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Abstract: Walking plays an important role in overcoming many challenges nowadays, and gov-
ernments and local authorities are encouraging healthy and environmentally sustainable lifestyles.
Nevertheless, pedestrians are the most vulnerable road users and crashes with pedestrian involve-
ment are a serious concern. Thus, the identification of pedestrian crash patterns is crucial to identify
appropriate safety countermeasures. The aims of the study are (1) to identify the road infrastructure,
environmental, vehicle, and driver-related patterns that are associated with an overrepresentation of
pedestrian crashes, and (2) to identify safety countermeasures to mitigate the detected pedestrian
crash patterns. The analysis carried out an econometric model, namely the mixed logit model, and
the association rules and the classification tree algorithm, as machine learning tools, to analyse the
patterns contributing to the overrepresentation of pedestrian crashes in Italy. The dataset consists of
874,847 crashes—including 101,032 pedestrian crashes—that occurred in Italy from 2014 to 2018. The
methodological approach adopted in the study was effective in uncovering relations among road
infrastructure, environmental, vehicle, and driver-related patterns, and the overrepresentation of
pedestrian crashes. The mixed logit provided a clue on the impact of each pattern on the pedestrian
crash occurrence, whereas the association rules and the classification tree detected the associations
among the patterns with insights on how the co-occurrence of more factors could be detrimental
to pedestrian safety. Drivers’ behaviour and psychophysical state turned out to be crucial patterns
related to pedestrian crashes’ overrepresentation. Based on the identified crash patterns, safety
countermeasures have been proposed.

Keywords: random parameter multinomial logit; rule discovery; CART; pedestrian crash occurrence;
contributory factors

1. Introduction

The European Union is facing multiple interconnected challenges, from climate change
to the even worse air pollution, from a stagnant number of road deaths to the increasing
urbanization. Everything is exacerbated by rising obesity and the ageing population [1].
The rapid increase in motorization followed by the increasing use of private motor vehicles
is impacting non-renewable energy consumption, pollution, obesity, congestion, and colli-
sions. What is more, the United Nations reported that 99% of the world’s urban population
breathes polluted air [2]. Cities are responsible for more than 70% of the global greenhouse
gas emissions produced and this is a significant threat to human health worldwide, espe-
cially considering that more than half the world’s population live in cities nowadays and it
is estimated that seven out of ten people will likely live in urban areas by 2050.

Among the EU countries, some governments are currently applying walking strategies
at a national level. Since 2017, the English government has adopted a Walking Investment
Strategy [3] with the aim to increase the levels of walking up to 300 stages per person
per year. A similar national walking promotion strategy has also been adopted in Finland
since 2018 [4]. Among the targets, the Finnish program aims to increase the walking modal
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share by 30% by 2030. Including pedestrian safety in every step of the planning, design,
implementation, and management process is another key factor to ensure that the main
pedestrians’ problems are identified and then mobilised.

Over being carbon and emission-free, walking is also the most common mode of
transport, making part of our everyday lives and trips. Progress in road safety has been
made in recent years. Nevertheless, there is still evidence that safety improvements are not
equally shared by all road users and vulnerable road users’ safety has not improved as
much as that of vehicle drivers. Pedestrian crashes, indeed, still represent a serious issue in
the EU. Over the period 2010–2018, the number of pedestrian deaths decreased by 2.6% on
average each year in the EU compared to a 3.1% annual reduction in motorised road user
deaths [1]. In the same period, in Italy, the number of pedestrian deaths decreased annually
by only 0.1% [5]. Zegeer and Bushell [6] further found a greater pedestrian risk in urban
areas where both pedestrians and vehicle activities are most intense. Thus, the greatest
evidence is the ever-growing need for better knowledge among planners and engineers
about the possible countermeasures that may balance the safety needs of pedestrians,
drivers, and all road users. For a serious shift to walking, mainly for local journeys in
densely populated areas, the design of urban spaces needs to change, establishing a modal
priority on the basis of the vulnerability of road users. Hence, a study on the identification
of pedestrian crash patterns appears strategic for planning, designing, and managing a safer
transport system to guide safer urban development. Extensive prior research focused on
the identification of contributory factors of severe and fatal crashes using the econometric
models, mainly the multinomial logit (e.g., [7–10]) and the ordered logit models [11,12]. The
need for models capable of capturing the unobserved heterogeneity highlighting hidden
correlations among data has led to the implementation of the mixed logit (or random
parameters) model [13–18]. Currently, the mixed logit is considered a precise estimator and
the most used, proven, and consolidated model that explicitly accounts for crash-specific
variations in the effects of explanatory variables. The model implies that the parameter
effects can vary in magnitude across individual crashes, also ranging from negative to
positive impacts [19], or be fixed within an observation group [20].

According to the review of the existing literature, prior recent research has also ap-
plied machine learning algorithms. Recognized as data-driven models, their use is to be
preferred with large datasets [21]. They are free from a priori probabilistic and parametric
assumptions about the phenomena of understudying, typical of the econometric models.
A downside of the machine learning tools is their difficulty in uncovering causality. Nev-
ertheless, some machine learning methods, such as the rule discovery technique and the
classification trees, show better capabilities in detecting valuable information. Particularly
powerful for dealing with prediction and classification problems, the association rules
(e.g., [22–26]), as well as the classification trees (e.g., [24]), have been used in several studies
to find out patterns affecting the pedestrian crash severity by identifying sets of patterns
or rules. Prior studies performed by Montella et al. [27] showed that both the classifi-
cation trees and the association rule straightforwardly detected non-trivial associations
among crash patterns and their interdependencies in the data. The tree structure allowed
a graphical visualization of the phenomenon investigated whereas the association rules
revealed new information previously unknown in the data. Moreover, the results provided
by the two different approaches were never conflicting and the joint use of the two machine
learning tools as complementary methods was encouraged.

Several studies investigated the possible advantages provided by the combined use
of econometric models and machine learning tools [28,29]. The implicit assumption in
developing a traditional statistical model is that it will reveal causal effects while preserving
the best prediction accuracy. However, the latest applications of machine learning tools,
together with the issues of causality in traditional statistical modelling, advise safety
analysts to find a compromise between uncovering causality and prediction accuracy.
When choosing among the logit models or the data-driven methods, the main result
provided by previous studies is that the traditional models and the machine learning tools
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agree on many aspects, including the importance of the variables and the direction of
association between several explanatory variables and the response variable, and their
joint use provides a trade-off between the predictive accuracy and the soundness and
interpretability of the results [13,14].

Since previous research found that the joint application of the econometric and data-
driven approaches is successful in providing non-trivial insights about crash contributory
patterns and their interdependencies, this paper performed both an econometric model,
namely the mixed logit model, and the association rules and the classification tree algorithm,
as machine learning tools, to evaluate the patterns contributing to the greater propensity
of pedestrian crashes. These methods have been generally used to analyse crash severity,
whereas this study provided an application of such a methodological approach to detect
the features associated with an increase in pedestrian crash proportion.

The aims of the study are (1) to detect the road infrastructure, environmental, vehi-
cle, and driver-related patterns that affect the overrepresentation of pedestrian crashes
in Italy, and (2) to identify safety countermeasures to mitigate the detected pedestrian
crash patterns.

The paper is organized as follows: Section 2 shows the crash data and the related
descriptive statistics, Section 3 introduces the methodology, Section 4 provides the results
of pedestrian crash occurrence, Section 5 reports a comparison of the results provided
by the different methods, Section 6 provides the discussion followed in Section 7 by
the conclusions.

2. Crash Data

The Italian National Institute of Statistics (Istat, Rome, Italy) provided the crash data
used in this study. The database includes only fatal crashes or crashes with injuries that
occurred on Italian roads from 2014 to 2018. Crash severity is collected in two different
levels: injury crashes and fatal crashes, without distinction between slight or serious injuries.
Consistently with the datasets from Australasia, the European Union, and the United
States [30], the Istat database defines a fatal crash as a crash where at least one person dies
in the crash or within the 30 days following it. Crashes are classified through 118 variables
describing the crash characteristics (including the time, the location of the crash, and the
presumed circumstances of crashes), the roadway characteristics and the environmental
conditions, the traffic units (including the vehicle characteristics), and the people implicated
in the crash (including the characteristics of drivers, passengers, and pedestrians). Further
variables regarding detailed crash information and driver psychophysical states were
provided by Istat for research support. Finally, the dataset included 15 categorical variables
and consisted of 874,847 crashes. Of which, 101,032 were pedestrian crashes (Tables 1 and 2)
representative of 11.55% of the total crashes. Among the pedestrian crashes, 2.94% resulted
in fatal crashes. Regarding all fatal crashes (n = 15,780), almost one fatal crash out of five is
with pedestrian involvement (18.81%).

Table 1. Descriptive statistics of total crashes (Part A).

Variable Code
Total Crashes Pedestrian Crashes

Count % Count %

Total - 874,847 100.00 101,032 11.55

Fatal crashes - 15,780 1.80 2969 18.81
Injury crashes - 859,067 98.20 98,063 11.42

Area

Rural R 222,480 25.43 4878 2.19
Urban U 652,367 74.57 96,154 14.74

Road type
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Table 1. Cont.

Variable Code
Total Crashes Pedestrian Crashes

Count % Count %

Motorway Mw 46,519 5.32 330 0.71
Rural national Rn 51,670 5.91 1059 2.05

Rural provincial Rp 87,851 10.04 1851 2.11
Rural municipal Rm 36,440 4.17 1638 4.50
Urban national Un 31,247 3.57 3163 10.12

Urban provincial Up 58,148 6.65 4968 8.54
Urban municipal Um 562,972 64.35 88,023 15.64

Alignment

Curve Cu 91,279 10.43 4377 4.80
Unsignalised
Intersection NoSgInt 267,038 30.52 23,398 8.76

Roundabout Rou 38,986 4.46 2141 5.49
Signalised Intersection SgInt 55,432 6.34 6282 11.33

Tangent Tan 407,489 46.58 63,334 15.54
Tunnel Tn 3295 0.38 102 3.10
Other Ot 11,328 1.29 1398 12.34

Day of Week

Weekday Weekday 649,063 74.19 80,030 12.33
Weekend Weekend 225,784 25.81 21,002 9.30

Season

Autumn Aut 274,269 31.35 35,909 13.09
Spring Spr 231,911 26.51 23,525 10.14

Summer Sum 180,444 20.63 14,928 8.27
Winter Win 188,223 21.51 26,670 14.17

Lighting

Day Dy 645,011 73.73 70,903 10.99
Night Nt 229,836 26.27 30,129 13.11

Pavement

Dry Dry 724,291 82.79 83,117 11.48
Slippery Sl 7574 0.87 236 3.12

Snowy/Frozen S/F 3594 0.41 254 7.07
Wet Wt 139,388 15.93 17,425 12.50

Weather

Clear Cl 727,506 83.16 82,796 11.38
Fog Fo 8104 0.93 689 8.50

High winds HW 1266 0.14 100 7.90
Raining Ra 84,836 9.70 11,974 14.11
Snowing Sn 2024 0.23 211 12.32

Other Ot 51,111 5.84 5237 10.25

Table 2. Descriptive statistics of total crashes (Part B).

Variable Code
Total Crashes Pedestrian Crashes

Count % Count %

Vehicle type

Bicycle Bc 26,310 3.01 1837 6.98
Car Car 647,265 73.99 76,390 11.80

PTW PTW 126,829 14.50 12,192 9.61
Truck Tr 62,628 7.16 7004 5.52
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Table 2. Cont.

Variable Code
Total Crashes Pedestrian Crashes

Count % Count %

Other Ot 11,815 1.35 3609 30.55

Vehicle age

0–10 0–10 407,491 46.58 49,600 0.12
10–20 10–20 185,593 21.21 20,888 0.11
>20 >20 25,960 2.97 2781 0.11

Missing Missing 230,751 26.38 25,985 0.11
Not applied NA 25,052 2.86 1778 0.07

Vehicle defect

Defect Yes 9129 1.04 306 3.35
No defect No 865,718 98.96 100,726 11.63

Driver behaviour

Disobeying pedestrian crossing facility DisobeyingPedCrossings 35,563 4.07 35,563 100.00
Disobeying stop sign DisobeyingStop 38,547 4.41 131 0.34

Distraction Distract 127,166 14.54 808 0.64
Illegal travel direction IllegalDirection 13,456 1.54 740 5.50

Manoeuvring Manoeuvre 58,915 6.73 10,904 18.51
Normal Normal 196,948 22.51 26,096 13.25

Speeding Speed 90,375 10.33 9416 10.42
Tailgating Tailgating 76,445 8.74 731 0.96

Other Ot 237,432 27.14 16,643 7.01

Driver psychophysical state

Defective sight DefSight 2327 0.27 678 29.14
Impaired Impaired 36,378 4.16 1212 3.33
Normal Normal 836,142 95.58 99,142 11.86

Driver age

≤17 0–17 13,808 1.58 1282 9.28
18–24 18–24 111,569 12.75 8474 7.60
25–44 25–44 331,223 37.86 30,389 9.17
45–54 45–54 171,496 19.60 20,074 11.71
55–64 55–64 109,128 12.47 14,238 13.05
65–74 65–74 68,683 7.85 10,710 15.59
≥75 ≥75 52,073 5.95 9645 18.52

Missing Missing 16,867 1.93 6220 36.88

Driver gender

Female F 235,184 26.88 24,467 10.40
Male M 635,235 72.61 73,850 11.63

Missing Missing 4428 0.51 2715 61.31

The variable lighting, classified as a binary variable (day/night), was obtained evalu-
ating the sunrise and sunset by the “SUNCALC” R-Package.

3. Method

This study presents the analysis of the road infrastructure, environmental, vehicle,
and driver-related patterns affecting pedestrian crash propensity in Italy trough the imple-
mentation of the mixed logit model, the rule discovery, and the CART algorithm. The entire
dataset containing 874,847 crashes was used in the analysis. All 15 variables presented
in Tables 1 and 2 were tested as potential explanatory variables. The dependent variable
was the pedestrian crash that has a binary response: yes, if a pedestrian crash occurred,
no otherwise.
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3.1. The Mixed Logit Model

The mixed logit model is a random utility model that schematizes a specific category jth
(that is the propensity of a crash of being classified as a crash involving—or not involving—
a pedestrian in this study) with a utility given by the sum of Vij (the systematic component)
and εij (the unobservable stochastic error):

Ui= Vi
j + εi

j= ∑ β j xij + εij (1)

where:

xij are the characteristics that may potentially affect a pedestrian crash,
βj are the parameters to be estimated,
εij is the disturbance term.

The hypothesis of the estimated parameters of being fixed is relaxed, so that one
or more coefficients could potentially vary across crashes or be fixed within a group of
crashes [20]. In that case, each β can be random and is derived as:

βj = βj
′ + σj (2)

where

βj is the column vector of random parameters capturing unobserved crash-specific attributes,
β′j is the mean of βj random coefficient,
σj is the standard deviations of the random coefficient.

The probability Pi(j) that a crash i (i = 1, ..., I) is classified as a pedestrian crash/not a
pedestrian crash j (j = 1, ..., J) is given by:

Pi(j) =
∫ eβ jxij

∑J eβ jxij
f (β|θ )dβ (3)

where:

f (β|σ ) is the β density function,
θ describes the β coefficients density function in terms of mean and variance.

The model was developed using the forward stepwise procedure with a p-value at
most equal to 0.05. Finally, the McFadden’s Pseudo R2 index was used to assess how the
model fits the data:

R2McFadden = 1−
LL f ull

LL0
(4)

where:

LLfull represents the log-likelihood of the model of interest which includes all statistically
significant variables,
LL0 is the log-likelihood of the null model.

The R-cran environment with “Rchoice” was used to perform the mixed logit model.
For each significant coefficient, the Odds Ratio (OR) was assessed to evaluate the

relative amount by which the odds of the outcome increased (OR > 1) or decreased (OR < 1)
when the value of the corresponding indicator variable is set equal to 1.

3.2. Machine Learning Models

Two machine learning tools, namely association rules and classification trees, were
used to detect pedestrian crash patterns.

3.2.1. Association Rules

The association rules are a descriptive-analytic method that extracts information from
big data in rules having the form A→B. Each rule is made up of at least one pattern, called
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antecedent (indicated with A), and a consequent (indicated with B). In our analysis, the
consequent is the pedestrian crash. The a priori algorithm (proposed by Agrawal et al. [31])
examines all candidate item-sets. The valid rules must satisfy minimum values of support,
confidence, and lift. The support represents the percentage of the entire data set covered by
the rule (Equation (5)), the confidence evaluates the reliability of the inference of the rule
(Equation (6)), and the lift measures the statistical interdependence of the rule (Equation (7)):

S (A→ B) =
#(A ∩ B)

N
; S(A) =

#(A)

N
; S (B) =

#(B)
N

; (5)

Confidence =
S (A→ B)

S(A)
(6)

Lift =
S (A→ B)

(S (A)× S (B))
(7)

where:

S(A→B), S(A), and S(B) are respectively the supports of the rule, of the antecedent A, and
of the consequent B,
#(A→B), #(A), and #(B) are respectively the number of crashes having the antecedent A and
the consequent B, the number of crashes with A as antecedent, and the number of crashes
with B as consequent,
N is the total number of crashes in the dataset (874,847 total crashes).

Each rule with one antecedent and one consequent is a 2-item rule and is used as a
starting point. Each rule with two antecedents and one consequent is a 3-item rule, and so
on. Each rule with n + 1 items is validated by the lift increase (LIC), set equal to 5% [32,33].

The LIC values is calculated as follows:

LIC =
Li f tAn

Li f tAn−1

(8)

where:

An−1 is the antecedent of the n-1 item rule,
An is the antecedent of the n-item rule.

Support (S), confidence (C), and lift (L) threshold values were set as follows: S ≥ 0.1%,
C ≥ 4.0%, L ≥ 1.2, and LIC ≥ 1.05. The association rules were performed in the R-cran
software environment using the package “arules”.

3.2.2. Classification Trees

A classification tree is an oriented graph where the root node (containing all data)
is divided by a splitter into a finite number of leaf nodes [34]. We developed the CART
binary tree proposed by Breiman et al. [35]. Each of the road infrastructure, environmental,
vehicle, and driver-related patterns considered in the study are candidates for splitting.
The splitting variable is determined to separate the observations into two groups that are
as homogenous as feasible. To perform each split, the Gini index or the node impurity is
assessed (as a measure of the total variance among all classes in the node). The impurity is
given by:

iY (t) = 1−∑
j

p(j|t)2 (9)

where:

iY(t) is the node t impurity,
p(j|t) represents the crashes in the node t belonging to class j.
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The total impurity of any tree T is given by:

iY(T) = ∑
t ∈ T̃

iY (t)p(t) (10)

where:

iY(T) is the total impurity of a tree T
p(t) = N(t)/N is the weight of the node t, N(t) is the number of crashes falling in node t
whereas N is the total number of crashes,
T̃ is the set of terminal nodes of the tree T.

The tree growing process was stopped based on two criteria: (1) the impurity reduction
is less than 0.0001 (minimum default value); and (2) the tree can have at most four levels. At
each node, the class assignment depends on the greatest value of the posterior classification
ratio (PCR). The PCR compares the tree terminal nodes’ classification with the root node
classification [27]:

PCR (j|t) = p (j|t)
p (j|troot)

(11)

where:

p(j|t) represents the crashes in the node t belonging to the class j,
troot is the tree root node.

For each node, the class j* with the greatest value of PCR gives the class of that node
that is selected as follows:

j∗
∣∣ t : maxj PCR (j

∣∣t) (12)

Then, to integrate the classification tree and the association rule discovery results, the
classification tree was transformed into rules. All the splits are the antecedents of the rule
while the class j* determines the consequent. The association rule thresholds of Support (S),
confidence (C), lift (L), and lift increase (LIC) were also evaluated for each terminal node t.

The classification tree was carried out with SPSS 26 software (IBM, Armonk, NY, USA).

4. Results
4.1. Mixed Logit Model

The mixed logit model exhibited a McFadden Pseudo R2 of 0.56 indicating an excellent
fit. Overall, 14 independent variables and 44 indicators were statistically significant (see
Table 3) with fixed effects. The indicator variable is driver gender male resulting in
normally distributed random effects and statistically significant standard deviation, both
indicating the presence of unobserved heterogeneity in the data. The mean and standard
deviation were respectively equal to 0.18 and 0.17 implying that for 86% of the crashes the
probability of a pedestrian crash is increased by the presence of a male driver whereas, for
the remaining 14% of the crashes, it leads to a decrease in that probability.

Table 3. Mixed logit: parameter estimates and goodness of fit measures.

Variable β OR Std. Err. p-Value Variable β OR Std. Err. p-Value

Intercept 0.44 1.56 0.01 <0.001 Vehicle Type

Road type Bicycle −1.03 0.36 0.09 <0.001

Motorway −2.94 0.05 0.03 <0.001 PTW −0.37 0.69 0.01 <0.001
Rural Municipal −1.11 0.33 0.02 <0.001 Truck 0.21 1.24 0.01 <0.001
Rural national −2.00 0.14 0.02 <0.001 Car

Rural provincial −1.90 0.15 0.01 <0.001 Vehicle Age

Urban national −0.63 0.53 0.02 <0.001 10–20 −0.10 0.91 0.01 <0.001
Urban provincial −0.75 0.47 0.01 <0.001 >20 −0.19 0.83 0.02 <0.001
Urban Municipal 0–10
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Table 3. Cont.

Variable β OR Std. Err. p-Value Variable β OR Std. Err. p-Value

Alignment Vehicle Defect
Curve −0.83 0.44 0.01 <0.001 Yes −0.56 0.57 0.04 <0.001

No Signalized
Intersection −0.97 0.38 0.01 <0.001 No

Roundabout −1.49 0.23 0.02 <0.001 Driver Behaviour

Signalized
Intersection −0.82 0.44 0.01 <0.001 Disob. ped. crossing facility −3.53 0.03 0.04 <0.001

Tunnel −0.84 0.43 0.06 <0.001 Distraction −3.23 0.04 0.02 <0.001
Tangent Illegal travel direction −0.77 0.46 0.02 <0.001

Day of Week Manoeuvring 0.06 1.07 0.01 <0.001

Weekend −0.16 0.85 0.01 <0.001 Speeding −0.17 0.84 0.01 <0.001
Weekday Tailgating −2.90 0.05 0.02 <0.001

Season Normal

Autumn 0.36 1.43 0.01 <0.001 Driver Psychophysical State

Spring 0.17 1.19 0.01 <0.001 Defective sight 1.41 4.10 0.05 <0.001
Winter 0.45 1.58 0.01 <0.001 Impaired −0.81 0.45 0.02 <0.001

Summer Normal

Lighting Driver Age

Night 0.22 1.25 0.01 <0.001 ≤17 0.17 1.18 0.02 <0.001
Day 18–24 −0.14 0.87 0.01 <0.001

Pavement 45–54 0.21 1.24 0.01 <0.001

Snowy/Frozen −0.41 0.67 0.06 0.00 55–64 0.30 1.35 0.01 <0.001
Slippery −1.22 0.30 0.05 <0.001 65–74 0.44 1.56 0.01 <0.001

Wet −0.21 0.81 0.01 <0.001 ≥75 0.59 1.81 0.01 <0.001
Dry 25–44

Weather Driver Gender

Fog −0.18 0.84 0.03 <0.001 Mean Male 0.18 1.20 0.01 <0.001
High winds −0.51 0.60 0.08 <0.001 Sd.Male 0.17 1.19 0.05 <0.001

Raining 0.25 1.29 0.02 <0.001 Female

Snowing 0.27 1.31 0.07 <0.001 Number of observations 874,847
Clear Log-likelihood null model −816,487.90

Log-likelihood full model −357,890.20
R2McFadden 0.56

4.1.1. Roadway

As expected, urban municipal roads, considered as the baseline, show a greater propen-
sity for pedestrian crashes while motorways show a lower propensity. Road alignment
has a key role in pedestrian crashes. The simpler alignment, which is the tangent segment,
has a higher propensity for pedestrian crashes while roundabouts have a lower probability
of pedestrian crashes (OR = 0.23). Interestingly, pedestrian crashes in roundabouts are
underrepresented compared to signalised and unsignalised intersections.

4.1.2. Environment

Results show a statistically significant higher probability of pedestrian crashes on
weekdays, in winter (OR = 1.58), autumn (OR = 1.43), and spring (OR = 1.19), and in dark-
ness. It is noteworthy to observe that weather conditions associated with pedestrian crashes
are raining and snowing while wet, snowy, and slippery pavement are both associated
with a pedestrian crash probability decrease.

4.1.3. Vehicles

Assuming cars as the baseline condition, trucks are overrepresented in pedestrian
crashes while the involvement of PTWs and bicycles shows a lower probability of pedestrian
crashes (OR = 1.24 vs OR = 0.69 and 0.36). Furthermore, older vehicles and vehicles with
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defects have a lower probability of pedestrian crashes (i.e., a higher probability of other
crash types).

4.1.4. Drivers

Drivers’ significant variable results: behaviour (with a positive coefficient of manoeu-
vring, which includes right-turn, left-turn, and U-turn manoeuvres), psychological state
(with a positive coefficient for defective eyesight, OR = 4.10), age (with an increase in
the probability of being involved in a pedestrian crash for older driver age), and gender
(random variable with male gender associated to a higher probability of pedestrian crashes
for 86% of the observations, OR = 1.20).

4.2. Machine Learning Models

The rule discovery tool generated 63 valid rules. In detail, the algorithm identified
three two-item rules (Table 4), 14 three-item rules (Table 4), 31 four-item rules (Table 4), and
15 five-item rules (Table 5). The rules were ordered by the decreasing value of the lift. Then,
the rules were grouped according to the number of items.

Table 4. Association rules with two, three, and four items.

Rule Association Rules S C L LIC

ID Antecedent % %

1 Driver Behaviour = DisobeyingPedCrossings 4.07 100.00 8.66 n.a.
2 Driver Age ≥ 75 1.10 18.52 1.60 n.a.
3 Driver Age ≥ 75 & Lighting = Nt 0.28 30.41 2.63 1.64
4 Driver Age ≥ 75 & Lighting = Nt & Alignment = Tan 0.18 39.27 3.40 1.29
5 Driver Age ≥ 75 & Lighting = Nt & Road Type = Um 0.23 38.03 3.29 1.25
6 Driver Age ≥ 75 & Lighting = Nt & Area = U 0.27 36.74 3.18 1.21
7 Driver Age ≥ 75 & Lighting = Nt & Season = Win 0.12 34.89 3.02 1.15
8 Driver Age ≥ 75 & Weather = Ra 0.14 26.82 2.32 1.45
9 Driver Age ≥ 75 & Weather = Ra & Road Type = Um 0.12 35.82 3.10 1.34

10 Driver Age ≥ 75 & Weather = Ra & Area = U 0.13 33.72 2.92 1.26
11 Driver Age ≥ 75 & Alignment = Tan 0.70 25.85 2.24 1.40
12 Driver Age ≥ 75 & Alignment = Tan & Pavement = Wt 0.12 33.69 2.92 1.30
13 Driver Age ≥ 75 & Alignment = Tan & Road Type = Um 0.60 33.20 2.87 1.28
14 Driver Age ≥ 75 & Alignment = Tan & Area = U 0.67 31.66 2.74 1.22
15 Driver Age ≥ 75 & Alignment = Tan & Season = Win 0.18 31.03 2.69 1.20
16 Driver Age ≥ 75 & Alignment = Tan & Driver Behaviour = Normal 0.15 29.62 2.57 1.15
17 Driver Age ≥ 75 & Alignment = Tan & Season = Aut 0.27 29.46 2.55 1.14
18 Driver Age ≥ 75 & Road Type = Um 0.96 23.87 2.07 1.29
19 Driver Age ≥ 75 & Road Type = Um & Pavement = Wt 0.16 32.24 2.79 1.35
20 Driver Age ≥ 75 & Road Type = Um & Season = Win 0.26 28.85 2.50 1.21
21 Driver Age ≥ 75 & Road Type = Um & Season = Aut 0.36 27.43 2.38 1.15
22 Driver Age ≥ 75 & Road Type = Um & Driver Behaviour = Normal 0.19 26.94 2.33 1.13
23 Driver Age ≥ 75 & Road Type = Um & Vehicle Type = Car 0.91 26.23 2.27 1.10
24 Driver Age ≥ 75 & Pavement = Wt 0.19 23.63 2.05 1.28
25 Driver Age ≥ 75 & Pavement = Wt & Area = U 0.18 30.20 2.61 1.28
26 Driver Age ≥ 75 & Area = U 1.06 22.55 1.95 1.22
27 Driver Age ≥ 75 & Area = U & Season = Win 0.28 27.23 2.36 1.21
28 Driver Age ≥ 75 & Area = U & Season = Aut 0.40 26.15 2.26 1.16
29 Driver Age ≥ 75 & Area = U & Driver Behaviour = Normal 0.22 26.03 2.25 1.15
30 Driver Age ≥ 75 & Driver Behaviour = Normal & Vehicle Type = Car 0.22 25.02 2.17 1.13
31 Driver Age ≥ 75 & Season = Win 0.29 22.55 1.95 1.22
32 Driver Age ≥ 75 & Season = Win & Vehicle Age = 0–10 0.12 24.85 2.15 1.10
33 Driver Age ≥ 75 & Driver Behaviour = Normal 0.23 22.05 1.91 1.19
34 Driver Age ≥ 75 & Season = Aut 0.42 21.61 1.87 1.17
35 Driver Age ≥ 75 & Season = Aut & Vehicle Age = 0–10 0.17 23.67 2.05 1.10
36 Driver Age ≥ 75 & Vehicle Age = 0–10 0.46 20.38 1.76 1.10
37 Driver Behaviour = Manoeuvre 1.25 18.51 1.60 n.a.
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Table 4. Cont.

Rule Association Rules S C L LIC

ID Antecedent % %

38 Driver Behaviour = Manoeuvre & Alignment = SgInt 0.10 81.78 7.08 4.42
39 Driver Behaviour = Manoeuvre & Alignment = UnSgInt 0.26 81.37 7.05 4.40
40 Driver Behaviour = Manoeuvre & Alignment = UnSgInt & Vehicle Type = Car 0.22 99.38 8.61 1.22
41 Driver Behaviour = Manoeuvre & Vehicle Type = Tr 0.16 24.13 2.09 1.30
42 Driver Behaviour = Manoeuvre & Vehicle Type = Tr & Road Type = Um 0.14 30.01 2.60 1.24
43 Driver Behaviour = Manoeuvre & Vehicle Type = Tr & Area = U 0.14 28.19 2.44 1.17
44 Driver Behaviour = Manoeuvre & Season = Win 0.31 23.46 2.03 1.27
45 Driver Behaviour = Manoeuvre & Season = Win & Road Type = Um 0.28 28.40 2.46 1.21
46 Driver Behaviour = Manoeuvre & Season = Win & Area = U 0.29 26.58 2.30 1.13
47 Driver Behaviour = Manoeuvre & Road Type = Um 1.11 23.16 2.01 1.25
48 Driver Behaviour = Manoeuvre & Area = U 1.17 21.14 1.83 1.14

Table 5. Association rules with five items.

Rule Association Rules S C L LIC

ID Antecedent % %

49 Driver Age ≥ 75 & Lighting = Nt & Alignment = Tan & Road Type = Um 0.15 49.25 4.26 1.25
50 Driver Age ≥ 75 & Lighting = Nt & Alignment = Tan & Area = U 0.17 48.06 4.16 1.22
51 Driver Age ≥ 75 & Lighting = Nt & Season = Win & Area = U 0.11 41.05 3.55 1.18
52 Driver Age ≥ 75 & Alignment = Tan & Road Type = Um & Pavement = Wt 0.10 44.22 3.83 1.33
53 Driver Age ≥ 75 & Alignment = Tan & Road Type = Um & Vehicle Type = Car 0.57 36.81 3.19 1.11
54 Driver Age ≥ 75 & Alignment = Tan & Area = U & Pavement = Wt 0.12 41.98 3.64 1.33
55 Driver Age ≥ 75 & Alignment = Tan & Area = U & Vehicle Type = Car 0.64 34.96 3.03 1.10
56 Driver Age ≥ 75 & Alignment = Tan & Area = U & Driver Behaviour = Normal 0.14 34.86 3.02 1.10
57 Driver Age ≥ 75 & Alignment = Tan & Season = Win & Road Type = Um 0.16 39.21 3.40 1.26
58 Driver Age ≥ 75 & Alignment = Tan & Season = Win & Area = U 0.18 37.44 3.24 1.21
59 Driver Age ≥ 75 & Alignment = Tan & Driver Behaviour = Normal & Vehicle Type = Car 0.14 33.29 2.88 1.12
60 Driver Age ≥ 75 & Alignment = Tan & Season = Aut & Road Type = Um 0.23 37.44 3.24 1.27
61 Driver Age ≥ 75 & Alignment = Tan & Season = Aut & Area = U 0.25 35.80 3.10 1.22
62 Driver Age ≥ 75 & Road Type = Um & Driver Behaviour = Normal & Vehicle Type = Car 0.18 31.19 2.70 1.16
63 Driver Age ≥ 75 & Area = U & Driver Behaviour = Normal & Vehicle Type = Car 0.21 29.93 2.59 1.15

The CART tree is reported in Figure 1. The algorithm provided eight terminal nodes,
two of which predicted pedestrian crashes (node 1 and node 14) and were reported in
red. Moreover, only these nodes (rules T_1, T_14, in Table 6) satisfied the LIC criterion
(Equation (8)), identifying as predictors the following variables driver behaviour, road type,
and alignment.

Table 6. Rules identified by the classification tree with pedestrian crash as consequent.

Rule Association Rules S C L LIC

ID Antecedent % %

T_1 Driver Behaviour = Disobeying pedestrian crossing facility 4.07 100.00 8.66 n.a.

T_14
Driver Behaviour = Manoeuvring/Speeding/Normal/Illegal travel
direction & Road Type = Urban municipal/Urban national/Urban

provincial & Alignment = Tangent
4.52 19.65 1.70 1.49

The PCR was evaluated for all the nodes. However, in the tree, it was provided only
for the terminal nodes to understand how representative each terminal node is in relation
to the predicted class. Node 1 exhibited a very high PCR equal to 8.70, this is synonymous
with the robustness of this terminal node for pedestrian crash classification.
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Figure 1. Classification tree. In bold are reported all terminal nodes. In red are highlighted the
terminal nodes predicting a pedestrian crash. For Road Type: Mw = Motorway, Rn = Rural na-
tional, Rp = Rural provincial, Rm = Rural municipal, Un = Urban national, Up = Urban provin-
cial; Um = Urban municipal. For Alignment: Cu = Curve, NoSgInt = Unsignalised Intersection,
Rou = Roundabout, SgInt = Signalised Intersection, Tan = Tangent, Tn = Tunnel.

4.2.1. Roadway

Together with drivers aged ≥75 and drivers manoeuvring, tangent alignment, inter-
sections, urban areas, and urban municipal roads were associated with pedestrian crashes.
Urban roads and tangent alignment were also patterns identified by the tree.

4.2.2. Environment

The rules highlighted environmental conditions associated with pedestrian crashes
such as night-time, wet pavement, rainy weather, winter, and autumn.

4.2.3. Vehicles

As regards vehicle type, both trucks and cars were associated with pedestrian crashes.
As for the vehicle age, newer cars were associated with pedestrian crashes.

4.2.4. Drivers

All rules have as the first antecedent driver factors. Among them, eighty-six rules
have elderly drivers (driver aged ≥75) as the first antecedent, twenty-three rules have
driver’s manoeuvring as the first antecedent, and one rule has the driver’s failure to yield
to pedestrians crossing on the zebra as the antecedent (rule 1, L = 8.66). The rule with
the driver’s failure to yield to pedestrians crossing on the zebra was also identified by the
classification tree (rule T_1, L = 8.66). Driver behaviour was also the primary split of the
classification tree.
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4.2.5. Interaction among Contributory Factors

The association rules and the classification tree showed several combinations of pat-
terns associated with an overrepresentation of frequency pedestrian crashes (Tables 4–6).
The combined presence of driver manoeuvring and intersection (rules 38 and 39) were
identified as the strongest three-item rules with a lift greater than 7 and LIC greater than 4,
meaning that vehicle manoeuvring at intersections is associated with a probability of pedes-
trian crashes greater than vehicle manoeuvring in segments or roundabouts. The combined
presence of driver manoeuvring, unsignalised intersection, and car involvement increased
the lift of rule 39 (without car involvement) producing a lift equal to 8.61 (rule 40). The
five-item rule with the higher lift included the combined presence of older drivers (≥75),
night-time, tangent alignment, and urban municipal road (rule 49, L = 4.26). Manoeuvring,
speeding, and illegal travel directions were identified also by the classification tree (rule
T_14, L = 1.70) and combined with urban roads on tangent alignment. The association
of such driver behaviours and urban roads with tangent increase the probability of the
occurrence of pedestrian crashes by almost 50%.

5. Comparison between the Econometric and the Machine Learning Methods

To compare the results of the mixed logit and the machine learning models, the
significant explanatory variables, as well as their impact on the probabilities of pedestrian
crash occurrence, are discussed below.

5.1. Roadway

Area as a contributory factor was identified only by the rule discovery technique with
the urban areas associated with the pedestrian crash occurrence. Both the mixed logit
and the machine learning tools, instead, identified the road type variable. They provided
consistent results detecting an overrepresentation of pedestrian crashes on urban municipal
roads. Consistency was also found for alignment. All the methods detected the tangent
alignment as a contributory pattern. The association rules further identified signalised
and unsignalised intersections, combined with driver’s manoeuvring, contributing to the
pedestrian crash occurrence.

5.2. Environment

Both the mixed logit model and the association rules identified the day of the week
as a significant pattern. The probability of pedestrian crash occurrence increases during
the weekday. Night-time increases the pedestrian crash propensity. Raining and snowing
weather condition increases the likelihood of pedestrian crash occurrence. Rain’s effect was
captured both by the mixed logit model and the association rules whereas fog and high
winds contributing to the decrease in pedestrian crash occurrence were significant only in
the mixed logit.

5.3. Vehicles

The vehicle involved in a pedestrian crash is decisive. Indeed, the vehicle type
influences the likelihood of observing a pedestrian crash. The results of both the mixed
logit model as well as the association rules were consistent, pointing out that a pedestrian
struck by a car or a truck rather than a bike or a PTW has a higher attendance risk. New
vehicles (vehicles registered less than 10 years ago) have a positive effect on pedestrian
crashes. These results suggest that the innovation in vehicle technology equipment intended
to reduce the likelihood of crashes fails to detect pedestrians and does not take adequate
account of their safety.

5.4. Drivers

The driver behaviour exhibited a significant effect in both the mixed logit model and
the machine learning tools. Driver manoeuvring contributes to the overrepresentation of
pedestrian crashes. Inappropriate behaviour, such as speeding and travelling in opposite
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the right direction, was found by the classification tree further contributing to pedestrian
crashes. Furthermore, the association rules and the classification tree identified drivers
disobeying pedestrian crossing facilities as critical.

The relation between the driver psychophysical state and the pedestrian crashes was
identified only by the mixed logit model. Poor eyesight conditions involve an increase in
pedestrian crash propensity.

Driver age was correlated with pedestrian crash overrepresentation, especially the
involvement of elderly drivers (at least 75 years old) was identified by both groups of
methods. Male driver involvement in pedestrian crash overrepresentation was found
significant with random effect only in the mixed logit.

6. Discussion

The study results identified several patterns associated with an overrepresentation
of pedestrian crashes. The roadway attributes contributing to an increase in pedestrian
crash propensity were urban areas, urban municipal roads, tangent alignment, and inter-
sections combined with drivers’ manoeuvring. These results indicate that the roadway
patterns impacting the occurrence of pedestrian crashes differ from those affecting the
pedestrian crash severity. Indeed, highly dense urban settings may provide more facilities
for pedestrians whereas, in rural areas, there are likely to be poor infrastructures that
accommodate pedestrians [36–38]. Despite this, pedestrian crashes are overrepresented
on urban roads whereas fatal pedestrian crashes are overrepresented on other road types.
Therefore, pedestrian-oriented safety countermeasures are strongly required for all road
types. Based on the study results, on urban roads, special emphasis should be given to
pedestrian treatments at mid-block locations. Walking should be prioritised in every new
infrastructure scheme as well as when designing regenerated streets in an area experiencing
land development, even during maintenance treatments. This may create an opportunity to
reconsider some aspects of the street design useful to accommodate safe pedestrian mobil-
ity [39] and better incorporate pedestrian–vehicle safety considerations at locations where
pedestrian crashes are more likely to occur [40–42]. The establishment of a suitable road
user hierarchy should be based on safety, vulnerability, and sustainability, with walking
being at the top of the hierarchy. The creation of pedestrian paths together with the reduc-
tion of vehicle-destined space is not easy to understand and digest for habitual road users.
Hence, national, provincial, and municipal policies should work on public acceptance and
emphasize the City’s interest and investment in developing safe and accessible streets that
allow for safe movements.

Interestingly, the probability of pedestrian crashes at roundabouts is lower than at
unsignalised and signalised intersections (ORs respectively equal to 0.23, 0.38, and 0.44).
Hence, the safety benefits of the presence of roundabouts are relevant in decreasing the
fatal pedestrian crash probability as well as in providing a reduction in the pedestrian
crash probability. This is due to the reduction of pedestrian–vehicle conflict points and
lower vehicle speeds [43,44]. This is a quite relevant result considering that in Italy there
are often roundabouts with undesired safety features that negatively influence roundabout
safety [45,46]. Based on the study result, if warranty conditions for the installation of round-
abouts are satisfied converting unsignalised and signalised intersections in roundabouts
is strongly recommended. Refuge islands at the legs of roundabouts further increase the
safety of pedestrians at roundabouts [47].

The environmental patterns affecting the increase in pedestrian crash propensity
were night-time, dry pavement, wet pavement combined with older drivers (≥75), or
with drivers’ manoeuvring, weekday, autumn, winter, and spring seasons, raining, and
snowing. Pedestrian visibility in darkness is a well-known safety concern. Both drivers’
and pedestrians’ sight reduce with dark lighting whereas increase their reaction times
to avoid potential conflicts. Furthermore, higher driving speeds are generally observed
at night, increasing the crash risk. The combination of these conditions increases the
required braking distance of vehicles and leads to higher impact at the time of crashes.
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Traffic calming as well as low-speed zones in areas with significant pedestrian activity are
the most effective solutions to mitigate pedestrian crash frequency at night. Providing
adequate pedestrian visibility during the night-time further provides drivers with sufficient
time to identify and appropriately react to other road users and hazards [48]. Pedestrian
visibility during the night-time can be improved by providing pedestrian crossings lighting
with light-emitting diodes (LEDs). Flashing in-curb LEDs as well as pedestrian-activated
overhead beacons at crosswalks or in-pavement warning lights with advance signing are
effective strategies to warn motorists of pedestrian crossings, increasing their attention,
especially at night [49,50]. Campaigns to raise awareness of the importance of using
reflective clothing to improve pedestrian conspicuity at night [51,52].

The vehicle patterns affecting the increase in pedestrian crash propensity were truck,
car, and vehicles aged at most 10 years. Although the severity of truck-pedestrian crashes
has already been found by prior research [53,54], this study further detected a detrimental
relation between trucks and pedestrian crash occurrence. To mitigate the consequences of
such crashes, traffic management strategies may be implemented separating pedestrian
flow and truck routes.

The driver patterns affecting the increase in pedestrian crash propensity were manoeu-
vring, speeding, illegal travel direction, defective sight, very young age (≤ 17), medium
age (45–64), and old age (≥65). Previous research found that the probability of complex ve-
hicular manoeuvres increases the pedestrian crash occurrence, mainly at intersections [55].
The speeding behaviour of drivers was also found to increase the risk of conflicts and
its associated crash risk [56]. The driver disobedience of pedestrian crossing facilities
was also identified as a pattern contributing to pedestrian crash overrepresentation. The
mixed logit model showed a significant odds ratio (equal to 1.41) for drivers with sight
issues increasing the likelihood of pedestrian crashes. The rule discovery and the CART
algorithm identified the strongest predictor in the drivers’ disobeying pedestrian crossing
facility. Consistently with previous studies [39], the quality and complexity of the walking
environment, exacerbated by poor visibility in the proximity of road crossing opportunities,
increase the possibility of pedestrian-vehicle conflicts. Empirical studies have proved the
effectiveness of appropriate design modifications aimed at reducing pedestrian crashes
and removing barriers to walking [6]. The use of bulb-outs to improve pedestrian visibility
is further encouraged. Provided at junction corners, the bulb-outs shorten the pedestrian
crossing distance and offer a better view of the oncoming vehicles. Previous research has
found that their presence affects the vehicles’ operating speeds. In-site measurements
revealed lower speeds recorded in sections where bulb-outs are located [57]. Other scholars
suggest narrowing the road cross-section (bulb-outs) and introducing pedestrian cross-
ings with blinking lights turning on automatically when a pedestrian is identified [58].
Furthermore, safety awareness and education campaigns should target drivers on pedes-
trian right-of-way. To stimulate individuals towards safety-oriented actions, education
campaigns are fundamental.

This study further identified a greater propensity of older drivers for pedestrian
crashes, probably because of their lower reaction times and more difficult interaction
with pedestrians.

7. Conclusions

The investigation of the patterns affecting pedestrian crash occurrence is not a well-
developed topic as pedestrian crash severity. Whereas many studies aimed at reducing fatal
and severe pedestrian crashes, the main aim of this paper was to help to raise awareness
among practitioners and provide better guidance in planning and designing infrastructures
for pedestrians that are safe, of course, but also accessible and sustainable, to prevent the
occurrence of pedestrian crashes towards a vision of walkable cities. This study used an
econometric model, namely the mixed logit model, the rule discovery technique, and the
CART algorithm, as machine learning tools, to analyse the road infrastructure, environmen-
tal, vehicle, and driver-related patterns affecting the pedestrian crash overrepresentation
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in Italy. The mixed logit, the rule discovery, and the CART algorithm have been gener-
ally used to analyse crash severity, whereas this study provided an application of such a
methodological approach to detect those features affecting the pedestrian crash occurrence.

The dataset contains 874,847 road crashes resulting in fatalities or injuries that occurred
in Italy from 2014 to 2018. Of these, 101,032 were pedestrian crashes.

The results provided by the two groups of methods provide strong evidence of the
importance of promoting urban sustainable complete street planning and development as
well as raising awareness in support of safer behaviour if walking has to forge an effective—
and mainly safe—solution against private car dependence, traffic noise, air pollution, health
disease, and pedestrian vulnerability. To this aim, walking should be at the top of the
hierarchy in every new infrastructure scheme as well as in street re-generation designs.

The methodological approach adopted in this study was effective in uncovering
relations among road infrastructure, environmental, vehicle, and driver-related patterns,
and the overrepresentation of pedestrian crashes. The latest applications of machine
learning tools suggest that analysts must opt for a compromise between prediction accuracy
and uncovering causality, trying to achieve prediction accuracy and, at the same time,
exhaustive and reliable factors contributing to crashes. Despite this, the results of this
study advocate the econometric model and the machine learning tools as complementary
approaches. The mixed logit provided a clue on the impact of each pattern on the pedestrian
crash occurrence whereas the association rules and the classification tree detected the
associations among the patterns with insights on how the co-occurrence of more factors
could be detrimental to pedestrian safety. Furthermore, the strength of the co-occurrence of
the patterns impacting the pedestrian crash occurrence can be measured via the lift increase
for the association rules and the posterior classification ratio for the classification tree with
the factors mostly contributing to pedestrian crashes being the patterns providing the
higher increase in the lift values (association rules) or the splitter modalities providing the
highest proportion of pedestrian crashes in a node concerning the root node of the tree. By
contrast, the mixed logit model provides information about the directions and magnitude
of variable indicators. By the joint use of the econometric methods and machine learning
tools, the analyst can exploit the interpretability of the results of the econometric methods
and the ability of the machine learning tools to provide comprehensible scenarios (as those
provided by association rules and classification tree), further highlighting the co-occurrence
and the relative strength of the patterns that contribute to vehicle-pedestrian crashes.

According to the results obtained in the study, safety countermeasures have been pro-
posed. Including pedestrian safety in every step of the planning, design, implementation,
and management process is a key factor to ensure that their main problems are identified
and mobilised.

The insights gained from the study may help to raise awareness among local authori-
ties and transport agencies in planning and designing appropriate spaces for pedestrians.
Furthermore, the results provided by the study may be also considered by the automotive
industry to address the important challenge of how vehicle onboard devices can prevent
pedestrian crashes.

A significant contribution of this paper relies on the detection of the detrimental
impact of drivers’ psychophysical states and drivers’ behaviours on pedestrian crashes.
The availability of such information in the data is crucial. It detects the need for conducting
safety awareness and education campaigns to increase safety-oriented actions.
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