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Abstract. The widespread use of the Mixed Multinomial Logit model, in the con-
text of discrete choice data, has made the issue of choosing a mixing distribution
very important. The choice of a specific distribution may seriously bias results if
that distribution is not suitable for the data. We propose a flexible hierarchical
Bayesian approach in which the mixing distribution is approximated through a
mixture of normal distributions. Numerical results on a real data set are provided
to demonstrate the usefulness of the proposed method.
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1 Introduction

The multinomial logit (MNL) model has provided for a long time the foun-
dation for the analysis of discrete choice modelling, due to its advantages
in terms of closed-form solution and simplicity of interpretation and use
(McFadden (1974)). However, some restrictive assumptions underlying the
model have motivated researchers to consider alternative specifications, the
most popular of which is probably the mixed logit (MMNL) model (McFad-
den and Train (2000), Train (1998)). In its simplest specification, the utility
of each individual is a function of the alternative attributes, with attribute
coefficients that are random and reflect individual preferences.

In MMNL models, however, a crucial issue is that of specifying an appro-
priate mixing distribution of the random coefficients that may be interpreted
as representing random taste heterogeneity. Most popular specifications have
been the normal, triangular, uniform and lognormal distributions. However,
in practical applications, any of them has shown its deficiencies (Hess et al.
(2005)). An unappropriate choice of the mixing distribution can lead to prob-
lems in interpretation and potentially misguided policy-decisions (Cirillo and
Axhausen (2006), Fosgerau (2006)).

To deal with this issue, Fosgerau and Hess (2009) proposed two ap-
proaches: the first one improves on the flexibility of a base distribution by
adding in a series approximation using Legendre polynomials; the second one
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makes use of a semi-parametric mixing distribution consisting of a discrete
mixture of normal distributions (MOD). Both approaches can approximate
any continuous distribution, allowing also for multiple modes, a significant
advantage compared to typically used distributions, restricted to a single
mode. Allowing for multiple modes means that the population may be com-
posed of distinct groups with different behaviour. In a Monte Carlo study,
Fosgerau and Hess (2009) show that the two approaches do about equally
well in outperforming commonly used distributions, over a range of situa-
tions. The MOD approach has a particular ability in approximating point
masses. A heightened mass at zero is useful in representing taste heterogene-
ity for attributes that some individuals are indifferent to, as discussed by
Cirillo and Axhausen (2006) with regard to valuation of travel time savings.

In this paper, we consider the MOD approach and we illustrate how to
estimate this model in a Bayesian framework. Moreover, we extend the ap-
proach to the case in which multiple random coefficients, potentially corre-
lated, are present in the model. As Fosgerau and Hess (2009), we will fix the
number of components in the mixture. The extension to mixtures allowing
the number of components to vary is a topic for further research.

We rely on Bayesian procedures since these avoid two of the most promi-
nent difficulties associated with classical procedures. Firstly, the Bayesian
procedures do not require maximization of any function, thus avoiding the
numerical difficulties that often arise in maximizing the simulated likelihood
function of some MMNL models. Secondly, desirable estimation properties,
such as consistency and efficiency, can be attained under more relaxed con-
ditions with Bayesian procedures (Train (2001)). Moreover, Bayesian proce-
dures usually avoid the need to simulate choice probabilities, which is quite
cumbersome with MMNL models. Finally, individual-level parameters can be
easily obtained. The Bayesian perspective has been adopted in the context
of discrete choice models by, for example, Train (2001) for mixed logits with
normal, lognormal, uniform and triangular distributed coefficients. Allenby
et al. (1998) used a mixture of normal distribution for random parameters in
mixed logits, in the context of marketing research. We extend their approach,
including fixed parameters in the model and allowing for a more flexible hier-
archical structure. Our approach also relates to the one proposed by Ho and
Hu (2008) for linear mixed models with random effects.

The paper is organized as follows: the model and prior assumptions are
illustrated in Section 2; Section 3 deals with computational implementation;
Section 4 discusses an application to the analysis of stated preference data
on public transport demand. Conclusions are given in Section 5.

2 The Mixed logit model

In this Section, we illustrate the MOD approach in a hierarchical Bayesian
fashion. We, then, specify priors for the parameters in the model.
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2.1 The MOD approach

Person n faces a choice among J alternatives in each of T time periods.
According to the specification of a MMNL model that we will use, the person’s
utility from alternative i in period t is:

Unit = α′wnit + β′
nxnit + εnit (n = 1, . . . , N ; i = 1, . . . , J ; t = 1, . . . , T )

where εnit ∼ i.i.d. extreme value, wnit is a vector of R attributes (charac-
terizing the alternative and/or the subject) whose coefficients α are fixed
and xnit is a vector of K attributes whose coefficients βn are supposed to be
random and to vary in the population, according to the density g(βn|µ,Σ),
for n = 1, . . . , N , with µ and Σ being hyperparameters. Person n chooses
alternative i in period t if Unit > Unjt, ∀j 6= i. Let yn = (yn1, . . . , ynT ) be
the person’s sequence of choices over the T time periods. The probability of
observing this sequence, conditional on the person-specific parameters βn and
the common fixed parameters α, is the product of standard logit formulas:

L (yn|α, βn) =
T∏

t=1

eα′wnyntt+β′
nxnyntt∑J

j=1 eα′wnjt+β′
nxnjt

. (1)

The MOD approach, adopting a semi-parametric perspective, assumes
that g(βn|µ, Σ) is a mixture of C multivariate normal distributions:

βn|µ, Σ ∼
C∑

c=1

scφ(·|µc, Σc) (n = 1 . . . , N), (2)

where φ(·|µc, Σc) is a multivariate normal density with mean vector µc =
(µc1, . . . , µcK)′ and K by K covariance matrix Σc, and sc are weights satis-
fying 0 ≤ sc ≤ 1, for c = 1, . . . , C, and

∑C
c=1 sc = 1.

Notice that this model provides both the flexibility of the latent class
model and the parsimony of the traditional MMNL model. Indeed, both
models are special cases of the proposed model: the latent class model is
obtained by letting the within-class variances go to zero, and the traditional
MMNL model corresponds to using only one class or component.

2.2 Latent allocation variables

An alternative perspective, leading to the same mixture model in (2), in-
volves the introduction of latent allocation variables z = (z1, . . . , zN ) and
the assumption that the vector βn, relative to individual n, arose from an
unknown component zn of the mixture of multivariate normal distributions.
The allocation variables are given probability mass function

p(zn = c) = sc independently for n = 1, . . . , N, (3)
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and conditional on them, the random taste parameters βn are independently
drawn, for each subject n, from the density:

βn|z, µ,Σ ∼ φ(·|µzn , Σzn). (4)

Integrating out zn in (4), using the distribution in (3), leads back to (2).

2.3 Prior settings

We assume the number of components C to be fixed to a reasonable small
number, as in Fosgerau and Hess (2009). In a forthcoming paper, we will
consider C to be unknown and subject to inference, as well as the other
parameters of the model. From past experience, we would not expect inference
about the model proposed to be highly sensitive to prior specification. We
use a weakly informative priors approach, according to which we use some
information from the sample to set the values of the hyperparameters. In
particular, we fit a standard mixed logit model to the data, with normal
distribution of the taste parameters to get some idea from the estimated
mean and standard errors of the random parameters (Ho and Hu (2008)).

In particular, we assume a priori:

a) (s1, . . . , sC) ∼ D(δ, . . . , δ), where D denotes the Dirichlet distribution.
We choose δ = 1.

b) zn ∼ p(zn = c) = sc, independently for n = 1, . . . , N.
c) Σc ∼ IW(r, Θ−1), independently for c = 1, . . . , C, where IW denotes

the Inverse Wishart distribution.
d) µc ∼ NK(ξ, D), independently for c = 1, . . . , C, where NK denotes the

K-dimensional multivariate normal distribution.
e) Θ ∼ IW(a, S−1).
f) α ∼ NR(ν,Ω).

2.4 Complete hierarchical model

Let y = (y′1, . . . , y
′
N )′, µ = (µ′1, . . . , µ

′
C)′ and Σ be the matrix obtained by

stacking the covariance matrices Σc on top of each other. We exploit the
natural conditional independence structure so that the joint distribution of
all variables, conditional to the fixed values of the hyperparameters, is

p(y, s, z,Σ,Θ, µ, α, β|C, ν, γ, ξ,D, a, S, r, δ)

= p(s|C, δ)p(z|s, C)p(Θ|a, S)p(Σ|r, Θ, C)

·p(µ|ξ, D,C)p(α|ν,Ω)p(β|z, µ,Σ)p(y|α, β),

where p(z|s, C) =
∏N

n=1 szn
, p(y|α, β) =

∏N
n=1 L (yn|α, βn), with L (yn|α, βn)

defined in (1) and p(β|z, µ,Σ) given in (4). The prior distributions p(s|C, δ),
p(Θ|a, S), p(Σ|r, Θ, C), p(µ|ξ,D,C), p(α|ν,Ω) are all given in Section 2.3.
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3 Computational implementation

The complexity of the model presented requires Markov chain Monte Carlo
(MCMC) methods to approximate the posterior distribution. Our sampler
uses seven fixed-dimension moves. Gibbs samplers are used to update all
model parameters, except α and β, which are updated by means of Metropolis
algorithm. The notation ‘· · · ’ will be used to denote ‘all other variables’.

Updating s. Before considering the updating of s, we comment briefly on
the issue of labeling the components. The whole model is, in fact, in-
variant to permutation of the labels c = 1, . . . , C. For identifiability, we
adopt a unique labeling in which the component weights are in increasing
numerical order. As a consequence, the joint prior distribution of s is a
Dirichlet density, restricted to the set s1 < s2 < . . . < sC . The weights
are updated by drawing them from their full conditional distribution

(s1, . . . , sC)| · · · ∼ D(δ + m1, . . . , δ + mC)

where mc = #{n : zn = c} is the number of subjects currently allocated
to the c component of the mixture. To preserve the ordering constraints
on s, the move is accepted provided the ordering is unchanged.

Updating z. The allocation variable zn has conditional probability

p(zn = c|s, C, βn) =
scφ(βn|µc, Σc)∑C

c=1 scφ(βn|µc, Σc)
.

We can update the zn independently, sampling from this distribution.
Updating µ. The µc can be updated independently, drawing them from

µc| · · · ∼ NK

(
D−1ξ + mcΣ

−1
c β̄c

D−1 + mcΣ
−1
c

,
1

D−1 + mcΣ
−1
c

)
where β̄c = m−1

c

∑
n:zn=c βn.

Updating Θ. We update Θ sampling from its full conditional:

Θ| · · · ∼ IW

(
a + Cr, S−1 +

C∑
c=1

Σ−1
c

)
Updating Σ. We update Σc independently, sampling from

Σc| · · · ∼ IW

(
mc + r, Θ−1 +

∑
n:zn=c

(βn − µc)(βn − µc)′
)

Updating α. The Metropolis algorithm to update α proposes, at step h+1,
a new value α? drawn from a symmetric proposal density NR(α(h), τ1Ω),
where τ1 is a tuning parameter. This proposal is accepted with probability

min

1,

∏N
n=1 L

(
yn|α?, β

(h)
n

)
φ(α?|ν,Ω)∏N

n=1 L
(
yn|α(h), β

(h)
n

)
φ(α(h)|ν,Ω)

 .
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If the proposal is accepted, α(h+1) = α?, otherwise α(h+1) = α(h).
Updating β. We update βn independently, by means of Metropolis algo-

rithm. At the h + 1 step of the algorithm, we use a NK(β(h)
n , τ2Σzn

) as
symmetric proposal density, with τ2 being a tuning parameter, and we
accept the new value β?

n, drawn from it, with probability

min

1,
L
(
yn|α(h), β?

n

)
φ(β?

n|µzn , Σzn)

L
(
yn|α(h), β

(h)
n

)
φ(β(h)

n |µzn
, Σzn

)

 .

4 An application to public transport demand

The data set refers to a study carried out in Urbino (Italy) to analyse the at-
tributes of the local public transport and to investigate possible interventions
to improve the service (Marcucci and Scaccia (2005), Scaccia (2010)). Five
attributes of the service were considered: cost of monthly ticket, headway,
first and last run, real time information displays, bus shelters. Each attribute
was further described by five levels. Questionnaires contained 15 choice exer-
cises, 11 of which were random, 2 aimed at testing the quality of the answers,
and 2 aimed at testing preference stability. Each choice exercise contained
four hypothetical alternatives. A total number of 50 respondents took part
in the study, providing a data set of 750 observations.

To specify the models, the Lagrange multiplier test (McFadden and Train
(2000)) was used to decide which parameters are to be random. The null
hypothesis of no mixing was rejected for the parameters of the attributes
headway and daily operating time. The cost parameter was treated as non
random to simplify the estimation of marginal willingness to pay for an im-
provement in a certain attribute (see Scaccia (2010)).

To estimate the proposed model, we performed 100,000 sweeps of the
MCMC algorithm, allowing for a burn-in of 50,000 sweeps. Posterior means
of relevant parameters are given in Table 1. The posterior estimates for the
fixed parameters are very close to those obtained by Scaccia (2010). The signs
of the cost and bus shelters parameters are as expected, while the information
displays attribute seems to have a non significant influence on utility.

The marginal posterior densities for the random parameters are shown in
Figure 1. The estimated posterior distribution of βheadway does not change
when moving from the MMNL model with normal mixing density specifica-
tion to the MOD models. In this case, a simple normal mixing density would
have been appropriate to approximate taste heterogeneity with respect to the
headway attribute. This shows how the MOD approach can also be seen as a
diagnostic tool to get an idea of the shape of the true distribution and to help
in the choice of an appropriate model. The estimated posterior distribution
of βrun time is, instead, different under the three models. Under both the
MOD models, a mass point at zero can be noticed, revealing the presence of
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MMNL MOD MOD
(2 components) (3 components)

Parameter Est. Std. dev. Est. Std. dev. Est. Std. dev.

αcost -0.2671 0.0336 -0.2751 0.0346 -0.2764 0.0349
αdisplays -0.0452 0.1753 -0.0190 0.1678 -0.0242 0.1828

αshelters 0.3258 0.1771 0.3167 0.1835 0.3320 0.1747

µheadway -0.1039 0.0247 -0.0673 0.0806 -0.0485 0.1525

-0.1116 0.0254 -0.0750 0.0864
-0.1127 0.0265

µrun time 0.5322 0.0537 0.0403 0.1454 0.0180 0.1926
0.6561 0.0798 0.0863 0.1697

0.6840 0.0867

s 1.0000 0.0000 0.1599 0.0891 0.0503 0.0398
0.8401 0.0891 0.1623 0.0818

0.7873 0.0957

Table 1. Posterior mean estimates of relevant parameters.

Fig. 1. Estimated marginal posterior densities for the random parameters
βheadway (upper panel) and βrun time (lower panel) under a) the MMNL model,

b) the MOD model with 2 components, c) the MOD model with 3 components.

individuals that are indifferent to the availability of bus departures early in
the morning or late at night. This interesting feature is not revealed by the
MMNL model, which is not flexible enough to represent taste heterogeneity
with respect to run time.
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5 Conclusions and further development

We proposed modelling mixed logit models under a Bayesian hierarchical
framework, making use of a mixture of normal distribution to approximate
the density of the random parameters. This approach is conceptually simple
and is flexible enough to approximate well a variety of distributions, allowing
for multiple modes, as well as for saddle points in a distribution. Further-
more, it is possible to have point-mass at a specific value. Lastly, the mixture
components can be used to classify the individuals into homogeneous groups,
facilitating cluster analysis and classification. The approach proposed is not
restricted to being based on the normal distribution but can use any contin-
uous distribution. This could be an interesting avenue for further research.
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