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Abstract

The CERN H™ linear accelerator, LINAC4, served as a
test bed for advanced algorithms during the CERN Long
Shutdown 2 in the years 2019/20. One of the main goals was
to show that reinforcement learning with all its benefits can
be used as a replacement for numerical optimization and as
a complement to classical control in the accelerator control
context. Many of the algorithms used were prepared before-
hand at the electron line of the AWAKE facility to make
the best use of the limited time available at LINAC4. An
overview of the algorithms and concepts tested at LINAC4
and AWAKE will be given and the results discussed.

INTRODUCTION AND MOTIVATION

The CERN accelerators generally use a modular control
system to deal with the resulting complexity of hundreds or
thousands of tuneable parameters. Low level hardware pa-
rameters are combined into higher level accelerator physics
parameters defined by simulation results. For correction and
tuning, low-level feedback systems are available, together
with high-level physics algorithms to correct beam parame-
ters based on observables from instrumentation. With this
hierarchical approach large facilities like the LHC can be
exploited efficiently.

There are still many processes at CERN’s accelerators,
however, that require additional control functionality. In
the lower energy accelerators, models are often not avail-
able online or cannot be inverted to be used in algorithms.
Sometimes instrumentation that could be used as input for
model-based correction is simply lacking. Examples include
optimisation of electron cooling without electron beam di-
agnostics, setting up of multi-turn injection in 6 phase-space
dimensions and optimisation of longitudinal emittance blow-
up with intensity effects. In recent years numerical optimis-
ers, sometimes combined with machine learning techniques,
have led to many improvements and successful implementa-
tions in some of these areas, from automated alignment of
various devices with beam to optimising different parameters
in FELs, see for example [1-6].

For a certain class of optimisation problems, the methods
of Reinforcement Learning (RL) can bring further advan-
tages. With RL the exploration time that numerical opti-
misers inevitably need at every deployment is reduced to a
minimum - to one iteration in the best case. In 2019 most of
the CERN accelerators were in shutdown to be upgraded as
part of the LHC Injector Upgrade project [7]. The new linear
accelerator LINAC4 and the proton-driven plasma wakefield
test facility AWAKE [8] were, however, operated for part
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of the year. Taking advantage of recent rapid developments
in deep machine learning and RL algorithms, the authors
successfully implemented sample-efficient model-free RL
for CERN accelerator parameter control and demonstrated
its use online for trajectory correction both at the AWAKE
facility and at LINAC4. The results were published in [9].
In 2020, trajectory correction with model-based RL could
be demonstrated in addition.

This paper is organized as follows. A brief introduction
is given to Reinforcement Learning in the domain of accel-
erator control following [9]. In the experimental section,
the problem statements and results of the tests on trajectory
correction both for the AWAKE 18 MeV electron beamline
and the 160 MeV LINAC4 are given. A short summary of
the main outcome of [9] is followed by new results using
model-based reinforcement learning. The next steps and
potential for wider application are covered in the discussion
and conclusion part.

REINFORCEMENT LEARNING FOR
ACCELERATOR CONTROL

The optimisation and control of particle accelerators is a
sequential decision making problem, which can be solved
using RL if meaningful state information is available. In
the RL paradigm, Fig. 1, a software Agent interacts with
an environment, acquiring the state and deciding actions
to move from one state to another, in order to maximise a
cumulative reward [10]. The Agent decides which action to
take given the current state by following a policy. The goal .
is to learn the optimal policy for the problem.

reward
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Figure 1: The RL paradigm as applied to particle accelerator
control, showing the example of trajectory correction.

Reinforcement Learning algorithms can be divided into
two main classes: model-free and model-based. Model-free
control assumes no a priori model of the environment, learn-
ing the system dynamics implicitly from interacting with
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the environment, and can be further sub-divided. Policy
Optimisation methods consist of policy gradient or actor-
critic methods which are more suitable for continuous action
spaces. These methods attempt to learn the policy directly
using gradient descent.Q-Learning methods seek to find the
best action to take given the current state, i.e. the action that
maximises the Q-function, and are specifically suitable for
discrete action spaces.

The Q-function in RL is a measure of the overall expected
(discounted) reward assuming the Agent in state s performs
action a and then continues until the end of the episode fol-
lowing a stationary policy sr. s (als) assigns a probability to
action a for a given state s. The Q-function and its paramet-
ric approximation Q7 (s, al02) (2 are network parameters),
are given as:

N
Q7 (s.a) = B[ Y yir(spaplm. s =s.a9=a], (1)
i=0

07 (s,a) = Q7 (s,al69). 2
N is the number of states from state s = s, till the terminal
state, y € [0, 1] is a discount factor and r(s,a) € R is the
reward the agent receives after performing action a in state
s.

Within the class of model-free algorithms, policy gra-
dient algorithms are generally less sample-efficient than
Q-learning ones and, as on-policy methods, cannot take
advantage of experience replay [10].

For accelerator applications a continuous action space
is usually required. This can be a serious limitation for Q-
learning, due to the need to perform the non-trivial maximi-
sation of the Q-function with respect to continuous a. It can
however be overcome by assuming a specific algebraic form
of the Q-function, such that Q(a, s) is straightforward to op-
timise with respect to the action. This approach is applied in
the Normalised Advantage Function (NAF) algorithm [11].

In model-based methods, the control method uses a pre-
dictive model of the environment dynamics to guide the
choice of next action. Establishing a reliable enough model
is clearly critical to success. Several sub-divisions of this
class of RL algorithms exist, including Analytic Gradient
Computation methods such as LQR [12], Sampling-Based
Planning [13] and Model-Based Data Generation methods
such as Sutton’s original Dyna [14] and related algorithms
using Bayesian methods (e.g. model ensemble techniques)
to capture the uncertainty of the model and avoid model bias.
An overview of the various algorithms is provided in [15].

For most real-world applications, where the state-space is
large, the Q-function or the policy need to be approximated
using e.g. neural networks. Advances in the use of deep
learning to train such models in the RL paradigm have led to
a range of algorithms such as Deep Q-Network (DQN) [16],
Deep Deterministic Policy Gradient (DDPG) [17] and Nor-
malized Advantage Function (NAF) [11].

The results in this paper were obtained with the very
sample-efficient NAF algorithm, iLQR as well as the DDPG
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variant TD3 [18] as part of Dyna-style model-based Rein-
forcement Learning.

Operational Deployment

The CERN accelerator control system offers a python
package (pyjapc [19]) to communicate directly with the
hardware systems or with the high-level control system for
parameters like deflection angle or tune.

For the problem description (environment), the generic
OpenAl Gym framework [20] was chosen, to enforce stan-
dardisation and allow easy switching between different con-
trol problems or Agents. The OpenAl Gym environment
python class provides an interface between RL agent and
optimisation problem and is used by many available RL al-
gorithm implementations. Gym environments contain all
the control problem specific code - the interaction with the
machine or simulation for setting the action, reading or cal-
culating observation data as well as calculating or measuring
reward.

RL AGENT FOR AWAKE TRAJECTORY
CORRECTION

The first RL Agents were trained for trajectory correction
on the AWAKE electron line with the goal that the trained
Agents correct the line with a similar efficiency as the re-
sponse matrix based SVD algorithm that is usually used in
the control room, i.e. correction to a similar RMS as SVD
within ideally 1 iteration.

The AWAKE electrons are generated in a 5 MV RF gun,
accelerated to 18 MeV and then transported through a beam
line of 12 m to the AWAKE plasma cell. A vertical step of
1 m and 60° bend bring the electron beam parallel to the
proton beam shortly before the plasma cell. The trajectory
is controlled with 11 horizontal and 11 vertical steering
dipoles according to the measurements of 11 beam position
monitors (BPMs). The BPM electronic read out is at 10 Hz
and acquisition through the CERN middleware at 1 Hz.

The electron transfer line with all of its equipment is
modelled in MAD-X [21]. The MAD-X model was used
to prepare a simulated OpenAl Gym environment with the
purpose to test various RL algorithms offline and define
the hyper-parameters for the chosen algorithm for optimum
sample efficiency.

Experiment Results from AWAKE RL Tests

The first successful online training of a NAF Agent on
trajectory steering in the horizontal plane was obtained on
November 22, 2019. The training for 11 degrees of freedom
(DOF) took roughly 30 minutes, corresponding to about 350
iterations. At each start of an episode the correctors were
reset to the initial setting before the training. A random
A setting was then sampled from a Gaussian distribution
with ¢ = 300 prad for each corrector and added to the
initial setting, leading to maximum 7 mm RMS (a factor 2-3
above the normal trajectory distortions caused by drifts and
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different initial conditions). The maximum step a corrector
could do per iteration was set +300 urad.

The objective of the training was twofold: to maximise
the reward from each initial condition, and to maximise the
reward in the shortest possible time. Figure 2 shows the
evolution of the 200 episode online training. The upper plot
gives the length of the episodes in number of iterations as
training evolves, while the lower plot shows the initial reward
(i.e. negative RMS) at the beginning of the episode (green
line) as well as the final reward achieved (blue line) at the
end of each episode. For a successful termination of the
episode, the final reward had to be above the target (dashed
red line).

At the beginning of the training, the Agent could not cor-
rect the line to an RMS below 2 mm, despite many iterations.
Instead, the trajectory deteriorated further. After about 15
episodes it had learned to successfully correct the trajec-
tory within 1-2 iterations to mostly even below 1 mm RMS
starting from any initial condition.
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Figure 2: Online training of NAF Agent of AWAKE electron
line trajectory steering in the horizontal plane. In the upper
plot the number of iterations per episode is given. The lower
plot shows the initial and final negative RMS value for each
episode. The target negative RMS value is indicated in red.

RL AGENT FOR LINAC4 TRAJECTORY
CORRECTION

Training the AWAKE RL Agent for trajectory correction
was a test case for algorithm development, since classical
optics model-based steering algorithms are available for the
AWAKE 18 MeV beamline. The CERN LINACS, on the
other hand, did not have online models at the moment of
the first RL experiments. RL and numerical optimisation
could be obvious and inexpensive solutions to many typical
LINAC tuning problems. The 160 MeV LINAC4 provides
H~ to the upgraded CERN proton chain through charge
exchange injection into the PS Booster [22]. LINAC4 had
its final commissioning run at the end of 2019, where some
time was also allocated to test various advanced algorithms
for different control problems. Also, an RL Agent using
the NAF algorithm was trained for trajectory steering in the
LINAC exploiting the experience with AWAKE.
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LINAC4 accelerates H™ from 3 MeV after source and
RFQ to 160 MeV. The Medium Energy Beam Transport
(MEBT) after the RFQ is followed by a conventional Drift
Tube Linac (DTL) of about 20 m that accelerates the ions to
50 MeV, then to 100 MeV in 23 m by a Cell-coupled Drift
Tube LINAC (CCDTL) and finally to 160 MeV by a sr-mode
structure (PIMS). The total length of the LINAC up to the
start of the transfer line to the PSB is roughly 75 m. The pulse
repetition rate is 0.83 Hz. The trajectory in the MEBT is fine
tuned for optimising chopping efficiency and should not be
modified during general trajectory optimisation. In addition
there are no BPMs available in the MEBT as observable for
an RL Agent.

The LINAC4 Gym environment comprised state informa-
tion from 17 BPMs and actions possible on 16 correctors,
through DTL, CCDTL, PIMS and start of the transfer line in
the horizontal plane (the allocated accelerator development
time was not sufficient to also train for the vertical plane).
The LINAC4 trajectory steering OpenAl Gym environment
had to respect the machine protection constraints and fi-
nalise episodes in case of violation, reset to safe settings as
well as to deal with various hardware limitations (e.g. the
power supplies of the steering dipoles cannot regulate for
I < 0.1A).

Experimental Results from LINAC4 RL Tests

LINAC4 had 8 weeks of final commissioning run in 2019.
On November 27, half a day was allocated to training and
testing the NAF Agent. The training is shown in Fig. 3. The
total number of episodes was set to 90 (taking in total about
300 iterations).

After about 25 episodes (or the equivalent of about 125
iterations), the Agent had learned to correct the trajectory to

below 1 mm RMS within a maximum of 3 iterations each :
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Figure 3: Online training of NAF Agent on LINAC4 trajec-
tory steering in horizontal plane. The maximum allowable
RMS was limited to 3 mm due to machine protection reasons.
The target for the training was set to reach | mm RMS.
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MORE SAMPLE-EFFICIENCY WITH RL

Another important application of RL will result from train-
ing RL Agents on simulation and then exploiting the Agent
with or without additional short training on the accelerator.
The obvious advantage of this approach, if possible, is that
in this case the algorithm does not have to be restricted to
be a very sample-efficient one, as accelerator time for train-
ing is either zero or limited. To test this principle of offline
training, another NAF Agent was trained - this time on the
simulated AWAKE trajectory correction environment. This
Agent was then used on the accelerator in operational config-
uration as trajectory correction algorithm. As expected, the
results - maximum 2 iterations for correction to well below 2
mm RMS for each episode - were as good as with the online
trained Agent. Figure 4 shows the results.
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Figure 4: Validation on accelerator of Agent that was trained
on simulation. The Agent corrects the trajectory to better
than 2 mm RMS within 1-2 iterations.

Experiments with Model-based Reinforcement
Learning

Model-based RL is a promising alternative to overcome
the sample efficiency limitation. Sutton’s Dyna-style algo-
rithm uses supervised learning for explicitly learning the
dynamics model and then trains a model-free RL Agent
(TD3 in our case) on the learned model instead of the real
environment. Improving the model and agent training are
interleaved until reaching a termination criterion. The Dyna
algorithm deployed for AWAKE trajectory correction (see
Algorithm 1) uses a simple fully connected artificial neural
network s, = f (s, a;) for the dynamics model, avoiding
the additional complexity with uncertainty-aware models as
used in other model-based RL algorithms (e.g. [23]). This
approach was sufficient due to the short horizon and the
beforehand reduced stochasticity of the problem.

Algorithm 1 was used with the AWAKE trajectory steering
online environment and led indeed to a significant reduction
of required data samples to train the Agent. Figure 5 shows
the number of data samples for 6 consecutive trainings. The
median number of required data samples was N,,;, = 80
compared to N, = 300 for the model-free case.
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Algorithm 1 The OpenAi Gym environment env,,,,;.; con-
tains the neural network for the data-driven dynamics model
and the methods to train this model. N;,;, data samples
are collected with random policy at the beginning. Agent
training and dynamics model learning is repeated maximum
Ngynq times. After each agent training, the agent is tested
on the real environment according to some performance
criterion. In case of successful test, the training is stopped.

eV odel = €NV 0401(€NV g5 So)
td3 = TD3(Can0del)

fill initial buffer & with N;,,;, samples
eNV,,,q¢;-train_model()
for Ny, do
td3.learn(N,43)
test on env,.,,; with td3.predict(s)
add validation data to 9;

if test OK then
break
end if
env,,,40;-train_model()
end for
===+ median
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Figure 5: Required number of data samples before obtaining
a sufficiently well trained agent using Dyna-style model-
based RL following algorithm 1 on the online AWAKE tra-
jectory correction environment.

Another approach of using explicit dynamics models in-
volves model-predictive control algorithms. Instead of train-
ing a model-free Agent on the data-driven dynamics model
and iterating between model learning and Agent training,
the surrogate dynamics model could be used as input to a
model-predictive control algorithm like iLQR [12]. The
successful deployment of this approach is shown in Fig. 6.

DISCUSSION AND CONCLUSION

The experience with the AWAKE and LINAC4 RL Agent
deployment has proved that the question of sample efficiency
for RL can be addressed for real accelerator control prob-
lems. The training with algorithms such as NAF, TD3 and
in particular model-based RL is sample-efficient enough to
allow for deployment in the control room. It still requires
more iterations than a numerical optimisation algorithm,
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Figure 6: Running iLQR to correct the horizontal trajectory
of the AWAKE electron line on a dynamics model trained
with 200 data points for various initial trajectories. The
problem is solved within 1 step each time.

but after training it out-performs numerical optimisers. The
resulting product is a control algorithm like SVD, but in the
case of RL without the requirement of a linear response.

The standardisation of the environment description using
OpenAl Gym proved a big advantage, allowing rapid switch-
ing between simulated and online training, and between
Agents.

In addition to studying new algorithms, infrastructure and
frameworks will have to be deployed in the control system
to easily make use of advanced algorithms and machine
learning. At CERN, a generic optimisation framework for
the control room was provided, including centrally stored
neural networks as well as registering environments and
algorithms for common use.
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