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Abstract: In a previous paper, the authors implemented a machine learning k-nearest neighbors 

(KNN) algorithm and Python libraries to create two 3D interactive models of the stratigraphic ar-

chitecture of the Quaternary onshore Llobregat River Delta (NE Spain) for groundwater exploration 

purposes. The main limitation of this previous paper was its lack of routines for evaluating the con-

fidence of the 3D models. Building from the previous paper, this paper refines the programming 

code and introduces an additional algorithm to evaluate the confidence of the KNN predictions. A 

variant of the Similarity Ratio method was used to quantify the KNN prediction confidence. This 

variant used weights that were inversely proportional to the distance between each grain-size class 

and the inferred point to work out a value that played the role of similarity. While the KNN algo-

rithm and Python libraries demonstrated their efficacy for obtaining 3D models of the stratigraphic 

arrangement of sedimentary porous media, the KNN prediction confidence verified the certainty of 

the 3D models. In the Llobregat River Delta, the KNN prediction confidence at each prospecting 

depth was a function of the available data density at that depth. As expected, the KNN prediction 

confidence decreased according to the decreasing data density at lower depths. The obtained aver-

age-weighted confidence was in the 0.44−0.53 range for gravel bodies at prospecting depths in the 

12.7−72.4 m b.s.l. range and was in the 0.42−0.55 range for coarse sand bodies at prospecting depths 

in the 4.6−83.9 m b.s.l. range. In a couple of cases, spurious average-weighted confidences of 0.29 in 

one gravel body and 0.30 in one coarse sand body were obtained. These figures were interpreted as 

the result of the quite different weights of neighbors from different grain-size classes at short dis-

tances. The KNN algorithm confidence has proven its suitability for identifying these anomalous 

results in the supposedly well-depurated grain-size database used in this study. The introduced 

KNN algorithm confidence quantifies the reliability of the 3D interactive models, which is a neces-

sary stage to make decisions in economic and environmental geology. In the Llobregat River Delta, 

this quantification clearly improves groundwater exploration predictability. 

Keywords: KNN algorithm; confidence degree; data classification; python libraries; 3D  

stratigraphic architecture; Llobregat River Delta 

 

1. Introduction 

Numerical modeling is increasingly replacing the classic qualitative geological meth-

ods of data representation and mapping. Quantitative criteria are increasingly used for 

the 3D mapping of stratigraphic bodies of sedimentary basins. In fact, numerical tools 

allow interactive 3D visualizations while providing a measure of the accuracy of the 

mapped parameters and variables [1–4]. The result is more real, accurate interactive 
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visualizations than classic 2D mapping since modern 3D visualizations can assimilate new 

data into the prototypes during the modeling stages. These qualities make numerical 

modeling very interesting for decision making in diverse applied geology functionalities. 

Currently, a wide number of modeling tools for 3D visualizations exist. They use 

diverse programming languages and interpolation algorithms, including open-source 

software such as Gempy [5] and OSGeo [6] as well as commercial tools such as the 3D 

Geomodeller (Intrepid Geophysics), MOVE (Petroleum Experts Ltd., Edinburg, UK ), Au-

tocad Civil (Autodesk, Inc., California, USA), Gocad (Emerson Paradigm Roxar), ArcGis, 

VOXI (Earth Modeling from Geosoft), PETREL (Geology and Modeling from Schlum-

berger) and Geoscene 3D (I-GIS). Usually, commercial tools have friendly environments 

and technical support for users, but they can be expensive. While the adaptability (extend-

ing or updating the source) and zero cost of open-source tools make them advantageous, 

their disadvantages include their lack of technical support for users and the fact that they 

are sometimes unreliable. The open-source Python libraries [5–7] and posts listing librar-

ies [8–10] devoted to Geographic Information Systems (GIS) and mapping are of special 

interest for visualizing geological structures and stratigraphic elements in diverse applied 

geology fields, such as those devoted to groundwater, mining and geotechnical explora-

tion. The Python programming language is increasingly being used in a wide range of 

scientific documents to create computer tools that are applicable to different fields of ge-

ology [11–15]. The scientific relevance is high, as demonstrated by the existence of some 

social media channels devoted to post-machine learning educational routines aimed at 

geological purposes [16]. 

The experience gained by the researchers responsible for this work with Python li-

braries for 3D visualization and geological data handling was essential for developing 

new applications devoted to data classification and the 3D visualization of the strati-

graphic architecture of sedimentary bodies (essentially porous media) [17,18]. In the latest 

application, Bullejos et al. [18] used (i) a machine learning KNN algorithm to produce an 

interactive 3D model based on a set of horizontal (five-meter-equispaced) sections of the 

grain-size classes and (ii) used some Python libraries to produce interactive 3D models of 

the stratigraphic arrangement of the essential sedimentary bodies. Because of the high 

density of boreholes and the subsequent geological knowledge gained during the last six 

decades, the Quaternary onshore Llobregat River Delta (LRD) groundwater body near 

Barcelona city in northeastern Spain was selected to run the application. To design and 

run these models, the public grain-size database created by the Water Authority of Cata-

lonia (Agència Catalana de l’Aigua) for groundwater purposes in the study area, which is 

available on request, was used. Grain size (or granulometry) is a physical parameter ideal 

for classification purposes, which in turn determines the hydraulic and geotechnical be-

havior of sedimentary formations cataloged as aquifers. 

The application of Bullejos et al. [18] included Jupyter notebooks describing the meth-

odology and a version of the Python code, which is downloadable from the GitHub re-

pository (https://github.com/dcabezas98/knn-stratigraphic-visualization, accessed on 17 

November2022). A web browser can be used to open the created 3D models, take snap-

shots of a particular view, hide elements, view different perspectives, and enlarge or focus 

on a single element or specific area. The main limitation of this application was that it did 

not include specific routines for quantifying the confidence of the interactive 3D models. 

This limitation affects the reliability of the KNN predictions and should be amended for 

better decision making in applied geology. This paper introduces a metric inspired by the 

Similarity Ratio [19–21] to quantify the confidence of the interactive 3D models created by 

Bullejos et al. [18]. The Similarity Ratio is a common confidence metric in the machine-

learning KNN literature [19,20]. The implemented confidence metric assigns weights in-

stead of similarity since the similarity condition is equivalent to assigning weights in-

versely proportional to the distance between each grain-size class. 

2. Study Area 

https://github.com/dcabezas98/knn-stratigraphic-visualization
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The Llobregat River Delta (LRD) (Figure 1) is a coastal plain of 98 km2 in the SW 

sector of the metropolitan area of Barcelona (Catalonia region, NE Spain) (Figure 1A). This 

populated area includes other smaller cities such (L’Hospitalet de Llobregat, Cornellà, Vi-

ladecans, Sant Boi, Gavà, Castelldefels and El Prat de Llobregat). Since the XIX century, 

Barcelona city’s location and its abundance of water resources have made it favorable for 

the implantation of many industries in the LRD. As a consequence, groundwater has been 

exploited highly to satisfy the agriculture, industry and population water demands. This 

exploitation has reduced the groundwater quantity and damaged the quality due to sea-

water intrusion and contaminant leachates [22–25]. LRD land use has also been subjected 

to noticeable changes over the last few decades, such as those brought about by the Bar-

celona Olympic Games and the Llobregat Delta Infrastructure and Environment Plan (Pla 

d’Infraestructures i Medi Ambient del Delta del Llobregat: LRD Infrastructure Plan) [26]. 

In the case of the LRD Infrastructure Plan, the construction of large civil infrastructures 

with different underground development added stress to the groundwater resource. As a 

result, the Water Authority of Catalonia created the Technical Unit of the Llobregat Aqui-

fers (Mesa Tècnica dels Aqüífers del Llobregat) in 2004 to gather and systematize the 

widely available hydrogeological and geological information [27]. The purpose was to 

evaluate the hydrogeological risk of these civil works. This public geological and hydro-

geological database was considered in this work. 

 

Figure 1. (A) Simplified geological map of the onshore LRD area (green line) updated and simplified 

from Medialdea and Solé-Sabarís [28,29], Almera [30] and Alonso et al. [31]. (B) Simplified geologi-

cal cross-section A−A’ (with NW–SE orientation) of the onshore LRD; see location in (A). 
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The LRD is mainly nourished by the Llobregat River and from its tributaries to a 

lesser extent. Sediments mostly come from the Pre-Pyrenean Range. Other supplies come 

from the Garraf and Collserola massifs (Catalonian Coastal Range) in the lower part of the 

Llobregat River valley [28,29]. The LRD is NW bounded by the Catalonian Coastal Range, 

SE bounded by the Mediterranean Sea, and NE bounded by the Montjuïc relief (Figure 

1A). At the end of the XIX century, the first geological studies in LRD started [30]. Geo-

logical studies in the second half of the XX century [28,29,31–33] defined the geological 

basis of the first hydrogeological evaluations. A number of sedimentological studies 

aimed at clarifying the stratigraphic–sedimentological architecture of the LRD were also 

made during this period [32–34]. Additionally, the prodeltaic bodies of the emerged LRD 

delta were classified as Holocene bodies [35], marine seismic reflections were used to elu-

cidate the continental shelf geology [36–38], and the internal division and sequential struc-

ture of the Quaternary LRD were defined. Modern groundwater evaluations [39] were 

performed in the nineties by combining the geological information generated in the LRD. 

In the first decade of the XXI century, new geological data in the framework of the LRD 

Infrastructure Plan revealed detailed findings [40–44] about the Pliocene–Quaternary 

boundary, the geometry of coarse-grained bodies defining the productive aquifers, and 

the sedimentary and tectonic structures that enable seawater intrusion and the transport 

of contaminants [23,24,40]. 

The above geological background revealed how this area consists of a Neogene rifted 

margin contemporaneous to the Valencia Trough opening, where a number of probably 

active fault families exist. The most important faults are the NE–SW oriented Tibidabo 

and Morrot faults and the NW–SE oriented Llobregat fault. These fault families control 

the position of the Llobregat River outlet and the local orography [28–40]. Paleozoic gran-

ites and slates, Triassic conglomerates, sandstones and pelites, Jurassic dolostones and 

limestones, and Cretaceous marly limestones form the Catalonian Coastal Range. Miocene 

calcarenites and marly limestones make up Montjuïc Mountain (Figure 1A). Estuarine 

marls, silts and clays were formed during the Pliocene [28,29,31,40–44]. An important un-

conformity marks the Pliocene–Quaternary boundary (Pliocene rocks and older rocks 

constitute the basement) [40–44] (Figure 1B). The Quaternary sedimentation was divided 

into two depositional sequences from the Pleistocene and Holocene 

[28,29,31,36,37,40,42,44], namely the so-called upper and lower detrital complex, respec-

tively [40] (Figure 1B). After geophysical surveys in the offshore delta [36–38], the lower 

detrital complex was in turn divided into three minor depositional sequences [31]. Com-

monly, the lower detrital complex consists of conglomerate bodies and local sand with 

fine terrigenous material intercalated [34–38]. The case of the upper detrital complex is 

more diverse, including bottom to top sands, silts, gravels (with sands) and the uppermost 

silt-clay thin level associated with coastal marshes and wetlands [34,44]. Diverse streams 

coming from the neighbor reliefs contribute to determining the present landscape [42–44]. 

Finally, the regional littoral drift towards the SW distributes the shoreline sedimentation 

in that direction [45,46]. 

3. Methodology 

3.1. Data Compilation 

As introduced, the Technical Unit of the Llobregat Aquifers [27] prepared a grain-

size database for groundwater purposes in the LRD. This database included accurate val-

ues from lab tests and proxy values after the visual surveys of the sediments identified in 

433 onshore boreholes LRD [47]. The borehole lithologies and their grain-size records 

were revised to notice outliers. The detected outliers were suppressed or corrected when 

possible, thus providing the grain-size database used in this paper. The database was an 

XLS (Excel) file with meter-by-meter grain-size georeferenced values. The borehole’s lo-

cation (coordinates x and y) and prospecting depth (coordinate z) lead to a georeferenced 

array of grain-size data over space and depth. The georeferenced data were classified into 



J. Mar. Sci. Eng. 2023, 11, 60 5 of 20 
 

 

four classes attending to proper grain-size limits for feasible groundwater mechanical ex-

ploitation through pumping wells, such as (i) clay–silt (<1 mm) for very low-to-low-yield-

ing fine materials, coarse sand (1−5 mm) for moderate-to-high-yielding medium-grain-

sized materials, gravel (>5 mm) for very high-yielding coarse materials and basement, as 

used by Bullejos et al. [18]. 

The names and limits of this groundwater-oriented grain-size classification do not 

coincide with the formal names and limits established in official sedimentological and 

geotechnical grain-size classifications. For a reliable comparison of results, this paper has 

implemented the same data clustering and subsequent input files. Sections 3.2 through 3.4 

are devoted to describing the methodological stages developed by Bullejos et al. [18] for 

KNN predictions (Figure 2), whereas Section 3.5 describes the methodology developed in 

this paper to quantify the confidence of the KNN predictions. 

 

Figure 2. Flow diagram showing the methodological stages developed by Bullejos et al. [18] to create 

interactive 3D models of essential stratigraphic elements in the onshore LRD. The stages include 

data compilation and software implementation for the 3D mapping of (A) consecutive horizontal 

sections (5 m equispaced) of the grain-size classes generated by the KNN algorithm from 0 to 120 m 
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b.s.l., and (B) coarse sedimentary bodies (lithosomes) and the basement top surface (the strati-

graphic architecture) generated by Python libraries. 

3.2. Python Programming Language 

Python [48] is a popular open-source, object-oriented programming language. It has 

been used in a wide variety of environmental interests, including geological ones. In this 

work, we used this high-level programming language to examine the grain-size data and 

visualize the 3D models of essential stratigraphic elements of hydrogeological interest. 

The Python packages used here were (i) NumPy [49] for data computing, (ii) Pandas [50] 

for analyzing and processing data, (iii) Plotly [51] as a graphing library, (iv) Scipy [52] for 

interpolating and rendering algorithms, and (v) Scikit-learn [53] for the KNN classifier. In 

addition, an inverse distance weighted interpolation algorithm obtained from the 3D Ter-

rain Modeling in the Python viewer from the GEODOSE block [54] was also utilized. This 

methodological flow is summarized in Figure 2. The Jupyter notebooks containing the 

Python code and its explanatory instructions can be accessed in the GitHub repository 

cited in Bullejos et al.’s Supplementary Materials [18]. This version of the code can be read 

using a web browser, so installing the Python kernel is not necessary. 

3.3. KNN Algorithm 

The k-nearest neighbors (KNN) algorithm is a robust machine learning classifier, 

which takes the proximity and similarity of the data into account to resolve classification 

and regression problems [55–58]. Bullejos et al. [18] used this capability to classify the 

grain-size database prior to 3D visualization. This operation assumed that the inferred 

class at a given point is mostly dependent on the nearest data. Under this assumption of 

similarity, Bullejos et al. [18] used the KNN algorithm to estimate data from a set of meas-

urements to a wider space of individuals (in this case, the nodes of a 300 m × 300 m regular 

grid). 

3.4. The 3D Mapping of the Essential Stratigraphic Elements 

Figure 2 shows the working flow of the five-meter equispaced sets of horizontal sec-

tions generated by Bullejos et al. [18]. In each horizontal section, the KNN examined the 

K-nearest grain-size classes and selected the most frequent one. The routine assigned a 

weight inversely proportional to the distance between each neighbor in order to favor the 

closest ones. The choice of a suitable value for the parameter K is a significant issue. 

Smaller values of K may generate unrealistic polygonal regions, whereas larger values of 

K favor more smother, natural regions although they may disregard scattered data. The 

geological logic was used to conduct this process, hence avoiding problems with 

edge/boundary effects typically viewed in KNN. After the grain-size database was revised 

to include outliers, every supervised georeferenced datum was considered. Then, K = 1 

was imposed, i.e., the KNN algorithm only searches for the neighbors that are nearest to 

every point. A Jupyter notebook in the GitHub repository mentioned in Bullejos et al. [18] 

includes the code. 

Bullejos et al. [18] also utilized the Python library Pandas to load and process the XLS 

file containing the grain-size data (Figure 2). Google Earth and the Python Object from the 

Python Geometry package were used to define and generate the LRD contour, respec-

tively. The next step involved defining (i) the grid (with defined X and Y bounds and 

nodal spacing) to make the nodal KNN predictions, (ii) the maximum modeling depth 

determined by the first basement top surface prospection, (iii) the 5 m depth exploration 

and (iv) the function `layer_function’ to classify the grain-size data according to the three 

defined grain-size classes and their depths. 

The convenience of the 5 m equispaced set of horizontal sections of the grain-size 

classes (2D KNN predictions) was set as follows: (i) the LRD depth vs. length ratio since 

the Quaternary onshore LRD is approximately 120 m deep and 15 km long (horizontal 

length); (ii) the grain-size data arrangement meter to meter; (iii) the minimum dimension 
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of the mappable sedimentary bodies of hydrogeological interest (which were at least 5 m 

thick in this case); and (iv) the distances between the data. 

Next, the KNN algorithm was executed and the Matplotlib function scatter was used 

to generate the 2D horizontal sections with predictions delimited by polygonal region 

borders [18]. The plotly package was employed to create the interactive 3D models with 

the essential stratigraphic elements, such as the successive five-meter equispaced set of 

horizontal sections of the grain-size classes, the 3D visualization of the gravel and coarse 

sand sedimentary bodies, and the basement top surface delineation.  

The mapped sedimentary bodies can be regarded as ‘lithosomes’ since they are a vol-

ume of rock of uniform character. Lithosomes are characterized by a grain size, composi-

tion and internal structure that is clearly differentiable from the neighboring rocks. As 

described in Section 3.1, the grain-size definition used in this paper was based on the 

Wentworth classification [59]. 

3.5. The 3D Models as HTML Files 

The 3D models introduced by Bullejos et al. [18] were created as HTML (Hyper-text 

Markup Language) files. This paper uses this same file type to save the newly created 3D 

models. The HTML system is a standardized one for tagging text files in order to achieve 

font, color, graphic and hyperlink effects on World Wide Web pages, and it is the standard 

markup language for creating web pages [60–62]. The advantage of saving our 3D models 

as HTML files is that no additional tools are required (apart from a web browser to open 

them). So, once a model is opened with the use of a browser, it is possible to see different 

perspectives of the model or hide some elements to focus on others. Furthermore, it allows 

us to zoom in on a particular area, thereby providing us with a more precise view of it. 

3.6. The 3D Mapping of the Confidence of the Essential Stratigraphic Elements 

As stated in Section 1, the main limitation of the methodology developed by Bullejos 

et al. [18] was its lack of a routine to measure the confidence of the interactive 3D models 

of the essential stratigraphic elements of hydrogeological interest. Inspired by the Simi-

larity Ratio described in the machine-learning KNN literature [19,20], this section intro-

duces a metric to quantify the confidence of the KNN predictions. This metric assigns 

weights inversely proportional to the distance between each grain-size class (Figure 3) 

and takes the one with the highest weight at the target modal point. This weighing assig-

nation satisfies the properties of the grain-size classification since it is based on the simi-

larity (like or unlike) of neighboring data (all the data are determined by the physically 

based controls acting over this parameter). 
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Figure 3. Methodological stages for mapping the confidence of the interactive 3D models of the 

essential stratigraphic elements in the onshore LRD, such as the horizontal 2D sections (5 m eq-

uispaced) of the grain-size (or granulometry) classes generated by the KNN algorithm from 0 to 120 

m b.s.l., and the 3D stratigraphic architecture (coarse sedimentary bodies and the basement top sur-

face) generated by Python libraries. 

In each nodal point of the same regular grid used by Bullejos et al. [18] for the KNN 

predictions, the weight of the nearest neighbor used to infer grain size was determined. 

The operation of dividing this weight by the weight of the nearest neighbor of a different 

grain-size class in the Similarity Ratio formulation was replaced by two sequential steps. 

First, the nearest data point from each of the four grain-size classes was determined, where 

one of them was the neighbor used for prediction. Later, the weights of the four grain-size 

classes were added, and the value was placed in the denominator. As a result, the normal-

ized confidence metric for each nodal point was expressed as follows: 

𝐶𝑁(𝑡) =
𝑊𝑛𝑛

∑ 𝑊𝑛𝑑𝐺𝐺𝐶

 (1) 

CN is the normalized confidence associated with the prediction at t; Wnn is the weight of 

t’s nearest neighbor; ∑ is the summation of the grain-size classes; (GC) is clay–silt, coarse 

sand, gravel and basement; and WndG is the weight of the data point of the grain-size class 

G that is closest to t among the data points in the grain-size class G. 

Equation (1) is a normalization of weights adding up to 1, so the result can be inter-

preted as a probability in the 0.25–1 range since the confidence of all grain-size classes (we 

predict the class with the highest confidence) add up to 1. The expression takes the value 

of 0.25 in the worst case in which all classes are equally likely, takes the value of 0.33 if 

three classes are equally likely and the fourth is very unlikely, and so on. A 0.6 confidence 

should not be treated as a 60% probability that the prediction will be correct. This would 

be a naïve interpretation since transforming classifier scores into probabilities is a signifi-

cant issue. This metric allows us to estimate how confident the classifier for each KNN 

prediction is. Areas with high data density sharing a sole grain-size class lead to higher 

confidence values, whereas limits between areas with two or more different KNN predic-

tions lead to lower confidence values. Furthermore, confidence is a continuous function 

that varies over a horizontal section (2D data field) at a given prospecting depth to the 

interval [0.25,1]. Points close to each other have similar confidence values. 

Additionally, the function ‘predict_proba’ in the Scikit-learn implementation of KNN 

was implemented to estimate the approximate goodness of the confidence prediction [63]. 

For a given point, this function estimates the probability of belonging to each class attend-

ing to the weight of the neighbors of such class among the K nearest neighbors. However, 

this method cannot be performed in the case K = 1 since we would always obtain 100%. 

The basement top surface confidence mapping was a particular case since below this 

stratigraphic element, no grain-size classes associated with any other cataloged geological 

material of hydrogeological interest will be found. This class deserved special treatment. 

The confidence formulation was modified to favor the basement when several basement 

data close to each other and apart from other non-basement data points exist as follows: 

(i) the normalized confidence was worked out as explained above, and (ii) the nearest 

neighbor (which is a basement) was ignored. When basement data still remained, a bonus 

was applied to the heaviest data. This confidence bonus was computed in a similar way 

to the normalized confidence (Equation (1)), in this case including the weight differences 

between the (new) nearest basement and the highest non-basement data in the numerator 

(as shown below). 

𝑏𝐶 =
𝑊(𝑛)𝑛𝑏 −𝑊𝑛𝑛𝑏

∑ 𝑊𝑛𝑑𝐺𝐺𝐶

 (2) 

More precisely, bC is the normalized confidence bonus; W(n)nb is the weight of the (new) 

nearest basement; Wnnb is the weight of the nearest non-basement; ∑ is the summation of 
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the grain-size classes; (GC) is clay–silt, coarse sand, gravel and basement (ignoring the 

previous basement points); and WndG is the weight of the nearest data of the grain-size 

class G. 

Finally, actual (or corrected) confidence is obtained as follows: 

𝑪𝑨 = 𝑪𝑵 + 𝒃𝑪(𝟏 − 𝑪𝑵) (3) 

This function is continuous and adopts values in the 0.25−1 range. This process will 

be repeated iteratively; meanwhile, new basement data with greater weights than other 

non-basement data are found, thus ignoring the closest, the two closest and the three clos-

est basement data. Since no significant improvement with many iterations was noticed, 

this process was limited to considering the four closest basement data only. 

4. Results 

4.1. The Mapping of the Grain-Size Horizontal Sections: KNN Predictions and Confidences 

For a reliable integration of KNN predictions and their confidences, the same succes-

sive horizontal layers (5 m equispaced) of the grain-size classes, the same regular grid in 

each layer over the entire onshore LRD surface, and the same grain-size classes (clay–silt 

(<1 mm), coarse sand (1–5 mm), gravel (>5 mm) and basement) implemented by Bullejos 

et al. [18] for KNN predictions were used for KNN prediction confidences (Figure 4). Four 

illustrative KKN predictions and their KNN confidence counterparts at 0, 20, 50 and 100 

m b.s.l. are included in Figure 4A−H, respectively. In both cases, the boreholes’ locations 

with grain-size data are presented. Figure 4A−D is an extract of the KNN predictions over 

the 120 m prospected depth in the LRD that can be found in the Jupyter notebook created 

by Bullejos et al. [18] (https://github.com/dcabezas98/knn-stratigraphic-visualization, ac-

cessed on 17 November2022). Figure 4E−H is the equivalent extract for the KNN predic-

tion confidences over the 120 m prospected depth in the LRD. 

As described in Section 3.5, confidence is expressed in the dimensionless 0.25−1 range 

from a dark purple color for the lowest value to a red color for the highest one (Figure 

4E−H). The following intermediate confidence levels exist: low (0.25−0.35), satisfactory 

(0.35−0.50), high (0.50−0.70) and very high (0.70−1). 

Regarding the confidence evolution with prospecting depth (Figure 4), we first focus 

on the shallowest 2D sections (0, 20 and 50 m b.s.l.). Close to the land surface (0 m), satis-

factory to high confidences in the 0.40−0.70 range were found. At 20 m b.s.l., confidence 

reaches the 0.60−0.90 range in the coastal fringe and central sectors of the LRD, while the 

other sectors show values similar to those quantified at 0 m depth. At 50 m b.s.l., the area 

in the coastal fringe with confidences in the 0.60−0.90 range decreases, while the other 

sectors of the LRD show lower values. At 50 m b.s.l., the high to very high confidences in 

the inland northern sector are associated with the basement’s first appearance. In this in-

land northern sector, the very high confidences in the 0.70−1 range are associated with the 

basement top surface’s first appearance. The confidence increases and stabilizes from 50 

m b.s.l. to 100 m b.s.l. because the basement classification does not cause divergences re-

garding the grain-size classes of the Quaternary sedimentation. At 100 m b.s.l., the central 

and coastal areas occupied by Quaternary sedimentation show moderate to high confi-

dence levels. In general, the confidence level of the modeled Quaternary sedimentation 

tends to decrease with depth according to the decreasing data density from 0 m to 100 m 

b.s.l., whereas the basement in the 50−100 m b.s.l. range is typically well-classified and 

shows higher confidence levels. 



J. Mar. Sci. Eng. 2023, 11, 60 10 of 20 
 

 

 

Figure 4. Horizontal sections at 0, 20, 50 100 m b.s.l. of the grain-size (or granulometry) classes gen-

erated by the KNN algorithm in the onshore Quaternary LRD [18]. (A−D) The KNN predictions, 

with grain-size data classified into the gravel (>5 mm, cyan), coarse sand (1–5 mm, yellow), clay–silt 

(<1 mm, gray) and basement (brown) classes. (E−H) The corresponding KNN prediction confidences 

are expressed in the dimensionless 0.25–1 range. Points A through H represent the boreholes with 

grain-size data at the mapped depth. 

Figure 5A shows the interactive 3D model generated by the KNN algorithm from the 

consecutive set of horizontal layers (5 m equispaced) of the grain-size classes from 0 to 

120 m b.s.l., as in Bullejos et al. [18]. This interactive 3D model (LRD_Classes_Layers.html) 
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is provided in Supplementary Materials. Figures 5B–D show the confidence of the corre-

sponding 5 m equispaced set of horizontal layers of the grain-size classes from 0 to 120 m 

b.s.l. For a better visual representation and description, the confidence associated with the 

basement (Figure 5B) and the gravel (Figure 5C) and coarse sand (Figure 5D) grain-size 

classes were secluded and mapped separately. The interactive 3D models for the basement 

confidence (Basement_Confidence_Layers.html), gravel sedimentary body (or lithosome) 

confidence (Gravel_Lithosomes_Confidence_Layers.html) and coarse sand sedimentary 

body confidence (Sand_Lithosomes_Confidence_Layers.html) are provided in Supple-

mentary Materials. Figure 5 has been gathered from the 3D figures created by Bullejos et 

al. [18] (https://github.com/dcabezas98/knn-stratigraphic-visualization, accessed on 17 

November2022). These and the subsequent interactive 3D models can be loaded by using 

any browser. When loaded, the user can observe different views and zoom, rotate, and 

capture panoramic views. Additionally, the elements can be hidden to focus on a specific 

detail by simply clicking on the legend. 

 

Figure 5. The consecutive horizontal layers (5 m equispaced) of the grain-size (or granulometry) 

classes generated by the KNN algorithm from 0 to 100 m b.s.l. in the onshore LRD [18] and their 

corresponding confidences. (A) The KNN predictions, with grain-size data classified into the gravel 

(>5 mm, cyan), coarse sand (1−5 mm, yellow), clay–silt (<1 mm, gray) and basement (brown) classes. 

An interactive 3D version of this model (LRD_Classes_Layers.html) appears in Supplementary Ma-

terials. (B−D) The corresponding KNN prediction confidences in the 0.25−1 range for the basement 

top surface (B) and the secluded areas concerning the gravel (C) and coarse sand (D) sedimentary 

bodies (or lithosomes). Interactive 3D versions of the confidence models for the basement top sur-

face (Basement_Confidence_Layers.html), gravel sedimentary bodies (Gravel_Lithosomes_Confi-

dence_Layers.html) and coarse sand sedimentary bodies (Sand_Lithosomes_Confidence_Lay-

ers.html) are included in the Supplementary Materials. 

4.2. The 3D Mapping of the Stratigraphic Architecture and Basement Top Surface: KNN Predic-

tions and Confidences 

As shown in Figure 4A−D, the number of boreholes (data density) noticeably de-

creased with depth, so the shape of the sedimentary bodies and their confidences deteri-

orated and decreased with depth, respectively. With these horizontal sections, an interac-

tive 3D model of the stratigraphic architecture (essential stratigraphic elements of hydro-

geological interest) of the Quaternary onshore LRD was created (Figure 5). The ways in 

https://github.com/dcabezas98/knn-stratigraphic-visualization
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which the KNN prediction confidence varies attending to the data density and prospect-

ing depth are described below. 

Regarding the KNN prediction, Bullejos et al. [17,18] used a grouping procedure and 

defined 14 gravel sedimentary bodies and 17 coarse sand ones reaching a prospecting 

depth of 120 m b.s.l., which represents the entire onshore Quaternary sedimentation space 

in the LRD (Figure 6A−C). An interactive 3D model of the KNN prediction (3D_Litho-

somes_And_Basement_LRD.html) is included in Supplementary Materials. Figure 6 pre-

sents partial views of the above-mentioned 3D interactive model, including the spatial 

distribution of coarse sedimentary bodies (Figure 6A,B) and the shape of the basement 

top surface (Figure 6C). The 3D visualization represents a gravel sedimentary body that 

is very continuous over time, close to the present Llobregat River course. In the SW sector, 

other minor gravel sedimentary bodies are also displayed at different depths (Figure 6A). 

There are also two big coarse sand bodies at different depths: the most important, shal-

lowest one and others of little relevance (Figure 6B). The basement top surface reveals a 

general staggered shape moving deeper and deeper into the sea. In this stagger, an over-

imposed horst-graben structure is visible (probably related to faulting) (Figure 6C). When 

the above-mentioned structure of the basement was compared with the geological map 

from Figure 1, a clear relationship between the horst-graben structures and the Tibidabo, 

Llobregat, and Morrot fault families can be observed. The 3D models effectively repro-

duced the sedimentary complexity of the area recently reported in the scientific literature 

[42–44,64,65]. 

 

Figure 6. The 3D stratigraphic architecture (essential stratigraphic elements of hydrogeological in-

terest and their confidences) in the LRD. (A−C) The KNN algorithm predictions [18] for gravel sed-

imentary bodies (or lithosomes) (>5 mm, cyan) and the basement’s top surface (BTS) (A), coarse 

sand sedimentary bodies (1–5 mm, yellow), the only BTS (B) and BTS (brown) (C). In Supplementary 

Materials, an interactive 3D version of this model can be found (3D_Lithosomes_And_Base-

ment_LRD.html). (D−F) The corresponding KNN prediction confidences, expressed in the dimen-

sionless 0.25–1 range, for gravel sedimentary bodies (D), coarse sand sedimentary bodies (E) and 
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only BTS (F). The interactive 3D models for the gravel sedimentary bodies’ confidence values 

(3D_Gravel_Lithosomes_Confidence.html), coarse sand sedimentary bodies’ confidence values 

(3D_Sand_Lithosomes_Confidence.html), and the BTS confidence values (3D_Basement_Confi-

dence.html) are included in Supplementary Materials. 

Regarding the KNN prediction confidence (Figure 6D−F), the prospecting depth was 

restricted to 100 m b.s.l. So, the number of gravel sedimentary bodies was reduced to 13 

(n = 13), while the same 17 (n = 17) coarse sand sedimentary bodies were maintained (Table 

1). The KKN prediction confidence of the gravel sedimentary bodies (Figure 6D), coarse 

sand sedimentary bodies (Figure 6E) and basement top surface (Figure 6F) reflect the de-

creasing number of boreholes (data density) with depth, i.e., the upper part of the sedi-

mentary bodies has higher confidences than the lower one. This means that the average-

weighed confidence of a given lithesome integrates the high to very high confidences from 

the upper part and the low-to-moderate confidences from the lower part. The average-

weighed confidence and other metrics and statistics for the gravel sedimentary bodies, 

coarse sand sedimentary bodies and the basement top surface are in Table 1. The interac-

tive 3D models for the KNN prediction confidences for the gravel sedimentary bodies 

(3D_Gravel_Lithosomes_Confidence.html), coarse sand sedimentary bodies 

(3D_Sand_Lithosomes_Confidence.html) and basement top surface (3D_Basement_Con-

fidence.html).are included in the Supplementary Materials. 

As described in the previous section, confidence is expressed in the 0.25−1 dimen-

sionless range, including the following intermediate levels: low (0.25−0.35), satisfactory 

(0.35−0.50), high (0.50−0.70) and very high (0.70−1) (Figure 6D−F). In the LRD, the average-

weighed confidences varied in the 0.44−0.53 and 0.42−0.55 ranges for prospecting depths 

in the 12.7−72.4 m b.s.l. and 4.6−83.9 m b.s.l. ranges for gravel (n = 12) and coarse sand (n 

= 16) sedimentary bodies, respectively (Table 1). Low average-weighed confidences in one 

gravel body of 0.29 and in one coarse sand one of 0.30 were found in the SW sector, prob-

ably associated with the poor classification in this sector where very different grain-size 

classes exist closely among them. 

In general, the 0.48 ± 0.06 and 0.50 ± 0.07 average-weighted confidences for the gravel 

and coarse sand sedimentary bodies, respectively, mean that the KNN algorithm has a 

satisfactory to high ability to predict these grain-size classes regarding the adjacent ones. 

The average-weighted confidence for the basement top surface is 0.78, thus showing the 

ability of the KNN algorithm to predict this class regarding the adjacent coarse classes of 

the onshore Quaternary sedimentation. 

Table 1. Basic metrics and statistics of the KNN prediction confidence of the observed (and defined) 

gravel sedimentary bodies, coarse sand sedimentary bodies and the basement top surface in the 

onshore LRD. 

Gravel Sedimentary  

Bodies 
AW Confidence 1 AW Depth 2 Depth min 2 Depth Max 2 LRD Interval 

grlit1 0.50 –72.4 –40 –100 Lower 

grlit2 0.51 –51.4 –40 –60 Lower 

grlit3 0.52 –55.5 –45 –70 Lower 

grlit4 0.49 –56.6 –50 –65 Lower 

grlit5 0.51 –45.7 –35 –50 Middle 

grlit6 0.50 –28.3 0 –40 Middle to Lower 

grlit7 0.48 –29.8 –10 –40 Middle to Lower 

grlit8 0.44 –29.5 –25 –35 Middle 

grlit9 0.53 –19.7 –10 –25 Middle to Lower 

grlit10 0.29 –20.0 –15 –25 Middle to Lower 

grlit11 0.45 –17.5 –15 –20 Lower 

grlit12 0.49 –12.7 0 –25 Lower 
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grlit13 0.50 –25.0 0 –40 Middle to Lower 

Median 0.50 –29.5 –15 –40  

Average 0.48 –35.7 –21.9 –45.8  

Standard Deviation (±1σ) 0.06 18.6 18.2 22.9  

CV 3 0.13 –0.52 –0.83 –0.50  

Coarse sand sedimentary 

bodies 
AW confidence 1 AW depth 2 Depth min 2 Depth max 2 LRD interval 

snlit1 0.51 –83.9 0 –100 Upper to Lower 

snlit2 0.54 –35.0 0 –90 Upper to Lower 

snlit3 0.54 –25.5 0 –90 Upper to Lower 

snlit4 0.53 –39.7 0 –100 Upper to Lower 

snlit5 0.42 –65.9 0 –80 Upper to Lower 

snlit6 0.54 –12.7 0 –60 Upper to Lower 

snlit7 0.54 –24.4 0 –90 Upper to Lower 

snlit8 0.54 –8.8 0 –40 Middle to Lower 

snlit9 0.51 –10.5 –5 –20 Lower 

snlit10 0.46 –49.1 –5 –80 Upper to Lower 

snlit11 0.46 –17.1 0 –40 Middle to Lower 

snlit12 0.55 –10.1 –5 –55 Upper to Lower 

snlit13 0.43 –40.6 0 –60 Upper to Lower 

snlit14 0.53 –16.3 0 –60 Upper to Lower 

snlit15 0.54 –4.6 0 –10 Lower 

snlit16 0.53 –9.2 0 –60 Upper to Lower 

snlit17 0.30 –6.6 0 –15 Lower 

Median 0.53 –12.7 0 –60  

Average 0.50 –21.2 –1.2 –51.5  

Standard Deviation (±1σ) 0.07 18.9 2.2 25.4  

CV 3 0.13 –0.89 –1.90 –0.49  

Basement top surface AW confidence 1 AW depth 2 Depth min 2 Depth max 2 LRD interval 

basement 0.78 –70.4 0 –100 Upper to Lower 
1 AW confidence—average-weighted KNN confidence in the dimensionless 0.25−1 range. 2 AW—

average-weighted prospecting depth, Depth min—minimum prospecting depth, and Depth max—

maximum prospecting depth in m b.s.l. 3 CV—coefficient of variation (standard deviation (±1σ) to 

average value ratio) as a dimensionless fraction. LRD stratigraphic interval as defined in Bullejos et 

al. [17]. 

5. Discussion and Conclusions 

In a previous paper, Bullejos et al. [18] introduced a KNN Python algorithm [48–58] 

for the 3D visualization of essential stratigraphic elements of hydrogeological interest in 

sedimentary porous media [22–24]. Based on the proximity and similarity to make classi-

fications or predictions about the grouping of an individual data point, the application 

used the grain-size database prepared by METALL in the onshore Quaternary LRD 

groundwater body [28–37] for groundwater purposes to generate two interactive 3D mod-

els [60–62]. The first model was the consecutive horizontal sections (5 m equispaced) of 

the grain-size classes generated by the KNN algorithm from 0 to 120 m b.s.l. The second 

model was the 3D visualization of the main gravel and coarse sand sedimentary bodies 

forming aquifers and the basement top surface generated by Python libraries. This paper 

solves an important limitation concerning the confidence quantification [55–58] of the two 

above interactive 3D models. The quantification of the KNN prediction confidence uses a 

variant of the Similarity Ratio based on weights that decrease with the distance between 

each grain-size class instead of similarity. 
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The rationale for using this metric departs from the adopted K = 1 in the KNN algo-

rithm and the defined four grain-size classes on the basis of proper limits for feasible 

groundwater mechanical exploitation through pumping wells (clay–silt, coarse sand, 

gravel and basement). This means that only the nearest neighbor of each grain-size class 

must represent that class when the grain size at the point to be classified is inferred, i.e., 

the closest grain-size class is assigned to that point. The accuracy of the KNN prediction 

decreases when the weight of the neighbors from different classes is very similar since it 

is influenced by a close call. The KNN prediction confidence increases when the weight 

of neighbors from different classes is quite different. At a given 2D data field at a given 

prospecting depth (horizontal section), the KNN prediction confidence is therefore a func-

tion of the data density. At a 3D data field, the confidence also reflects the common de-

creasing data density (number of boreholes) with prospecting depth. The divergences re-

garding this general behavior are closely associated with very different grain-size classes. 

For the consecutive horizontal sections (which are five-meter-equispaced sections) of 

the grain-size classes, the overall high confidences associated with the higher data density 

in the shallower horizontal sections (Figure 4E−H) tend to decrease in some sectors when 

the widely varied points of different classes mingled and were close to each other. At 20 

m b.s.l., the clay–silt class predominates in the central and coastal sectors of the LRD. The 

abundance of data matching in class makes the algorithm confident that clay–silt is found 

in such places. For deeper prospecting depths (50 m b.s.l. and deeper), this matching de-

creases due to the decreasing data density, although the appearance of gravel bodies ad-

jacent to coarse sand and clay–silt bodies indicates a similar decrease in confidence values 

(Figure 4E−H). 

In the LRD, the average-weighed confidence varied in the 0.44−0.53 and 0.42−0.55 

ranges for prospecting depths in the 12.68−72.39 m b.s.l. and 4.55−83.94 m b.s.l. ranges for 

the gravel (n = 12) and coarse sand (n = 16) sedimentary bodies, respectively (Table 1). The 

KKN prediction confidence for the gravel sedimentary bodies (Figure 6D), coarse sand 

sedimentary bodies (Figure 6E) and basement top surface (Figure 6F) are mostly subjected 

to the decreasing data density with depth (Figure 4E−H), i.e., the upper part of the sedi-

mentary bodies has higher confidence values than the lower one. This means that the av-

erage-weighed confidence of a given lithesome integrates the high to very high confi-

dences from the upper part (the shallower horizontal sections) and the low-to-moderate 

confidences from the lower part (the deeper horizontal sections). This matching produced 

spurious average-weighed confidences of 0.29 in one small gravel lithesome and 0.30 in 

one small coarse sand lithesome (Table 1; Figure 7). This additional ability of the KNN 

prediction confidence calculation is of special interest because it secludes these kinds of 

disparities due to the close points of different classes in supposedly well-depurated grain-

size databases, such as those used in this research paper. The average-weighted confi-

dence for the basement top surface is 0.78 (Table 1), thus showing the ability of the KNN 

algorithm to predict this class regarding the adjacent grain-size classes of the onshore 

Quaternary deposits. 
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Figure 7. Range and average-weighed prospecting depth vs. average-weighed KNN prediction con-

fidence for the 13 gravel (A) and 17 coarse sand (B) sedimentary bodies, as shown in Table 1. LRD 

stratigraphic interval as defined in Bullejos et al. [17] and achieved confidence levels, namely low 

(0.25−0.35), satisfactory (0.35−0.50) and high (0.50−0.70), are also indicated. 

The visualization of the 3D stratigraphic architecture (essential sedimentary bodies 

of hydrogeological interest) and its confidence must be managed together for predictable 

interpretations. This is a prerequisite for decision making in applied (mainly environmen-

tal and economic) geology. The 3D modeling seeks to improve the groundwater manage-

ment and governance, optimization of groundwater monitoring networks, drilling of 

proper pumping wells in the LRD and similar groundwater bodies, as well as the evalua-

tion of the impact of the large civil works included in the LRD Infrastructure Plan on the 

groundwater resource. The spatial distribution of the grain size (and the subsequent def-

inition of sedimentary bodies) may also be of assistance in designing compensatory 

measures for aquifer protection and recovery, including the choice of suitable sites for 

managed (artificial) aquifer recharge and specific measures to control the advance of sea-

water intrusion and the mobilization of contaminants. 

The introduced application also quantifies the confidence of the interactive 3D mod-

els. In the onshore LRD, the overall confidence of the interactive 3D models was in the 
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0.4−0.6 range. These figures enable rational geological interpretations prior to explora-

tions. The KNN prediction confidence can also be used to depurate input data as a further 

technique aimed at improving the quality of predictions. This ability has interesting im-

plications for geological modeling strategies based on progressive data assimilation. Sim-

ilar to the grain size, the introduced KNN prediction confidence calculation can also be 

used to quantify the confidence of other mapped geological elements and features based 

on other variables and parameters with similar classifiable behavior. 

Supplementary Materials: The interactive 3D models can be downloaded at 

https://www.mdpi.com/article/10.3390/jmse11010060/s1 and by using the following links: (i) those 

concerning the KNN prediction for the consecutive five-meter-equispaced set of horizontal layers 

(LRD_Classes_Layers.html), the basement top surface (Basement_Confidence_Layers.html), the 

gravel sedimentary bodies (Gravel_Lithosomes_Confidence_Layers.html) and the coarse sand sed-

imentary bodies (Sand_Lithosomes_Confidence_Layers.html); (ii) those concerning to the KNN 

prediction for the stratigraphic architecture and basement top surface (3D_Lithosomes_And_Base-

ment_LRD.html); and (iii) those concerning the KNN prediction confidence for the basement top 

surface (3D_Basement_Confidence.html), the gravel sedimentary bodies (3D_Gravel_Litho-

somes_Confidence.html) and the coarse sand sedimentary bodies (3D_Sand_Lithosomes_Confi-

dence.html). The Python code, the KNN algorithm, the confidence metric, and detailed instructions 

for downloading and running the code can be found in the GitHub repository at 

https://github.com/dcabezas98/knn-stratigraphic-visualization for KKN predictions and at 

https://github.com/dcabezas98/confidence-knn-stratigraphic-visualization, accessed on 17 Novem-

ber2022, for KNN prediction confidences, respectively. 
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