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Abstract: Congestive heart failure (CHF) is one of the most debilitating cardiac disorders. It is a costly
disease in terms of both lives and financial outlays, given the high rate of hospital re-admissions
and mortality. Heart failure (HF) is notoriously difficult to identify on time, and is frequently
accompanied by additional comorbidities that further complicate diagnosis. Many decision support
systems (DSS) have been developed to facilitate diagnosis and to raise the standard of screening
and monitoring operations, even for non-expert staff. This is confirmed in the literature by records
of highly performing diagnosis-aid systems, which are unfortunately not very relevant to expert
cardiologists. In order to assist cardiologists in predicting the trajectory of HF, we propose a deep
learning-based system which predicts severity of disease progression by employing medical patient
history. We tested the accuracy of four models on a labeled dataset, composed of 1037 records, to
predict CHF severity and progression, achieving results comparable to studies based on much larger
datasets, none of which used longitudinal multi-class prediction. The main contribution of this work
is that it demonstrates that a fairly complicated approach can achieve good results on a medium size
dataset, providing a reasonably accurate means of determining the evolution of CHF well in advance.
This potentially constitutes a significant aid for healthcare managers and expert cardiologists in
designing different therapies for medication, healthy lifestyle changes and quality of life (QoL)
management, while also promoting allocation of resources with an evidence-based approach.

Keywords: heart failure; deep learning; longitudinal data; electronic health records; trajectory

1. Introduction

Congestive Heart Failure, also known as Heart Failure, is a medical condition marked
by decreased heart function and insufficient pumping action, resulting in an insufficient
supply of oxygen and nutrients to meet the body’s needs [1]. The main consequence of HF
is low quality of life and increased treatment costs for sufferers over time. In particular,
HF is accompanied by fatigue and short breath, leading to difficulties in normal day-to-
day activities. Early detection of HF is critical for determining its causes and developing
an effective treatment plan, which may include pharmacological or surgical options. An
estimated number of 64.3 million people worldwide is currently living with a form of HF [2].
The death rate from HF is reported to be reducing in recent years [3], therefore encouraging
further research into improving patient care. Nevertheless, HF still remains a serious
condition with no definitive cure and should be treated as soon as possible to mitigate its
progression. According to the 2021 European Society of Cardiology (ESC) guide [4], HF
prevalence varies based on the definition given. It is diagnosed in approximately 1–2% of
the adult population in developed countries, but could be higher due to unrecognized cases,
and is mostly present in elderly people, especially those above 70 years. The incidence in
developed countries is decreasing, probably because of better management of HF. However,
because the average age is increasing, the overall incidence is increasing as well.
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The etiology of HF depends on the geographical area being considered, as there is no
single, general classification. The difficulty in assigning a proper definition comes from
the fact that HF can manifest at a chronic stage of multiple possible overlapping diseases.
Despite the challenge in identifying HF due to the presence of multiple comorbidities, it
is fundamental to have a clear and complete clinical picture in order to design a good
treatment plan. Moreover, it is difficult to give a prognosis on the exact evolution of HF
and, as reported by Groenewegen et al. [2], physicians are often reluctant to communicate
quantitative information about patients’ health progression. Furthermore, the authors
report how HF is still a big problem worldwide despite the evolution of therapies and
clinical trials—a situation caused mainly by the increase in the average age of the elderly
population. This implies that there are more people at higher risk, as well as a greater
diffusion of HF in lower age groups. Notably, due to the high variability of HF cases, it is
not easy to perform a correct diagnosis, specifically, in defining the quantitative evaluation
of the failure. Unfortunately, HF treatment weighs heavily on both economic and medical
resources globally. There has been an estimated doubling of cases from 1990 to 2017, with
an increase of severe consequences, such as years lived with disability after HF, especially
in nations with low socio-demographic status [5].

Cook et al. [6] analyzed 197 countries and obtained a worldwide evaluation of the
economic burden of HF; it was estimated that 108 billion dollars have been spent to treat
this condition, out of which 65 billion was used for direct costs of hospitalization, while
the remaining part is correlated with lost productivity, morbidity and mortality. Recent
studies prove that the situation does not appear to be improving; for example, in the United
States, seven million new patients were discovered in 2020 and the approximate annual
cost per patient was calculated to be 24,383 dollars [7]. Lesyuk et al. [8] evaluated a larger
group of nations reporting an annual variable cost per patient, spanning from 868 dollars
in Korea, to 25,532 in Germany, and 15,952 dollars spent in Italy. Generally, treatment costs
increase as a result of various factors, most notably the severity of signs and symptoms
[9], providing yet another incentive to improve the quality of diagnosis systems. The rise
of HF patients, alongside high readmission rates of more than 30% in Europe and the
United States [10], appear to make this disease one of the most serious concerns faced by
healthcare systems. A recent review summarizes available information [11]. Reported
numbers widely vary depending on the specific nation under observation, and in many
countries incidence is declining. Unfortunately, on a worldwide scale, HF still represents
one of the most burdensome cardiovascular diseases. Major reported statistics for HF
include:

• High prevalence (1–3% in adult population).
• An incidence of 1–20 cases per 1000 population.
• High mortality: from 30 days mortality of 2–3% to five years mortality of 50–75%.
• Increased treatment costs. Mainly due to the increase of people over 65 years of age.

According to the studies referenced above, large sums of money are spent annually on
hospitalization and treatment of HF patients. As well, lasting effects on lifestyle quality
negatively impact the productive system, thus increasing the global burden of HF. All these
issues reflect the need for efficient systems capable of slowing down the fast progression
of the disease, as well as reducing hospitalization and indirect costs caused by HF. To
overcome this challenge, numerous clinical decision support systems (CDSS) have been
developed in the past decade; from simple systems based on rules, to modern algorithms
based on Machine Learning (ML) and Deep Learning (DL).

ML is a subset of artificial intelligence (AI) based on algorithms capable of learning
decision patterns directly from data [12]. What distinguishes ML from other types of AI is
the ability to extract rules and discrimination boundaries from examples without the need
of human intervention. ML can be further subdivided based on the type of data used in the
learning phase (i.e., supervised if the examples are labeled, unsupervised if otherwise), or
the expected output type (i.e., classification if there is a limited number of possible outputs,
regression if the objective can assume continuous values).
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DL [13] involves a group of learning algorithms based on artificial neural networks
(ANNs) [14]. ANNs were inspired by the human brain structure. They consist of computing
units called neurons with specific activation functions and parameters. The activation
function integrates incoming signals in complex ways, permitting the resolution of very
complicated problems. The main difference between DL and the neural networks used
in ML is that in the case of DL, the layers are used to achieve space transformations and
different representations of input data, whereas in classic ML, the layers just act as weight
functions to filter the inputs (e.g., the perceptron). Also, when it comes to very large
datasets or complex tasks, DL can transform data naturally within its structure without
resorting to costly pre-processing stages. A typical representation of a simple perceptron is
shown in Figure 1.

Figure 1. The perceptron rule. Graphical representation of the process of weight adjustment and the
operation chain from the input to the classification.

Starting from year 2010, DL experienced an explosive evolution in terms of adaptation.
This evolution specifically concerns the development of the following: (1) different layers
and algorithms to tackle increasingly difficult tasks, and (2) networks for specialized
functions. The most used DL networks are mainly Convolutional Neural Networks (CNN),
typically used when images are involved, and Recurrent Neural Networks (RNN), which
are capable of discriminating patterns, not only by the value of the features, but also from
the order in which they are presented. Thus, they are particularly efficient for the study
of longitudinal data. In this paper, we present the development and testing of a CDSS
using DL techniques for HF severity prediction of the future entity (disease state) of HF
patients. Our main goal is to aid expert clinical personnel in designing proper therapy for
HF patients, thereby easing their disease burden. We used a dataset composed of patients
at various stages of HF development (multiclass samples), and tested the performance
of various DL models. The combination of these modern deep learning techniques with
multi-class future entities as targets brings novelty to the current state of the art. To the
best of our knowledge, no previous work has been done in this area. Moreover, gaining a
foreknowledge of a patient’s future HF state could provide an important treatment aid for
domain experts, while also serving as a tool for managing clinical investments, personnel,
and structures when dealing with chronic diseases. We anticipate that this system could
also ultimately serve as an exemplar for testing new DL prediction algorithms for different
pandemic-like diseases.

2. Related Work

DL is currently being used to analyse clinical data in many different contexts. However,
use in medical imaging is perhaps the most ubiquitous and has witnessed the implemen-
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tation of very advanced algorithms. Many new representative works in this field include
brain Magnetic Resonance (MR) image super-resolution [15], optimized models with spe-
cific layers for the stratification of patients with cognitive disorders [16] and assessment of
skeletal disorders in humans using X-ray images [17].

Of particular interest in this study is the evaluation of mortality and hospitalization
due to HF since it is one of the greatest challenges associated with the disease. In a recent
systematic review [18], many ML-based studies were reported to have dwelt on the predic-
tion of these outcomes. The measured Area Under the Receiver Operating Characteristic
(AUROC or AUC) curve varied from between 0.47 to 0.84 for hospitalizations, and from
0.48 to 0.92 for mortality predictions. Less accurate results frequently resulted from data
scarcity and/or poor quality of data. Given the high variability in the symptoms of HF, the
capability of ML algorithms to predict different objective functions has been tested; these
include discrimination of HF patients and HF category, and the prediction of possible out-
comes. Different types of data (electronic health records (EHR), electrocardiogram (ECG),
etc.) have been employed in several studies to obtain these evaluations. Summarized
results prove that ML can potentially outperform conventional methods, and will likely
become the future technology for managing HF patients [19,20].

The area of binary classification for HF is well explored in the literature [21,22]. Various
strategies and datasets have been tested with results reaching values up to 100% in accuracy,
using different kinds of data. Vectors realized with EHR represent one of the simplest
solutions to obtain an instance from each patient [23]. Guidi et al. [24] compared the
accuracy of diagnosis of four different algorithms. They also proposed a portable interface
for enhanced home monitoring, thus lowering the burden of patient hospitalizations and
frequent hospital visits. The outcome of their work led to the realization of the dataset
used in this study. Further work by Guidi et al. [25] incorporated more modern algorithms,
which led to an improved dataset; specifically, a random forest-based system reached 89%
accuracy in the classification of HF severity defined by clinicians. The management system
was optimized in 2014 by the same authors [26] by realizing a complete interface and a
database to manage HF patients. This made it possible to store data and visualize patients’
progress, data and follow-up. Additionally, the system was implemented with a trained
ML-based classifier to obtain an evaluation of the patient severity and the probability of
re-hospitalization based on the considered instant.

The concept of prediction using longitudinal data is of great importance in the medical
field. There are works in the literature that exploit ML and DL for prediction tasks even
outside the field of HF [27,28].

Many different ML algorithms are easily available and offer the possibility to test
different strategies to classify HF; Plati et al. [29] tested seven different ML algorithms in a
dataset composed of EHRs from 422 subjects obtaining 92.23% accuracy with a rotation
tree (ROT) that proved to be the best model.

Similarly, discriminating features can be extracted from Heart Rate Variability (HRV)
measures [30]. Melillo et al. [31] were able to identify the features that best separate different
NYHA classes from HRV analysis of a public dataset, after which they implemented a
decision tree classifier, which achieved 95% accuracy.

The versatility of DL allows for improvement in the kind of data used for classification,
while also allowing for the elimination of the features extraction phase. Furthermore,
the performance of DL algorithms applied to HF classification has been shown to be
reliable and efficient. Nirschl et al. [32] employed a CNN to detect HF from biopsy
images and obtained 99% sensitivity and 94% specificity, using 105 and 109 images as
training and test sets respectively. One of the main limitations of DL algorithms is the
difficulty of obtaining explainable representation of the decision pattern of the model.
Rao et al. [33] exploited the data of more than one hundred thousand patients to test the
accuracy of a deep NN in the task of predicting the risk of developing HF in a six month
window, obtaining 93% accuracy and an area under precision recall curve (AUPRC) of 0.69.
They were also able to show the most important features, according to the algorithm, by
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applying a process of features ablation. Likewise, sound signals have been tested with 92.5%
classification accuracy achieved using a mixed ML/DL system [34]. Other authors have
also examined audio recordings, and they were able to classify patients into various NYHA
classes using recorded speech with 95% accuracy in a small sample of 31 patients [35].
Other unconventional data has been tested to classify HF, D’addio et al. [36] fed features,
extracted from 199 poincarè plots, to AdaBoost, KNN and NB to classify patients based on
the NYHA class reaching an accuracy of 80% and an AUROC of 0.7.

Finally, different studies have worked on extracting information from ECG signals as
these provide a huge source of data. Kwon et al. [37] compared ML and DL algorithms to
differentiate various types of HF based on the ejection fraction. Using a dataset composed
of 55,163 ECGs, they observed that the DL algorithms outperformed the ML methods, with
AUC greater than 0.820. In another study, single heartbeats were analyzed and the results
obtained from five minute periods were combined to discriminate between healthy and
HF subjects, reaching almost 100% accuracy [38]. DL allows the testing of many different
structures and methods; Li et al [39] exploited a multi-scale residual network to classify
764 patients into different NYHA classes with an accuracy of 94%.

To the best of our knowledge, there are only two publicly available datasets similar to
the ones used in this study: (1) the Heart Failure Prediction Data Set [40] and (2) the UCI
Heart Disease Data [41]. Although they both deal with important aspects of heart diseases,
mortality for the former and HF development for the latter, both differ greatly from our
dataset in terms of the quantity of cases and the objective class. Numerous articles have
tested and refined the categorization of these datasets’ objective labels using ML algorithms,
both in the fields of mortality prediction [42–44] and HF development [45–47].

3. Materials and Methods
3.1. Dataset

From 2012 to 2021, cardiology specialists at the Santa Maria Nuova Hospital in Flo-
rence, Italy, gathered a total of 1888 records from 760 patients. Several patient characteristics
(grouped into five categories) were measured and recorded during each visit, namely, pa-
rameters, etiology, comorbidities, therapy and extracted values from ECG. The number of
follow-up visits for each patient ranged from one to ten. For algorithmic necessity, these
patient features were further sorted into three categories based on their numerical type.
Table 1 shows the resulting classification of patient characteristics.

For algorithmic reasons, the features presented in Table 1 have been categorized by
numeric type. Some of the most commonly measured continuous cardiac parameters in-
clude: (a) Systolic arterial pressure, (b) Diastolic arterial pressure (c) Cardiac frequency, and
(d) Ejection fraction (EF). Normal values for systolic (maximum) and diastolic (minimum)
pressure are usually 120 mmHg and 80 mmHg, respectively. The cardiac frequency is the
number of complete cardiac cycles executed each minute; 60 pulses per minute (PPM) at
rest is considered as normal frequency. The EF is the percentage of blood ejected by a
specific chamber, which can either be the entire heart, the atrium, or ventricle. It is a useful
index for measuring the contractile power of the heart and is often used to define different
types of HF. The EF is calculated, as shown in Equation (1), as the difference between the
end diastolic volume (EDV) and the end systolic volume (ESV), normalized with respect to
the ESV, and multiplied by 100 to obtain a percentage value.

EF(%) =
EDV − ESV

EDV
× 100 (1)
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Table 1. Features recorded for each visit by physicians.

Continuous Ordinal Boolean
Age NYHA class Ischemic heart disease
Systolic arterial pressure ACE-blockers dose level Hypertension
Diastolic arterial pressure Sartans dose level Valvulopathy
Weight Beta-blockers dose level Cardiomyopathy
Height Diuretics dose level Toxic heart disease
Cardiac frequency compliance Diabetes
Ejection fraction COPD
ACE-blockers Dose Kidney failure
Sartans dose Dyslipidemia
Betablockers dose Cerebrovascular pathologies
Diuretics dose Thyropathy
BNP (or proBNP) Hepatopathy
Oxigen saturation Sinus rhythm

Atrial fibrillation
Brachial block
Pacemaker ICD
Pacemaker ICDCRT
Digitalic
Antialdosterone
Antiplatelet agents
Anticoagulants
Nitrates
Statins
Amiodarone
Ivabradine
Surgical therapy

BNP = Brain Natriuretic Peptide, NYHA = New York Heart Association, COPD = Chronic Obstruc-
tive Pulmonary Disease , ICD = Implantable Cardioverter Defibrillator, ICDCRT = Implantable
Cardioverter Defibrillator Cardiac Resynchronization Therapy.

EDV is the remaining blood volume (with respect to the ventricle) at the end of the
diastolic phase, while ESV is calculated at the end of the systolic phase. Also of particular
note is the brain natriuretic peptide (BNP) [48]. BNP is part of the natriuretic peptides
family, a group of substances produced by the heart. Typically, small amounts of BNP are
found in the blood, and high levels are correlated to the insufficient capability of the heart
in pumping blood. Due to the significance of BNP, a team of authors has created a quick
colorimetric diagnostic kit based on an interaction between NT-ProBNP and a specific
antigen [49].

Similarly, for ordinal values, the NYHA classification is a parameter that helps physi-
cians in categorizing patients affected by HF. There are four different levels based on patient
complexity. Finally, the Boolean features report a particular condition or specific medication.
The number of valid records (with or without missing values) was 1739. The first data pre-
processing task was to deal with missing/incorrect data, particularly for the BNP feature.
Two methods were applied: firstly, with the help of our clinical partners, we recovered
some missing BNP values for affected patients by assigning values acquired within two
months from the time of data analysis; secondly, some incorrectly assigned values were
removed upon critical examination of the remaining records, leaving a total of 641 records
with a BNP or proBNP value assigned. For those cases where only proBNP values were
available, we applied a change factor of four, as suggested by our clinical partners after
discovering from a literature analysis [50–52] that conversion factors and formulas may
vary as a function of the data source, nationality, and some other environmental issues.

Another challenge that emerged from the data analysis process was the difference in
the number of patient follow-ups, for example, some patients had only four visits, while
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some others had up to ten. To solve this problem, we adopted the padding strategy, which
generally provides uniformity of dimensions. We shall describe this procedure in more
detail in later sections. It is worthy of note, however, that some records could not be
transformed into the desired dimension—a situation which translated into less knowledge
of the patient’s history. At the end of every cardiology visit, every patient was assigned a
score representing the feature object of prediction (i.e., 1-mild, 2-moderate, and 3-severe),
which gives an indication of the severity of the HF. Finally, a preliminary data-cleaning
phase was executed by removing records with too many missing values (>3) and features
with low variance (<0.8). All involved patients signed the consent to process their personal
data. It is useful to emphasize here that we received already anonymized data from our
clinical partners. Moreover, all data records had been collected following the usual standard
of care procedure. No additional patient examination was executed for the purpose of
this study.

3.2. Prediction System Development

To build the prediction system for HF, we developed a multi-input neural network
using DL techniques. ML algorithms were not tested because of the heterogeneous nature
of the follow-up counts, since it was not possible to establish a criterion to build a dataset
valid for ML, which also carried temporal information. A common approach, applied by
Zhao et al. [53], is to line up different follow-up counts. This method requires a large
quantity of longitudinal data registered consistently over many years without missing
values. Unfortunately, the nature of data we were dealing with could not accommodate
these requirements.

As the main goal of this study is to predict the evolution of HF entity by designing a
multi-class prediction system based on longitudinal EHR data, we adapted the methods
presented by Zhao et al. [53] and Rongali et al. [54], respectively. In the former, the authors
applied ML and DL models to EHR longitudinal and genetic data with the goal of predicting
a ten-year cardiovascular event outcome for individuals, while in the latter, this concept was
extended by developing a model capable of identifying uniform representations between
different types of clinical features for each patient encounter. Following this, an RNN stage
was developed to add temporal information to the data, which was then split into 3 sets,
i.e., training and validation sets for model selection, and the test set for final evaluation. In
our adaptation of the combination of these two methods for deploying multi-input neural
networks, we had the opportunity to explore an uncommon path with a unique dataset
of HF patients, each labelled by expert clinical personnel in nine years of hospital visits.
All the executed processes, starting from the data pre-processing to the test phase, are
presented in Figure 2 and have been applied to each network structure separately, thus
making it possible to evaluate the best model for each structure on the test set.

3.2.1. Data Pre-Processing

The data pre-processing stage was designed to produce the best data conditioning spec-
ified by DL theory. The procedure for data pre-processing can be divided into four stages:

• BNP interpolation
• Cleaning
• Scaling
• Structuring data

As mentioned earlier, missing BNP values in our dataset posed a major challenge. To
solve this problem, we set a threshold value (criterion) for each of the different classes of
HF as follows:

• Class Mild: BNP < 500
• Class Moderate: 500 < BNP < 1000
• Class Severe: BNP > 1000
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Figure 2. Flow chart of developed model.

Each criterion was applied by generating a random number in the selected range
based on the class of the record with missing BNP values. We were confident that this
approach would not bias our data since it was applied by looking at the actual class, while
keeping the objective label as the future class. Once the dataset was repopulated, patient
records with a single visit were deleted. This is because for prediction tasks, the first entity
value of the series of visits is unusable due to lack of additional data to implement the
task. Next, we deleted those features which presented low variance (<0.8), and would
have provided minimal information to our model. Unfortunately, many patient records
had a lot of missing values and the threshold adopted to remove these data instances also
deleted records with more than three unrecoverable features. Consequently, the number of
complete records for our study was composed of 1037 instances with complete features
(after the BNP interpolation). Beyond these, no further features selection was performed
since the number of instances obtained was large enough to implement the model.

For the second step of this stage, standard scaling was applied to the ordinal and
numerical data respectively, as neural networks have been shown to work better with
scaled data. The scaling method employed (standard scaling) transformed the value of
each feature so that they had mean equal to 0 and variance equal to 1. This method is
effected via the following equation:

Sv =
x − µ

σ
(2)

where Sv is the scaled value, x the original feature value, µ the average of the feature values
and σ the standard deviation.

Scaling was not applied to the Boolean group because these features can only assume
a value of 0 or 1, and scaling would be useless. Thereafter, the whole dataset was divided
into the training and test sets in the ratio 90/10. This division was made with respect to
two important considerations; firstly, that the training and test sets must have the same
class distribution, and secondly, that data coming from the same patient must either be in
the training or test set. Furthermore, we implemented a function for the creation of a triple
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input dataset and encoded the objective labels with a one hot strategy. The purpose of
incorporating this step was to recreate the progressive knowledge that physicians gain with
successive patient visits and use the information acquired to predict the future entity of the
pathological condition. To exploit all possible information from our dataset, we generated
from each series of N visits a number of instances equal to N-1. This provided growing
knowledge owing to the increment in patient history information as shown in Figure 3.
Since neural networks accept inputs of the same dimensions, we applied the padding
strategy to unify the size of temporal data. This is basically a method of filling missing
dimensions with constant values. Two different padding strategies were tested, namely,
zero padding (fills all missing dimensions with series of zeros) and custom padding (fills
all missing dimensions with the oldest value).

The function for implementing the data instances, which was used to train and test the
model, makes use of the original list of features, and returns three elements for each patient.
The first element is a 2D array composed of stacked temporal values, while the second and
third are arrays with Boolean and ordinal values, respectively. The last column displays
the HF entity value of the next (future) visit for each patient. For this reason, the first label
of the series and the last array of values are excluded from the prediction system. Finally,
the 2D arrays were made uniform in shape by the application of padding operations as
described previously.

3.2.2. Models Design

According to the literature, the best results in the field of HF prediction or classification,
using EHR longitudinal data, have been achieved with RNN-based networks [53–56]. It is
well known that there is no general, golden rule for constructing ANNs [57,58], and there are
no specific networks which work perfectly for certain tasks (except for some considerations
on the algorithms used). Given this scenario, we started with a simple baseline model and
repeatedly checked variations in performance as the parameters changed. Specifically, the
temporal branch is responsible for managing features which define a temporal dependence
and is composed of RNN layers, while the ordinal and Boolean branches extract features
from simpler data with densely connected layers. Patient features were therefore reordered
and grouped for the multi-input neural network as follows:

• Temporal data: Weight, ejection fraction, BNP, NYHA class, age, systolic arterial
pressure, diastolic arterial pressure, cardiac frequency, ACEblockers dose, Betablockers
dose, diuretics dose.

• Boolean data: Ischemic heart disease, hypertension, dyslipidemia, sinus rhythm, atrial
fibrillation, diabetes, BPCO, nitrates.

• Ordinal data: Sarta dose level, Betablockers dose level, compliance.

There are many different methods to encode variables and features in order to properly
feed them to an ANN [59]; amongst them continuous data were scaled to have mean equal
to 0 and unit variance, ordinal encoding was chosen for the ordinal features and boolean
features were already in the binary form. Finally, labels were encoded according to the
one-hot procedure. Given the relatively small shape of the dataset, standard encoding
operations were applied to the features. As can be seen above, the NYHA class was
reordered from ordinal to temporal data since the variation of this feature is important
in the evaluation of the HF entity. Finally, a concatenated layer was created to merge all
representations obtained from different data types to give the final prediction. A graphical
representation of the network design is shown in Figure 4.

We tested a total of four different models. The first model was taken as base, and
then different permutations were tested. The second model was realized to see if adding
complexity would bring some improvement in performance, while for the third and fourth
models, we implemented the network structures designed by Zhao et al. [53]. Two aspects
of the third and fourth models are worthy of note: firstly, due to differences in the strategy
adopted for data organization, we copied the structure for the temporal branch only, and
changed the last layer to discriminate between three classes instead of two; secondly, for
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the fourth model, we applied a different approach using a 1D CNN instead of RNN layers.
All the models used dropout layers [60], which work by randomly dropping basic neurons
(along with their connections) from the neural network during training to overcome the
issue of overfitting.

Figure 3. Visual representation of the dataset creation process. An example of data instances obtained
from a single patient history. From a history of length N, N-1 data instances can be created since the
most recent record cannot be associated with a future severity. Labels are represented in red.

The main difference between the models was the type and number of layers. The
temporal branches were composed of long short term memory (LSTM) layers, while the
other classes of data were processed by dense layers. The maximum depth of the models
varied from five to ten layers, each with 32 or 64 inner units. The fourth model represents
an exception since the LSTMs were replaced with a simple CNN structure. The optimizer
chosen for the compilation was based on the Adam algorithm [61] with a learning rate of
0.001. The loss metric we chose to minimize is the categorical cross entropy, since this is
suggested when dealing with multi-class problems [58]. Regarding training parameters,
the batch size was fixed as 32 and the epochs selected based on the early stopping method.
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For each model, we applied 10 fold cross-validation (CV) and calculated the required
performance metrics at each instance after changing three sets of weights and two padding
strategies, which resulted in a total of six assessments for each model. The CV was used to
define the best sub-model by changing the weights and the padding method.

Figure 4. Sketch of the designed multi input neural network. Different types of data are processed by
specific layers. Information from data that may have temporal evolution are extracted by a RNN,
while other data are passed through dense layers. The last concatenated layer merges the features
extracted by all the branches to provide the final prediction.

4. Results

The metrics considered are as follows:

• True Positives (TP): Positive instances correctly classified
• False Positives (FP): Negative instances classified as positive
• True Negatives (TN): Negative instances correctly classified
• False Negatives (FN): Positive instances classified as negative
• Accuracy: Represents the number of correct predictions with respect to the total

number of samples

Acc =
TP + TN

TP + TN + FP + FN
.

• Recall or Sensitivity: Ratio of positive instances correctly classified to total (actual)

positives in the dataset Rec =
TP

TP + FN
.

• Precision: Accuracy of the positive predictions Prec =
TP

TP + FP
.

• False positive rate (FPR): Ratio of false positives to the total number of actual negative

events
FP

FP + TN
• Area Under Receiver Operating Characteristic (AUROC) curve: Area under the Re-

ceiver Operator Characteristic (ROC) curve, which plots the true positive rate (recall)
against the FPR. To plot the entire curve, these two metrics are evaluated many times
after the variation of a classification threshold. The best value for the AUROC is 1.

• Area Under Precision Recall Curve (AUPRC): This metric is particularly used for
binary responses. It is appropriate for rare events and is not dependent on model
specificity. In this case, the axes are defined as precision and recall, respectively.

• Confusion matrix: This matrix is the most complete way of representing results. It
is shown as a table containing true values in the rows and predicted values in the
columns. A perfect confusion matrix is diagonal; values in the diagonal are predicted
correctly and the others are not.
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For multi-class classification, the usual approach is the One Versus All (OVA), which
calculates relevant metrics by iteratively defining one of the classes as positive, and the
others as negative. The final value is the mean of all the partial results.

The set of parameters which provided the best results was passed through a final
evaluation with the test set to check its generalization capabilities. This final test was
executed with a number of training epochs equal to the mean of the total epochs obtained
during the 10 experiments with the training set. This last detail was considered due
to the fact that we used early stopping during the CV to obtain the best value before
overfitting (associated with too many training epochs) could take effect. The padding
strategies adopted have been discussed in the previous section. To address the issue of class
imbalance, assigning a weight representative of the original class distribution is a common
approach, and is recommended when using Python algorithms to feed scaled values. The
reason for this is because high values can result in poor model performance and flip the
bias on the classes. To counter this effect, we implemented a function to logarithmically
scale the count of the classes by multiplying with a variable number, which gave us three
different sets of weights. The weight assigned to the majority class is always 1, i.e., the
moderate HF class in our case.

Results without the use of weights were not reported in this paper since almost all the
predictions were of the majority class as a result of the bias introduced by the unbalanced
classes. In Table 2, we report the results of the 10 fold CV, while the confusion matrices,
shown in Table 3, present the results on the test set of the model trained with the best set of
parameters for each of the four models. The best model in terms of considered metrics is
presented in bold text.

Table 2. Results of 10-fold CV of the best models. In bold the best model according to the selected
metrics.

Model Accuracy AUROC AUPRC Parameters

mean std variance mean std variance mean std variance

1 61.71 4.65 51.58 79.15 3.45 11.93 59.67 6.13 37.63 0 padding
Weight set 1

2 60.89 4.25 18.02 77.99 3.49 12.20 58.71 6.12 37.40 0 padding
Weight set 1

3 61.56 4.36 18.98 78.64 2.50 6.25 57.84 4.46 19.86 Custom padding
Weight set 1

4 62.74 1.55 2.39 79.24 1.68 2.82 61.64 3.71 13.74 0 padding
Weight set 1

Table 3. Confusion matrices of best models on the test set. In bold the model with the best trade-off
between accuracy and no-bias toward the majority class.

Model 1 Predicted Labels Model 2 Predicted Labels

Mild Moderate Severe Mild Moderate Severe

True

labels

Mild 11 12 0 True

labels

Mild 11 11 1

Moderate 3 53 12 Moderate 5 45 18

Severe 0 4 5 Severe 0 2 7

Model 3 Predicted Labels Model 4 Predicted labels

Mild Moderate Severe Mild Moderate Severe

True

labels

Mild 8 13 2 True

labels

Mild 15 8 0

Moderate 3 34 31 Moderate 13 55 0

Severe 0 1 8 Severe 0 9 0

In the first stage of our evaluation, model number 4 appeared to be the best, with an
accuracy of 62.7%, AUROC of 79.3 and an AUPRC of 61.7. The ROC curves, reported in
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Figure 5 show that all the models perform better than a random classifier, but still achieve
similar scores, even on the test set. However, by looking at the confusion matrices of the
same set, it became clear that there is a bias toward the major class in model 4, leaving
model 1 as the most balanced. For this reason, we decided to select the best performing
model based on a compromise in performance on the training and test sets. Using this
approach, model number 1 emerged as the best since it is the only model that does not
output extremely wrong classifications, such as classifying the mild class as severe or vice
versa. The confusion matrix is of particular benefit in presenting results because it can
represent multi-class classification problems in a simple manner and is easy to understand.
The final accuracy score on the test set is therefore 69%.

Figure 5. ROC curves on the test set. All the models performed similarly on unseen data. Examination
of other metrics provides deeper insights.

5. Discussion

In this work, we realized a deep learning-based system capable of predicting the
entity of HF on a custom dataset using longitudinal EHR. Varying some of the possible
network parameters did not result in any significant changes in the model performance.
This suggests that there might have been an inherent performance threshold we were not
able to scale, probably due to some limitations in the dataset or perhaps because we did
not manipulate the correct hyperparameters. Further experiments with a larger pool of
data are therefore needed to ascertain this possibility. Within the scope of our research,
we have not found any similar study involving the use of mixed-type, longitudinal, EHR
data for multi-class system classification, where the objective is to predict the evolution of
HF, nor studies that specifically used the same features as ours to implement their model,
thus making it hard to compare our results with others obtained in the literature. ML for
HF-related tasks has been widely used in many studies, using different kinds of data (e.g.,
ECG, EHR, etc.) to obtain indications related to the diagnosis or risk analysis [18,19]. A
reduced version of the dataset used in this study was utilized in other studies as previously
cited in the introductory section. The classification of two separate labels, namely, HF
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severity and the type of HF, was examined and compared using neural networks (NN),
support vector machine (SVM), fuzzy algorithm, decision tree (DT), and random forests
(RF). In the cited work, ’type of HF’ was adopted as a label given by doctors based on
how many times the patient was readmitted to the hospital in a year. The best algorithms
attained an accuracy of about 88% in the classification of HF type, and between 83% to 89%
in the classification of severity [25,26]. In a later study, the same authors merged the system
on a bigger framework for the management of HF patients, and re-tested the algorithms.
Accuracy values approached 71.9% for HF type and 81.7% for HF severity [62]. The authors’
best outcomes came from a different dataset composed of ECG records, where they were
able to classify heartbeats as belonging to patients with or without HF with nearly 100%
accuracy [38]. When dealing with longitudinal data, system complexities increase and
results do not usually reach the performance levels of standard EHR-based classifiers. The
usage of RNNs allows for extracting patterns based on the order in which data is presented
to the model and represents one of the most novel approaches used when dealing with
longitudinal records. Applications of such networks can involve a variety of HF tasks,
ranging from event outcome prediction to re-hospitalization risk evaluation. One of the
closest studies to our current work is probably the one implemented by Zhao et al. [53],
where the authors applied ML and DL models to more than one hundred thousand EHR
longitudinal and genetic data to predict 10-year cardiovascular event outcomes. In their
work, they applied 8 fold CV and achieved values of AUROC between 0.78 and 0.80, and
AUPRC between 0.25 and 0.27 with the best models. We obtained comparable results in
terms of AUROC, and better results for the AUPRC values. Another comparable work is
that of Rondali et al. [54] where they obtained a higher AUROC of 0.8. However, they im-
plemented a binary mortality prediction and had access to a larger, and more homogeneous
pool of data.

Other studies involving deep learning and longitudinal data are those of Golas et al. [55],
where the authors obtained an AUC of 0.705 and accuracy of 64% on a 30 day readmission
prediction task, as well as that of Choi et al. [56], where the authors obtained an AUC of
0.883 with their best model for the early detection of HF. Both works involved pools of data
of approximately thirty thousand instances.

Adding the concept of the “trajectory” of HF disease led to the discovery of other
similar works. However, there are several aspects that make these hard to compare with
our work. For instance, Pham et al. [63] realized a DL-based system which used electronic
medical records as input. They exploited the information obtained from the progression
history of patients to provide two support outputs: one for the inference of the current
illness state, and the other for the prediction of future outcomes. The pathologies under
study were diabetes and mental health factors. The custom network they developed
outperformed classic Markov models and standard RNN with different objectives to classify.
Metrics scores were not incredibly high, but, considering the complexity of the task, the
results highlight the importance of increasing studies in the field of predictive modelling.
In another study, HF and disease trajectory were associated in a binary prediction task [64].
The authors proposed an RNN-based method to predict HF onset at the next hospital
visit (as we did with our three HF classes). The goal was to build a trajectory sequentially
predicting an event, and then use this as a base for further predictions. They used a dataset
composed of more than 84 thousand patients and 28 years of follow-up. For the first task,
they obtained an AUROC greater than 0.85, while the second task yielded an AUROC
ranging between 0.8 and 0.6. Notably, AUROC values decreased when the trajectory to
build became longer, specifically, from one to ten years. In some other studies, researchers
have tried to predict other factors related to cardiovascular diseases. Guo et al. [65], for
example, obtained very high values of AUROC for multiple predictions with a dataset of
more than 200 thousand patients. The aim was to predict successive values of a series of
cardiovascular health indexes such as smoking status or body mass index.

Summarizing, ML applications have been widely analyzed in the field of HF and
standard techniques have been applied to different sets of data for diagnosis and risk
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predictions. Longitudinal data is employed in a limited number of studies, and to the best
of our knowledge, multi-class entity prediction has never been considered. With the help
of our clinical partners, we have been able to use a unique longitudinal dataset obtained
from HF patients during periodic hospital visits to explore this new area and propose a
novel methodology for predicting HF entities. This system was designed to go beyond the
diagnosis, which is to date a well investigated area, providing expert cardiologists with a
novel tool for supporting the prognosis task. According to our clinical partners, this support
system has the potential to become a game changer, useful to save time, money and to gain
more confidence in communicating the prognosis to the patient. Many aspects represent
obstacles in the present configuration, but gathering more data and the fast development
of DL makes it reasonable to think that the performance will grow significantly in future
studies The discordance in the number of follow-up visits amongst patients and missing
values represent the main limitations of this work. We hope that the continued gathering of
quality longitudinal data will help in designing a more solid protocol, capable of unifying
all required dimensions. Despite these reported limitations however, our developed model
has shown improved performance on the test set by gaining more accuracy and providing
good generalization capabilities on data which had never been seen before by the algorithm.
By exploring and applying hyperparameter tuning and advanced network optimization
methods in future studies, we hope to discover the root cause of the performance limitations
(whether algorithmic or data-related) highlighted in the present study and develop new
methodologies and techniques that will aid better model performance.

6. Conclusions

The goal of this prediction system is to help expert cardiologists in the difficult task of
predicting the evolution of HF, based on the clinical history of patients. This research output
can help in adjusting or designing therapies that are best suited to individual patients,
while taking into consideration HF unpredictability. In addition, the proposed approach
can help organizations that manage health investments, particularly in relation to diseases
that have high costs in terms of human and financial resources. Finally, future works
may investigate the applicability of novel methodologies on this dataset, given the daily
expansion of studies involving HF and ML. Fine tuning specific model parameters and
employing more articulated networks could also be explored when more data become
available. Likewise, a regression-type output could be deployed, where risk percentages for
all classes could be tested in order to give more information to clinicians. It is hoped that in
the very near future, greater opportunities will arise for sharing public datasets dedicated
to thorough and state-of-the-art research in multi-class classification and/or prediction of
HF or other chronic diseases, through the realization of more data repositories focused on
this field of study.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural network
AUPRC Area Under Precision Recall Curve
AUROC or AUC Area Under ROC
BNP Brain Natriuretic Peptide
CDSS Clinical Decision Support System
CHF Congestive Heart Failure
CNN Convolutional Neural network
COPD Chronic Obstructive Pulmonary Disease
DL Deep Learning
ECG Electrocardiogram
EDV End Diastolic Volume
EF Ejection Fraction
EHR Electronic Health Records
ESC European Society of Cardiology
ESV End Systolic Volume
FP False Positive
FN False Negative
HRV Heart Rate Variability
HF Heart Failure
ICD Implantable Cardioverter Defibrillator
ICDCRT Implantable Cardioverter Defibrillator Cardiac Resynchronization Therapy
KNN K-Nearest Neighbors
LMT Logistic Model Tree
ML Machine Learning
NB Naive Bayes
NN Neural Network
NYHA New York Heart Association
PPM Pulse Per Minute
RF Random Forest
RNN Recurrent Neural network
ROC Receiver Operating Characteristic
ROT Rotation Tree
SVM Support Vector machine
TP True Positive
TN True Negative
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