 130 0.2
Pedestrian phase at 125 18 1785 254 5108 728 7018 104
traffic signal junction

Pelican, puffin, toucan,

or similar nonjunction o, 2.5 2102 274 5368 701 7662 114

pedestrian light

crossing

Zebra 39 0.8 1038 20.4 4005 78.8 5082 7.5

Missing 4 0.4 117 10.8 964 88.8 1085 1.6

Lighting

Daylight 632 1.3 10,840 22.8 36,040 759 47,512 70.5
Darkness—lighting 31 22 300 216 1056 761 1387 2.1

unknown

Darkness—lights lit 456 2.7 4654 27.9 11,585 69.4 16,695 24.8
Darkness—lights unlit 25 49 151 29.3 339 65.8 515 0.8

Darkness—no lighting 222 17.8 414 33.2 611 49.0 1247 1.9

Weather

Fine no high winds 1127 2.1 13,423 244 40,369 73.5 54,919 81.5
Fine + high winds 17 27 180 29.0 423 68.2 620 0.9

Fog or mist 8 5.0 45 28.3 106 66.7 159 0.2

Raining + high winds 21 3.1 208 31.1 440 65.8 669 1.0

Raining, no high 137 20 1693 253 4857 726 6687 99

winds

Snowing 13 34 101 26.2 272 70.5 386 0.6

Other 17 1.4 253 21.3 916 77.2 1186 1.8

Missing 26 1.0 456 16.7 2248 82.3 2730 41

Pavement

Dry 921 1.8 12,158 23.8 37,997 744 51,076 75.8
Wet or damp 432 29 3914 26.6 10,393 70.5 14,739 219
Snowy /Frozen 12 1.7 173 247 515 73.6 700 1.0

Missing 1 0.1 114 13.6 726 86.3 841 1.2

Day of Week

Weekday 955 1.8 12,413 23.7 39,094 74.5 52,462 779
Weekend 411 2.8 3946 26.5 10,537 70.7 14,894 221

Crash Severity 1366 2.0 16,359 243 49,631 737 67,356  100.0
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Table A3. Descriptive statistics related to vehicle data (Part A).

Fatal Serious Slight Total
Variabl
ariable N % N % N % N %
Number of Vehicles
1 1170 1.9 15,171 24.1 46,635 74.1 62,976  93.50
2 143 3.9 958 25.9 2603 70.3 3704 5.50
>2 53 7.8 230 34.0 393 58.1 676 1.00
Vehicle Type
Bicycle 8 0.6 399 28.2 1006 71.2 1413 2.10
PTW < 500 23 0.9 614 249 1833 74.2 2470 3.67
PTW > 500 32 4.7 206 30.2 445 65.2 683 1.01
Car 906 1.7 12,789 239 39,724 74.4 53,419  79.31
Van 92 2.3 1033 25.3 2960 72.5 4085 6.06
Bus 72 2.6 704 25.6 1976 71.8 2752 4.09
Truck 199 13.6 375 25.7 885 60.7 1459 217
Other 27 3.4 187 23.3 587 73.3 801 1.19
Missing 7 2.6 52 19.0 215 78.5 274 0.41
Vehicle Towing and Articulation
Articulated vehicle 97 28.9 110 32.7 129 38.4 336 0.50
No tow/articulation 1252 1.9 15,989 24.4 48,280 73.7 65,521 97.28
Other 13 4.7 83 29.7 183 65.6 279 0.41
Missing 4 0.3 177 14.5 1039 85.2 1220 1.81
Vehicle Maneuver
Going ahead 1060 2.7 10,717 26.9 28,032 70.4 39,809 59.10
Turning left/right/U 101 1.1 2127 23.6 6770 75.2 8998 13.36
Moving off 67 1.3 961 19.3 3943 79.3 4971 7.38
Overtaking 30 1.3 573 24.3 1755 74.4 2358 3.50
Reversing 61 1.2 964 19.1 4033 79.7 5058 7.51
Other 42 0.9 851 18.4 3738 80.7 4631 6.88
Missing 5 0.3 166 10.8 1360 88.8 1531 2.27
Vehicle Location
At junction 620 1.8 8711 24.9 25,691 734 35,022  52.00
Not at junction 744 24 7533 24.2 22,895 73.4 31,172 46.28
Missing 2 0.2 115 9.9 1045 89.9 1162 1.73

Table A4. Descriptive statistics related to vehicle data (Part B).

Fatal Serious Slight Tot
Variable N % N % N % N %

Vehicle Skidding and Overturning

No 1222 1.9 15,508 24.3 47,089 73.8 63,819 94.75
Yes 141 7.6 654 35.4 1054 57.0 1849 2.75
Missing 3 0.2 197 11.7 1488 88.2 1688 2.51
Vehicle’s First Point of Impact

Back 63 1.2 1031 194 4230 79.5 5324 7.90
Front 1041 2.7 9932 26.1 27,023 71.1 37,996 56.41
Nearside/Offside 219 1.1 4577 234 14,755 75.5 19,551  29.03
No impact 35 1.1 631 20.4 2431 78.5 3097 4.60

Missing 8 0.6 188 13.5 1192 85.9 1388 2.06
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Table A4. Cont.
Fatal Serious Slight Tot
Variabl
ariable N % N % N % N %
Vehicle Engine (CC)
<1000 100 2.1 1271 27.0 3336 70.9 4707 6.99
1000-1500 236 1.8 3426 25.7 9692 726 13,354 19.83
1500-2000 417 1.9 5456 253 15,675 72.7 21,548  31.99
2000-3000 155 25 1594 25.8 4435 71.7 6184 9.18
>3000 233 6.9 932 27.7 2204 65.4 3369 5.00
Missing 225 1.2 3680 20.2 14,289 78.5 18,194  27.01
Vehicle Propulsion Code
Heavy oil 650 2.9 5869 262 15886 709 22,405 33.26
Hybrid electric 14 1.0 258 17.7 1184 81.3 1456 2.16
Petrol 479 1.9 6537 259 18,244 72.2 25,260  37.50
Other 2 1.0 60 29.0 145 70.0 207 0.31
Missing 221 1.2 3635 20.2 14,172 78.6 18,028  26.77
Vehicle Age
<15 years 1002 2.3 11,292 25.6 31,869 72.2 44,163  65.57
>15 years 79 2.6 853 28.3 2079 69.0 3011 4.47
Missing 285 1.4 4214 209 15,683 777 20,182  29.96
Table A5. Descriptive statistics related to driver data.
Fatal Serious Slight Tot
Variabl
ariable N % N % N % N %

Driver Journey Purpose
Commutingto/from 147 55 y750 301 3044 674 5850  8.69
work
L‘j(‘;rrsey as part of 399 34 3107 263 899 703 11,805 17.53
To/from school 7 0.4 317 19.8 1277 79.8 1601 2.38
Other 108 2.6 1387 334 2653 64.0 4148 6.16
Missing 705 1.6 9789 223 33,458 76.1 43,952 65.25
Driver Gender
F 217 1.3 3917 242 12,050 74.5 16,184  24.03
M 1079 27 10,503 26.2 28,529 71.1 40,111  59.55
Missing 70 0.6 1939 17.5 9052 81.8 11,061  16.42
Driver Age
<24 years 194 2.8 2062 29.3 4776 67.9 7032 10.44
25-34 years 284 2.3 3215 26.3 8718 71.4 12,217  18.14
35-44 years 230 22 2627 252 7550 72.5 10407 1545
45-54 years 242 24 2548 255 7191 72.0 9981 14.82
55-64 years 187 2.7 1800 26.2 4887 71.1 6874 10.21
65-74 years 95 25 987 26.0 2713 71.5 3795 5.63
>75 years 60 23 740 28.6 1785 69.1 2585 3.84
Missing 74 0.5 2380 16.5 12,011 83.0 14465 2148
Driver IMD Decile
Less deprived 441 27 4432 27.0 11,570 70.4 16,443  24.41
More deprived 542 2.2 6652 26.4 17,959 714 25,153  37.34
Missing 383 1.5 5275 20.5 20,102 78.0 25,760  38.24
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Table A5. Cont.

Fatal Serious Slight Tot
Variabl
ariable N % N % N % N %

Driver Home Area

Rural 126 3.6 995 28.6 2357 67.8 3478 5.16
Small town 108 34 922 29.4 2109 67.2 3139 4.66
Urban 899 2.3 10,462 26.3 28,415 714 39,776  59.05
Missing 233 1.1 3980 19.0 16,750 79.9 20,963  31.12

Table A6. Descriptive statistics related to pedestrian data.

Fatal Serious Slight Tot
Variabl
anable N % N % N % N %
Number of pedestrians involved
1 1,28 2.0 15,691 24.0 48,301 74.0 65,272  96.91
2 66 3.6 572 30.8 1220 65.7 1858 2.76
>2 20 8.8 96 42,5 110 48.7 226 0.34
Pedestrian gender
F 458 1.6 6864 23.2 22,216 75.2 29,538 43.85
M 908 24 9494 25.1 27,406 725 37,808 56.13
Missing 0 0.0 1 10.0 9 90.0 10 0.01
Pedestrian age
0-14 years 67 0.4 3442 229 11,516 76.6 15,025 22.31
15-24 years 148 1.3 2505 21.5 9002 77.2 11,655 17.30
25-34 years 160 1.6 2049 20.9 7593 77.5 9802 14.55
35-44 years 155 2.1 1578 21.1 5732 76.8 7465 11.08
45-54 years 153 2.1 1694 23.7 5306 74.2 7153 10.62
55-64 years 151 2.7 1551 27.6 3919 69.7 5621 8.35
65-74 years 152 34 1494 334 2826 63.2 4472 6.64
>75 years 379 75 1897 37.3 2803 55.2 5079 7.54
Missing 1 0.1 149 13.7 934 86.2 1084 1.61

Pedestrian location

Crossing elsewhere

within 50 m of 118 2.1 1511 27.5 3866 70.4 5495 8.16
pedestrian crossing

Crossing on

pedestrian 182 1.7 2518 24.1 7727 741 10427 1548
crossing facility

In carriageway,
crossing elsewhere
In carriageway,
not crossing

In center of

516 1.8 7500 259 20,968 723 28,984  43.03

220 32 1449 20.9 5272 76.0 6941 10.30

. 90 3.1 769 26.6 2034 70.3 2893 4.30
carriageway
On footway or verge 125 1.8 1398 20.7 5238 77.5 6761 10.04
Missing 115 2.0 1214 20.7 4526 773 5855 8.69

Pedestrian movement

Crossing from
driver’s nearside
Crossing from
driver’s offside

440 2.0 5742 255 16,367 72,6 22,549 33.48

315 23 3717 26.8 9863 71.0 13,895 20.63
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Table Aé6. Cont.

Variable

Fatal

Serious

Slight

Tot

%

N

%

%

%

Crossing from
nearside, masked by
parked or

stationary vehicle
Crossing from offside,
masked by parked or
stationary vehicle

In carriageway,
stationary—not
crossing (standing

or playing)

In carriageway,
stationary—not
crossing—masked by
parked or

stationary vehicle
Walking along in
carriageway, back

to traffic

Walking along in
carriageway,

facing traffic

Missing

19

30

69

64

40

381

0.4

1.0

2.1

1.5

43

42

22

1199

839

598

112

329

200

3623

26.3

27.1

18.5

21.6

21.9

21.0

21.2

3344

2222

2565

399

1109

711

13,051

73.3

719

79.4

76.9

73.8

74.8

76.5

4562

3091

3232

519

1502

951

17,055

6.77

4.59

4.80

0.77

223

1.41

25.32

Pedestrian IMD decile

Less deprived
More deprived
Missing

412
541
413

24
1.6
24

4207
7999
4153

24.8
24.1
242

12,311
24,713
12,607

72.7
74.3
73.4

16,930
33,253
17,173

25.14
49.37
25.50

Table A7. Variables related to an increase in probability of fatal crash.

Parametric/Non-Parametric Models.

Only Parametric Models

Only Non-Parametric Models

First road class
Area
Day of week

Driver age

Driver gender

Lighting
Number of vehicles

Pavement

Pedestrian age

Pedestrian-crossing physical facilities

Pedestrian gender
Speed limit
Vehicle age

Vehicle maneuver

Vehicle propulsion code

Vehicle skidding and overturning

Vehicle towing and articulation
Vehicle type
Junction detail

Pedestrian-crossing human control

Driver home area
Driver journey purpose

Vehicle’s first point of impact

Vehicle engine capacity (CC)

Weather

Junction control
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Table A8. Variables related to an increase in the probability of a serious crash.

Parametric/Non-Parametric Models Only Parametric Models Only Non-Parametric Models
First road class Pedestrian-crossing human control Driver home area
Area Driver journey purpose
Day of week Number of pedestrians involved
Driver age Vehicle’s first point of impact
Driver gender Vehicle engine capacity (CC)
Lighting Weather
Number of vehicles Junction control
Pavement

Pedestrian age

Pedestrian-crossing physical facilities

Pedestrian gender
Speed limit
Vehicle age
Vehicle maneuver
Vehicle skidding and overturning
Vehicle towing and articulation
Vehicle type
Junction detail
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