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This is the day that the Lord has made;
we will rejoice and be glad in it.

— Psalm 118:24
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1 Introduction

— A wise old owl
1.1 Game theory

Game theory is the mathematical theory to analyze the behavior of rational decision-
makers in both cooperative and strategic interactive situations. It aims to resolve
these situations by developing mathematical models and applying mathematical tools
to provide insights in the interactive decision-making process. As a research field, it
all started with the paper of Von Neumann (1928), followed by a more comprehensive
book of Von Neumann and Morgenstern (1944). In the latter, both cooperative and
strategic aspects in interactive decision-making are discussed.
Roughly, game theory can be divided into two subfields: cooperative game theory
and non-cooperative game theory. Within non-cooperative game theory, the focus is
on situations of conflict in which individuals, or players, independently have to make
a strategic choice. Typically, the pay-offs to a single player result from the strategy
combination of both the player itself and all the other players. Usually it is assumed
that the players have complete information in the sense that all strategy combinations
and the corresponding pay-offs are known beforehand. Non-cooperative game theory
takes a global perspective and tries to answer the question which strategy combination
will be a rational outcome.

1
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2 1.2. Claims problems

The most established answer to this question is provided by the Nash equilibrium
concept and is based on the general assumption that all players are (selfish) pay-off
maximizing individuals. A Nash equilibrium (Nash, 1950, 1951) is a strategy com-
bination of the players that is stable in the sense that no player unilaterally wants
to deviate from the equilibrium strategy. More specifically, in a Nash equilibrium,
every player maximizes his own pay-off by playing the equilibrium strategy, given the
equilibrium strategy combination of the other players.

Cooperative game theory on the other hand is all about possible cooperation between
the players. Generally, cooperation leads to joint revenues or joint cost savings. This
poses a new type of question: how to fairly allocate these joint gains among the
players? Answering this question adequately is essential to establish effective and
stable cooperation. In order to settle this interactive joint allocation problem, the
commonly used model of a transferable utility (TU) game is employed. In this model,
the joint utilities of all subgroups are explicitly taken into account in finding an
adequate allocation vector. This joint utility of a subgroup is called the worth and
for example reflects the economic possibilities of the subgroup.
Regularly, allocation vectors are determined by a global perspective based on general
principles for various classes of TU-games. For specific types of cooperative allocation
problems however, a more tailor-made approach might be favorable. In particular,
in interactive operations research problems, the allocation problem arises after first a
joint optimization problem is solved and subsequently, a context specific approach of
utilizing the structure of an optimal solution settles the joint allocation problem.

In this dissertation, both non-cooperative and cooperative game theory play a role.
Furthermore, we deal with several interactive allocation problems, two of which we
illustrate in Section 1.2 and Section 1.3 below. These two sections are representative
for the two common approaches that are typical for this dissertation: a strategic
approach and a cooperative approach. An overview of all topics discussed in this
dissertation can be found in Section 1.4.

1.2 Claims problems

One of the simplest and most natural allocation problems is a claims problem. In
a claims problem, a (monetary) estate has to be divided among several claimants,
who each have a non-negative, justifiable (monetary) claim on the estate. One can
think of a bankruptcy situation in which a firm goes bankrupt and leaves an estate
to be divided among the creditors. A problem occurs if the estate is insufficient to
cover all the claims. The natural question is then how to divide the estate among the
claimants, hereafter called players. The following example illustrates such a claims
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Chapter 1. Introduction 3

problem and describes various solutions.

Example 1.1 Consider a bankruptcy situation where a bankrupt firm leaves an
estate of 10 (e.g. millions of dollars) to be divided among two creditors. The first
creditor, hereafter player 1, claims an amount of 8, while the second creditor, hereafter
player 2, claims an amount of 4. Consequently, the claims sum up to 12, whereas there
is only 10 available to be divided.
To solve this problem, one could reason that player 1 claims twice the amount of
player 2 and hence, should therefore be awarded twice as much as player 2. In other
words, player 1’s claim constitutes 8

8+4 = 2
3 of the total claims and is, by following

this proportionality principle, thus awarded two-thirds of the estate: 2
3 · 10 = 6 2

3 . On
the other hand, player 2’s claim constitutes one-third of the total claims and he is
thus awarded one-third of the estate: 1

3 · 10 = 3 1
3 .

Instead of the above-used proportionality principle, one could also use a (constrained)
equality principle as the leading principle: each player receives half of the estate.
However, in that case, player 2 would receive an amount of 5, which is more than his
claim. To avoid this, we award player 2 his full claim and give the remainder of the
estate to player 1. Player 1 thus receives 6, while player 2 receives 4.
Yet another way of dividing the estate among the players is to use the concede and
divide principle. First, one could argue that player 1 only claims part of the estate,
leaving an amount of 10 − 8 = 2 unclaimed. This part is conceded to player 2.
Similarly, player 2 concedes an amount of 10 − 4 = 6 to player 1. Then there is still
an amount of 2 left, claimed by both players. Since the two remaining claims are
equal, it makes sense to divide this amount equally among the two players. In total,
player 1 is thus awarded 6 + 1 = 7 and player 2 gets 2 + 1 = 3.
Table 1.1 provides a schematic overview of the problem as well as the discussed
solutions. △

Estate: 10 player 1 player 2

Claim 8 4

Solutions
Proportionality 6 2

3 3 1
3

Constrained equality 6 4
Concede and divide 7 3

Table 1.1 – The claims problem and several solutions of Example
1.1.

Example 1.1 already indicates that there is a wide variety of possible solutions for
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4 1.2. Claims problems

a general claims problem. Solutions to particular cases of a claims problem already
occur in the 2000-year-old Babylonian Talmud. Studying these examples, O’Neill
(1982) and Aumann and Maschler (1985) initiated a new line of research and formu-
lated several general rules on how to tackle a claims problem. The most basic one is
the one that is discussed first in Example 1.1 and is known as the proportional rule.
For an arbitrary claims problem, it divides the estate proportionally to the claims.
Instead of proportionality, one could also focus on (constrained) equality as leading
principle. This is reflected in the second solution of Example 1.1 and is known as the
constrained equal awards rule. For an arbitrary claims problem, it divides the estate
as equal as possible among the players, provided that each player does not receive
more than his claim.
This reasoning can also be reversed by focusing on the losses rather than on the
awards. In particular, for an arbitrary claims problem, the constrained equal losses
rule divides the total losses, that is, the total claims minus the estate, as equal as
possible among the players, provided that each player receives a non-negative amount.
One can readily verify that in Example 1.1 this principle leads to the same outcome
as the concede and divide principle.
In general however, the constrained equal losses rule might specify a different outcome
than the concede and divide rule. The idea of first conceding the non-claimed parts of
the estate and then dividing the possible remainder equally among the players, is only
applicable for claims problems with two players. Interestingly, this idea is extended
to claims problems with an arbitrary number of players by Aumann and Maschler
(1985), leading to the famous Talmud rule. For a comprehensive overview of claims
rules suggested in the literature, we refer to Thomson (2015).

In this dissertation, in Chapter 6 to be precise, we propose a new model that extends
a standard claims problem and naturally leads to a strategic element. In this new
model, called a claims problem with estate holders, we assume that the estate is
separated in smaller parts, kept by several estate holders. In other words, there are
multiple estate holders, each holding a different estate that has to be divided among
the players. This forces the players to divide their claim over the estates, leading
to a non-cooperative model. The following example illustrates this new model and
explains the possible strategic decisions of the players.

Example 1.2 Reconsider the bankruptcy situation as described in Example 1.1,
where the bankrupt firm leaves an amount of 10 to be divived among the two players,
claiming 8 and 4, respectively. To introduce the claims problem with estate holders,
suppose that the amount of 10 is separated over two different banks: bank A holding
an amount of 4 and bank B holding an amount of 6:

Total estate of 10
{

4 at bank A;
6 at bank B.
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Furthermore, suppose that bank A uses the constrained equal awards rule to divide
the estate, whereas bank B uses the proportional rule.
Players 1 and 2 now have to decide how to divide their claims over the two banks.
For example, player 1 can choose to claim an amount of 5 at bank A and an amount
of 3 at bank B:

Player 1’s claim of 8
{

5 at bank A;
3 at bank B.

Player 2 can choose to claim 1 at bank A and 3 at bank B (also dividing his whole
claim of 4):

Player 2’s claim of 4
{

1 at bank A;
3 at bank B.

This strategy combination is visualized in the left part of Table 1.2.
Next, both banks divide their estate using the pre-specified claims rule: bank A
divides the estate of 4 over the two players, leading to an award of 3 for player 1 and
1 for player 2. This is visualized in the right part of Table 1.2.
For bank B, both players claim an equal amount of 3 at this bank. The available
estate of 6 is thus equally divided over the two players: 3 for player 1 and 3 for player
2, as is seen in Table 1.2.
Summarizing, these choices of players 1 and 2 lead to a pay-off of 6 for player 1 and
4 for player 2.

Claims Awards

player 1 player 2 player 1 player 2

Bank A 5 1 3 1
Bank B 3 3 3 3

Total 8 4 6 4

Table 1.2 – Division of the claims in the first strategy combination
and the corresponding awards of Example 1.2.

However, if player 1 believes that player 2 is going to divide his claim of 4 in the
way as prescribed above, then player 1 can improve his total pay-off by changing his
strategy. Instead of claiming 5 at A and 3 at B, player 1 can also decide to claim
only 3 at bank A and 5 at bank B:

Player 1’s claim of 8
{

3 at bank A;
5 at bank B.
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6 1.2. Claims problems

Table 1.3 summarizes this division of claims and the corresponding awards for both
players for this second option. Interestingly, the allocation of bank A remains the
same as in the first option: 3 to player 1 and 1 to player 2. However, bank B now
allocates more to player 1: he receives, by following the proportional rule, an amount
of 5

5+3 ·6 = 3 3
4 . Player 2 still claims 3 at bank B, but he now only receives an amount

of 3
5+3 · 6 = 2 1

4 . In total, this leads to a pay-off of 6 3
4 for player 1, which is indeed

more than in the first option, and 3 1
4 for player 2. In game theoretical terms, this

means that the first strategy combination is not a Nash equilibrium.

Claims Awards

player 1 player 2 player 1 player 2

Bank A 3 1 3 1
Bank B 5 3 3 3

4 2 1
4

Total 8 4 6 3
4 3 1

4

Table 1.3 – Division of the claims in the second strategy combi-
nation and the corresponding awards of Example 1.2.

To conclude this example, we analyze one more strategy combination, which is sum-
marized in Table 1.4. This third strategy combination gives player 1 a total pay-off
of 6 1

2 and player 2 receives a total pay-off of 3 1
2 . It can be shown that this strategy

combination is a Nash equilibrium, which means that, given the equilibrium strategy
of the other player, no player has an incentive to choose a strategy different from his
equilibrium strategy.

Claims Awards

player 1 player 2 player 1 player 2

Bank A 2 2 2 2
Bank B 6 2 4 1

2 1 1
2

Total 8 4 6 1
2 3 1

2

Table 1.4 – Division of the claims in the third strategy combina-
tion and the corresponding awards of Example 1.2. △

Example 1.2 illustrates the strategic choices of the players in a claims problem with
estate holders. General questions that are answered in Chapter 6 include whether
there always exist Nash equilibria and whether the corresponding Nash equilibria
pay-offs always allocate the total estate.
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1.3 Sequencing situations

A different example of an allocation problem appears in so-called sequencing situa-
tions. Here, the allocation problem appears after solving a joint optimization problem.
In a (standard) sequencing situation, several jobs need to be processed by a single ma-
chine. Each job has its own processing time, specifying how long the machine takes
to process the job, and linear cost coefficient, specifying the cost per time unit the job
spent in the system. It is assumed that all jobs are present in the system at the time
the machines starts processing and the time a job spends in the system thus consists
of the waiting time before the job is processed by the machine and the processing time
of the job itself. The optimization goal is to find an order of the jobs that minimizes
the total joint costs of the jobs. Such an order is called an optimal order.
An allocation problem arises if one includes an initial order that provides the initial
processing rights on the machine. By rearranging the jobs from the initial order to
an optimal order, cost savings can be obtained. The additional question is then how
to allocate these cost savings among the jobs. The following example is inspired by
an outsourcing context and illustrates an integrated approach for finding an optimal
order and solving the corresponding allocation problem.

Example 1.3 Consider a highly specialized machine which is able to produce chips
for computers. Three companies (e.g. Apple, Dell and HP), named player 1, 2 and 3,
want to outsource the production of chips for their computers and use the specialized
machine. The processing times and cost per time unit are specified in Table 1.5 below.
In this example, one might think of the processing times representing the number of
chips needed. The cost per time unit might represent the costs of delaying the process
of building the computers.

player 1 player 2 player 3

Processing time 4 3 1
Cost per time unit 2 6 1

Table 1.5 – The sequencing situation of Example 1.3.

To make use of the specialized machine, the companies have to reserve the machine to
produce the chips needed for their computers. These reservations provide the initial
processing rights on the machine and are treated on a ‘first come, first serve’ basis.
Here, we assume that player 1 made a reservation first, then player 2 and finally,
player 3. This initial order is denoted by (1, 2, 3).
Given this initial order, it is clear that the job of player 1 has no waiting time and is
thus completed after his processing time of 4. After these 4 time units, the job of player
2 is processed. The completion time of this job is thus after 7 time units. Finally,
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8 1.3. Sequencing situations

it takes one more time unit to finish the job of player 3, resulting in a completion
time of 8 for player 3. The initial order and the corresponding completion times are
visualized in Figure 1.1. Using the cost per time unit, the individual costs are given
by 8 for player 1, 42 for player 2 and 8 for player 3. Consequently, the total costs for
the initial order are given by 8 + 42 + 8 = 58.

0 4 7 8

2 31Initial order
time

Figure 1.1 – The initial order (1, 2, 3) in the sequencing situation
of Example 1.3.

Interestingly, after a careful deliberation of the processing times and cost per time
unit, the two neighboring players 1 and 2 decide to work together and switch positions.
The reason for this switch is the fact that after the switch, the individual costs of
player 1 and player 2 become 14 and 18, respectively. Hence, the total costs for
the order (2, 1, 3) are given by 14 + 18 + 8 = 40, since the neighbor switch between
players 1 and 2 will clearly not influence the completion time of player 3. Thus, as
a consequence of the switch of players 1 and 2, a cost savings of 18 is obtained. A
natural way of directly allocating these cost savings is equally between players 1 and
2. Both players thus receive 9 for this switch.
After this first switch, players 1 and 3 become neighbors and decide to work together.
A switch between these players lead to the order (2, 3, 1) and individual costs of 16
for player 1 and 4 for player 3. Hence, the total costs for this order are given by
16 + 18 + 4 = 38, which is again lower than before. This switch thus generates a cost
savings of 2, which is again equally divided between players 1 and 3. Both players
thus receive 1 for this switch.
At this point, there are no profitable neighbor switches available for the players any-
more. In the standard sequencing situation of this example, the players now have
reached the optimal order, that is, the order that minimizes the total costs. This can
readily be verified by computing the total costs of all possible orders. This is shown in
Table 1.6. Indeed, the lowest total costs are given by 38 and obtained for the unique
optimal order (2, 3, 1), which is schematically visualized in Figure 1.2.

0 3 4 8

2 3 1Optimal order

time

Figure 1.2 – The optimal order (2, 3, 1) in the sequencing situation
of Example 1.3.

We can thus reach the optimal order (2, 3, 1) from the initial order (1, 2, 3) by consec-
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Processing order Total costs

(1, 2, 3) 58
(1, 3, 2) 61
(2, 1, 3) 40
(2, 3, 1) 38
(3, 1, 2) 59
(3, 2, 1) 41

Table 1.6 – The total costs of all processing orders in the sequenc-
ing situation of Example 1.3.

utively switch neighboring players:

(1, 2, 3) 18−−−→
(1,2)

(2, 1, 3) 2−−−→
(1,3)

(2, 3, 1).

The corresponding cost savings are given by 18 for the first switch and 2 for the
second switch, which were equally divided among the involved players. This leads to
the following natural allocation of the total cost savings:

Total cost savings of 20


9 + 1 = 10 for player 1;
9 for player 2;
1 for player 3.

Player 1 thus gets allocated 10, player 2 receives 9 and player 3 receives 1. △

Example 1.3 illustrates a natural solution to the allocation problem: recursively al-
locate the cost savings, or gains, of each (profitable) neighbor switch equally among
the two players involved. This solution is formally called the equal gain splitting rule
(Curiel, Pederzoli, and Tijs, 1989). If one allows for an arbitrary division of the neigh-
bor switching gains among the two players involved, then we obtain the so-called gain
splitting rules (Hamers, Suijs, Tijs, and Borm, 1996). Note that there, in principle,
might be several paths from the initial order to an optimal order that repairs all prof-
itable neighbor switches. However, the order in which these switches are repaired is
not relevant for the outcome of the gains splitting rules.
All of the above is based on the assumption that the costs of the players are linear, that
is, that there is a fixed amount of cost per time unit. In Chapter 4 of this dissertation,
we relax this assumption and consider non-linear cost functions instead. In particular,
we focus on finding a natural allocation of the total cost savings obtained from the
neighbor switches to reach an optimal order from the initial order. For this, we use
the principle of the equal gain splitting rule and divide the cost savings for each of
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10 1.3. Sequencing situations

the neighbor switches equally among the two players involved. The following example
illustrates this process for a sequencing situation with exponential cost functions and
shows that this process is more challenging than in the case of standard sequencing
situations.

Example 1.4 Reconsider the situation with the highly specialized machine and
the three companies as described in Example 1.3. That is, the processing times are
specified in Table 1.5: player 1 needs 4 millions of chips to be processed by the
specialized machine, player 2 needs 3 millions of chips and player 3 only needs 1
million of chips. Moreover, the initial order is given by (1, 2, 3).
Now, however, the individual costs of the companies are assumed to be exponential
in the completion time. In particular, we assume that for all three companies it holds
that the costs are doubled every time unit. We start with an initial costs of 1. After
one time unit, the costs double to 2. After another time unit, the costs are equal to
4 and so on. This can be described by the cost function c(t) = 2t where t represents
the completion time.

Processing order Total costs

(1, 2, 3) 400
(1, 3, 2) 304
(2, 1, 3) 392
(2, 3, 1) 280
(3, 1, 2) 290
(3, 2, 1) 274

Table 1.7 – The total costs of all processing orders in the sequenc-
ing situation of Example 1.4.

To find an optimal order, we compute the total costs of all possible processing orders.
This is shown in Table 1.7. For example, the total costs for the initial order (see also
Figure 1.1) are given by 400: the completion time of player 1 is equal to 4, so his
individual costs are 24 = 16, the completion time of player 2 is 7 with corresponding
individual costs of 27 = 128 and the completion time of player 3 is 8 with individual
costs of 28 = 256. Consequently, the total costs for the initial order are given by
16 + 128 + 256 = 400.
Table 1.7 reveals that the order (3, 2, 1) is the unique optimal order with a total costs
of 274. If the players decide to cooperate, then a total cost savings of 400−274 = 126
can be obtained. To obtain these maximal total cost savings, we try to follow the
recursive process as described in Example 1.3 using profitable neighbor switches. This
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is possible in two different ways:

(1, 2, 3) (1,2)−−−→
8

(2, 1, 3) (1,3)−−−→
112

(2, 3, 1) (2,3)−−−→
6

(3, 2, 1),

and
(1, 2, 3) (2,3)−−−→

96
(1, 3, 2) (1,3)−−−→

14
(3, 1, 2) (1,2)−−−→

16
(3, 2, 1).

In both ways, we can compute the corresponding cost savings (below each arrow) for
each neighbor switch (above each arrow) and, by following the principle of the equal
gain splitting rule, divide these cost savings equally among the two players involved.
For the first path, players 1 and 2 are in the first step responsible for a cost savings
of 8 and are thus each allocated an amount of 4. Furthermore, in the second step of
the first path, players 1 and 3 are each allocated an amount of 56. Finally, players 2
and 3 each receive an amount of 3. In total, the first path thus leads to the following
allocation of the total cost savings among the players:

Total cost savings of 126


4 + 56 = 60 for player 1;
4 + 3 = 7 for player 2;
56 + 3 = 59 for player 3.

For the second path, players 2 and 3 first switch positions to obtain a cost savings
of 96 together. Both players are thus allocated an amount of 48. In the second step,
players 1 and 3 are each allocated an amount of 7. Finally, players 1 and 2 each
receive an amount of 8. In total, we thus obtain the following allocation of the total
cost savings among the players:

Total cost savings of 126


7 + 8 = 15 for player 1;
48 + 8 = 56 for player 2;
48 + 7 = 55 for player 3.

Note that the two allocations differ. In fact, the cost savings obtained from a switch
between two players, for example players 1 and 2, differ in both paths: in the first
path, a switch of players 1 and 2 yields a cost savings of 8, while in the second path,
this switch yields a cost savings of 16. In the exponential sequencing situation of
this example, the order in which the profitable neighbor switches are repaired is thus
relevant.
Next, we analyze the two natural allocations, as summarized in Table 1.8, from the
perspective of stability. An allocation vector satisfies stability if every subgroup of
players is allocated at least as much as the amount this subgroup can obtain by stop
working together with the other players and only cooperate with each other.
First note that players 1 and 2 can obtain a cost savings of 8 by working together.
Without the help of player 3, they can switch positions in the initial order to reach
the order (2, 1, 3). The corresponding cost savings of this switch are equal to 8.
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12 1.4. Overview

player 1 player 2 player 3

First allocation 60 7 59
Second allocation 15 56 55

Table 1.8 – The two natural allocations in the sequencing situation
of Example 1.4.

In both allocation vectors, players 1 and 2 receive more than 8: in the first allocation,
the players receive in total an amount of 67, whereas in the second allocation, the
players receive a total amount of 71. This implies that players 1 and 2 prefer a
cooperation with player 3 rather than working together with the two of them only.
Secondly, note that players 1 and 3 can not obtain any cost savings without the help
of player 2. For, in the initial order, players 1 and 3 are separated by player 2.
Finally, players 2 and 3 are neighbors in the initial order and therefore can switch
positions. This leads to a cost savings of 96. In the first allocation, players 2 and 3
jointly receive only an amount of 66. Since this is less than the cost savings the two
players can obtain by directly switching positions without the help of player 1, players
2 and 3 will not agree with the first allocation. In other words, the first allocation is
not a stable one. On the other hand, in the second allocation, players 2 and 3 receive
a total amount of 111, which does exceed 96. This means that the second allocation
vector is a stable one. △

Example 1.4 shows that there exists a stable allocation of the cost savings in the
exponential sequencing situation under consideration. In Chapter 4, we provide more
insights in determining the paths from the initial order to an optimal order and the
corresponding cost savings allocation. We are in particular interested in the question
whether one of these allocations is stable.

1.4 Overview

This dissertation starts with a survey of the relevant preliminaries on cooperative
games, claims problems and strategic games in Chapter 2. The remaining chapters
are structured in the following way. First, in Chapter 3, we focus on the theoret-
ical model of TU-games, its modifications and the corresponding commonly used
allocation vectors. Secondly, we introduce our first sequencing related interactive op-
erations research problem in Chapter 4, for which we take a cooperative approach.
In particular, we solve the joint allocation problem by employing the corresponding
optimization problem and relate our solutions to the associated TU-game. Next, in
Chapter 5, we use cooperative cost sharing techniques to solve a purchasing related
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interactive joint allocation problem. In contrast, in Chapter 6, we take a strategic
approach to a claims related allocation problem. Finally, Chapter 7 concludes this
dissertation with a study to the theoretical model of strategic games.
Below, we provide a brief overview per chapter. For the exact results we refer to the
introduction section of each chapter.
In Chapter 3, we study the nucleolus of graph-restricted games. The model of a
TU-game is extended by Myerson (1977) to communication situations. In a com-
munication situation, it is assumed that there are communication restrictions on the
players, which limit the cooperation possibilities. This leads to a modified TU-game,
so that the traditional solution concepts like the Shapley value or the nucleolus provide
a solution to the communication situation. For example, applying the Shapley value
to this modified TU-game results in the so-called Myerson value (Myerson, 1977). In
Chapter 3, we apply the nucleolus to this modified TU-game. In particular, we study
both the invariance of the nucleolus and the inheritance of the related properties of
strong compromise admissibility and compromise stability.
Chapter 4 studies interactive sequencing situations with non-linear cost functions,
as described in Section 1.3 above. Interactive sequencing situations are a perfect
example of an interactive operations research problem. The first goal is to find an
optimal order that minimizes the total processing costs. The second goal is to find
a suitable, stable allocation for the cost savings that can be obtained by recursively
rearranging the initial order to an optimal order. The main focus of this chapter is on
interactive sequencing situations with exponential (Saavedra-Nieves, Schouten, and
Borm, 2020), discounting (Rothkopf, 1966) or logarithmic cost functions, for which
both goals are achieved.
Chapter 5 introduces the concept of capacity restricted cooperative purchasing (CRCP)
situations. In a cooperative purchasing situation, a group of players, each having indi-
vidual order quantities, is cooperating in order to benefit from a higher discount. In
this chapter, we focus on cooperative purchasing situations with two suppliers with
limited capacities. We solve both the optimization problem of splitting the total or-
der over the two suppliers to minimize the total costs and the allocation problem of
dividing these costs over the players. For the latter, we model a CRCP-situation as
a cost sharing problem to exploit cost sharing rules in order to find a suitable cost
allocation method. We modify one of the main cost sharing rules, the serial rule, in
different piecewise serial rules based on different claims rules.
In Chapter 6, we formally introduce a claims problem with estate holders as described
in Section 1.2 above. In contrast to the standard claims problems where there is a
single estate on which the claimants have a claim, there are several estates in a claims
problem with estate holders over which the claimants have to divide their claims. Since
each estate is separately allocated using a claims rule, this leads to a strategic choice
for the players of how to divide their claims over the estates. We study the existence
of Nash equilibria of the resulting strategic game and are particularly interested in
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14 1.4. Overview

the corresponding pay-offs.
Chapter 7 concludes this dissertation with the introduction of a new equilibrium con-
cept for strategic games. The standard Nash equilibrium concept is based on selfish
behavior among the players. In contrast, Berge (1957) proposed an alternative equi-
librium concept based on altruistic behavior. The basic idea of a Berge equilibrium is
group support, following the famous idea of ‘one for all, and all for one’. Instead, we
propose a new equilibrium concept based on individual support. In a so-called unilat-
eral support equilibrium, every player is supported by every other player individually.
We characterize unilateral support equilibria in several ways and focus on the relation
with both the Berge and Nash equilibrium concepts.
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2 Preliminaries

— An elephant has
an excellent memory

2.1 Cooperative games

A (transferable utility) cooperative game is a pair (N, v) where N is a non-empty,
finite set of players and v : 2N → R with v(∅) = 0 is a characteristic function which
assigns to every coalition S ∈ 2N the worth of the coalition. Here, 2N is the collection
of all subsets of N . The set of all cooperative games with player set N is denoted by
TUN and a cooperative game (N, v) is also denoted by v ∈ TUN .
For a cooperative game v ∈ TUN , the imputation set is given by

I(v) =
{

x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N) and xi ≥ v({i}) for all i ∈ N

}
,

the core is given by

C(v) =
{

x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N) and
∑
i∈S

xi ≥ v(S) for all S ∈ 2N

}
,

15
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16 2.1. Cooperative games

and the core cover (cf. Tijs and Lipperts, 1982) is given by

CC(v) =
{

x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N) and m(v) ≤ x ≤ M(v)
}

,

where M(v), m(v) ∈ RN are, for all i ∈ N , defined by

Mi(v) = v(N) − v(N \ {i}),

and

mi(v) = max
S∈2N :i∈S

v(S) −
∑

j∈S,j ̸=i

Mj(v)

 .

A cooperative game v ∈ TUN is called

• imputation admissible if I(v) ̸= ∅;

• balanced if C(v) ̸= ∅ (cf. Bondareva, 1963; Shapley, 1967);

• superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all S, T ∈ 2N with S ∩ T = ∅;

• convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all S, T ∈ 2N (cf. Shapley,
1971);

• compromise stable if CC(v) ̸= ∅ and C(v) = CC(v), or equivalently if
CC(v) ̸= ∅ and v(S) ≤ max

{∑
i∈S mi(v), v(N) −

∑
j∈N\S Mj(v)

}
for all

S ∈ 2N \ {∅} (cf. Quant, Borm, Reijnierse, and Van Velzen, 2005);

• strongly compromise admissible if CC(v) ̸= ∅ and v(S) ≤ v(N)−
∑

j∈N\S Mj(v)
for all S ∈ 2N \ {∅} (introduced by Driessen (1988) as 1-convex, but we adopt
the terminology of Quant et al. (2005)).

Figure 2.1 provides an overview of the relation between the above-mentioned prop-
erties of a cooperative game. In the figure, each ellipse reflects the class of all coop-
erative games for which the corresponding property is satisfied. One can see that,
e.g., strong compromise admissibility implies compromise stability, convexity implies
superadditivity and balancedness implies imputation admissibility.
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Imputation admissibility

Balancedness
Superadditivity

Convexity

Compromise
stability

Strong compromise admissibility

Figure 2.1 – An overview of the relation between several properties
of a cooperative game.

2.2 Claims problems

A claims problem is a tuple (N, E, c) where N is a non-empty, finite set of players,
E ∈ R+ is the estate and c ∈ RN

+ is the claims vector summarizing the claims ci on
the estate for every player i ∈ N .1 The set of all claims problems with player set N
is denoted by CN and a claims problem (N, E, c) is also denoted by (E, c) ∈ CN .
A claims rule φ : CN → RN

+ assigns to each claims problem (E, c) ∈ CN an awards
vector φ(E, c) ∈ RN

+ such that, for all i ∈ N ,

0 ≤ φi(E, c) ≤ ci, (2.1)

and, if
∑

i∈N ci ≤ E,
φ(E, c) = c, (2.2)

and finally, if
∑

i∈N ci > E, ∑
i∈N

φi(E, c) = E. (2.3)

Here, the first inequality of Equation (2.1) is referred to as non-negativity and the
second inequality as claims boundedness. Moreover, Equation (2.2) requires a claims
rule to fulfill all claims if the estate is sufficiently large.2 Finally, the condition as
formulated in Equation (2.3) is referred to as efficiency.

1Note that we do not impose
∑

i∈N
ci > E from the onset as standard in bankruptcy problems.

2This condition requires a claims rule to solve any trivial problem in the obvious way, which is a
technically convenient and natural extension of the standard bankruptcy assumptions.
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18 2.2. Claims problems

Moreover, we assume from the onset that a claims rule φ satisfies continuity, which
requires that, for all claims problems (E, c) ∈ CN and for any sequence of claims
problems {(Ek, ck)}∞

k=1 ⊆ CN that converges to (E, c), it holds that {φ(Ek, ck)}∞
k=1

converges to φ(E, c).
Well-known claims rules include the constrained equal awards rule, the constrained
equal losses rule, the Talmud rule and the proportional rule.3

For a claims problem (E, c) ∈ CN , the constrained equal awards rule is denoted by
CEA and, for all i ∈ N , defined by

CEAi (E, c) =
{

ci, if E ≥
∑

j∈N cj ;
min {λ, ci} , if E <

∑
j∈N cj ,

where λ ∈ R is such that
∑

i∈N min {λ, ci} = E. The constrained equal awards rule
divides the estate as equal as possible under the restriction that no player is awarded
more than his claim.
On the other hand, the constrained equal losses rule divides the total loss as equal as
possible under the restriction that no player loses more than this claim. Formally, for
a claims problem (E, c) ∈ CN , the constrained equal losses rule is denoted by CEL
and, for all i ∈ N , defined by

CELi (E, c) =
{

ci, if E ≥
∑

j∈N cj ;
max {ci − λ, 0} , if E <

∑
j∈N cj ,

where λ ∈ R is such that
∑

i∈N max {ci − λ, 0} = E.
Incorporating both ideas of the constrained equal awards rule and the constrained
equal losses rule leads, for a claims problem (E, c) ∈ CN , to the Talmud rule (cf.
Aumann and Maschler, 1985), which is denoted by TAL and, for all i ∈ N , defined
by

TALi (E, c) =


ci, if E ≥

∑
j∈N cj ;

1
2 ci + CELi

(
E − 1

2
∑

j∈N cj , 1
2 c
)

, if 1
2
∑

j∈N cj < E <
∑

j∈N cj ;
CEAi

(
E, 1

2 c
)

, if E ≤ 1
2
∑

j∈N cj .

Note that, since CELi (E, c) = ci − CEAi

(∑
j∈N cj − E, c

)
, it holds that

TALi (E, c) =


ci, if E ≥

∑
j∈N cj ;

ci − CEAi

(∑
j∈N cj − E, 1

2 c
)

, if 1
2
∑

j∈N cj < E <
∑

j∈N cj ;
CEAi

(
E, 1

2 c
)

, if E ≤ 1
2
∑

j∈N cj .

3For an overview on claims rules, see Thomson (2003, 2013, 2015), among others.
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For claims problems with two players, the Talmud rule boils down to the concede and
divide rule in which both players first concede the possible amount that is not claimed
and secondly, divide the possible remainder equally. Formally, for a claims problem
(E, c) ∈ CN with N = {1, 2}, the concede and divide rule (cf. Aumann and Maschler,
1985) is denoted by CD and defined by

CD1 (E, c) =
{

c1, if E ≥ c1 + c2;
max {E − c2, 0} + E−max{E−c1,0}−max{E−c2,0}

2 , if E < c1 + c2,

and

CD2 (E, c) =
{

c2, if E ≥ c1 + c2;
max {E − c1, 0} + E−max{E−c1,0}−max{E−c2,0}

2 , if E < c1 + c2.

Exchanging the roles of the constrained equal awards rule and the constrained equal
losses rule in the Talmud rule leads, for a claims problems (E, c) ∈ CN , to the reverse
Talmud rule (cf. Chun, Schummer, and Thomson, 2001), which is denoted by RTAL
and, for all i ∈ N , defined by

RTALi (E, c) =


ci, if E ≥

∑
j∈N cj ;

1
2 ci + CEAi

(
E − 1

2
∑

j∈N cj , 1
2 c
)

, if 1
2
∑

j∈N cj < E <
∑

j∈N cj ;
CELi

(
E, 1

2 c
)

, if E ≤ 1
2
∑

j∈N cj .

Again, by using that CELi (E, c) = ci − CEAi

(∑
j∈N cj − E, c

)
, it holds that

RTALi (E, c) =


ci, if E ≥

∑
j∈N cj ;

ci − CELi

(∑
j∈N cj − E, 1

2 c
)

, if 1
2
∑

j∈N cj < E <
∑

j∈N cj ;
CELi

(
E, 1

2 c
)

, if E ≤ 1
2
∑

j∈N cj .

Finally, for a claims problem (E, c) ∈ CN , the proportional rule is denoted by PROP
and, for all i ∈ N , defined by

PROPi (E, c) =
{

ci, if E ≥
∑

j∈N cj ;
λci, if E <

∑
j∈N cj ,

where λ ∈ R is such that
∑

j∈N λcj = E. Rewriting leads, for all i ∈ N , to

PROPi (E, c) =

 ci, if E ≥
∑

j∈N cj ;
ci∑

j∈N
cj

E, if E <
∑

j∈N cj .
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(a) For the constrained equal awards rule.
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0 c1c1 − c2
0
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(b) For the constrained equal losses rule.
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(c) For the Talmud rule.
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(d) For the reverse Talmud rule.

φ1

φ2

0 c1
0

c2

φ = PROP

(c1, c2)

(e) For the proportional rule.

Figure 2.2 – The paths of awards for five claims rules.

The proportional rule thus divides the estate proportionally to the claims.
For claims problem with only two players, we can visualize the claims rules by the so-
called paths of awards (Thomson, 2015). These paths indicate the awards of the two
players for an increasing level of the estate. The paths of awards of the constrained
equal awards rule, the constrained equal losses rule, the Talmud rule, the reverse
Talmud rule and the proportional rule are depicted in Figure 2.2.
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A claims rule φ satisfies

• claims monotonicity if, for all (E, c) ∈ CN , all i ∈ N and all c′
i ∈ R+ with

c′
i ≥ ci,

φi(E, (c−i, c′
i)) ≥ φi(E, c);

• estate monotonicity if, for all (E, c) ∈ CN , all i ∈ N and all E′ ∈ R+ with
E′ ≥ E,

φi(E′, c) ≥ φi(E, c);

• order preservation if, for all (E, c) ∈ CN and all i, j ∈ N with ci ≤ cj ,{
φi(E, c) ≤ φj(E, c);
ci − φi(E, c) ≤ cj − φj(E, c);

• exemption if, for all (E, c) ∈ CN and all i ∈ N with ci ≤ 1
|N | E (cf. Herrero and

Villar, 2001),
φi(E, c) = ci;

• consistency if, for all (E, c) ∈ CN , all N ′ ⊆ N and all i ∈ N ′,

φi(E, c) = φi(
∑

j∈N ′

φj(E, c), (cj)j∈N ′).4

All claims rules mentioned above satisfy claims monotonicity, estate monotonicity,
order preservation and consistency. Moreover, the constrained equal awards rule
satisfies exemption, while the constrained equal losses rule, the proportional rule,
the Talmud rule and the reverse Talmud rule do not satisfy exemption (Herrero and
Villar, 2001).

2.3 Strategic games

A strategic (non-cooperative) game is a triple G = (N, {Xi}i∈N , {πi}i∈N ), where N is
a non-empty, finite set of players, with |N | ≥ 2, Xi is the set of strategies for player
i ∈ N and πi : X → R is the pay-off function of player i ∈ N . Here, X is the product
of all sets of strategies, X =

∏
j∈N Xj , and is called the set of strategy combinations.

A strategy combination x ∈ X is sometimes written as x = (x−i, xi) = (xi, x−i) for
a certain i ∈ N , where x−i = (xj)j∈N\{i} ∈ X−i, with X−i =

∏
j∈N\{i} Xj denoting

the set of strategy combinations of the players in N \ {i}.
4For consistency, we allow for a variable player set and extend φ accordingly.
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22 2.3. Strategic games

For a strategic game G = (N, {Xi}i∈N , {πi}i∈N ), a strategy combination x̂ ∈ X is
called a Nash equilibrium (cf. Nash, 1950, 1951) if, for all i ∈ N , it holds that

πi(x̂−i, x̂i) ≥ πi(x̂−i, xi),

for all xi ∈ Xi. The set of Nash equilibria for G is denoted by NE(G). A Nash
equilibrium is thus a strategy combination in which every player maximizes his own
pay-off by playing the equilibrium strategy, given the equilibrium strategy combina-
tion of the other players. In other words, in a Nash equilibrium, no player has an
incentive to unilaterally deviate.
Clearly, with

BRi(x−i) = {xi ∈ Xi | πi(x−i, xi) ≥ πi(x−i, x′
i) for all x′

i ∈ Xi} ,

for all x−i ∈ X−i and all i ∈ N , denoting the set of best reply strategies against x−i,
we have that x̂ ∈ NE(G) if and only if x̂i ∈ BRi(x̂−i) for all i ∈ N .
Nash equilibria do not always exist. A sufficient condition on a strategic game to
guarantee the existence of Nash equilibria is provided in the following theorem.

Theorem 2.1 [cf. Rosen, 1965] Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic
game. If, for all i ∈ N , the following four conditions hold:

i) Xi ⊆ Rmi with mi ∈ N;

ii) Xi is non-empty, convex, closed and bounded;

iii) πi : X → R is continuous;

iv) gi : Xi → R defined by gi(xi) = πi(xi, x−i) is concave for all x−i ∈ X−i,

then NE(G) ̸= ∅.

Strategic games for which the conditions of Theorem 2.1 are satisfied include all
bimatrix and trimatrix games. An m1 ×m2 bimatrix game (A, B) for A, B ∈ Rm1×m2

is formally prescribed by (N, {∆1, ∆2}, {π1, π2}) with N = {1, 2} and{
∆1 = {p = p1e1 + p2e2 + . . . pm1em1 ∈ Rm1 | p ≥ 0,

∑m1
i=1 pi = 1};

∆2 = {q = q1f1 + q2f2 + . . . + qm2fm2 ∈ Rm2 | q ≥ 0,
∑m2

j=1 qj = 1},

where, for i ∈ {1, 2, . . . , m1}, ei ∈ Rm1 is the unit vector of length m1, i.e.,

(ei)k =
{

1, if k = i;
0, otherwise,

for all k ∈ {1, 2, . . . , m1}, and represents a pure strategy of player 1. A mixed strategy
p ∈ ∆1 for player 1 is then a probability distribution on the m1 pure strategies.
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Similarly, a mixed strategy q ∈ ∆2 for player 2 is a probability distribution on the
m2 different unit vectors of length m2, i.e., f1, f2, . . . , fm2 , that represent the pure
strategies of player 2. Finally, the pay-off functions are given by the expected pay-offs:{

π1(p, q) =
∑m1

i=1
∑m2

j=1 piqjAij ;
π2(p, q) =

∑m1
i=1
∑m2

j=1 piqjBij ,

for all (p, q) ∈ ∆1 × ∆2 where Aij and Bij denote the entries in the ith row and jth
column of matrix A and B, respectively.
It can be readily verified that, for an m1 × m2 bimatrix game (A, B) and a strategy
combination (p̂, q̂) ∈ ∆1 × ∆2, it holds that (p̂, q̂) ∈ NE(A, B) if and only if{

π1(p̂, q̂) ≥ π1(ei, q̂) for all i ∈ {1, 2, . . . , m1};
π2(p̂, q̂) ≥ π2(p̂, fj) for all j ∈ {1, 2, . . . , m2}.

(2.4)

An m1 × m2 × m3 trimatrix game (A, B, C) for A, B, C ∈ Rm1×m2×m3 is formally
prescribed by (N, {∆1, ∆2, ∆3}, {π1, π2, π3}) with N = {1, 2, 3} and

∆1 = {p = p1e1 + p2e2 + . . . pm1em1 ∈ Rm1 | p ≥ 0,
∑m1

i=1 pi = 1};
∆2 = {q = q1f1 + q2f2 + . . . + qm2fm2 ∈ Rm2 | q ≥ 0,

∑m2
j=1 qj = 1};

∆3 = {r = r1g1 + r2g2 + . . . rm3gm3 ∈ Rm3 | r ≥ 0,
∑m3

k=1 rk = 1},

where again e1, e2, . . . , em1 ∈ Rm1 are the unit vectors of length m1, representing the
pure strategies of player 1, f1, f2, . . . , fm2 ∈ Rm2 are the unit vectors of length m2,
representing the pure strategies of player 2, and similarly, g1, g2, . . . , gm3 ∈ Rm3 are
the unit vectors of length m3, representing the pure strategies of player 3. The pay-off
functions are again given by the expected pay-offs:

π1(p, q, r) =
∑m1

i=1
∑m2

j=1
∑m3

k=1 piqjrkAijk;
π2(p, q, r) =

∑m1
i=1
∑m2

j=1
∑m3

k=1 piqjrkBijk;
π3(p, q, r) =

∑m1
i=1
∑m2

j=1
∑m3

k=1 piqjrkCijk,

for all strategy combinations (p, q, r) ∈ ∆1 × ∆2 × ∆3.
Similar to bimatrix games, it can be readily verified that, for an m1 × m2 × m3
trimatrix game (A, B, C) and a strategy combination (p̂, q̂, r̂) ∈ ∆1 × ∆2 × ∆3, it
holds that (p̂, q̂, r̂) ∈ NE(A, B, C) if and only if

π1(p̂, q̂, r̂) ≥ π1(ei, q̂, r̂) for all i ∈ {1, 2, . . . , m1};
π2(p̂, q̂, r̂) ≥ π2(p̂, fj , r̂) for all j ∈ {1, 2, . . . , m2};
π3(p̂, q̂, r̂) ≥ π3(p̂, q̂, gk) for all k ∈ {1, 2, . . . , m3}.

(2.5)
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3 Properties of
graph-restricted games

— An octopus
changes color to
communicate3.1 Introduction

One of the main issues in cooperative game theory is the allocation of the joint pay-off
among all players, taking into account the worths of all coalitions. Two distinguished
solutions that solve this issue are the Shapley value (Shapley, 1953) and the nucleolus
(Schmeidler, 1969).
Myerson (1977) extended cooperative games by introducing communication situations
in which the communication restrictions of the players are modeled by a communica-
tion graph. The corresponding graph-restricted game is a modified cooperative game
in which the communication restrictions are taken into account. Throughout this
chapter we will assume that the communication graph is connected.
The Myerson value (Myerson, 1977) of a communication situation is defined as the
Shapley value of the corresponding graph-restricted game. This value is axiomatically
characterized by Myerson (1980) and studied in several other contexts as well: hyper-
graphs (Van den Nouweland, Borm, and Tijs, 1992), union stable structures (Algaba,
Bilbao, Borm, and López, 2001), antimatroids (Algaba, Bilbao, Van den Brink, and
Jiménez-Losada, 2004), bipartite graphs (Van den Brink and Pintér, 2015), two-level
communication structures (Van den Brink, Khmelnitskaya, and Van der Laan, 2016)
and communication situations in which the players have different bargaining abilities
(Manuel and Mart́ın, 2021). Moreover, several studies are devoted to the inheritance
of properties of cooperative games that are related to the Shapley value. In par-
ticular, Owen (1986) studied the inheritance of superadditivity, Van den Nouweland

25
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and Borm (1991) studied convexity and Slikker (2000) studied, among others, aver-
age convexity. The inheritance of convexity is also studied in a unified approach by
Algaba, Bilbao, and López (2001).
Also the nucleolus of the graph-restricted game is studied in the context of commu-
nication situations. Potters and Reijnierse (1995) showed that the nucleolus is the
unique element of the kernel if the communication graph is a tree. Reijnierse and
Potters (1998) and Katsev and Yanovskaya (2013) studied the collection of coali-
tions that determine the nucleolus and prenucleolus, respectively. Khmelnitskaya
and Sudhölter (2013) provided an axiomatic characterization of the prenucleolus for
games with communication structures.

In this chapter, based on Schouten, Dietzenbacher, and Borm (2022), we first focus on
the inheritance of two properties of cooperative games that are related to the nucleo-
lus: strong compromise admissibility and compromise stability. In general, computing
the nucleolus of a cooperative game is not straightforward. However, interestingly,
for cooperative games satisfying strong compromise admissibility or compromise sta-
bility, there exists a direct, closed formula for the nucleolus, based on the Talmud
rule for claims problems (Driessen, 1988; Quant, Borm, Reijnierse, and Van Velzen,
2005). In particular, when these properties are inherited, computation of the nucle-
olus can still be facilitated. For strongly compromise admissible games it holds that
the nucleolus coincides with the compromise value (Tijs, 1981), as shown by Driessen
(1988). Furthermore, the class of strongly compromise admissible games contains,
among others, the class of simple games with one veto-player, while the larger class
of compromise stable games contains several interesting classes of economic games,
like big boss games (Muto, Nakayama, Potters, and Tijs, 1988), clan games (Potters,
Poos, Tijs, and Muto, 1989) and bankruptcy games (O’Neill, 1982; Curiel, Maschler,
and Tijs, 1987).
With regard to the inheritance of strong compromise admissibility, we show that the
graph-restricted game is strongly compromise admissible for every communication
situation with an underlying strongly compromise admissible game, if the graph is
biconnected. In fact, for every connected graph that is not biconnected, we explicitly
construct a communication situation with an underlying strongly compromise admis-
sible game such that the graph-restricted game is not strongly compromise admissible.
Starting with a communication situation with an underlying strongly compromise ad-
missible game, we automatically ensure compromise stability for the graph-restricted
game in case of a biconnected graph. In addition, we show that compromise stability
is also ensured if the graph is a star. In fact, it is exactly the family of graphs that
is biconnected or a star that guarantees compromise stability for the graph-restricted
game if the underlying game of a communication situation is strongly compromise ad-
missible. This is again shown by constructing, for every connected graph that is not
biconnected and not a star, a communication situation with an underlying strongly
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compromise admissible game such that the graph-restricted game is not compromise
stable.
However, with regard to the inheritance of compromise stability, we actually derive
an impossibility result: only for communication situations with three players or with
a complete communication graph, the graph-restricted game is compromise stable if
the underlying game is compromise stable. For every connected graph that is not
complete (and has at least four players), we explicitly construct a communication
situation with an underlying compromise stable game such that the graph-restricted
game is not compromise stable.

Next, we study the invariance of the nucleolus, that is, the feature that the nucle-
olus of the graph-restricted game equals the nucleolus of the underlying game of a
communication situation. In that way, we investigate the robustness of the nucleolus
to communication restrictions. We identify exactly the families of graphs for which
the invariance of the nucleolus is guaranteed for communication situations with an
underlying strongly compromise admissible or compromise stable game.
For communication situations with an underlying strongly compromise admissible
game and a biconnected graph, we use the inheritance result for strong compromise ad-
missibility to employ the direct formula for the nucleolus for both the graph-restricted
game and the underlying game. We show that in these situations, the nucleolus is
invariant. In fact, benefiting from the construction for the inheritance of strong com-
promise admissibility, we provide, for every connected graph that is not biconnected,
a communication situation with an underlying strongly compromise admissible game
for which the nucleolus of the graph-restricted game is not equal to the nucleolus of
the underlying game.
If the underlying game is compromise stable, it is again impossible to guarantee the
invariance of the nucleolus in a non-trivial way. Only for complete graphs, invariance
is trivially guaranteed. For every connected graph that is not complete, we provide a
communication situation with an underlying compromise stable game for which the
nucleoli are different. Interestingly, invariance can be guaranteed for communication
situations with an underlying game that is both compromise stable and simple. In
that case, the family of biconnected graphs is characterized as the largest family of
connected graphs that guarantees the invariance of the nucleolus for communication
situations with an underlying simple game that is compromise stable.

This chapter is structured in the following way. Section 3.2 formally introduces the
notions of a graph-restricted game and a communication situation. Section 3.3 stud-
ies the inheritance of strong compromise admissibility and compromise stability and
Section 3.4 studies the invariance of the nucleolus.
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3.2 Graph-restricted games and communication sit-
uations

To incorporate communication restrictions in the model of TU-games, Myerson (1977)
introduced the notions of graph-restricted games and communication situations.
Roughly, these notions bring together two different concepts: a cooperative game and
a graph. Therefore, we first formally introduce the concept of a graph.
A graph is a pair (N, E), where N is a non-empty, finite set of players, with |N | ≥ 3
and E ⊆ {{i, j} | i, j ∈ N, i ̸= j} is a finite set of edges. For a graph (N, E) and a
subset of players S ∈ 2N \ {∅}, the induced subgraph on S is defined as the graph
(S, ES), where ES = {{i, j} ∈ E | i, j ∈ S}. A path in a graph (N, E) is defined as a
sequence of players (i0, . . . , im) such that ik ̸= iℓ for all k, ℓ ∈ {0, 1, . . . , m}, k ̸= ℓ and
{ik−1, ik} ∈ E for all k ∈ {1, . . . , m}.
A graph (N, E) is called

• connected if, for all i, j ∈ N with i ̸= j, there is a path (i, . . . , j) in (N, E);

• complete if {i, j} ∈ E for all i, j ∈ N with i ̸= j;

• biconnected if, for all i ∈ N , the induced subgraph (N \{i}, EN\{i}) is connected;

• a star if there exists a player k ∈ N such that E = {{i, k} | i ∈ N \ {k}}.

For a graph (N, E), a component C ∈ 2N \{∅} is defined as a maximal (inclusion-wise)
subset of players such that the induced subgraph (C, EC) is connected. For a graph
(N, E) and a subset of players S ∈ 2N \ {∅}, let S/E denote the set of all components
in the induced subgraph (S, ES).

Next, we define a graph-restricted game of a graph and a cooperative game as the
modified cooperative game where the worth of each coalition is determined by the
sum of the worths of its components in the graph. Formally, for a graph (N, E) and
a cooperative game v ∈ TUN , the graph-restricted game vE ∈ TUN is (cf. Myerson,
1977), for all S ∈ 2N \ {∅}, defined by

vE(S) =
∑

C∈S/E

v(C). (3.1)

Note that for a connected graph (N, E) and a cooperative game v ∈ TUN , it holds
that vE(N) = v(N), since N/E = {N}.
Finally, we formally define a communication situation, using a slightly modified ver-
sion of the definition as stated by Myerson (1977): an essential communication situ-
ation is a triple (N, v, E) where |N | ≥ 3, v ∈ TUN and (N, E) is a connected graph
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such that, for all S ∈ 2N ,
vE(S) ≤ v(S). (3.2)

The set of all essential communication situations is denoted by ECSN .1

In the definition of an essential communication situation, Equation (3.2) reflects the
idea that, by restricting communication, it is natural to assume that the joint pay-off
of the players is reduced. Note that, for any graph (N, E) and any cooperative game
v ∈ TUN that is superadditive, it holds that vE(S) ≤ v(S) for all S ∈ 2N . In other
words, Equation (3.2) is satisfied for sure if the underlying game is superadditive.

1 2 3

Figure 3.1 – The communication graph (N, E) of Example 3.1.

Example 3.1 Consider the graph (N, E) as depicted in Figure 3.1 and the cooper-
ative game v ∈ TUN as shown in Table 3.1.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

v(S) 0 0 0 1 1 0 1

Table 3.1 – The cooperative game v ∈ T UN of Example 3.1.

Using Equation (3.1), we can compute the graph-restricted game vE ∈ TUN . Triv-
ially, vE({i}) = 0 for all i ∈ N . Moreover, since {1, 2}/E = {{1, 2}} and
{2, 3}/E = {{2, 3}}, it immediately follows that

vE({1, 2}) = v({1, 2}) = 1,

and
vE({2, 3}) = v({2, 3}) = 0.

Finally, {1, 3}/E = {{1}, {3}} and hence,

vE({1, 3}) = v({1}) + v({3}) = 0.

Thus, we obtain the graph-restricted game vE ∈ TUN as shown in Table 3.2.
Clearly, vE(S) ≤ v(S) for all S ∈ 2N and hence, Equation (3.2) is satisfied. Conse-
quently, the triple (N, v, E) is an essential communication situation, i.e.,
(N, v, E) ∈ ECSN . △

1Here, the extra letter compared to the more common notation in the literature, CSN , is to
emphasize that Equation (3.2) is part of an essential communication situation.
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S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

vE(S) 0 0 0 1 0 0 1

Table 3.2 – The graph-restricted game vE ∈ T UN of Example 3.1.

3.3 Inheritance of strong compromise admissibility
and compromise stability

This section studies the inheritance of two properties: strong compromise admissi-
bility and compromise stability. For each of these properties, we identify the family
of graphs for which the inheritance of this property from the underlying game to
the graph-restricted game is guaranteed. This is useful for the computation of the
nucleolus for both the graph-restricted game and the underlying game of an essential
communication situation, as is seen in Section 3.4.
Note that strong compromise admissibility implies compromise stability, compromise
stability implies balancedness, and balancedness implies imputation admissibility, as
illustrated in Figure 2.1. First, we want to remark that both balancedness and impu-
tation admissibility are always inherited. That is, for every essential communication
situation with an underlying balanced (imputation admissible) game it holds that
the graph-restricted game is balanced (imputation admissible) as well. This was first
observed by Van den Nouweland and Borm (1991).
In Theorem 3.1, we show that for every essential communication situation with an
underlying strongly compromise admissible game it holds that the graph-restricted
game is strongly compromise admissible as well, if the graph is biconnected. More-
over, for every connected graph that is not biconnected, we construct an essential
communication situation with an underlying strongly compromise admissible game
such that the graph-restricted game is not strongly compromise admissible. Thus, we
can conclude that it is exactly the family of biconnected graphs that guarantees the
inheritance of strong compromise admissibility.
In the proof of Theorem 3.1, we use the following lemma.

Lemma 3.1 Let (N, v, E) ∈ ECSN . Then M(vE) ≥ M(v) and m(vE) ≤ m(v).
Consequently, CC(v) ⊆ CC(vE).

Proof: Since vE(N) = v(N) and vE(S) ≤ v(S) for all S ∈ 2N , we have that

Mi(vE) = vE(N) − vE(N \ {i}) ≥ v(N) − v(N \ {i}) = Mi(v),
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for all i ∈ N . Using this, we have that

mi(vE) = max
S∈2N :i∈S

vE(S) −
∑

j∈S,j ̸=i

Mj(vE)


≤ max

S∈2N :i∈S

v(S) −
∑

j∈S,j ̸=i

Mj(v)


= mi(v),

for all i ∈ N . Hence, M(vE) ≥ M(v) and m(vE) ≤ m(v).
Furthermore, for x ∈ CC(v), we have∑

i∈N

xi = v(N) = vE(N),

and
m(vE) ≤ m(v) ≤ x ≤ M(v) ≤ M(vE).

Hence, x ∈ CC(vE) and thus CC(v) ⊆ CC(vE). □

According to Lemma 3.1, we have that M(vE) ≥ M(v) for any essential communi-
cation situation (N, v, E) ∈ ECSN . Interestingly, if the communication graph (N, E)
is biconnected, it even holds that M(vE) = M(v), since the induced subgraph on
all players except one is connected. This is used in Theorem 3.1 below, which char-
acterizes the family of graphs that guarantees the inheritance of strong compromise
admissibility from the underlying game to the graph-restricted game.

Theorem 3.1 The following two statements hold:

i) Let (N, v, E) ∈ ECSN be an essential communication situation with (N, E) bi-
connected and v strongly compromise admissible. Then vE is strongly compro-
mise admissible;

ii) Let (N, E) be a connected graph that is not biconnected. Then there exists
an essential communication situation (N, v, E) ∈ ECSN where v is strongly
compromise admissible such that vE is not strongly compromise admissible.

Proof: i) Since v is strongly compromise admissible, we have that CC(v) ̸= ∅. This
implies that CC(vE) ̸= ∅, by using Lemma 3.1. Moreover, since (N, E) is biconnected,
vE(N \ {i}) = v(N \ {i}) for all i ∈ N and hence, Mi(vE) = Mi(v) for all i ∈ N .
Consequently, for all S ∈ 2N \ {∅},

vE(S) ≤ v(S) ≤ v(N) −
∑

j∈N\S

Mj(v) = vE(N) −
∑

j∈N\S

Mj(vE).
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Here, the second inequality is due to the fact that v is strongly compromise admissible.
Consequently, vE is strongly compromise admissible.
ii) Since (N, E) is not biconnected, we can set N = {1, 2, . . . , n} and assume w.l.o.g.
that {1, 2}, {2, 3} ∈ E, while the induced subgraph on N \ {2} is not connected and
that players 1 and 3 are in two different components in the induced subgraph on
N \ {2}. Consider the essential communication situation2 (N, v1, E) ∈ ECSN with,
for all S ∈ 2N ,

v1(S) =
{

1, if {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

First, we check that v1 is indeed strongly compromise admissible. For this, note that
CC(v1) ̸= ∅, since it can be readily verified that M(v1) = m(v1) = (1, 0, 0, . . . , 0).
Moreover, for S ∈ 2N for which 1 ∈ S, v1(S) ≤ 1 = v1(N) −

∑
j∈N\S Mj(v1). For

S ∈ 2N for which 1 /∈ S, v1(S) = 0 = v1(N) −
∑

j∈N\S Mj(v1). Hence, v1 is strongly
compromise admissible.
Next, we show that vE

1 is not strongly compromise admissible, by showing that

vE
1 ({3}) > vE

1 (N) −
∑

j∈N\{3}

Mj(vE
1 ).

First, note that vE
1 ({3}) = v1({3}) = 0.

Secondly, we have that vE
1 (N \{2}) = 0, due to the fact that players 1 and 3 are in two

different components of the induced subgraph on N \{2}. Consequently, M2(vE
1 ) = 1.

Moreover, by using Lemma 3.1, M(vE
1 ) ≥ M(v1) ≥ 0 and in particular,

M1(vE
1 ) ≥ M1(v1) = 1. Hence,

vE
1 (N) −

∑
j∈N\{3}

Mj(vE
1 ) ≤ vE

1 (N) − M1(vE
1 ) − M2(vE

1 ) ≤ −1.

Consequently, vE
1 is not strongly compromise admissible.

This finishes the construction of the essential communication situation
(N, v1, E) ∈ ECSN where v1 is strongly compromise admissible, while vE

1 is not
strongly compromise admissible. □

Before turning to the inheritance of compromise stability, we first characterize the
family of graphs that guarantees compromise stability for the graph-restricted game
of any essential communication situation with an underlying strongly compromise
admissible game. This family of course includes all biconnected graphs (cf. Theorem
3.1) and, in addition, it is seen that it also contains all stars.

2Note that it can be readily verified that v1 ∈ T UN is a superadditive game, implying that
Equation (3.2) is satisfied.



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 45PDF page: 45PDF page: 45PDF page: 45

Chapter 3. Properties of graph-restricted games 33

Theorem 3.2 The following two statements hold:

i) Let (N, v, E) ∈ ECSN be an essential communication situation with (N, E) bi-
connected or a star and v strongly compromise admissible. Then vE is compro-
mise stable;

ii) Let (N, E) be a connected graph that is not biconnected and not a star. Then
there exists an essential communication situation (N, v, E) ∈ ECSN where v is
strongly compromise admissible such that vE is not compromise stable.

Proof: i) If (N, E) is biconnected, then vE is strongly compromise admissible, ac-
cording to part i) of Theorem 3.1. Hence, vE is compromise stable.
If (N, E) is a star, then let k ∈ N such that E = {{i, k} | i ∈ N \ {k}}. First, note
that CC(vE) ̸= ∅, by using Lemma 3.1 and the fact that v is strongly compromise
admissible. Secondly, it remains to prove that for all S ∈ 2N \ {∅},

vE(S) ≤ max

∑
i∈S

mi(vE), vE(N) −
∑

j∈N\S

Mj(vE)

 . (3.3)

Let S ∈ 2N \ {∅}. If k /∈ S, then

vE(S) =
∑
i∈S

v({i}) =
∑
i∈S

vE({i}) ≤
∑
i∈S

mi(vE),

where the inequality follows from the fact that, for all i ∈ S,

mi(vE) = max
T ∈2N :i∈T

vE(T ) −
∑

j∈T,j ̸=i

Mj(vE)

 ≥ vE({i}).

If k ∈ S, then Mj(vE) = Mj(v) for all j ∈ N \ S and hence,

vE(S) ≤ v(S) ≤ v(N) −
∑

j∈N\S

Mj(v) = vE(N) −
∑

j∈N\S

Mj(vE),

where the second inequality follows from the fact that v is strongly compromise ad-
missible.
Together, this proves Equation (3.3) and consequently, that vE is compromise stable.
ii) Since (N, E) is connected, but neither biconnected, nor a star, it readily follows
that |N | ≥ 4. Set N = {1, 2, 3, 4, . . . , n} and since (N, E) is not biconnected, we
can assume w.l.o.g. that the induced subgraph on N \ {3} is not connected and that
{2, 3}, {3, 4} ∈ E. Moreover, since (N, E) is not a star, we can assume that {1, 2} ∈ E
and in particular, that players 1 and 2 are in one component of the induced subgraph
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on N \ {3} and player 4 is in another. Figure 3.2 provides a schematic representation
in case |N | = 4. If |N | > 4, then the graph contains at least the part as indicated in
Figure 3.2. Consider the essential communication situation3 (N, v2, E) ∈ ECSN with,
for all S ∈ 2N ,

v2(S) =



8, if S = N ;
8, if S = N \ {j} for j ∈ N \ {1, 2, 3, 4};
6, if S ∈ {N \ {1}, N \ {2}, N \ {3}, N \ {4}};
3, if |S| ≤ n − 2 and {1, 2} ⊆ S;
0, otherwise.

1 2 3 4

Figure 3.2 – A schematic representation of the graph (N, E) for
N = {1, 2, 3, 4} in the proof of Theorem 3.2.

First, we check that v2 is indeed strongly compromise admissible. For this, note that
CC(v2) ̸= ∅, since it can be readily verified that M(v2) = m(v2) = (2, 2, 2, 2, 0, . . . , 0).
Moreover, for S ∈ 2N for which |S| > n − 2, we obviously have that

v2(N) −
∑

j∈N\S

Mj(v2) ≥ v2(S).

For S ∈ 2N for which |S| ≤ n − 2 and {1, 2} ⊆ S, we have that

v2(N) −
∑

j∈N\S

Mj(v2) ≥ 8 − 4 > 3 = v2(S).

Finally, for S ∈ 2N for which |S| ≤ n − 2 and {1, 2} ̸⊆ S, we have that

v2(N) −
∑

j∈N\S

Mj(v2) ≥ 8 − 8 = 0 = v2(S).

Hence, v2 is strongly compromise admissible.
3Note that it can be readily verified that v2 ∈ T UN is a superadditive game, implying that

Equation (3.2) is satisfied.
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Next, we show that vE
2 is not compromise stable, by showing that

vE
2 ({1, 2}) > max

m1(vE
2 ) + m2(vE

2 ), vE
2 (N) −

∑
j∈N\{1,2}

Mj(vE
2 )

 . (3.4)

First, note that vE
2 ({1, 2}) = v2({1, 2}) = 3.

Secondly, we show that

vE
2 (N) −

∑
j∈N\{1,2}

Mj(vE
2 ) ≤ 1. (3.5)

For this, note that vE
2 (N \ {3}) = v2({1, 2}) = 3, due to the fact that the induced

subgraph on N \ {3} is not connected, but consists of at least one component with
{1, 2} ∈ E. Consequently, M3(vE

2 ) = 5.
Moreover, by using Lemma 3.1, we have that M(vE

2 ) ≥ M(v2) ≥ 0 and in particular,
M4(vE

2 ) ≥ M4(v2) = 2. Hence,

vE
2 (N) −

∑
j∈N\{1,2}

Mj(vE
2 ) ≤ vE

2 (N) − M3(vE
2 ) − M4(vE

2 ) ≤ 8 − 5 − 2 = 1.

Next, we show that m1(vE
2 ) ≤ 1 by proving that, for all S ∈ 2N with 1 ∈ S,

vE
2 (S) −

∑
j∈S,j ̸=1

Mj(vE
2 ) ≤ 1.

For S = N and S = N \{j} for j ∈ N \{1, 2, 3}, we see that {2, 3} ⊆ S and vE
2 (S) ≤ 8,

and consequently,

vE
2 (S) −

∑
j∈S,j ̸=1

Mj(vE
2 ) ≤ vE

2 (S) − M2(vE
2 ) − M3(vE

2 ) ≤ 8 − 2 − 5 = 1.

For S = N \ {3}, we have that vE
2 (S) = 3 and M2(vE

2 ) ≥ 2, and consequently,

vE
2 (S) −

∑
j∈S,j ̸=1

Mj(vE
2 ) ≤ vE

2 (S) − M2(vE
2 ) ≤ 3 − 2 = 1.

For S = N \ {2}, we have that {3, 4} ⊆ S and vE
2 (S) ≤ 6, and consequently,

vE
2 (S) −

∑
j∈S,j ̸=1

Mj(vE
2 ) ≤ vE

2 (S) − M3(vE
2 ) − M4(vE

2 ) ≤ 6 − 5 − 2 = −1.

For all S ∈ 2N with |S| ≤ n − 2 and {1, 2} ⊆ S, we have that vE
2 (S) ≤ v2(S) = 3 and

2 ∈ S, and consequently,

vE
2 (S) −

∑
j∈S,j ̸=1

Mj(vE
2 ) ≤ v2(S) − M2(vE

2 ) ≤ 3 − 2 = 1.
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Finally, for S ∈ 2N with |S| ≤ n − 2 and {1, 2} ̸⊆ S, we have that vE
2 (S) = 0 and

M(vE) ≥ 0, and consequently,

vE
2 (S) −

∑
j∈S,j ̸=1

Mj(vE
2 ) ≤ 0.

We may conclude that m1(vE
2 ) = maxS∈2N :1∈S

{
vE

2 (S) −
∑

j∈S,j ̸=1 Mj(vE
2 )
}

≤ 1.

Similarly, one can show that m2(vE
2 ) ≤ 1 and thus

m1(vE
2 ) + m2(vE

2 ) ≤ 2. (3.6)

Consequently, by combining Equation (3.5) and Equation (3.6), we can conclude that
Equation (3.4) is satisfied. Thus, vE

2 is not compromise stable.
This finishes the construction of the essential communication situation
(N, v2, E) ∈ ECSN where v2 is strongly compromise admissible, while vE

2 is not com-
promise stable. □

Finally, we focus on the inheritance of compromise stability. For a three player essen-
tial communication situation, compromise stability is equivalent with balancedness
and thus always inherited. For essential communication situations with more than
three players, inheritance of compromise stability is only (trivially) guaranteed for
the family of complete graphs. Theorem 3.3 below formalizes this impossibility result
and in the proof, we construct an essential communication situation with an underly-
ing compromise stable game such that the graph-restricted game is not compromise
stable.

Theorem 3.3 Let (N, E) be a connected graph that is not complete and |N | > 3.
Then there exists an essential communication situation (N, v, E) ∈ ECSN where v is
compromise stable such that vE is not compromise stable.

Proof: Since (N, E) is not complete and |N | > 3, set N = {1, 2, 3, 4, . . . , n} and as-
sume w.l.o.g. that {1, 2} /∈ E, while {1, 3} ∈ E. Consider the essential communication
situation4 (N, v3, E) ∈ ECSN with, for all S ∈ 2N ,

v3(S) =



7, if S = N ;
6, if S = N \ {1};
5, if S = N \ {2};
4, if S = N \ {4};
3, if S /∈ {N, N \ {1}, N \ {2}, N \ {4}}, and {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

4Note that it can be readily verified that v3 ∈ T UN is a superadditive game, implying that
Equation (3.2) is satisfied.
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First, we check that v3 is indeed compromise stable. For this, note that
CC(v3) ̸= ∅, since it can be readily verified that M(v3) = (1, 2, 4, 3, 4, . . . , 4) and
m(v3) = (1, 2, 2, 0, 0, . . . , 0).
Moreover, for S ∈ {N, N \ {1}, N \ {2}, N \ {4}} and for S ∈ 2N with v3(S) = 0, we
obviously have that

v3(S) ≤ max

∑
i∈S

mi(v3), v3(N) −
∑

j∈N\S

Mj(v3)

 .

For S ∈ 2N , S /∈ {N, N \ {1}, N \ {2}, N \ {4}} with {1, 2} ⊆ S, it holds that

v3(S) ≤ m1(v3) + m2(v3).

Similarly, for S ∈ 2N , S /∈ {N, N \ {1}, N \ {2}, N \ {4}} with {1, 3} ⊆ S, it holds
that

v3(S) ≤ m1(v3) + m3(v3).
Hence, v3 is compromise stable.
Next, we show that vE

3 is not compromise stable, by showing that

vE
3 ({1, 3}) > max

m1(vE
3 ) + m3(vE

3 ), vE
3 (N) −

∑
j∈N\{1,3}

Mj(vE
3 )

 . (3.7)

First, note that vE
3 ({1, 3}) = v3({1, 3}) = 3.

Secondly, we show that m1(vE
3 ) = 0. For S ∈ 2N with 1 ∈ S and S ̸= {1, 2}, we have

that
vE

3 (S) −
∑

j∈S,j ̸=1
Mj(vE

3 ) ≤ v3(S) −
∑

j∈S,j ̸=1
Mj(v3) ≤ 0,

where the first inequality follows from our basic assumption that vE
3 ≤ v3 and Lemma

3.1. Moreover, for S = {1, 2}, it holds that vE
3 ({1, 2}) = 0, since {1, 2} /∈ E and

consequently,
vE

3 ({1, 2}) − M2(vE
3 ) ≤ 0 − M2(v3) ≤ 0,

where we also used Lemma 3.1 for the first inequality. Hence, since vE
3 ({1}) = 0, we

have that

m1(vE
3 ) = max

S∈2N :1∈S

vE
3 (S) −

∑
j∈S,j ̸=1

Mj(vE
3 )

 = 0.

Furthermore, by using Lemma 3.1, it follows that m3(vE
3 ) ≤ m3(v3) = 2. Conse-

quently,
m1(vE

3 ) + m3(vE
3 ) ≤ 2. (3.8)
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38 3.4. Invariance of the nucleolus

Next, we prove that
vE

3 (N) −
∑

j∈N\{1,3}

Mj(vE
3 ) ≤ 2. (3.9)

For this, note that, by using Lemma 3.1, vE
3 (N) = v3(N) = 7, M2(vE

3 ) ≥ M2(v3) = 2,
M4(vE

3 ) ≥ M4(v3) = 3 and Mj(vE
3 ) ≥ Mj(v3) ≥ 0 for all j ∈ N . Consequently,

vE
3 (N) −

∑
j∈N\{1,3}

Mj(vE
3 ) ≤ vE

3 (N) − M2(vE
3 ) − M4(vE

3 ) ≤ 7 − 2 − 3 = 2.

By combining Equation (3.8) and Equation (3.9), we can conclude that Equation
(3.7) is satisfied. Thus, vE

3 is not compromise stable.
This finishes the construction of the essential communication situations
(N, v3, E) ∈ ECSN with v3 is compromise stable, while vE

3 is not compromise stable.
□

3.4 Invariance of the nucleolus

In this section, we focus on the nucleolus of graph-restricted games as an alternative
for the Shapley value to evaluate essential communication situations. In contrast
to the Shapley value, the nucleolus is more likely to be robust to changes in the
communication restrictions. Therefore, we study the invariance of the nucleolus.
That is, we focus on necessary and sufficient conditions on an essential communication
situation such that the nucleolus of the graph-restricted game equals the nucleolus of
the game underlying the essential communication situation. First, we formally recall
the definition and various results on the nucleolus.
Let v ∈ TUN be an imputation admissible game. The excess of a coalition S ∈ 2N

with respect to an imputation x ∈ I(v) is defined as Exc(S, x, v) = v(S) −
∑

i∈S xi,
while the excess vector θ(x) ∈ R2|N| is defined as the vector consisting of all excesses
in non-increasing order, i.e., θk(x) ≥ θk+1(x) for all k ∈ {1, . . . , 2|N | − 1}. The
nucleolus (cf. Schmeidler, 1969) nuc(v) ∈ RN is the unique imputation for which
θ(nuc(v)) ⪯ θ(x) for all x ∈ I(v), where ⪯ denotes the lexicographical order. It is
known that nuc(v) ∈ C(v) for all balanced games v ∈ TUN .
For compromise stable games and strongly compromise admissible games, the nucleo-
lus can be described by a direct, closed formula. This formula is based on the Talmud
rule for an associated claims problem.
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Proposition 3.1 [cf. Quant et al., 2005; Driessen, 1988] Let v ∈ TUN .

i) If v is compromise stable, then, for all i ∈ N ,

nuci(v) = mi(v) + TALi

v(N) −
∑
j∈N

mj(v), M(v) − m(v)

 ;

ii) If v is strongly compromise admissible, then, for all i ∈ N ,

nuci(v) = Mi(v) − 1
|N |

∑
j∈N

Mj(v) − v(N)

 .

For the study of the invariance of the nucleolus, it is important to recall first that
imputation admissibility is always inherited. That is, for every essential communi-
cation situation with an underlying imputation admissible game it holds that the
graph-restricted game is also imputation admissible.
Recall from Theorem 3.1 that the family of biconnected graphs guarantees the in-
heritance of strong compromise admissibility from the underlying game to the graph-
restricted game. For essential communication situations with an underlying strongly
compromise admissible game, we show that this family of biconnected graphs also
guarantees the invariance of the nucleolus. Moreover, for every connected graph that
is not biconnected, we explicitly construct an essential communication situation with
an underlying strongly compromise admissible game for which the nucleolus of the
graph-restricted game is not equal to the nucleolus of the underlying game. For this,
we benefit from the construction in the proof of Theorem 3.1.

Theorem 3.4 The following two statements hold:

i) Let (N, v, E) ∈ ECSN be an essential communication situation with (N, E) bi-
connected and v strongly compromise admissible. Then nuc(vE) = nuc(v);

ii) Let (N, E) be a connected graph that is not biconnected. Then there exists an
essential communication situation (N, v, E) ∈ ECSN with v strongly compromise
admissible such that nuc(vE) ̸= nuc(v).

Proof: i) First, note that vE is strongly compromise admissible, according to part
i) of Theorem 3.1. Hence, by using Proposition 3.1, for all i ∈ N ,

nuci(vE) = Mi(vE) − 1
|N |

∑
j∈N

Mj(vE) − vE(N)


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= Mi(v) − 1
|N |

∑
j∈N

Mj(v) − v(N)


= nuci(v),

since M(vE) = M(v) for any biconnected graph (N, E). Consequently,
nuc(vE) = nuc(v).
ii) Since (N, E) is not biconnected, set N = {1, 2, . . . , n} and assume w.l.o.g. that
{1, 2}, {2, 3} ∈ E, that the induced subgraph on N \ {2} is not connected and that
players 1 and 3 are in two different components in the induced subgraph on N \ {2}.
Reconsider the essential communication situation (N, v1, E) ∈ ECSN with, for all
S ∈ 2N ,

v1(S) =
{

1, if {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.

Recall that v1 is strongly compromise admissible and since M(v1) = (1, 0, 0, . . . , 0),
we have that, using Proposition 3.1,

nuc(v1) = (1, 0, 0, . . . , 0).

Moreover, for all S ∈ 2N ,

vE
1 (S) =

{
1, if {1, 2} ⊆ S;
0, otherwise.

Hence, M(vE
1 ) = (1, 1, 0, . . . , 0), m(vE

1 ) = (0, 0, 0, . . . , 0) and vE
1 is compromise stable.

Consequently,
nuc(vE

1 ) = ( 1
2 , 1

2 , 0, . . . , 0).
Hence, nuc(vE

1 ) ̸= nuc(v1). This concludes the construction of the essential commu-
nication situation (N, v1, E) ∈ ECSN with v1 strongly compromise admissible such
that nuc(vE

1 ) ̸= nuc(v1). □

With regard to the class of essential communication situations with an underlying
compromise stable game, we derive an impossibility result. For every connected graph
that is not complete, we construct an essential communication situation with an
underlying compromise stable game for which the nucleolus is not invariant. This
construction is mainly based on Theorem 3.3. It involves, among other things, the
use of the so-called Kohlberg criterion (Kohlberg, 1971).
A collection B ⊆ 2N \ {∅} is called balanced if there exists a function λ : B → R++
such that

∑
S∈B:i∈S λ(S) = 1 for all i ∈ N . Let v ∈ TUN be a balanced game and

let x ∈ I(v) be an imputation. Define

B1(x, v) =
{

S ∈ 2N \ {∅, N}
∣∣ Exc(S, x, v) ≥ Exc(T, x, v) for all T ∈ 2N \ {∅, N}

}
,
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as the set of coalitions (non-empty and not the grand coalition) with the highest excess
with respect to the imputation x. Proceeding recursively, define, for all k ∈ {2, 3, . . .},

Bk(x, v) =
{

S ∈ 2N \ {∅, N}
∣∣∣∣ S /∈

k−1⋃
r=1

Br(x, v) and Exc(S, x, v) ≥ Exc(T, x, v)

for all T ∈ 2N \ {∅, N} with T /∈
k−1⋃
r=1

Br(x, v)
}

.

Clearly, there exists a unique number t(x) ∈ N such that Bk(x, v) ̸= ∅ for all
k ∈ {1, . . . , t(x)} and Bt(x)+1(x, v) = ∅.

Proposition 3.2 [cf. Kohlberg, 1971] Let v ∈ TUN be a balanced game and let
x ∈ I(v) be an imputation. Then x = nuc(v) if and only if the collection

⋃s
k=1 Bk(x, v)

is balanced for all s ∈ {1, . . . , t(x)}.

Theorem 3.5 formalizes the impossibility result with regard to the invariance of the
nucleolus for essential communication situations with an underlying compromise sta-
ble game.

Theorem 3.5 Let (N, E) be a connected graph that is not complete. Then there
exists an essential communication situation (N, v, E) ∈ ECSN with v compromise
stable such that nuc(vE) ̸= nuc(v).

Proof: For |N | = 3, we can just (re)consider the essential communication situation
(N, v1, E) ∈ ECSN as in the proof of Theorem 3.4. Compromise stability of v1 is
implied by the strong compromise admissibility of v1. Recall that nuc(v1) = (1, 0, 0).
Moreover, the fact that (N, E) is not complete but connected implies w.l.o.g. that
{1, 2}, {2, 3} ∈ E, while {1, 3} /∈ E. Hence, nuc(vE

1 ) = ( 1
2 , 1

2 , 0) and consequently,
nuc(vE

1 ) ̸= nuc(v1).

In the remainder, suppose that |N | ≥ 4. For this, we revert to the construction as in
the proof of Theorem 3.3.
Set N = {1, 2, 3, 4, . . . , n} and assume w.l.o.g. that {1, 2} /∈ E and {1, 3} ∈ E.
Reconsider the essential communication situation (N, v3, E) ∈ ECSN with, for all
S ∈ 2N ,

v3(S) =



7, if S = N ;
6, if S = N \ {1};
5, if S = N \ {2};
4, if S = N \ {4};
3, if S /∈ {N, N \ {1}, N \ {2}, N \ {4}}, and {1, 2} ⊆ S or {1, 3} ⊆ S;
0, otherwise.
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Recall that v3 is compromise stable. Since M(v3) = (1, 2, 4, 3, 4, . . . , 4) and
m(v3) = (1, 2, 2, 0, 0, . . . , 0), we have that, using Proposition 3.1,

nuci(v3) =


1, if i = 1;
2, if i = 2;
2 + 2

n−2 , if i = 3;
2

n−2 , otherwise.

(3.10)

To show that nuc(vE
3 ) ̸= nuc(v3), we use the Kohlberg criterion as formulated in

Proposition 3.2 and show that B1(nuc(v3), vE
3 ) is not balanced. For this, we need

to identify the (non-trivial) coalitions with the highest excess. To structure this
identification process, for S ∈ 2N \ {∅, N} we distinguish between seven cases, in
which players 1, 2 and 3 play an important role:

I) |S| = 1 or S ∈ {{1, 2}, {1, 3}, {2, 3}};

II) |S| = 3 with {1, 2} ⊆ S and 3 /∈ S;

III) 3 < |S| < n − 1 with {1, 2} ⊆ S and 3 /∈ S;

IV) 2 < |S| < n − 1 with {1, 3} ⊆ S;

V) 1 < |S| < n − 1 with {1, 2} ̸⊆ S, {1, 3} ̸⊆ S and S ̸= {2, 3};

VI) |S| = n − 1 with S = N \ {j} for j ∈ N \ {1, 2, 3, 4};

VII) S ∈ {N \ {1}, N \ {2}, N \ {3}, N \ {4}}.

Note that these seven cases indeed cover all coalitions: cases I, VI and VII deal with
all coalitions with exactly 1 or n − 1 players. Case I also includes three specific 2-
player coalitions. For the other coalitions, we distinguish whether {1, 2} ⊆ S (and
3 /∈ S) or {1, 3} ⊆ S or neither of the two inclusions. In particular, case II deals with
the 3-player coalitions that contain both players 1 and 2, but not 3 and case III deals
with similar coalitions that contain at least 4 players. In case IV, {1, 3} ⊆ S and
finally, case V deals with all coalitions for which both {1, 2} ̸⊆ S and {1, 3} ̸⊆ S.
Next, we deal with each of the seven cases separately.
Case I) For this first case, we know that

vE
3 (S) =


0, if S = {j} for j ∈ N ;
0, if S = {1, 2};
3, if S = {1, 3};
0, if S = {2, 3},
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and hence, by using Equation (3.10), one readily checks that

Exc(S, nuc(v3), vE
3 ) =



−1, if S = {1};
−2, if S = {2};
−2

n−2 − 2, if S = {3};
−2

n−2 , if S = {j} for j ∈ N \ {1, 2, 3};
−3, if S = {1, 2};
−2

n−2 , if S = {1, 3};
−2

n−2 − 4, if S = {2, 3}.

Note that, due to the fact that n ≥ 4, the highest excess listed above equals −2
n−2 .

Case II) For all S ∈ 2N with |S| = 3, {1, 2} ⊆ S and 3 /∈ S, it holds that

vE
3 (S) =

{
3, if the induced subgraph on S is connected;
0, otherwise,

and hence, by using Equation (3.10),

Exc(S, nuc(v3), vE
3 ) =

{
−2

n−2 , if the induced subgraph on S is connected;
−2

n−2 − 3, otherwise.

Note that the induced subgraph on S is connected if and only if S = {1, 2, j} and
{1, j}, {2, j} ∈ E for a certain j ∈ N \ {1, 2, 3}.
Case III) For all S ∈ 2N with 3 < |S| < n − 1, {1, 2} ⊆ S and 3 /∈ S, it holds that

vE
3 (S) ≤ 3.

Moreover, since nuci(v3) > 0 for all i ∈ N , we have that∑
i∈S

nuci(v3) > nuc1(v3) + nuc2(v3) + nucj(v3),

for a certain player j ∈ S, j ̸= 1, 2. Combining this and using Equation (3.10), we see
that

Exc(S, nuc(v3), vE
3 ) = vE

3 (S) −
∑
i∈S

nuci(v3)

< vE
3 (S) − nuc1(v3) − nuc2(v3) − nucj(v3)

≤ 3 − 1 − 2 − 2
n − 2

= −2
n − 2 .
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Case IV) For all S ∈ 2N with 2 < |S| < n − 1 and {1, 3} ⊆ S, it holds that vE
3 (S) = 3

and hence, following a similar reasoning as before,

Exc(S, nuc(v3), vE
3 ) < vE

3 (S) − nuc1(v3) − nuc3(v3)

= 3 − 1 − 2 − 2
n − 2

= −2
n − 2 .

Case V) For all S ∈ 2N with 1 < |S| < n − 1, {1, 2} ̸⊆ S, {1, 3} ̸⊆ S and S ̸= {2, 3},
it holds that vE

3 (S) = 0 and hence, following a similar reasoning as before, there is a
player j ∈ S \ {1, 2, 3} such that

Exc(S, nuc(v3), vE
3 ) < vE

3 (S) − nucj(v3) = 0 − 2
n − 2 = −2

n − 2 .

Case VI) For all S ∈ 2N with |S| = n − 1 and S = N \ {j} for j ∈ N \ {1, 2, 3, 4}, it
holds that vE

3 (S) = 3, since {1, 3} ⊆ S and hence, as before,

Exc(S, nuc(v3), vE
3 ) < vE

3 (S) − nuc1(v3) − nuc3(v3) = 3 − 1 − 2 − 2
n − 2 = −2

n − 2 .

Case VII) Finally, for all S ∈ 2N with S ∈ {N \ {1}, N \ {2}, N \ {3}, N \ {4}}, the
worth of the coalition S in the graph-restricted game depends on whether the induced
subgraph is connected or not:

vE
3 (N \ {4}) =

{
4, if the induced subgraph on N \ {4} is connected;
3, otherwise,

vE
3 (N \ {3}) =

{
3, if the induced subgraph on N \ {3} is connected;
0, otherwise,

vE
3 (N \ {2}) =

{
5, if the induced subgraph on N \ {2} is connected;
3, otherwise,

vE
3 (N \ {1}) =

{
6, if the induced subgraph on N \ {1} is connected;
0, otherwise.

Consequently, by using Equation (3.10),

Exc(N \ {4}, nuc(v3), vE
3 ) =


2

n−2 − 3, if the induced subgraph on N \ {4}
is connected;

2
n−2 − 4, otherwise,
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Exc(N \ {3}, nuc(v3), vE
3 ) =


2

n−2 − 2, if the induced subgraph on N \ {3}
is connected;

2
n−2 − 5, otherwise,

Exc(N \ {2}, nuc(v3), vE
3 ) =


0, if the induced subgraph on N \ {2}

is connected;
−2, otherwise,

Exc(N \ {1}, nuc(v3), vE
3 ) =


0, if the induced subgraph on N \ {1}

is connected;
−6, otherwise.

In order to determine which of the above excesses is the highest, note that, since
n ≥ 4,

Exc(N \ {4}, nuc(v3), vE
3 ) ≤ 2

n − 2 − 3 ≤ −2 <
−2

n − 2 ,

and, if n > 4,

Exc(N \ {3}, nuc(v3), vE
3 ) ≤ 2

n − 2 − 2 < −1 <
−2

n − 2 .

This concludes the analysis of the seven cases. We may conclude that all coalitions
under consideration in cases III, IV, V and VI can not be coalitions with the highest
excess.
Furthermore, if the induced subgraph on N \ {1} or the induced subgraph on N \ {2}
is connected, the highest excess equals 0 and

B1(nuc(v3), vE
3 ) = {N \ {1}, N \ {2}},

B1(nuc(v3), vE
3 ) = {N \ {1}}, or

B1(nuc(v3), vE
3 ) = {N \ {2}}.

Clearly, for each of these cases, B1(nuc(v3), vE
3 ) is not a balanced collection. Note

that, if n = 4, it indeed holds that the induced subgraph on N \ {1} or the induced
subgraph on N \ {2} is connected, due to the connectedness of the graph and the fact
that {1, 2} /∈ E.
Finally, assume that n > 4 and that both induced subgraphs on N \ {1} and N \ {2}
are not connected. Then the highest excess equals −2

n−2 (> −1) and according to cases
I and II,

B1(nuc(v3), vE
3 ) = {{j} | j ∈ N \ {1, 2, 3}}

∪ {{1, 3}}
∪ {{1, 2, j} | j ∈ N \ {1, 2, 3} and both {1, j} ∈ E and {2, j} ∈ E} .
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Note that if there is no j ∈ N \ {1, 2, 3} such that both {1, j} ∈ E and {2, j} ∈ E,
then B1(nuc(v3), vE

3 ) is not balanced, since 2 /∈ S for all S ∈ B1(nuc(v3), vE
3 ).

So let j ∈ N \ {1, 2, 3} be such that both {1, j} ∈ E and {2, j} ∈ E. Suppose
λ : B1(nuc(v3), vE

3 ) → R++ is such that
∑

S∈B1(nuc(v3),vE
3 ):i∈S λ(S) = 1 for all i ∈ N .

For i = 3, this condition boils down to λ({1, 3}) = 1. Then, however,∑
S∈B1(nuc(v3),vE

3 ):1∈S

λ(S) ≥ λ({1, 3}) + λ({1, 2, j}) > 1,

and it follows that B1(nuc(v3), vE
3 ) is not balanced.

Together, we can conclude that nuc(vE
3 ) ̸= nuc(v3) according to Proposition 3.2. □

Interestingly, a possibility result can be obtained if we restrict attention to essential
communication situations with an underlying simple game.
A cooperative game v ∈ TUN is called simple if v(S) ∈ {0, 1} for all S ∈ 2N , v(N) = 1
and v is monotonic: v(S) ≤ v(T ) for all S, T ∈ 2N with S ⊆ T . Moreover, for a simple
game v ∈ TUN , the set of veto-players is given by

veto(v) = {i ∈ N | v(N \ {i}) = 0} .

Equivalently, for all i ∈ N , it holds that i ∈ veto(v) if and only if v(S) = 0 for
all S ∈ 2N with i /∈ S. For simple games, having veto-players is equivalent to
balancedness, which in turn is equivalent to compromise stability. Moreover, if a
simple game has veto-players, then the nucleolus is, for all i ∈ N , given by

nuci(v) =
{

1
|veto(v)| , if i ∈ veto(v);
0, otherwise.

Finally, note that if the game underlying an essential communication situation is
simple, then the graph-restricted game is simple too.
If, in addition to compromise stability, we also require that the underlying game is
simple, Theorem 3.6 shows that the nucleolus is invariant for all such essential com-
munication situations if the graph is biconnected. Furthermore, for every connected
graph that is not biconnected, we construct an essential communication situation
with an underlying game that is both compromise stable and simple for which the
nucleolus of the graph-restricted game is not equal to the nucleolus of the underlying
game.

Theorem 3.6 The following two statements hold:

i) Let (N, v, E) ∈ ECSN be an essential communication situation with (N, E) bi-
connected and v both compromise stable and simple. Then
nuc(vE) = nuc(v);
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ii) Let (N, E) be a connected graph that is not biconnected. Then there exists an
essential communication situation (N, v, E) ∈ ECSN with v both compromise
stable and simple such that nuc(vE) ̸= nuc(v).

Proof: i) Clearly, it suffices to show that veto(v) = veto(vE). Evidently, for all
i ∈ N , the induced subgraph on N \ {i} is connected, since (N, E) is biconnected.
Hence, vE(N \ {i}) = v(N \ {i}) and consequently, veto(v) = veto(vE).
ii) Reconsider the essential communication situation (N, v1, E) ∈ ECSN as in the
proof of Theorem 3.4. As seen in the proof of Theorem 3.5, v1 is compromise stable.
Furthermore, v1 is clearly simple.
Consequently,

nuc(vE
1 ) = ( 1

2 , 1
2 , 0, . . . , 0) ̸= (1, 0, 0, . . . , 0) = nuc(v1),

which concludes the proof. □
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4 Interactive sequencing with
non-linear cost functions

— Geese frequently
fly in optimal V-
formation4.1 Introduction

In interactive sequencing situations, two issues need to be addressed: an optimization
problem of finding an optimal order and an allocation problem of finding a suitable
allocation. In the optimization problem, the goal is to find an optimal processing
order that minimizes the total processing costs. Given an initial processing order, the
players can obtain cost savings by rearranging to an optimal order. In the allocation
problem, the goal is to find a suitable allocation for these cost savings.
Traditionally, in (interactive) sequencing situations, individual cost functions are as-
sumed to be linear. For these standard sequencing situations, Smith (1956) showed
that in an optimal order, the players are arranged according to a (weakly) decreas-
ing urgency index. For each player, the urgency index is the ratio of the linear cost
coefficient and the processing time. Moreover, a Smith order can be reached from
the initial order by consecutively repairing neighbor misplacements. By dividing the
corresponding neighbor switching gains equally among the two players involved, the
allocation prescribed by the equal gain splitting (EGS) rule for a standard sequencing
situation is obtained, defined by Curiel, Pederzoli, and Tijs (1989).
Hamers, Suijs, Tijs, and Borm (1996) generalized the notion of the EGS-rule and
defined the gain splitting (GS) rules for standard sequencing situations. Instead of
equal division, the GS-rules divide the neighbor switching gains in an arbitrary way
among the two neighbors. The allocations specified by the GS-rules, and in particular

49
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the EGS-rule, for a standard sequencing situation (with linear cost functions) turn out
to be core-elements of the associated standard sequencing game. A sequencing game
(Curiel et al., 1989) is a cooperative game in which the worth of a coalition is defined as
the maximal cost savings the coalition can obtain by admissible rearrangements with
respect to the initial order. Curiel et al. (1989) showed that a standard sequencing
game, that is, the game associated to a standard sequencing situation, is a convex
game.
Interactive sequencing problems are studied from different perspectives. Consider-
able research is done in the direction of adding elements to the model. For example,
Hamers, Borm, and Tijs (1995) added ready times, Borm, Fiestras-Janeiro, Hamers,
Sánchez, and Voorneveld (2002) studied due dates, Hamers, Klijn, and Van Velzen
(2005) added precedence relations, Estévez-Fernández, Borm, Calleja, and Hamers
(2008) incorporated repeated players, and Liu, Lu, and Qi (2018) added unavailable
periods for the machine. A different direction is the stream of research in which
assumptions of the standard sequencing model are relaxed or modified. For exam-
ple, Slikker (2006) relaxed the assumption of cooperation between players, Lohmann,
Borm, and Slikker (2014) modified the definition of the time a job spends in the
system, Musegaas, Borm, and Quant (2015) relaxed the set of admissible rearrange-
ments, and Yang, Sun, Hou, and Xu (2019) analyzed external influence on the worth
of the coalition. A review of the literature on scheduling with learning effects is done
by Biskup (2008). Finally, Van den Brink, Van der Laan, and Vasil’ev (2007) studied
interactive sequencing problems from the perspective of line-graph games.

In this chapter, based on Schouten, Saavedra-Nieves, and Fiestras-Janeiro (2021) and
building on Saavedra-Nieves, Schouten, and Borm (2020), we deal with specific classes
of interactive sequencing situations with non-linear cost functions. We follow the
above-mentioned lines (cf. Curiel et al., 1989) in the sense that we focus on conditions
that guarantee convexity of the associated sequencing game and that provide core-
allocations for the associated sequencing game. In particular, we deal with three
specific examples of non-linear cost functions, namely exponential, discounting and
logarithmic cost functions. For an exponential cost function, it holds that the marginal
costs are increasing over time, for example due to deterioration effects on the machine.
On the other hand, learning effects can lead to decreasing marginal costs over time,
which is the case for a logarithmic cost function. Furthermore, discounting cost
functions model situations in which future costs are discounted with a certain discount
rate.
Exponential sequencing situations were introduced by Saavedra-Nieves et al. (2020)
and discounting sequencing situations were introduced by Rothkopf (1966). In the
same spirit, we consider sequencing situations with logarithmic cost functions. For
such logarithmic sequencing situations, we explicitly derive the expression for the cost
savings obtained by two players if they interchange their positions. Moreover, we
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show that in an optimal order, players are arranged according to (weakly) increasing
processing times. A common feature among the three types of sequencing situations
mentioned above is the fact that in all of them it is possible to directly obtain par-
tial optimal orders for any subgroup of players once an optimal order for the set of
all players is determined. Notice that this feature does not need to be satisfied by
sequencing situations in general.
For the study of these classes of interactive sequencing situations and games, we focus
on two fundamental tasks. First, we provide a specific result for convexity of the
associated sequencing games. Saavedra-Nieves et al. (2020) showed that, by imposing
a set of conditions on the neighbor switching gains, the associated sequencing game
of a sequencing situation is convex. These conditions require the neighbor switching
gains to be non-negative and non-decreasing for misplacements and non-positive for
non-misplacements. In this chapter, we provide an analogous and complementing
result that establishes a new collection of conditions on the gains to ensure convexity
for the associated sequencing games. This guarantees convexity for a much wider class
of sequencing games and, in particular, for discounting and logarithmic sequencing
games.
The second fundamental issue in this context is the definition of allocation rules for
sequencing situations with non-linear cost functions that satisfy the common feature
mentioned above. For standard sequencing situations with linear cost functions, the
cost savings obtained by interchanging a neighbor misplacement are independent of
the position of the two players involved. In other words, these neighbor switching gains
are not dependent on the moment in time the players interchange their positions.
In contrast, for sequencing situations with non-linear cost functions, the neighbor
switching gains may be time-dependent. As a result, due to the non-linearity of the
cost functions, the neighbor switching gains depend on the path from the initial order
to an optimal order.
The preceding observation implies that it is not possible to directly apply the GS-
rules to sequencing situations with non-linear cost functions in the sense that the
properties satisfied by the GS-rules in the standard case are not maintained in general.
In a standard sequencing situation, every path from the initial order to an optimal
order leads to the same neighbor switching gains. This is not generally true for any
non-linear cost function, so the specifications of the path that has been selected from
the initial order to an optimal one becomes fundamental. Given an optimal order,
we provide two different procedures that specify a path from the initial order to the
given optimal order:

• The growing head procedure. This procedure starts with the player that occu-
pies the first position in the optimal order and consecutively moves this player
to that position. Secondly, the player that is in the second position of the opti-
mal order moves to that position and so on, successively until all players are in
their positions in the optimal order.
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52 4.2. General interactive sequencing situations

• The growing tail procedure. This procedure reverses the idea of the growing
head procedure and starts with the player that is in the last position of the
optimal order.

To obtain an allocation from these two procedures, we adopt the idea of the GS-rules
for standard sequencing situations. That is, we divide the neighbor switching gains
in every step of a path from the initial order to an optimal order among the two
players involved using a distribution of weights not necessarily equal. This leads to
two different type of allocations, depending on the procedure that is used: the gain
splitting head rules (GSH-rules) and the gain splitting tail rules (GST-rules). We
show that the two sets of conditions on the neighbor switching gains required for con-
vexity also ensure that the respective type of allocation rules prescribe core-elements
of the associated sequencing game. In particular, we show that for discounting and
logarithmic sequencing situations, the GST-rules lead to core-elements, while for the
three subclasses of exponential sequencing situations as defined in Saavedra-Nieves
et al. (2020), the GSH-rules result in a core-elements.

This chapter is structured as follows. Section 4.2 contains preliminaries on general
interactive sequencing situations. Section 4.3 provides an analysis of exponential,
discounting and logarithmic sequencing situations. Section 4.4 provides a result on
convexity. Finally, Section 4.5 introduces two types of allocation rules for sequencing
situations with arbitrary non-linear cost functions.

4.2 General interactive sequencing situations

In a (general) interactive sequencing situation, there is a non-empty, finite set of
players N that each have a job that needs to be processed on a single machine.1 A
(processing) order of the players is described by a bijective function
σ : N → {1, 2, . . . , |N |} in which σ(i) = k means that the job of player i is in position
k of the order σ.2 The set of all orders of N is denoted by Π(N). Moreover, let
σ0 ∈ Π(N) denote the initial (processing) order of the players, providing the initial
processing rights on the machine. For every player i ∈ N , let pi ∈ R++ denote the
processing time of the job of player i and let the cost function of player i be given by
ci : [0, ∞) → R, where the argument t ∈ [0, ∞) is the number of time units player
i has spent in the system. Here, it is assumed that the machine starts processing at
time t = 0 and that all jobs are present at t = 0.

1Here, the word ‘interactive’ is added to emphasize the fact that we address two issues: the joint
optimization problem and the joint cost savings allocation problem. Therefore, we include an initial
order from the onset.

2With, e.g., N = {1, 2, 3}, σ = (3, 2, 1) denotes the order in which player 3 is processed first, then
player 2 and finally, player 1.
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Following Saavedra-Nieves (2019) and Saavedra-Nieves et al. (2020), a (general) in-
teractive sequencing situation is represented by a tuple (N, σ0, p, c), where p = (pi)i∈N

and c = (ci)i∈N summarize the processing times and cost functions, respectively. The
set of all interactive sequencing situations with player set N is denoted by SEQN and
an interactive sequencing situation (N, σ0, p, c) is also denoted by (σ0, p, c) ∈ SEQN .
Let (σ0, p, c) ∈ SEQN be an interactive sequencing situation and let σ ∈ Π(N) be an
order. The set of predecessors of player i ∈ N with respect to σ is denoted by P (σ, i)
and given by P (σ, i) = {h ∈ N | σ(h) < σ(i)}, while the set of followers is denoted
by F (σ, i) and given by F (σ, i) = {h ∈ N | σ(h) > σ(i)}. The starting time of player
i ∈ N with respect to σ is denoted by ti(σ) and given by ti(σ) =

∑
h∈P (σ,i) ph.

Similarly, the starting time of a group of players I ⊆ N with respect to σ is denoted
by tI(σ) and given by

tI(σ) = min
i∈I

{ti(σ)} .

Furthermore, the time player i ∈ N spends in the system when the players follow the
order σ is called the completion time, denoted by Ci(σ) and given by Ci(σ) = ti(σ)+pi.
The total costs of the order σ are denoted by TC(σ) and given by

TC(σ) =
∑
i∈N

ci(Ci(σ)).

An order for which the total costs are minimized is called an optimal order and
denoted by σ̂, that is, TC(σ̂) ≤ TC(σ) for all σ ∈ Π(N). Given an optimal order
σ̂ ∈ Π(N), the set of misplacements contains all pairs of players that need to be
interchanged in order to reach optimal order σ̂ from the initial order σ0:

MP (σ0, σ̂) = {(i, j) ∈ N × N | σ0(i) < σ0(j) and σ̂(i) > σ̂(j)} .

As a result of basic permutation theory, it is possible to reach an optimal order from
the initial order by recursively interchanging pairs of consecutive players, i.e., by
recursively switching neighbors only. Formally, a neighbor switch associated to two
orders σ, σ′ ∈ Π(N) is defined as a pair of players (i, j) ∈ N ×N for which it holds that
σ(j) = σ(i) + 1 and σ′(j) = σ(i), σ′(i) = σ(j) and σ′(h) = σ(h) for all h ∈ N \ {i, j}.
Now, we adopt the notion of a path (cf. Saavedra-Nieves et al., 2020) from the
initial order σ0 to an optimal order σ̂ as a sequence of orders (σ0, σ1, σ2, . . . , σm)
with σm = σ̂ corresponding to neighbor switches (ik, jk), for all k ∈ {1, 2, . . . , m},
associated to orders σk−1 and σk such that there does not exist k, ℓ ∈ {1, 2, . . . , m},
k ̸= ℓ, such that ik = jℓ and jk = iℓ. In other words, a path from the initial order to
an optimal order consecutively interchanges neighbor misplacements and interchanges
a particular misplacement exactly once. Hence, m = |MP (σ0, σ̂)|.
By following such a path from the initial order to an optimal order, the players can
jointly obtain cost savings. More specifically, the neighbor switching gain of a neighbor
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t

i j
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Figure 4.1 – Interchanging players i and j, leading to the neighbor
switching gain gij(t).

switch (i, j) ∈ N × N at time t ∈ [0, ∞) (i.e. the starting time of player i, who is
directly in front of player j, see Figure 4.1) is given by

gij(t) = ci(t + pi) + cj(t + pi + pj) − ci(t + pi + pj) − cj(t + pj). (4.1)

t

i

i

J

J

j1 j2 jm

j1 j2 jm. . .

. . .. . .

. . .

. . .

. . .

Figure 4.2 – Interchanging player i with a group of players J ,
leading to the gain giJ (t).

For notational convenience, we also consider the consecutive neighbor switching gains
of one player with a group of players. Let i ∈ N and J ⊆ N be such that player i is
directly in front of the group J = {j1, . . . , jm} at time t ∈ [0, ∞) (see Figure 4.2 for
the exact ordering of the players in J). Then the neighbor switching gains of player
i and group J is denoted by giJ(t) and given by

giJ(t) = gij1(t) + gij2(t + pj1) + . . . + gijm(t + pj1 + . . . + pjm−1). (4.2)

Moreover, to also keep track of each individual gain (that is, each individual term
of the above-mentioned sum), we summarize these gains in a vector of length |J |,
denoted by giJ(t) and given by

giJ(t) =
(
gij1(t), gij2(t + pj1), . . . , gijm(t + pj1 + . . . + pjm−1)

)
. (4.3)

Similarly, for a player j ∈ N and a group I ⊆ N at time t ∈ [0, ∞) with player
j directly behind the group I = {i1, . . . , im} (see Figure 4.3), the corresponding
neighbor switching gains are denoted by gIj(t) and given by
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gIj(t) = gimj(t + pi1 + . . . + pim−1) + gim−1j(t + pi1 + . . . + pim−2)
+ . . . + gi2j(t + pi1) + gi1j(t). (4.4)

Correspondingly, the vector of length |I| summarizing the individual gains is denoted
by gIj(t) and given by

gIj(t) =
(
gimj(t + pi1 + . . . + pim−1), gim−1j(t + pi1 + . . . + pim−2),

. . . , gi2j(t + pi1), gi1j(t)
)
. (4.5)

t

j

j

I

I

i1 im−1 im

i1 im−1 im. . .

. . .. . .

. . .

. . .

. . .

Figure 4.3 – Interchanging player j with a group of players I,
leading to the gain gIj(t).

4.3 Interactive sequencing situations with non-linear
cost functions

This section is devoted to interactive sequencing situations with non-linear cost func-
tions. Traditionally, the focus is on standard sequencing situations, in which the cost
functions are linear: ci(t) = αit for all t ∈ [0, ∞), where αi ∈ R++ is the linear cost
coefficient of player i ∈ N . The set of all standard sequencing situations is denoted
by SSEQN . For a standard sequencing situation (σ0, p, c) ∈ SSEQN , Smith (1956)
showed that an optimal order can be reached by arranging the players according to
weakly decreasing urgency indices, where the urgency index ui is defined by ui = αi

pi

for all i ∈ N . The neighbor switching gains as considered in Equation (4.1) can be
expressed in terms of the linear cost coefficients and processing times only:

gij(t) = αjpi − αipj , (4.6)

where i, j ∈ N are two neighbors at time t ∈ [0, ∞), as depicted in Figure 4.1. Note
that the neighbor switching gains are not time-dependent.
The following example illustrates a standard sequencing situation.
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Example 4.1 Consider the standard sequencing situation (σ0, p, c) ∈ SSEQN with
N = {1, 2, 3}, σ0 = (1, 2, 3), and the linear cost coefficients and processing times as
shown in Table 4.1.

player 1 player 2 player 3

αi 0.25 1 3
pi 1 2 3

Table 4.1 – The standard sequencing situation of Example 4.1.

It readily follows that the urgency index of player 1 is u1 = 0.25, the urgency index of
player 2 is u2 = 0.5 and the urgency index of player 3 is u3 = 1. Hence, by arranging
the players according to weakly decreasing urgency indices, the unique optimal order
is given by σ̂ = (3, 2, 1). This can also be seen from Table 4.2, which provides the
total costs for all possible orders.

σ TC(σ)

(1, 2, 3) 21.25
(1, 3, 2) 18.25
(2, 1, 3) 20.75
(2, 3, 1) 18.5
(3, 1, 2) 16
(3, 2, 1) 15.5

Table 4.2 – The total costs of all processing orders in the sequenc-
ing situation of Example 4.1.

The set of misplacements is given by MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)}. Hence, there
are two paths from the initial order to the optimal order that repairs all neighbor
misplacements:

σ0 = (1, 2, 3) g23(p1)−−−−→
3

(1, 3, 2) g13(0)−−−−→
2.25

(3, 1, 2) g12(p3)−−−−→
0.5

(3, 2, 1) = σ̂,

corresponding to neighbor switches (2, 3), (1, 3) and (1, 2) respectively, and

σ0 = (1, 2, 3) g12(0)−−−−→
0.5

(2, 1, 3) g13(p2)−−−−→
2.25

(2, 3, 1) g23(0)−−−−→
3

(3, 2, 1) = σ̂,

corresponding to neighbor switches (1, 2), (1, 3) and (2, 3) respectively. Below each
arrow, the value of the corresponding neighbor switching gain according to Equation
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(4.6) is indicated. Note that these values are similar for both paths in the sense that
only the order in which they occur is different. △

Recently, Saavedra-Nieves et al. (2020) studied exponential sequencing situations, in
which the cost functions are exponential: ci(t) = eαit for all t ∈ [0, ∞), where
αi ∈ R++ is called the exponential cost coefficient of player i ∈ N . The set of all expo-
nential sequencing situations is denoted by ESEQN . For an exponential sequencing
situation (σ0, p, c) ∈ ESEQN , the neighbor switching gain of two consecutive players
i, j ∈ N at time t ∈ [0, ∞) as provided in Equation (4.1) can be reformulated as

gij(t) = eαi(t+pi) + eαj(t+pi+pj) − eαi(t+pj+pi) − eαj(t+pj). (4.7)

For interactive sequencing situations with exponential cost functions, three specific
subclasses allow for a comparison index for determining an optimal order, like the
urgency index, which is only based on the processing times and exponential cost
coefficients. The following proposition summarizes the main result with regard to the
neighbor switching gains for each of these three subclasses.

Proposition 4.1 [cf. Saavedra-Nieves et al., 2020] Let (σ0, p, c) ∈ ESEQN be
an exponential sequencing situation such that one of the following three cases holds:

i) there is an α ∈ R++ such that, for all i ∈ N and all t ∈ [0, ∞), ci(t) = eαt;

ii) there is a p ∈ R++ such that, for all i ∈ N , pi = p;

iii) there are αL, αH , pL, pH ∈ R++ with αL < αH and pL < pH such that, for all
i ∈ N , αi ∈ {αL, αH}, pi ∈ {pL, pH} and

eαH pH − eαLpL ≤ eαH (pL+pH ) − eαL(pL+pH ).

Let i, j ∈ N be two players such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N) be an optimal
order. Then it holds that

1) gij(t) ≥ 0 for all t ∈ [0, ∞) and gij(s) ≤ gij(t) for all s, t ∈ [0, ∞) with s ≤ t,
if (i, j) ∈ MP (σ0, σ̂);

2) gij(t) ≤ 0 for all t ∈ [0, ∞) and gij(s) ≥ gij(t) for all s, t ∈ [0, ∞) with s ≤ t,
if (i, j) /∈ MP (σ0, σ̂).

Thus, for the three subclasses of exponential sequencing situations, all neighbor
switching gains corresponding to misplacements are non-negative and non-decreasing
in time, while all neighbor switching gains corresponding to non-misplacements are
non-positive and non-increasing in time.
The following example illustrates an exponential sequencing situation that belongs to
the third subclass as indicated in Proposition 4.1 above.
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Example 4.2 Consider the exponential sequencing situation (σ0, p, c) ∈ ESEQN

with N = {1, 2, 3}, σ0 = (1, 2, 3), and, for all i ∈ N , αi ∈ {αL, αH} and pi ∈ {pL, pH}
with αL = pL = 0.25 and αH = pH = 2. The processing times and the exponential
cost coefficients of the players are specified in Table 4.3.

player 1 player 2 player 3

αi αL αH αH

pi pL pH pL

Table 4.3 – The exponential sequencing situation of Example 4.2.

Note that this exponential sequencing situation is in the third subclass as formulated
in Proposition 4.1, since

eαH pH − eαLpL = e4 − e0.0625 ≈ 53.5337
≤ 88.2621 ≈ e4.5 − e0.5625 = eαH (pL+pH ) − eαL(pL+pH ).

σ TC(σ)

(1, 2, 3) 239.4948
(1, 3, 2) 152.1959
(2, 1, 3) 204.7664
(2, 3, 1) 146.4835
(3, 1, 2) 151.1950
(3, 2, 1) 93.5341

Table 4.4 – The total costs of all processing orders in the sequenc-
ing situation of Example 4.2.

The approximate total costs for all possible orders are given in Table 4.4. Obviously,
σ̂ = (3, 2, 1) is the unique optimal order. Furthermore, the set of misplacements is
given by MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)} and there are again two paths from the
initial order to the optimal order that repairs all neighbor misplacements:

σ0 = (1, 2, 3) g23(p1)−−−−→ (1, 3, 2) g13(0)−−−−→ (3, 1, 2) g12(p3)−−−−→ (3, 2, 1) = σ̂,

corresponding to neighbor switches (2, 3), (1, 3) and (1, 2) respectively, and

σ0 = (1, 2, 3) g12(0)−−−−→ (2, 1, 3) g13(p2)−−−−→ (2, 3, 1) g23(0)−−−−→ (3, 2, 1) = σ̂,
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g12(0) 34.7284
g12(p3) 57.6609
g13(0) 1.0009
g13(p2) 58.2828
g23(0) 52.9494
g23(p1) 87.2988

Table 4.5 – The neighbor switching gains in the sequencing situ-
ation of Example 4.2.

corresponding to neighbor switches (1, 2), (1, 3) and (2, 3) respectively.
Table 4.5 provides the approximate values of the neighbor switching gains, which
can be computed using Equation (4.7). Rather than having three similar values in a
different order for each path as was the case for standard sequencing situations, we
now see that for an exponential sequencing situation, all six values differ. However,
the total cost savings for both paths from the initial order to the optimal order are
identical.
Note that, for example, 0 ≤ g12(0) ≤ g12(p3). Indeed, all neighbor switching gains
according to misplacements are non-negative and non-decreasing, according to Propo-
sition 4.1. △

Next, we study discounting sequencing situations, as introduced by Rothkopf (1966),
in which the cost function of player i ∈ N is given by ci(t) = αi(1 − e−rt) for all
t ∈ [0, ∞), where r ∈ R++ denotes the discount rate and αi ∈ R++ the discounting
cost coefficient of player i ∈ N . The set of all discounting sequencing situations with
player set N is denoted by DSEQN .
For a discounting sequencing situation (σ0, p, c) ∈ DSEQN , the neighbor switching
gain of two consecutive players i, j ∈ N at time t ∈ [0, ∞) as provided in Equation
(4.1) can be reformulated as

gij(t) = αie
−r(t+pi+pj) + αje−r(t+pj) − αie

−r(t+pi) − αje−r(t+pi+pj). (4.8)

Rothkopf (1966) showed that, for a discounting sequencing situation
(σ0, p, c) ∈ DSEQN and an order σ̂ ∈ Π(N), it holds that σ̂ is optimal if and only if,
for all i, j ∈ N ,

αje−rpj

1 − e−rpj
<

αie
−rpi

1 − e−rpi
⇒ σ̂(i) < σ̂(j). (4.9)

Equation (4.9) can be used to define the pairs of players that should be interchanged
in order to reach an optimal order from the initial order and hence, are in the set of
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misplacements. In the following proposition, we show that in a discounting sequenc-
ing situation, all neighbor switching gains corresponding to misplacements are non-
negative and non-increasing in time. On the other hand, the neighbor switching gains
corresponding to non-misplacements are non-positive and non-decreasing in time.
Note that this partly contrasts Proposition 4.1: in the three subclasses of exponential
sequencing situations, the gains of misplacements are non-decreasing (rather than
non-increasing) in time and the gains of non-misplacements non-increasing (rather
than non-decreasing) in time.

Proposition 4.2 Let (σ0, p, c) ∈ DSEQN be a discounting sequencing situation.
Let i, j ∈ N be such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N) be an optimal order. Then
it holds that

1) gij(t) ≥ 0 for all t ∈ [0, ∞) and gij(s) ≥ gij(t) for all s, t ∈ [0, ∞) with s ≤ t, if
(i, j) ∈ MP (σ0, σ̂);

2) gij(t) ≤ 0 for all t ∈ [0, ∞) and gij(s) ≤ gij(t) for all s, t ∈ [0, ∞) with s ≤ t, if
(i, j) /∈ MP (σ0, σ̂).

Proof: First, from Equation (4.8), it readily follows that g′
ij(t) = −rgij(t) for all

t ∈ [0, ∞).
1) Let (i, j) ∈ MP (σ0, σ̂). Then player j is processed before player i in σ̂ and hence,
using Equation (4.9),

αie
−rpi

1 − e−rpi
≤ αje−rpj

1 − e−rpj
.

Hence,
αie

−rpi − αie
−r(pi+pj) ≤ αje−rpj − αje−r(pi+pj),

and since e−rt ≥ 0 for all t ∈ [0, ∞),

e−rt
(

αie
−r(pi+pj) + αje−rpj − αie

−rpi − αje−r(pi+pj)
)

≥ 0.

Consequently, gij(t) ≥ 0 for all t ∈ [0, ∞). Moreover, since r > 0, g′
ij(t) ≤ 0 for all

t ∈ [0, ∞), which implies that gij(s) ≥ gij(t) for all s, t ∈ [0, ∞) with s ≤ t.
2) Let (i, j) /∈ MP (σ0, σ̂). Then player i is processed before player j in σ̂ and hence,
using Equation (4.9),

αie
−rpi

1 − e−rpi
≥ αje−rpj

1 − e−rpj
.

Hence,
αie

−rpi − αie
−r(pi+pj ≥ αje−rpj − αje−r(pi+pj),

and consequently, gij(t) ≤ 0 for all t ∈ [0, ∞). Moreover, since r > 0, g′
ij(t) ≥ 0 for

all t ∈ [0, ∞), which implies that gij(s) ≤ gij(t) for all s, t ∈ [0, ∞) with s ≤ t. □
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The following example illustrates a discounting sequencing situation and in particular,
illustrates the behavior of the neighbor switching gains according to Proposition 4.2.

Example 4.3 Consider the discounting sequencing situation (σ0, p, c) ∈ DSEQN

with N = {1, 2, 3}, σ0 = (1, 2, 3), r = 0.1, αi = 1 for all i ∈ N , and p1 = 3, p2 = 2 and
p3 = 1. The approximate total costs for all possible orders are given in Table 4.6.

σ TC(σ)

(1, 2, 3) 1.4265
(1, 3, 2) 1.3743
(2, 1, 3) 1.3560
(2, 3, 1) 1.2461
(3, 1, 2) 1.2259
(3, 2, 1) 1.1682

Table 4.6 – The total costs of all processing orders in the sequenc-
ing situation of Example 4.3.

Obviously, σ̂ = (3, 2, 1) is the unique optimal order, which indeed satisfies Equation
(4.9). The latter can be seen from computing αie−rpi

1−e−rpi
for all i ∈ N , resulting in 2.8583

for player 1, 4.5167 for player 2 and 9.55083 for player 3.
The set of misplacements is given by MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)} and there are
thus again two paths from the initial order to the optimal order:

σ0 = (1, 2, 3) g23(p1)−−−−→ (1, 3, 2) g13(0)−−−−→ (3, 1, 2) g12(p3)−−−−→ (3, 2, 1) = σ̂,

and
σ0 = (1, 2, 3) g12(0)−−−−→ (2, 1, 3) g13(p2)−−−−→ (2, 3, 1) g23(0)−−−−→ (3, 2, 1) = σ̂.

Table 4.7 provides the approximate values of the neighbor switching gains, which can
be computed using Equation (4.8).
Note that, for example, g12(0) ≥ g12(p3) ≥ 0. Indeed, all neighbor switching gains
according to misplacements are non-negative and non-increasing, according to Propo-
sition 4.2. △

Finally, we introduce the notion of a logarithmic sequencing situation which deals
with logarithmic cost functions: ci(t) = ln(αit) for all t ∈ (0, ∞), where αi is called
the logarithmic cost coefficient of player i ∈ N and is such that ln(αit) > 0 for all
t ≥ pi. The set of all logarithmic sequencing situations with player set N is denoted
by LSEQN .
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g12(0) 0.0705
g12(p3) 0.0577
g13(0) 0.1484
g13(p2) 0.1100
g23(0) 0.0779
g23(p1) 0.0522

Table 4.7 – The neighbor switching gains in the sequencing situ-
ation of Example 4.3.

For a logarithmic sequencing situation (σ0, p, c) ∈ LSEQN , the neighbor switching
gain of two consecutive players i, j ∈ N at time t ∈ [0, ∞) as provided in Equation
(4.1) can be reformulated as

gij(t) = ln (t + pi) − ln (t + pj) . (4.10)

Equation (4.10) shows that the neighbor switching gains for a logarithmic sequencing
situation are time-dependent. Moreover, the logarithmic cost coefficients turn out to
be irrelevant from an optimization perspective. Even more, the total costs consist of
a fixed part of the sum of the logarithmic cost coefficients and another part that is
dependent on the order. Formally, for a logarithmic sequencing situation
(σ0, p, c) ∈ LSEQN and an order σ ∈ Π(N), we have that

TC(σ) =
∑
i∈N

ln(αi) +
∑
i∈N

ln(Ci(σ)). (4.11)

Consequently, an optimal order can be determined by considering the processing times
only. The following lemma shows that in an optimal order, the players are arranged
according to weakly increasing processing times. This is also known as the so-called
shortest processing time first (SPT) rule.

Lemma 4.1 Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation and let
σ̂ ∈ Π(N) be an order. Then σ̂ is optimal if and only if, for all i, j ∈ N ,

pi < pj ⇒ σ̂(i) < σ̂(j). (4.12)

Proof: The proof uses a standard exchange argument. First, assume that σ̂ is an
optimal order and suppose for the sake of contradiction that Equation (4.12) is not
satisfied for σ̂. Then there are two neighbors i and j for which it holds that pi < pj ,
while σ̂(i) > σ̂(j). Then it is beneficial for them to interchange positions, since
interchanging players i and j leads to an order τ ∈ Π(N) (see Figure 4.4) for which
the total costs are less than the total costs of σ̂:

TC(σ̂) − TC(τ) = gij(tj(σ̂)) = ln(tj(σ̂) + pj) − ln(tj(σ̂) + pi) > 0,
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contradicting the statement that σ̂ is an optimal order. Consequently, Equation (4.12)
is satisfied for σ̂. As a result, all optimal orders satisfy Equation (4.12).

τ

σ̂

tj(σ̂)

j i

i j. . .

. . .

. . .

. . .

Figure 4.4 – Interchanging players i and j from σ̂ to τ .

Secondly, let σ, σ′ ∈ Π(N) be two orders for which Equation (4.12) is satisfied. Then
the only differences between σ and σ′ can be within a block of players with identical
processing times. Hence, using Equation (4.11), it follows that TC(σ) = TC(σ′).
Subsequently, all orders for which Equation (4.12) is satisfied have identical total
costs and, by using the first part of the proof, these costs are minimal. As a result,
all orders for which Equation (4.12) is satisfied are optimal. □

Using Lemma 4.1, it is easily seen that, to reach an optimal order from the initial
order, at least the pairs of players i, j ∈ N for which it holds that σ0(i) < σ0(j)
and pi > pj should be interchanged. Obviously, other optimal orders can be ob-
tained by interchanging even more pairs of players with identical processing times.
Similar to Proposition 4.2 for discounting sequencing situations, we show that all
neighbor switching gains corresponding to misplacements are non-negative and non-
increasing, while the neighbor switching gains are non-positive and non-decreasing
for non-misplacements.

Proposition 4.3 Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation. Let
i, j ∈ N be such that σ0(i) < σ0(j) and let σ̂ ∈ Π(N) be an optimal order. Then it
holds that

1) gij(t) ≥ 0 for all t ∈ [0, ∞) and gij(s) ≥ gij(t) for all s, t ∈ [0, ∞) with s ≤ t, if
(i, j) ∈ MP (σ0, σ̂);

2) gij(t) ≤ 0 for all t ∈ [0, ∞) and gij(s) ≤ gij(t) for all s, t ∈ [0, ∞) with s ≤ t, if
(i, j) /∈ MP (σ0, σ̂).

Proof: First, we have that gij(t) = ln(t + pi) − ln(t + pj) and g′
ij(t) = 1

t+pi
− 1

t+pj

for all t ∈ [0, ∞).
1) Assume that (i, j) ∈ MP (σ0, σ̂). Then pi ≥ pj and hence, ln(t + pi) ≥ ln(t + pj)
and 1

t+pi
≤ 1

t+pj
. Consequently, gij(t) ≥ 0 and g′

ij(t) ≤ 0 for all t ∈ [0, ∞). The latter
implies that gij(s) ≥ gij(t) for all s, t ∈ [0, ∞) with s ≤ t.
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2) Assume that (i, j) /∈ MP (σ0, σ̂). Then pi ≤ pj and hence, ln(t + pi) ≤ ln(t + pj)
and 1

t+pi
≥ 1

t+pj
. Consequently, gij(t) ≤ 0 and g′

ij(t) ≥ 0 for all t ∈ [0, ∞). The latter
implies that gij(s) ≤ gij(t) for all s, t ∈ [0, ∞) with s ≤ t. □

The following example illustrates a logarithmic sequencing situation, providing more
insights in Proposition 4.3.

Example 4.4 Consider the logarithmic sequencing situation (σ0, p, c) ∈ LSEQN

with N = {1, 2, 3}, σ0 = (1, 2, 3), αi = 1 for all i ∈ N , and p1 = 4, p2 = 3 and p3 = 2.
The approximate total costs for all possible orders are given in Table 4.8.

σ TC(σ)

(1, 2, 3) 5.5294
(1, 3, 2) 5.3753
(2, 1, 3) 5.2417
(2, 3, 1) 4.9053
(3, 1, 2) 4.6821
(3, 2, 1) 4.4998

Table 4.8 – The total costs of all processing orders in the sequenc-
ing situation of Example 4.4.

Obviously, σ̂ = (3, 2, 1) is the unique optimal order, which indeed satisfies Equation
(4.12) from Lemma 4.1 as p3 < p2 < p1. Furthermore, the set of misplacements
is given by MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)}. Hence, there are two paths from the
initial order to the optimal order that repairs all neighbor misplacements:

σ0 = (1, 2, 3) g23(p1)−−−−→ (1, 3, 2) g13(0)−−−−→ (3, 1, 2) g12(p3)−−−−→ (3, 2, 1) = σ̂,

corresponding to neighbor switches (2, 3), (1, 3) and (1, 2) respectively, and

σ0 = (1, 2, 3) g12(0)−−−−→ (2, 1, 3) g13(p2)−−−−→ (2, 3, 1) g23(0)−−−−→ (3, 2, 1) = σ̂,

corresponding to neighbor switches (1, 2), (1, 3) and (2, 3) respectively. Table 4.9
provides the approximate values of the neighbor switching gains.
Note that, for example, g12(0) ≥ g12(p3) ≥ 0. Indeed, all neighbor switching gains
according to misplacements are non-negative and non-increasing, according to Propo-
sition 4.3. △

Interestingly, Propositions 4.1, 4.2 and 4.3 have two statements in common: for an
exponential sequencing situation that belongs to one of the three subclasses as speci-
fied in Proposition 4.1, a discounting sequencing situation or a logarithmic sequencing
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g12(0) 0.2877
g12(p3) 0.1823
g13(0) 0.6932
g13(p2) 0.3365
g23(0) 0.4055
g23(p1) 0.1542

Table 4.9 – The neighbor switching gains in the sequencing situ-
ation of Example 4.4.

situation, it holds that the neighbor switching gains corresponding to misplacements
are non-negative and the ones corresponding to non-misplacements are non-positive.
Formally, for such a sequencing situation (σ0, p, c), two players i, j ∈ N such that
σ0(i) < σ0(j) and an optimal order σ̂ ∈ Π(N) it holds that{

gij(t) ≥ 0 for all t ∈ [0, ∞), if (i, j) ∈ MP (σ0, σ̂);
gij(t) ≤ 0 for all t ∈ [0, ∞), if (i, j) /∈ MP (σ0, σ̂).

(4.13)

The two conditions of Equation (4.13) guarantee that it is beneficial to interchange
misplacements at any moment in time, while it is not beneficial for non-misplacements
to be interchanged at any moment in time. As a consequence, an optimal order for
all players implies optimal orders for coalitions, as we see in the next section.

4.4 Sequencing games

In this section, we study sequencing games that are associated to general interactive
sequencing situations. Let (σ0, p, c) ∈ SEQN be an interactive sequencing situation,
S ∈ 2N \ {∅} be a coalition and σ ∈ Π(N) be an order. Then, following Curiel et al.
(1989), σ is called admissible for S with respect to σ0 if P (σ, i) = P (σ0, i) for all
i ∈ N \ S. The set of all admissible orders for S with respect to σ0 is denoted by
A(σ0, S). We define the associated sequencing game v ∈ TUN by

v(S) = max
σ∈A(σ0,S)

{∑
i∈S

ci(Ci(σ0)) −
∑
i∈S

ci(Ci(σ))
}

,

for all S ∈ 2N \ {∅}, that is, the worth of a coalition is equal to the maximal cost
savings the coalition can achieve by admissible rearrangements with respect to σ0.
Admissibility implies that all players outside the coalition remain in the same position
compared to the initial order, whereas players in the coalition can only interchange
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with other players in the coalition if all players in between, according to the initial
order, also belong to the coalition. The latter condition is called connectedness and
formalized as follows: S is called connected with respect to σ if, for all i, j ∈ S and
k ∈ N for which σ(i) < σ(k) < σ(j), it holds that k ∈ S. Moreover, a connected
coalition T ⊆ S is called a (maximally connected) component of S with respect to σ
if, for all connected coalitions T ′ ⊆ S with respect to σ, it holds that T ⊆ T ′ implies
that T = T ′. The set of all components of S is denoted by S/σ. Summarizing, in an
admissible rearrangement with respect the initial order, players in the coalition can
only interchange within the maximally connected components of the coalition with
respect to the initial order.
Next, σ induces the order σS ∈ Π(N) if σS ∈ A(σ0, S) and, for all T ∈ S/σ0 and all
i ∈ T , it holds that P (σ, i) ∩ T = P (σS , i) ∩ T . In other words, all players outside
S are in the same position in σS compared to σ0 and the order of all players within
the components of S with respect to σ0 are in the same order in σS compared to
σ. An optimal order for S, denoted by σ̂S ∈ Π(N), is an admissible order for S
with respect to σ0 that minimizes the total costs for S, i.e., σ̂S ∈ A(σ0, S) for which
TC(σ̂S) ≤ TC(σ) for all σ ∈ A(σ0, S).3 Combining these two concepts leads to
the concept of optimal order consistency, which holds when, for an optimal order
σ̂ ∈ Π(N) and a coalition S ∈ 2N \ {∅}, the induced order σ̂S is optimal for S. Thus,
under optimal order consistency, an optimal order for N implies optimal orders for
all coalitions S. Saavedra-Nieves et al. (2020) provided a link between the neighbor
switching gains and optimal order consistency, as shown in the following lemma.

Lemma 4.2 [cf. Saavedra-Nieves et al., 2020] Let (σ0, p, c) ∈ SEQN be an
interactive sequencing situation and let σ̂ ∈ Π(N) be an optimal order. If the following
two conditions hold:

i) for all t ∈ [0, ∞), gij(t) ≥ 0 for all (i, j) ∈ MP (σ0, σ̂);

ii) for all t ∈ [0, ∞), gij(t) ≤ 0 for all (i, j) /∈ MP (σ0, σ̂),

then optimal order consistency is satisfied, that is, for all S ∈ 2N \ {∅}, σ̂S is optimal
for S.

Importantly, the two conditions in Lemma 4.2 coincide with the conditions as stated
in Equation (4.13), the overlap between Propositions 4.1, 4.2 and 4.3. This means that
all interactive sequencing situations under consideration satisfy optimal order consis-
tency: standard sequencing situations, the three subclasses of exponential sequencing
situations, discounting sequencing situations and logarithmic sequencing situations.

Example 4.5 Consider the interactive sequencing situation (σ0, p, c) ∈ SEQN with
N = {1, 2, 3, 4} and σ0 = (1, 2, 3, 4). Consider the coalition S = {1, 2, 4} ∈ 2N . Note

3Note that both T C(σ̂S) and T C(σ) include the costs of players in N \ S. However, due to the
admissibility for S, these costs are the same for both σ̂S and σ.
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that S is not connected with respect to σ0, since 3 /∈ S while σ(2) < σ(3) < σ(4).
The set of components of S is given by S/σ0 = {{1, 2}, {4}}. Then it can be readily
seen that A(σ0, S) = {(1, 2, 3, 4), (2, 1, 3, 4)}.
Next, assume that σ̂ = (4, 3, 2, 1) is optimal. Then σ̂ induces the order
σ̂S = (2, 1, 3, 4): for the component T = {1, 2} it follows that players 2 is ordered
before player 1 according to σ̂. Hence, σ̂S(2) < σ̂S(1). The other component T = {4}
consists of only player 4 and thus player 4 is still ordered in fourth position. Finally,
player 3 is in third position, as already the case in σ0. Under optimal order consistency,
σ̂S is optimal for S. △

In this section, we particularly study sequencing games that are associated to inter-
active sequencing situations with non-linear cost functions. Therefore, the associated
sequencing game of a standard sequencing situation (with linear cost functions) is
called a standard sequencing game, the associated game of an exponential sequencing
situation (with exponential cost functions) is called an exponential sequencing game,
the one associated with a discounting sequencing situation is called a discounting se-
quencing game and finally, the associated game of a logarithmic sequencing situation
is called a logarithmic sequencing game.
For standard sequencing situations, Curiel et al. (1989) showed that the standard se-
quencing games are convex. For exponential sequencing situations, Saavedra-Nieves
et al. (2020) showed that the three subclasses of exponential sequencing situations
yield convex exponential sequencing games. The latter result is based on a more gen-
eral result for interactive sequencing situations with arbitrary non-linear cost func-
tions:

Theorem 4.1 [cf. Saavedra-Nieves et al., 2020] Let (σ0, p, c) ∈ SEQN be an
interactive sequencing situation and let v ∈ TUN be the associated sequencing game.
Let σ̂ ∈ Π(N) be an optimal order. If the following three conditions hold:

i) for all t ∈ [0, ∞), gij(t) ≥ 0 for all (i, j) ∈ MP (σ0, σ̂);

ii) for all t ∈ [0, ∞), gij(t) ≤ 0 for all (i, j) /∈ MP (σ0, σ̂);

iii) for all s, t ∈ [0, ∞) with s ≤ t, gij(s) ≤ gij(t) for all (i, j) ∈ MP (σ0, σ̂),

then v is convex.

In Theorem 4.1, the first two conditions ensure optimal order consistency and the
third condition refers to the non-decreasing character of the neighbor switching gains
for misplacements. Together, these conditions imply convexity of the associated se-
quencing game. For both standard and exponential sequencing situations (at least,
restricted to the three subclasses), this suffices to prove convexity. However, for
discounting and logarithmic sequencing situations, only the first two conditions are
satisfied, that is, optimal order consistency is satisfied. In contrast, Propositions 4.2
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and 4.3 imply a non-increasing character of the neighbor switching gains for misplace-
ments. Theorem 4.2 below shows that for convexity it also suffices to require that
the neighbor switching gains are non-increasing for misplacements, together with op-
timal order consistency, i.e., non-negativity for misplacements and non-positivity for
non-misplacements. The proof of this result follows the same structure as the proof
of Theorem 4.1 and makes use of the following notation.
Let (σ0, p, c) ∈ SEQN be an interactive sequencing situation and let σ ∈ Π(N) be an
order. Following Borm et al. (2002), we use the following notation for some special
connected coalitions: 

(i, j)σ = {k ∈ N | σ(i) < σ(k) < σ(j)} ;
(i, j]σ = {k ∈ N | σ(i) < σ(k) ≤ σ(j)} ;
[i, j)σ = {k ∈ N | σ(i) ≤ σ(k) < σ(j)} ;
[i, j]σ = {k ∈ N | σ(i) ≤ σ(k) ≤ σ(j)} ,

where i, j ∈ N are two players such that σ(i) < σ(j). We also benefit from their
convexity result:

Proposition 4.4 [cf. Borm et al., 2002] Let (σ0, p, c) ∈ SEQN be an interactive
sequencing situation and let v ∈ TUN be the associated sequencing game. Then v is
convex if and only if, for all i, j ∈ N such that σ0(i) < σ0(j),

v([i, j]σ0) − v([i, j)σ0) − v((i, j]σ0) + v((i, j)σ0) ≥ 0.

Theorem 4.2 Let (σ0, p, c) ∈ SEQN be an interactive sequencing situation and let
v ∈ TUN be the associated sequencing game. Let σ̂ ∈ Π(N) an optimal order. If the
following three conditions hold:

i) for all t ∈ [0, ∞), gij(t) ≥ 0 for all (i, j) ∈ MP (σ0, σ̂);

ii) for all t ∈ [0, ∞), gij(t) ≤ 0 for all (i, j) /∈ MP (σ0, σ̂);

iii) for all s, t ∈ [0, ∞) with s ≤ t, gij(s) ≥ gij(t) for all (i, j) ∈ MP (σ0, σ̂),

then v is convex.

Proof: Assume that conditions i), ii) and iii) are satisfied. Then, by using Propo-
sition 4.4, it suffices to prove that

v([i, j]σ0) − v([i, j)σ0) ≥ v((i, j]σ0) − v((i, j)σ0), (4.14)

for all i, j ∈ N with σ0(i) < σ0(j). Let i, j ∈ N with σ0(i) < σ0(j) (see Figure 4.5).
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Cj(σ0)

σ0 ji . . .. . . . . .

Figure 4.5 – Players i, j ∈ N in the initial order σ0.

Similar to Theorem 4.1, conditions i) and ii) imply optimal order consistency and
hence, the induced orders σ̂[i,j]σ0

, σ̂[i,j)σ0
, σ̂(i,j]σ0

and σ̂(i,j)σ0
are optimal for the

coalitions [i, j]σ0 , [i, j)σ0 , (i, j]σ0 and (i, j)σ0 , respectively.
To prove Equation (4.14), we distinguish between two cases: either I) σ̂(i) < σ̂(j) or
II) σ̂(i) > σ̂(j). For both cases, we show that Equation (4.14) is satisfied.
Case I) First, assume that σ̂(i) < σ̂(j).

(a)

Cj(σ0)

σ̂[i,j)σ0
ji J. . .. . . . . .

σ̂[i,j]σ0
ji J. . .. . . . . .

(b)

Cj(σ0)

σ̂(i,j)σ0
ji J. . .. . . . . .

σ̂(i,j]σ0
ji J. . .. . . . . .

Figure 4.6 – Schematic overview of the first case in the proof of
Theorem 4.2.

In Figure 4.6, the order of the relevant players is shown for the different induced orders.
First note that in Figure 4.6b, σ̂(i,j)σ0

is the optimal order in which all players that
are in between i and j according to σ0 are now ordered according to σ̂. In σ̂(i,j]σ0

,
we also order player j according to σ̂. Since σ̂(i) < σ̂(j) in this first case, this means
that player j has to switch with the players in J ⊆ N , given by

J = {h ∈ (i, j)σ0 | (h, j) ∈ MP (σ0, σ̂)} .

In Figure 4.6a, the same switch between j and J is visible, since in σ̂[i,j]σ0
, player

j is ordered according to σ̂, while in σ̂[i,j)σ0
, player j is ordered according to σ0.

Furthermore, in both orders, player i is ordered according to σ̂.
Ultimately, this means that in both Figure 4.6a and Figure 4.6b, the only difference
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is the switch between j and the players in J . Hence,

v([i, j]σ0) − v([i, j)σ0) = gJj(Cj(σ0) − pj −
∑
h∈J

ph)

= v((i, j]σ0) − v((i, j)σ0),

where gJj(Cj(σ0)−pj −
∑

h∈J ph) is the consecutive neighbor switching gain of player
j and group J at time Cj(σ0) − pj −

∑
h∈J ph according to Equation (4.2). So,

Equation (4.14) is satisfied with equality.
Case II) Secondly, assume that σ̂(i) > σ̂(j).
Figure 4.7 provides the order of the relevant players for the different induced orders.
First, define I, J ⊆ N as follows:{

I = {ℓ ∈ (i, j)σ0 | σ̂(j) < σ̂(ℓ) < σ̂(i)} ;
J = {k ∈ (i, j)σ0 | σ̂(i) < σ̂(k)} .

Then, since in this case σ̂(i) > σ̂(j), while σ0(i) < σ0(j), player j has to switch with
player i at some point. In Figure 4.7a, this switch becomes visible: player j first has
to switch with the players in J , then with player i and finally, with the players in I.
In Figure 4.7b, player i is ordered according to σ0, while player j has to switch with
the players in J and I respectively, to be ordered according to σ̂.

(a)

Cj(σ0)

σ̂[i,j)σ0 i JI j. . . . . .

σ̂[i,j]σ0 ij JI. . . . . .

(b)

Cj(σ0)

σ̂(i,j)σ0
ji JI. . . . . .

σ̂(i,j]σ0 i j JI. . . . . .

Figure 4.7 – Schematic overview of the second case in the proof
of Theorem 4.2.

Hence, by following Figure 4.7a,

v([i, j]σ0) − v([i, j)σ0) = gJj(Cj(σ0) − pj −
∑
k∈J

pk)

+ gij(Cj(σ0) − pi − pj −
∑
k∈J

pk)
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+ gIj(Cj(σ0) − pi − pj −
∑
ℓ∈I

pℓ −
∑
k∈J

pk),

and, by following Figure 4.7b,

v((i, j]σ0) − v((i, j)σ0) = gJj(Cj(σ0) − pj −
∑
k∈J

pk)

+ gIj(Cj(σ0) − pj −
∑
ℓ∈I

pℓ −
∑
k∈J

pk).

First, note that gij(Cj(σ0) − pi − pj −
∑

k∈J pk) ≥ 0 according to condition i), since
(i, j) ∈ MP (σ0, σ̂). Secondly,

Cj(σ0) − pi − pj −
∑
ℓ∈I

pℓ −
∑
k∈J

pk < Cj(σ0) − pj −
∑
ℓ∈I

pℓ −
∑
k∈J

pk,

since pi > 0. Using condition iii), we then have that

gIj(Cj(σ0) − pi − pj −
∑
ℓ∈I

pℓ −
∑
k∈J

pk) ≥ gIj(Cj(σ0) − pj −
∑
ℓ∈I

pℓ −
∑
k∈J

pk),

and hence,
v([i, j]σ0) − v([i, j)σ0) ≥ v((i, j]σ0) − v((i, j)σ0),

which concludes the second case. □

As a direct consequence of Theorem 4.2, we have that, using Propositions 4.2 and 4.3,
any discounting sequencing game and any logarithmic sequencing game is convex.

Corollary 4.1 The following two statements hold:

i) Let (σ0, p, c) ∈ DSEQN be a discounting sequencing situation and let v ∈ TUN

be the associated discounting sequencing game. Then v is convex.

ii) Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation and let v ∈ TUN

be the associated logarithmic sequencing game. Then v is convex.

4.5 Cost savings allocation rules

In this section, we introduce two different types of allocation rules that can be directly
computed from the sequencing situation itself and thus not using the associated se-
quencing game. Both types of rules use the ideas of the gain splitting rules for
standard sequencing situations, now applied in the more general setting. We are also
interested in the game-theoretical properties that they satisfy. In particular, we study
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if the allocations we obtain are stable, in the sense that they belong to the core of the
associated cooperative game.
For standard sequencing situations, the gain splitting (GS) rules (Hamers et al.,
1996) provide such stable allocations. Formally, for a standard sequencing situation
(σ0, p, c) ∈ SSEQN , the allocations prescribed by the GS-rules are given by

GSλ(σ0, p, c) =
∑

(i,j)∈MP (σ0,σ̂)

λij(αjpi − αjpi)e{i} + (1 − λij)(αjpi − αjpi)e{j},

where λij ∈ [0, 1] for all i, j ∈ N, i ̸= j. Recall that, for all i ∈ N , e{i} ∈ RN is such
that, for all h ∈ N ,

(e{i})h =
{

1, if h = i;
0, otherwise.

In particular, by choosing λij = 1
2 for all i, j ∈ N, i ̸= j, we obtain the allocation as

prescribed by the equal gain splitting (EGS) rule (Curiel et al., 1989). Note that all
GS-rules are independent of the choice of an optimal order σ̂ ∈ Π(N). Furthermore,
all GS-rules yield stable allocations, which means that, for (σ0, p, c) ∈ SSEQN , we
have that GSλ(σ0, p, c) ∈ C(v), where v denotes the associated standard sequencing
game, i.e.,

v(S) ≤
∑
i∈S

GSλ
i (σ0, p, c),

for all S ∈ 2N \ {∅} and
v(N) =

∑
i∈N

GSλ
i (σ0, p, c).

Since for a standard sequencing situation it holds that gij(t) = αjpi − αipj for every
misplacement (i, j) ∈ MP (σ0, σ̂) at time t ∈ [0, ∞), the GS-rules thus divide the
neighbor switching gains for every misplaced pair of players between the two play-
ers involved. Note that every choice of λij can possibly lead to another allocation.
However, given such a choice, every path from the initial order to an optimal order
leads to the same neighbor switching gains and hence, to the same allocation, since
the gains are not dependent on the moment in time both players interchange their
positions, as was also seen in Example 4.1.
In sequencing situations with non-linear cost functions, the neighbor switching gains
may be time-dependent. This is indeed the case in sequencing situations with ex-
ponential, discounting or logarithmic cost functions (see Examples 4.2, 4.3 and 4.4).
Hence, the gains depend on the path from the initial order to an optimal order.
Therefore, we need to specify which path to choose to reach an optimal order from
the initial order. Given such a path, we adopt the idea behind the GS-rules of split-
ting these gains between the two neighbors involved. Together, this yields allocation
rules for sequencing situations with non-linear cost functions.
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4.5.1 Specifying a path

We start out by focusing on the choice of the path from the initial order to an opti-
mal order that repairs all neighbor misplacements. Below, we prescribe two possible
procedures that specify such a path. For the first procedure, named the growing head
procedure, we start with the player that occupies the first position in an optimal or-
der. In the initial order, this player may not be in the first position, but in a different
position. The growing head procedure starts by consecutively moving this player to
the first position, that is, this player consecutively switches with the players in front
(according to the initial order) of him, until he reaches the first position. Secondly,
we consider the player that is in second position in the given optimal order. Again,
we consecutively move this player to the second position. We continue this process
until all players are positioned in the position according to the given optimal order.
Formally, the growing head procedure is defined as follows:

Procedure 4.1 [growing head procedure] Let (σ0, p, c) ∈ SEQN be an interac-
tive sequencing situation and let σ̂ ∈ Π(N) be an optimal order.

σ1 j I F (σ0, j)

σ0 jI F (σ0, j)

Figure 4.8 – Step 1 of the growing head procedure.

Step 1: For the first step, set j = σ̂−1(1), i.e., j is the player that is in the first
position according to σ̂. Consider the path (σ0, . . . , σ1) corresponding to neighbor
switches (i, j) for every i ∈ I, where I = P (σ0, j). Here, σ1 ∈ Π(N) is the order in
which σ1(j) = 1, σ1(h) = σ0(h) + 1 for all h ∈ P (σ0, j) and σ1(h) = σ0(h) for all
h ∈ F (σ0, j) (see also Figure 4.8).

σk h. . . Ij F (σk−1, j)

σk−1 h. . . I j F (σk−1, j)

Figure 4.9 – Step k of the growing head procedure.

For k > 1 until k = |N | − 1, perform the following step:
Step k: Set j = σ̂−1(k) and h = σ̂−1(k − 1), i.e., j is the player that is in po-
sition k according to σ̂ and h the player that is in position k − 1. Consider the
path (σk−1, . . . , σk) corresponding to neighbor switches (i, j) for every i ∈ I, where
I = (h, j)σk−1 . Here, σk ∈ Π(N) is the order in which σk(j) = k, σk(i) = σk−1(i) + 1
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for all i ∈ I, σk(g) = σk−1(g) for all g ∈ F (σk−1, j) and σk(g) = σk−1(g) for all
g ∈ P (σk−1, h) ∪ {h} (see also Figure 4.9). ◁

The second procedure, named the growing tail procedure, reverses the idea of the
first procedure: instead of starting with the player that is in the first position in
the optimal order, we now start with the player that is in the last position. We
consecutively move this player to the back, in a similar way as in the growing head
procedure. Formally, the growing tail procedure is defined as follows:

Procedure 4.2 [growing tail procedure] Let (σ0, p, c) ∈ SEQN be an interactive
sequencing situation and let σ̂ ∈ Π(N) be an optimal order.

σ1 iP (σ0, i) J

σ0 iP (σ0, i) J

Figure 4.10 – Step 1 of the growing tail procedure.

Step 1: For the first step, set i = σ̂−1(|N |), i.e., i is the player that is in the last
position according to σ̂. Consider the path (σ0, . . . , σ1) corresponding to neighbor
switches (i, j) for every j ∈ J , where J = F (σ0, i). Here, σ1 ∈ Π(N) is the order in
which σ1(i) = |N |, σ1(h) = σ0(h) for all h ∈ P (σ0, i) and σ1(h) = σ0(h) − 1 for all
h ∈ F (σ0, i) (see also Figure 4.10).

σk h . . .J iP (σk−1, i)

σk−1 h . . .JiP (σk−1, i)

Figure 4.11 – Step k of the growing tail procedure.

For k > 1 until k = |N | − 1, perform the following step:
Step k: Set i = σ̂−1(|N | − k + 1) and h = σ̂−1(|N | − k + 2), i.e., i is the player
that is in position |N | − k + 1 according to σ̂ and h the player that is in position
|N | − k + 2. Consider the path (σk−1, . . . , σk) corresponding to neighbor switches
(i, j) for every j ∈ J , where J = (i, h)σk−1 . Here, σk ∈ Π(N) is the order in which
σk(i) = |N | − k + 1, σk(j) = σk−1(j) − 1 for all j ∈ J , σk(g) = σk−1(g) for all
g ∈ P (σk−1, i) and σk(g) = σk−1(g) for all g ∈ F (σk−1, h) ∪ {h} (see also Figure
4.11). ◁

Starting with an initial order, one can follow either one of the two procedures in
order to reach a given optimal order. For example, by consecutively moving players
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to the front, forming an optimal order by letting the head grow larger and larger, the
growing head procedure specifies a path from the initial order to an optimal order.
Similarly, the growing tail procedure forms an optimal order by letting the tail grow
larger and larger. This is illustrated for a logarithmic sequencing situation in the
following example, which is a continuation of Example 4.4.

Example 4.6 Reconsider the logarithmic sequencing situation (σ0, p, c) ∈ LSEQN ,
as described in Example 4.4, with N = {1, 2, 3}, σ0 = (1, 2, 3), αi = 1 for all i ∈ N ,
and p1 = 4, p2 = 3 and p3 = 2. Recall that σ̂ = (3, 2, 1) is the unique optimal order
and MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)}. We first perform the growing head procedure,
according to Procedure 4.1. Note that σ̂(3) = 1, so we start by consecutively moving
player 3 to the front:

σ0 = (1, 2, 3) → (1, 3, 2) → (3, 1, 2) = σ1.

In the second step, we move player 2 to the second position, since σ̂(2) = 2:

σ1 = (3, 1, 2) → (3, 2, 1) = σ2 = σ̂.

Now, player 1, as the last player in σ̂, is automatically in the position according to σ̂.
Note that this path corresponds to the first path as described in Example 4.4.
Next, we perform the growing tail procedure, following Procedure 4.2. Note that
σ̂(1) = 3, so we start by consecutively moving player 1 to the back:

σ0 = (1, 2, 3) → (2, 1, 3) → (2, 3, 1) = σ1.

In the second step, we move player 2 to the second position, since σ̂(2) = 2:

σ1 = (2, 3, 1) → (3, 2, 1) = σ2 = σ̂.

Note that this path corresponds to the second path as described in Example 4.4. △

4.5.2 Extending the gain splitting rules

After choosing a path from the initial order to an optimal order, we can adopt the
idea behind the GS-rules to divide the corresponding neighbor switching gains in
every step in such a path. Hence, we obtain two kinds of cost savings allocation
rules based on the two procedures. In order to properly define these rules, we need a
sophisticated way of summarizing several divisions for consecutive gains.
Fix a choice of λij ∈ [0, 1] for all i, j ∈ N, i ̸= j. Given a particular player i ∈ N and
a group J ⊆ N with player i directly in front of this group J = {j1, . . . , jm}, which
are ordered consecutively (see also Figure 4.2), define the vector λiJ of length |J | as
follows:

λiJ =
(
λij1 , λij2 , . . . , λijm

)
.
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By using the inner product ⟨·, ·⟩, this vector can now be linked to the neighbor switch-
ing gains of player i and group J by using the vector giJ(t). In particular,

〈
λiJ , giJ(t)

〉
links the individual gains of the players j ∈ J to the matching division λij .
Similarly, given a player j ∈ N and a group I ⊆ N with player j directly behind the
group I = {i1, . . . , im}, which are ordered consecutively (see also Figure 4.3), define
the vector λIj of length |I| as follows:

λIj =
(
(1 − λimj), (1 − λim−1j), . . . , (1 − λi2j), (1 − λi1j)

)
.

Again,
〈
λIj , gIj(t)

〉
links the individual gains of the players i ∈ I to the matching

division λij .

Definition 4.1 Let (σ0, p, c) ∈ SEQN be an interactive sequencing situation and
let σ̂ ∈ Π(N) be an optimal order. Then, for every choice of λij ∈ [0, 1] for all
i, j ∈ N, i ̸= j, the gain splitting head (GSH) rule is defined as follows:

GSHλ,σ̂(σ0, p, c) =
|N |−1∑
k=1

( 〈
λIkjk

, gIkjk
(tIk

(σk−1))
〉

e{jk}+
∑
i∈Ik

λijk
gijk

(ti(σk−1))e{i}
)

,

where jk = σ̂−1(k) for every k ∈ {1, 2, . . . , |N |−1}, σk for every k ∈ {1, 2, . . . , |N |−1}
according to the growing head procedure, and

Ik =
{

P (σ0, jk), if k = 1;
(hk, jk)σk−1 , if k ∈ {2, 3, . . . , |N | − 1},

with hk = σ̂−1(k − 1).
Similarly, for every choice of λij ∈ [0, 1] for all i, j ∈ N, i ̸= j, the gain splitting tail
(GST) rule is defined as follows:

GST λ,σ̂(σ0, p, c) =
|N |−1∑
k=1

( 〈
λikJk

, gikJk
(tik

(σk−1))
〉

e{ik}

+
∑
j∈Jk

(1 − λikj)gikj(tj(σk−1) − pik
)e{j}

)
,

where ik = σ̂−1(|N | − k + 1) for every k ∈ {1, 2, . . . , |N | − 1}, σk for every
k ∈ {1, 2, . . . , |N | − 1} according to the growing tail procedure, and

Jk =
{

F (σ0, i), if k = 1;
(i, hk)σk−1 , if k ∈ {2, 3, . . . , |N | − 1},

with hk = σ̂−1(|N | − k + 2). ◁
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In particular, by choosing λij = 1
2 for all i, j ∈ N, i ̸= j, we obtain two extensions of

the EGS-rule: the equal gain splitting head (EGSH) rule and the equal gain splitting
tail (EGST) rule.
Note that for standard sequencing situations every path from the initial order to an
optimal order leads to the same allocation and hence, the cost savings allocations
specified by both the EGSH-rule and the EGST-rule boil down to the cost savings
allocation prescribed by the EGS-rule. Example 4.7 shows that for logarithmic se-
quencing situations, both cost allocations of Definition 4.1 can differ. The example
deals with a logarithmic sequencing situation as described earlier in Examples 4.4 and
4.6.

Example 4.7 Reconsider the logarithmic sequencing situation (σ0, p, c) ∈ LSEQN ,
as described in Examples 4.4 and 4.6, with N = {1, 2, 3}, σ0 = (1, 2, 3), αi = 1
for all i ∈ N , and p1 = 4, p2 = 3 and p3 = 2. Recall that σ̂ = (3, 2, 1) and that
MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)} and the approximate neighbor switching gains as
given in Table 4.10.

g12(0) 0.2877
g12(p3) 0.1823
g13(0) 0.6932
g13(p2) 0.3365
g23(0) 0.4055
g23(p1) 0.1542

Table 4.10 – The neighbor switching gains in the sequencing sit-
uation of Example 4.7.

Recall from Example 4.6 that the growing head procedure specifies the following path
from the initial order to the optimal order:

σ0 = (1, 2, 3) g23(p1)−−−−→ (1, 3, 2) g13(0)−−−−→ (3, 1, 2) = σ1
g12(p3)−−−−→ (3, 2, 1) = σ2 = σ̂.

Hence, by using Definition 4.1, the cost allocation prescribed by the EGSH-rule is

EGSH σ̂(σ0, p, c) =
〈
λ{1,2}3, g{1,2}3(0)

〉
e{3} + λ13g13(0)e{1} + λ23g23(p1)e{2}

+
〈
λ12, g12(p3)

〉
e{2} + λ12g12(p3)e{1}

=
(

(1 − λ23)g23(p1) + (1 − λ13)g13(0)
)

e{3} + λ13g13(0)e{1}

+ λ23g23(p1)e{2} + λ12g12(p3)e{2} + λ12g12(p3)e{1}
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=
( 1

2 g23(p1) + 1
2 g13(0)

)
e{3} + 1

2 g13(0)e{1} + 1
2 g23(p1)e{2}

+ 1
2 g12(p3)e{2} + 1

2 g12(p3)e{1}

=
( 1

2 g13(0) + 1
2 g12(p3)

)
e{1} +

( 1
2 g23(p1) + 1

2 g12(p3)
)

e{2}

+
( 1

2 g23(p1) + 1
2 g13(0)

)
e{3}

= 0.4378e{1} + 0.1683e{2} + 0.4237e{3}

= (0.4378, 0.1683, 0.4237) .

Note that the neighbor switching gains that are involved, i.e., g23(p1), g13(0) and
g12(p3), are indeed divided equally among the two neighbors.
Example 4.6 also shows that the growing tail procedure specifies the following path
from the initial order to the optimal order:

σ0 = (1, 2, 3) g12(0)−−−−→ (2, 1, 3) g13(p2)−−−−→ (2, 3, 1) g23(0)−−−−→ (3, 2, 1) = σ̂.

Hence, by using Definition 4.1, the cost allocation prescribed by the EGST-rule is

EGST σ̂(σ0, p, c) =
〈
λ1{2,3}, g1{2,3}(0)

〉
e{1} + (1 − λ12)g12(p1 − p1)e{2}

+ (1 − λ13)g13(p1 + p2 − p1)e{3}

+
〈
λ23, g23(0)

〉
e{2} + (1 − λ23)g23(p2 − p2)e{3}

=
(

λ12g12(0) + λ13g13(p2)
)

e{1} + (1 − λ12)g12(0)e{2}

+ (1 − λ13)g13(p2)e{3} + λ23g23(0)e{2} + (1 − λ23)g23(0)e{3}

=
(

1
2 g12(0) + 1

2 g13(p2)
)

e{1} + 1
2 g12(0)e{2} + 1

2 g13(p2)e{3}

+ 1
2 g23(0)e{2} + 1

2 g23(0)e{3}

=
( 1

2 g12(0) + 1
2 g13(p2)

)
e{1} +

( 1
2 g12(0) + 1

2 g23(0)
)

e{2}

+
( 1

2 g13(p2) + 1
2 g23(0)

)
e{3}

= 0.3121e{1} + 0.3466e{2} + 0.3710e{3}

= (0.3121, 0.3466, 0.3710) .

Clearly, the allocations specified by the EGSH-rule and the EGST-rule differ. △

By construction, all GSH-rules and GST-rules lead to efficient allocations, that is,
for every interactive sequencing situation (σ0, p, c) ∈ SEQN , every optimal order
σ̂ ∈ Π(N) and every choice of λ,∑

i∈N

GSHλ,σ̂
i (σ0, p, c) = v(N) =

∑
i∈N

GST λ,σ̂
i (σ0, p, c),
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where v(N) is the worth of the grand coalition of the associated sequencing game.
Additionally, under optimal order consistency, we can guarantee stability for the GSH-
rules, that is, ∑

i∈S

GSHλ,σ̂
i (σ0, p, c) ≥ v(S),

for all S ∈ 2N \ {∅}, if the neighbor switching gains corresponding to misplacements
are non-decreasing. Similarly, again under optimal order consistency,∑

i∈S

GST λ,σ̂
i (σ0, p, c) ≥ v(S),

for all S ∈ 2N \ {∅}, if the neighbor switching gains corresponding to misplacements
are non-increasing. This is formulated by the following theorem.

Theorem 4.3 Let (σ0, p, c) ∈ SEQN be an interactive sequencing situation and let
v ∈ TUN be the associated sequencing game. Let σ̂ ∈ Π(N) be an optimal order. If,
for all t ∈ [0, ∞), the following two conditions hold:

i) gij(t) ≥ 0 for all (i, j) ∈ MP (σ0, σ̂);

ii) gij(t) ≤ 0 for all (i, j) /∈ MP (σ0, σ̂),

then the following two statements hold for every choice of λ:

1) if, for all s, t ∈ [0, ∞) with s ≤ t, gij(s) ≤ gij(t) for all (i, j) ∈ MP (σ0, σ̂),
then GSHλ,σ̂(σ0, p, c) ∈ C(v);

2) if, for all s, t ∈ [0, ∞) with s ≤ t, gij(s) ≥ gij(t) for all (i, j) ∈ MP (σ0, σ̂),
then GST λ,σ̂(σ0, p, c) ∈ C(v).

Proof: By definition, all allocations prescribed by the GSH-rules and the GST-rules
are efficient. For stability, it suffices to restrict to connected coalitions. Hence, let
S ∈ 2N \ {∅} be a connected coalition with respect to σ0. Then we see that

v(S) =
∑

(i,j)∈MP (σ0,σ̂);i,j∈S

gij(tS
ij), (4.15)

where tS
ij is the starting time of player i for which players i and j switch positions if

the group of players S is rearranging to its optimal position. Note that conditions i)
and ii) imply optimal order consistency, according to Lemma 4.2.
1) Assume that, for all s, t ∈ [0, ∞) with s ≤ t, gij(s) ≤ gij(t) for all
(i, j) ∈ MP (σ0, σ̂). First, we show that∑

(i,j)∈MP (σ0,σ̂);i,j∈S

gij(tS
ij) ≤

∑
(i,j)∈MP (σ0,σ̂);i,j∈S

gij(tij), (4.16)
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where tij is the starting time of player i for which the players i and j switch positions
if all players (of the grand coalition N) are rearranging to its optimal position. We
do so by showing that gij(tS

ij) ≤ gij(tij) for all (i, j) ∈ MP (σ0, σ̂) with i, j ∈ S.
For this, let (i, j) ∈ MP (σ0, σ̂) with i, j ∈ S. To find a direct expression for tS

ij , note
that in the growing head procedure (according to Procedure 4.1), switching players i
and j means moving player j to the front. At the moment of the switch of i and j,
there are two types of players in front of i: first, all predecessors of i according to σ0
are still predecessors of i at the moment of the switch. Secondly, all predecessors of j
according to σ̂ are already in their optimal positions at the head of σ̂ and hence, are
ordered before i at the moment of the switch of i and j. Together, we see that

tS
ij =

∑
h∈P (σ0,i)

ph +
∑

h∈F (σ0,i)∩P (σ̂,j)∩S

ph. (4.17)

On the other hand, by using a similar argument as before, we can derive a direct
expression for tij using the growing head procedure:

tij =
∑

h∈P (σ0,i)

ph +
∑

h∈F (σ0,i)∩P (σ̂,j)

ph. (4.18)

Hence, we see that tS
ij ≤ tij , by combining Equation (4.17) and Equation (4.18) and

by using the fact that F (σ0, i) ∩ P (σ̂, j) ∩ S ⊆ F (σ0, i) ∩ P (σ̂, j). Then it follows that
gij(tS

ij) ≤ gij(tij) and consequently, Equation (4.16) is satisfied.

Next, note that, for every (i, j) ∈ MP (σ0, σ̂) with i, j ∈ S, we have that the cor-
responding neighbor switching gain gij(tij) is divided between only players i and j.
This means that, for every choice of λ, when adding all allocations of the players for
the GSH-rules, we have that∑

h∈S

GSHλ,σ̂
h (σ0, p, c) ≥

∑
(i,j)∈MP (σ0,σ̂);i,j∈S

gij(tij).

Consequently, by combining this with Equations (4.15) and (4.16), we have that for
every choice of λ ∑

h∈S

GSHλ,σ̂
h (σ0, p, c) ≥ v(S).

This finishes the proof of the first statement.
2) Assume that, for all s, t ∈ [0, ∞) with s ≤ t, gij(s) ≥ gij(t) for all
(i, j) ∈ MP (σ0, σ̂). The structure of the proof of the second statement is identical
to the proof of the first statement. That is, we first show that Equation (4.16) is
satisfied by showing that gij(tS

ij) ≤ gij(tij) for all (i, j) ∈ MP (σ0, σ̂) with i, j ∈ S.
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Let (i, j) ∈ MP (σ0, σ̂) with i, j ∈ S. In the growing tail procedure (according to
Procedure 4.2), switching players i and j means moving player i to the back. Again,
thee are two types of players in front of i: first, all players that are ordered before
the coalition S according to σ0 are still ordered before S and hence, before i at the
moment of the switch. Secondly, at that point, all followers of i according to σ̂ are
already in their optimal positions at the tail of σ̂ and hence, are ordered after i at
the moment of the switch of i and j. Hence, the only players that are ordered before
player i at that moment are players that are not yet moved to the back and thus, are
predecessors of i according to σ̂ as well as predecessors of j according to σ0. Together,
we see that

tS
ij =

∑
h∈P (σ0,S)

ph +
∑

h∈P (σ̂,i)∩P (σ0,j)∩S

ph, (4.19)

where P (σ0, S) = ∩h∈SP (σ0, h) is the natural extension of the set of predecessors to
a group of players.
For tij , it follows that

tij =
∑

h∈P (σ̂,i)∩P (σ0,j)

ph, (4.20)

by using the growing tail procedure. Then, by combining Equation (4.19) and Equa-
tion (4.20) and by using the fact that for every h ∈ P (σ̂, i) ∩ P (σ0, j), we have that
either h ∈ P (σ0, S), if h /∈ S, or h ∈ P (σ̂, i) ∩ P (σ0, j) ∩ S, if h ∈ S, it follows that
tij ≤ tS

ij . Consequently, we have that gij(tS
ij) ≤ gij(tij) and hence, Equation (4.15) is

also satisfied in this case.
Then it readily follows, by using a similar argument as before, that∑

h∈S

GST λ,σ̂
h (σ0, p, c) ≥

∑
(i,j)∈MP (σ0,σ̂);i,j∈S

gij(tij),

and consequently, by combining this with Equations (4.15) and (4.16), we have that
for every choice of λ, ∑

h∈S

GST λ,σ̂
h (σ0, p, c) ≥ v(S).

This finishes the proof of the second statement. □

Theorem 4.3 can be applied to sequencing situations with specific types of non-linear
cost functions under optimal order consistency. For the three subclasses of exponential
sequencing situations as defined in Saavedra-Nieves et al. (2020), we see that, by using
Proposition 4.1, the GSH-rules lead to core-elements of the associated exponential
sequencing games. For discounting sequencing situations, by using Proposition 4.2,
we see that the GST-rules lead to allocations that are core-elements. Finally, for
logarithmic sequencing situations, Proposition 4.3 can be used to see that the GST-
rules lead to core-elements. Together, this yields the following corollary.
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Corollary 4.2 The following three statements hold:

1) Let (σ0, p, c) ∈ ESEQN be an exponential sequencing situation such that one of
the following three cases holds:

i) there is an α ∈ R++ such that, for all i ∈ N and all t ∈ [0, ∞), ci(t) = eαt;
ii) there is a p ∈ R++ such that, for all i ∈ N , pi = p;

iii) there are αL, αH , pL, pH ∈ R++ with αL < αH , pL < pH such that, for all
i ∈ N , αi ∈ {αL, αH}, pi ∈ {pL, pH} and

eαH pH − eαLpL ≤ eαH (pL+pH ) − eαL(pL+pH ).

Let σ̂ ∈ Π(N) be an optimal order and let v ∈ TUN be the associated exponential
sequencing game. Then for every choice of λ,

GSHλ,σ̂
i (σ0, p, c) ∈ C(v);

2) Let (σ0, p, c) ∈ DSEQN be a discounting sequencing situation and let v ∈ TUN

be the associated discounting sequencing game. Let σ̂ ∈ Π(N) be an optimal
order. Then for every choice of λ,

GST λ,σ̂
i (σ0, p, c) ∈ C(v);

3) Let (σ0, p, c) ∈ LSEQN be a logarithmic sequencing situation and let v ∈ TUN

be the associated discounting sequencing game. Let σ̂ ∈ Π(N) be an optimal
order. Then for every choice of λ,

GST λ,σ̂
i (σ0, p, c) ∈ C(v).

Importantly, the GSH-rules and GST-rules can prescribe different allocations. This is,
for example, the case in the three specified subclasses of exponential sequencing situ-
ations, in discounting sequencing situations and in logarithmic sequencing situations.
Therefore, we end this section with an overview whether one of the two cost savings
allocation rules lead to core-elements, as visualized in Table 4.11. To complete Table
4.11, we need two more examples. Example 4.8 shows that the GSH-rules in general
do not lead to core-elements for discounting sequencing situations, whereas Example
4.9 shows a similar result for logarithmic sequencing situations. For the sake of com-
pleteness, note that the GST-rules do not lead to core-elements for the three specified
subclasses of exponential sequencing situations, as shown by Saavedra-Nieves et al.
(2020).

Example 4.8 Consider the discounting sequencing situation (σ0, p, c) ∈ DSEQN

with N = {1, 2, 3}, σ0 = (1, 2, 3), r = 0.8838 and the discounting cost coefficients and
processing times as shown in Table 4.12.



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

Chapter 4. Interactive sequencing with non-linear cost functions 83

Leading to core-elements
gain splitting head rules gain splitting tail rules

Exponential sequencing
situations (for the three
specified subclasses)

Yes (Corollary 4.2)
No (Counterexample by
Saavedra-Nieves et al.,
2020)

Discounting sequencing
situations No (Example 4.8) Yes (Corollary 4.2)

Logarithmic sequencing
situations No (Example 4.9) Yes (Corollary 4.2)

Standard sequencing
situations Yes (gain splitting rules)

Table 4.11 – Overview of the stability results for the GSH-rules
and GST-rules

player 1 player 2 player 3

αi 0.1768 0.9070 0.5041
pi 0.8371 0.9450 0.6142

Table 4.12 – The discounting sequencing situation of Example
4.8.

σ TC(σ)

(1, 2, 3) 1.2551
(1, 3, 2) 1.2546
(2, 1, 3) 1.0972
(2, 3, 1) 1.0461
(3, 1, 2) 1.1368
(3, 2, 1) 1.0451

Table 4.13 – The total costs of all processing orders in the se-
quencing situation of Example 4.8.

There are six processing orders, for which the approximate total costs are given in
Table 4.13.
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Clearly, σ̂ = (3, 2, 1) is the unique optimal order and MP (σ0, σ̂) = {(1, 2), (1, 3), (2, 3)}.
The growing head procedure specifies the following path from σ0 to σ̂:

σ0 = (1, 2, 3) → (1, 3, 2) → (3, 1, 2) = σ1

→ (3, 2, 1) = σ̂.

By using Table 4.13, the corresponding approximate neighbor switching gains are
g23(p1) = 0.0005, g13(0) = 0.1178 and g12(p3) = 0.0918, respectively. Let λij = 1

2 for
all i, j ∈ N, i ̸= j. Then we obtain the following allocation specified by the EGSH-rule:

GSHλ,σ̂(σ0, p, c) = EGSH σ̂(σ0, p, c) = (0.1048, 0.0461, 0.0592).

Consequently, if we take coalition {1, 2} ∈ 2N , we have that

v({1, 2}) = TC(σ0) − TC((2, 1, 3)) = 0.1579
> 0.1509 = EGSH σ̂

1 (σ0, p, c) + EGSH σ̂
2 (σ0, p, c),

where v ∈ TUN denotes the associated discounting sequencing game. Thus, we have
that EGSH σ̂(σ0, p, c) /∈ C(v). △

Example 4.9 Consider the logarithmic sequencing situation (σ0, p, c) ∈ LSEQN

with N = {1, 2, 3, 4}, σ0 = (1, 2, 3, 4), αi = 1 for all i ∈ N , and p1 = 2.96, p2 = 1.8,
p3 = 1.78 and p4 = 1.75.
The approximate total costs for all 24 orders are given in Table 4.14.

σ TC(σ) σ TC(σ) σ TC(σ)

(1, 2, 3, 4) 6.6384 (2, 3, 1, 4) 5.8561 (3, 4, 1, 2) 5.8232
(1, 2, 4, 3) 6.6338 (2, 3, 4, 1) 5.6516 (3, 4, 2, 1) 25.6263
(1, 3, 2, 4) 6.6342 (2, 4, 1, 3) 5.8431 (4, 1, 2, 3) 6.0977
(1, 3, 4, 2) 6.6265 (2, 4, 3, 1) 5.6431 (4, 1, 3, 2) 6.0946
(1, 4, 2, 3) 6.6233 (3, 1, 2, 4) 6.1256 (4, 2, 1, 3) 5.8150
(1, 4, 3, 2) 6.6202 (3, 1, 4, 2) 6.1180 (4, 2, 3, 1) 5.6150
(2, 1, 3, 4) 6.1410 (3, 2, 1, 4) 5.8450 (4, 3, 1, 2) 5.8062
(2, 1, 4, 3) 6.1364 (3, 2, 4, 1) 5.6404 (4, 3, 2, 1) 5.6093

Table 4.14 – The total costs of all processing orders in the se-
quencing situation of Example 4.9.

Obviously, σ̂ = (4, 3, 2, 1) is the unique optimal order and

MP (σ0, σ̂) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
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g34(p1 + p2) 0.0046
g24(p1) 0.0106
g14(0) 0.5256
g23(p1 + p4) 0.0031
g13(p4) 0.2884
g12(p3 + p4) 0.1969

Table 4.15 – The neighbor switching gains corresponding to the
growing head procedure in Example 4.9.

The growing head procedure specifies the following path from the initial order to the
optimal order:

σ0 = (1, 2, 3, 4) → (1, 2, 4, 3) → (1, 4, 2, 3) → (4, 1, 2, 3) = σ1

→ (4, 1, 3, 2) → (4, 3, 1, 2) = σ2

→ (4, 3, 2, 1) = σ̂.

The corresponding approximate neighbor switching gains are shown in Table 4.15.
Let λij = 1

2 for all i, j ∈ N, i ̸= j. Then,

GSHλ,σ̂
i (σ0, p, c) = EGSH σ̂(σ0, p, c) = (0.5054, 0.1053, 0.1480, 0.2704).

Then we see that for coalition {1, 2, 3} ∈ 2N , we have that

v({1, 2, 3}) = TC(σ0) − TC((3, 2, 1, 4)) = 6.6384 − 5.845
= 0.7935 > 0.7587
= EGSH σ̂

1 (σ0, p, c) + EGSH σ̂
2 (σ0, p, c) + EGSH σ̂

3 (σ0, p, c),

where v ∈ TUN denotes the associated logarithmic sequencing game. Consequently,
EGSH σ̂(σ0, p, c) /∈ C(v). △
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5
Cost sharing methods for

capacity restricted
cooperative purchasing

situations

— Wolfs hunt down a
prey together and di-
vide the spoils after-
wards

5.1 Introduction

Recently, several studies of different types of cooperative purchasing situations, in
which organizations collaborate in their purchasing process, have focused on the
bundling of purchasing volumes in order to obtain cost savings, see e.g. Schotanus
(2007), Nagarajan, Sošić, and Zhang (2010) and Hezarkhani and Sošić (2019). Rea-
sons for organizations to purchase cooperatively are numerous, but according to Tella
and Virolainen (2005) the main motive is the cost savings due to the offered quantity
discounts by the supplier. One of the main underlying assumptions in the coopera-
tive purchasing literature in general is that the capacity of the supplier is sufficient
to fulfill the total order of the group of purchasers. Although commonly assumed,
one should realize that in practice the capacity of a supplier is limited. In particular,
while the group of purchasers gets larger, the supplier’s capacity might be exceeded

87
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and the group has to use a second supplier. In this chapter, based on Schouten,
Groote Schaarsberg, and Borm (2020), the focus is on a group of cooperative pur-
chasers that has to deal with two suppliers with limited capacities.
We consider a group of cooperative purchasers in which each organization has an
individual order quantity with respect to the same specific commodity. Think of a
group of departments or ministries, a group of municipalities with a joined purchasing
program or online group-buying markets (the latter is studied by Anand and Aron,
2003). Typically, the sum of the order quantities determines the unit price negotiated
with a supplier. Instead of facing one supplier with sufficient supplies, as in the clas-
sical cooperative purchasing situations, the group of purchasers faces two suppliers
with (possibly) insufficient individual supplies, although the combined capacity of the
two suppliers is assumed to be sufficient to cover the demands of the group. The unit
price of a supplier weakly decreases with the size of the total order, that is however
up to his capacity bound. These unit prices or quantity discount schemes are not
necessarily the same for both suppliers. Within these capacity restricted cooperative
purchasing (CRCP) situations, we are interested in finding the answers to two ques-
tions. First, how to split the total order over the two suppliers such that the total
purchasing costs are minimized. Secondly, how to adequately allocate the total joint
purchasing costs over the group of purchasers.

To solve the optimization problem in the first question, we show that there is a
straightforward solution. We show that it is optimal to order as much as possible at
one supplier and the possible remainder at the other. The second problem is more
involved. For example, Schotanus (2007) argued that finding a fair cost allocation
method is one of the critical success factors for cooperative purchasing. For such an
allocation method, there are two desirable properties. Firstly, the quantity discounts
should be incorporated in the cost allocation, that is, organizations with large order
quantities pay a (weakly) lower unit price than organizations with (weakly) smaller
order quantities. A second desirable property of an allocation method is that orga-
nizations with large order quantities do profit, in terms of cost allocations, from the
presence of players with smaller order quantities. Loosely formulated: the smaller
players should not be free riders.
To incorporate both properties in a suitable cost allocation method, we model the
allocation problem within a CRCP-situation as a cost sharing problem. Generally, a
cost sharing problem involves a set of users of a certain ‘technology’ and each of the
users has an individual level of demanded output. To produce the total demanded
output a certain level of input or costs is needed. The relationship between input and
output, is represented by a cost function, where the function describes for each level
of output the needed input in terms of associated costs. How to fairly distribute these
joint costs is the central theme in the cost sharing literature. Moulin (2002) provided
an overview of different types of cost sharing problems and allocation mechanisms.
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Chapter 5. Cost sharing methods for CRCP-situations 89

In the CRCP-setting the output in the corresponding cost sharing problem is the
sum of the individual order quantities. The cost function of the cost sharing problem
then provides for each level of order quantities, the minimal purchasing costs. These
minimal purchasing costs follow from dividing the order quantities optimally over
the two suppliers and naturally follow from the straightforward solution to the first
question. We show that the cost function of a cost sharing problem corresponding to a
CRCP-situation is non-decreasing and piecewise concave, and that the finite number
of (maximal) intervals of concavity are determined by the restricted capacity of the
suppliers. According to Swoveland (1975), piecewise concave cost functions are a
realistic representation of returns to scale in a production environment. Cost sharing
problems with (almost) concave functions are studied in Karsten, Slikker, and Borm
(2017), from the perspective of coalitional rationality and benefit ordering.
Two of the main cost sharing rules are the average cost sharing rule (see e.g. Moulin,
2002) and the serial cost sharing rule (Moulin and Shenker, 1992). The average (cost
sharing) rule divides the total purchasing costs proportionally to the individual order
quantities. By doing so, it neglects the quantity discounts present in the problem
and allocates an equal unit price for everyone. Therefore, the main fous in this
chapter is on the serial (cost sharing) rule. Interestingly, in the setting of concave
cost functions, we show that the serial rule satisfies the two desirable properties
from the perspective of CRCP-situations. Specifically, the serial rule satisfies unit
cost monotonicity (UCM) and monotonic vulnerability for the absence of the smallest
player (MOVASP). UCM requires that when a specific organization has a (weakly)
higher order quantity than an other organization, the former pays a lower cost per
unit than the latter. MOVASP requires that, when the organization with the smallest
order quantity is not present in the cooperation, there is a monotonicity relation
throughout: the larger the order quantity, the higher the increase (or the smaller
the decrease) in cost allocation. In other words, the organization with the largest
order quantity has either the least decrease or the highest increase in cost allocation
when the smallest player is absent. Hence, MOVASP creates a group cohesiveness in
which the organization with the smallest order quantity can contribute to lower cost
allocations of organizations with larger order quantities.
Next, we explicitly show that for cost sharing problems with piecewise concave cost
functions, the serial rule in general does not satisfy UCM and MOVASP. The serial
rule is thus not an appropriate allocation method to solve the allocation problem
within a CRCP-situation. For this reason, we introduce a new tailor-made class of
cost sharing rules for cost sharing problems with piecewise concave cost functions.
Using a claims approach and, in particular, by selecting a specific claims rule (see
Section 2.2), we first divide the vector of order quantities into separate vectors for
the different maximal intervals of concavity. Subsequently, for each interval and its
corresponding vector we use the serial rule to allocate the costs of that specific interval
over the organizations. Finally, by summing these allocated costs over all intervals
we obtain the allocation prescribed by a so-called piecewise serial rule.
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In particular, we consider the piecewise serial rules where we divide the vector of
order quantities into separate vectors, on the basis of the proportional rule and the
constrained equal losses rule. It is shown that the proportional rule is the only claims
rule for which the corresponding piecewise serial rule satisfies UCM on the class of
cost sharing problems with piecewise concave cost functions. With regard to the
constrained equal losses rule, we show that the corresponding piecewise serial rule
satisfies MOVASP. Together, this shows incompatibility of UCM and MOVASP on
the class of cost sharing problems with piecewise concave cost functions.

Finally, we address the possible compatibility of UCM and MOVASP on the sub-
class of cost sharing problems corresponding to CRCP-situations. Note that all cost
sharing problems corresponding to CRCP-situations have piecewise concave cost func-
tions, but not vice versa. Consequently, the incompatibility of UCM and MOVASP
is not necessarily transferred to this subclass from the above-mentioned results. In
particular, we illustrate that the piecewise serial rule based on the proportional rule
does not satisfy MOVASP on the subclass of cost sharing problems corresponding
to CRCP-situations. To investigate whether the piecewise serial rule based on the
constrained equal losses rule satisfies UCM on this specific subclass, we perform a
simulation which suggests that this is indeed the case.

Related studies on joint purchasing are Chen and Roma (2011) and Hu, Duenyas,
and Beil (2013) on the (dis)advantages of cooperative purchasing, Ghodsypour and
O’Brien (1998), Jayaraman and Srivastava (1999), and Ghodsypour and O’Brien
(2001) on ordering processes and quantity allocations, and Marvel and Yang (2008)
on strategic pricing by suppliers. Coalitional considerations in different purchasing
inspired contexts are studied in, e.g., Meca and Sošić (2014) and Nagarajan and Sošić
(2007). Studies on the capacity allocation problem, rather than the cost allocation
problem, are, among others, Cho and Tang (2014) and Cui and Zhang (2018).

The structure of this chapter is as follows. Section 5.2 formally describes a CRCP-
situation and solves the associated joint optimization problem. To address the joint
cost allocation problems in Section 5.3, we model CRCP-situations as cost sharing
problems in which the cost functions are piecewise concave. As an alternative to
the serial cost sharing rule, we introduce piecewise serial rules in Section 5.4 and
focus on the properties of UCM and MOVASP for the proportional and constrained
equal losses variants of piecewise serial rules on the class of cost sharing problems
with piecewise concave cost functions. Section 5.5 reflects on the consequences of the
results on the subclass of cost sharing problems corresponding to CRCP-situations
and provides a simulation.
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5.2 Capacity restrictions in cooperative purchasing:
CRCP-situations

In a capacity restricted cooperative purchasing (CRCP) situation, there is a finite set
of organizations (from now onwards referred to as players) N = {1, . . . , n}, with n ≥ 2
and a vector of individual order quantities q ∈ RN

++. There are two suppliers providing
a particular commodity: A and B. The suppliers have capacities QA, QB ∈ R++ such
that

∑
i∈N qi ≤ QA + QB . The suppliers have unit price functions pA : [0, QA] → R+

and pB : [0, QB ] → R+ which are weakly decreasing, i.e., p′
A(t) ≤ 0 for all quantities

t ∈ [0, QA] and p′
B(t) ≤ 0 for all quantities t ∈ [0, QB ], and twice differentiable with

a continuous second derivative on their respective domains. Moreover, both suppliers
have revenue functions cA : [0, QA] → R+ and cB : [0, QB ] → R+ which are given by

cA(t) = pA(t) · t,

for all t ∈ [0, QA] and
cB(t) = pB(t) · t,

for all t ∈ [0, QB ]. It is natural to assume that the revenue of a supplier does not
decrease if t increases and that the quantity discounts are such that the higher the
total order quantity the lower the increase in revenue. This is the case if we assume
that the revenue functions are non-decreasing and concave, i.e.,

c′
A(t) ≥ 0 and c′′

A(t) ≤ 0,

for all t ∈ [0, QA] and
c′

B(t) ≥ 0 and c′′
B(t) ≤ 0,

for all t ∈ [0, QB ]. For the remainder of this chapter, we assume, without loss of
generality, that

QA ≤ QB ,

and that the players are numbered in such a way that

q1 ≤ q2 ≤ . . . ≤ qn.

When we refer to a smaller (larger) player, we refer to a player with smaller (larger)
order quantity and thus smaller (larger) index.
A CRCP-situation on N as described above, is summarized by Z = (S, q), in which
S = (QA, pA, QB , pB) summarizes the suppliers’ information. We denote the set of
all such CRCP-situations on N by ZN .
Within these CRCP-situations, we first want to know how to split the total order over
the two suppliers such that the total purchasing costs are minimized. To answer this
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question, let Z = (S, q) ∈ ZN be a CRCP-situation. Using the suppliers’ information
S, we determine the minimal purchasing costs γ(Z) as follows:

γ(Z) = min
{

cA(tA) + cB(tB)
∣∣∣∣∣ tA + tB =

∑
i∈N

qi, 0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB

}
.

(5.1)
The following theorem specifies these minimal purchasing costs by considering three
separate cases based on the size of the total order quantity, i.e.,

∑
i∈N qi, compared

to the capacities QA and QB of supplier A and B respectively.

Theorem 5.1 Let Z = (S, q) ∈ ZN with S = (QA, pA, QB , pB) be a capacity re-
stricted cooperative purchasing situation. Then it holds that

γ(Z) =



min
{

cA

(∑
i∈N qi

)
, cB

(∑
i∈N qi

)}
, if

∑
i∈N qi ≤ QA;

min
{

cA

(
QA

)
+ cB

(∑
i∈N qi − QA

)
,

cB

(∑
i∈N qi

)}
, if QA <

∑
i∈N qi ≤ QB ;

min
{

cA

(
QA) + cB

(∑
i∈N qi − QA

)
,

cA

(∑
i∈N qi − QB

)
+ cB

(
QB

)}
, if

∑
i∈N qi > QB .

Consequently,

γ(Z) = min
{

cA

(
min

{
QA,

∑
i∈N

qi

})
+ cB

(
max

{∑
i∈N

qi − QA, 0
})

,

cA

(
max

{∑
i∈N

qi − QB , 0
})

+ cB

(
min

{
QB ,

∑
i∈N

qi

})}
.

(5.2)

Proof: First, we reformulate Equation (5.1) of the minimal purchasing costs:

γ(Z) = min
{

cA(tA) + cB(tB)
∣∣∣∣∣ tA + tB =

∑
i∈N

qi, 0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB

}

= min
{

cA(tA) + cB

(∑
i∈N

qi − tA

) ∣∣∣∣∣ 0 ≤ tA ≤ QA, 0 ≤
∑
i∈N

qi − tA ≤ QB

}

= min
{

cA(tA) + cB

(∑
i∈N

qi − tA

) ∣∣∣∣∣ 0 ≤ tA ≤ QA,
∑
i∈N

qi − QB ≤ tA ≤
∑
i∈N

qi

}

= min
{

cA(tA) + cB

(∑
i∈N

qi − tA

) ∣∣∣∣∣ tA ∈
[

max
{∑

i∈N

qi − QB , 0
}

, min
{

QA,
∑
i∈N

qi

}]}
.

Note that the interval
[

max
{∑

i∈N qi − QB , 0
}

, min
{

QA,
∑

i∈N qi

}]
is non-empty,

since
∑

i∈N qi − QB ≤ QA, and QA, QB and
∑

i∈N qi are all three strictly positive.
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Next, we show that the minimum is obtained at one of the boundaries of this interval.
Therefore, let g :

[
max

{∑
i∈N qi − QB , 0

}
, min

{
QA,

∑
i∈N qi

}]
→ R+ be defined by

g(tA) = cA (tA) + cB

(∑
i∈N

qi − tA

)
,

for all tA ∈
[

max
{∑

i∈N qi − QB , 0
}

, min
{

QA,
∑

i∈N qi

}]
. Note that

g′(tA) = c′
A(tA) − c′

B

(∑
i∈N

qi − tA

)
,

and that

g′′(tA) = c′′
A(tA) + c′′

B

(∑
i∈N

qi − tA

)
.

Consequently, due to the fact that c′′
A(t) ≤ 0 for all t ∈ [0, QA] and c′′

B(t) ≤ 0 for
all t ∈ [0, QB ], we see that g′′(tA) ≤ 0 for all possible tA. Hence, g is concave and
thus the minimum of g can be found at one of the boundaries of the domain of g:
tA = max

{∑
i∈N qi − QB , 0

}
or tA = min

{
QA,

∑
i∈N qi

}
, in the minimum.

Finally, we distinguish between the three cases with respect to
∑

i∈N qi:

I)
∑

i∈N qi ≤ QA;

II) QA <
∑

i∈N qi ≤ QB ;

III)
∑

i∈N qi > QB .

Case I) In the first case, we assume that
∑

i∈N qi ≤ QA. Then also
∑

i∈N qi ≤ QB

and thus max
{∑

i∈N qi − QB , 0
}

= 0 and min
{

QA,
∑

i∈N qi

}
=
∑

i∈N qi. In the
minimum, we then have that tA = 0 (and tB =

∑
i∈N qi) or tA =

∑
i∈N qi (and

tB = 0) and consequently,

γ(Z) = min
{

cA(0) + cB

(∑
i∈N

qi

)
, cA

(∑
i∈N

qi

)
+ cB(0)

}

= min
{

cA

(∑
i∈N

qi

)
, cB

(∑
i∈N

qi

)}
.

Case II) In the second case, we assume that QA <
∑

i∈N qi ≤ QB . Then it follows
that max

{∑
i∈N qi − QB , 0

}
= 0 and min

{
QA,

∑
i∈N qi

}
= QA. In the minimum,
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we then have that tA = 0 (and tB =
∑

i∈N qi) or tA = QA (and tB =
∑

i∈N qi − QA).
Consequently,

γ(Z) = min
{

cA(0) + cB

(∑
i∈N

qi

)
, cA(QA) + cB

(∑
i∈N

qi − QA

)}

= min
{

cA(QA) + cB

(∑
i∈N

qi − QA

)
, cB

(∑
i∈N

qi

)}
.

Case III) In the third and last case, we assume that
∑

i∈N qi > QB . Then also∑
i∈N qi > QA and thus max

{∑
i∈N qi − QB , 0

}
=
∑

i∈N qi − QB and
min

{
QA,

∑
i∈N qi

}
= QA. In the minimum, we then have that tA =

∑
i∈N qi − QB

(and tB = QB) or tA = QA (and tB =
∑

i∈N qi − QA). Consequently,

γ(Z) = min
{

cA

(∑
i∈N

qi − QB

)
+ cB(QB), cA(QA) + cB

(∑
i∈N

qi − QA

)}

= min
{

cA(QA) + cB

(∑
i∈N

qi − QA

)
, cA

(∑
i∈N

qi − QB

)
+ cB(QB)

}
.

This concludes the proof of the first part. Equation (5.2) is readily obtained by
combining the three cases. □

So, Theorem 5.1 implies that to minimize purchasing costs, one has to compare two
extreme policies: order as much as possible at one of the two suppliers first and the
remaining part at the other one. Depending on the unit price functions and the total
order quantity one might prefer A ‘first’ or B ‘first’. This is illustrated in Example
5.1 below.

Example 5.1 Consider the capacity restricted cooperative purchasing situation
Z = (S, q) ∈ ZN with N = {1, 2, 3}, q = (3, 5, 7) and S = (QA, pA, QB , pB) given by
QA = 8, QB = 12 and {

pA(t) = 14 − t, for all t ∈ [0, 8];
pB(t) = 10 − 1

2 t, for all t ∈ [0, 12].

One readily verifies that all assumptions on a CRCP-situation are satisfied.
Since

∑
i∈N qi = 15, the players can order any amount tA ∈ [3, 8] at A and the

remaining part
∑

i∈N qi − tA ∈ [7, 12] at B. The corresponding purchasing costs are
given by
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cA(tA) + cB(15 − tA) = pA(tA) · tA + pB(15 − tA) · (15 − tA)
= (14 − tA) · tA + (10 − 1

2 (15 − tA)) · (15 − tA)
= (14 − tA) · tA + (2 1

2 + 1
2 tA) · (15 − tA)

= − 3
2 (tA)2 + 19tA + 37 1

2 ,

for all tA ∈ [3, 8]. These purchasing costs are visualized in Figure 5.1.
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Figure 5.1 – The purchasing costs in the CRCP-situation of Ex-
ample 5.1.

Clearly, the minimum is obtained in the left-hand boundary tA = 3. This means that
the players order as much as possible at supplier B, thus ordering QB = 12 at B, and
the remaining part

∑
i∈N qi − QB = 3 at A. This gives a total purchasing costs of

cA(3) + cB(12) = pA(3) · 3 + pB(12) · 12
= (14 − 3) · 3 + (10 − 6) · 12
= 33 + 48
= 81.

Indeed, the other extreme policy to order as much as possible at supplier A, thus
ordering QA = 8 at A and

∑
i∈N qi −QA = 7 at B, results in higher purchasing costs:

cA(8) + cB(7) = pA(8) · 8 + pB(7) · 7
= (14 − 8) · 8 + (10 − 3 1

2 ) · 7
= 48 + 45 1

2

= 93 1
2 .

Figure 5.1 also clearly visualizes Equation (5.2) of Theorem 5.1 that the minimum is
obtained in either one of the boundary cases due to the concave nature. △
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5.3 Cost sharing problems corresponding to CRCP-
situations

In Section 5.2, our first question concerning the joint optimization problem within
a CRCP-situation is solved. In the rest of the chapter, the focus is on the second
question: how to allocate the total joint purchasing costs over the group of purchasers.
For this, we use a cost sharing approach and model a CRCP-situation as a cost
sharing problem. The main goal in a cost sharing problem is to fairly distribute
the costs of jointly using a certain ‘technology’ to produce the sum of the individual
levels of demanded output, taking into account the costs associated to every level of
demanded output. In this section, we formally model a CRCP-situation as a cost
sharing problem.
A cost sharing problem on N = {1, . . . , n} is represented by a pair (C, q), with demand
vector q ∈ RN

++ such that q1 ≤ . . . ≤ qn, and cost function C : [0,
∑

i∈N qi] → R+ for
which it holds that C(t) is non-decreasing and continuous in t and C(0) = 0. Here,
the argument t in C(t) represents the total demanded output. Let CSN denote the
corresponding class of cost sharing problems on N . When allowing for a variable finite
player set, we use the notation CS for the class of all such cost sharing problems.
A cost sharing rule f on CSN is a mapping f : CSN → RN such that, for all
(C, q) ∈ CSN , f(C, q) ≥ 0 and∑

i∈N

fi(C, q) = C
(∑

i∈N

qi

)
.

A cost sharing rule f on CS is a mapping that assigns to each cost sharing problem
(C, q) ∈ CSN , with an arbitrary finite player set N , such a vector f(C, q). Also for
specific subclasses of CSN , dropping the index N from the notation will mean that
we allow for a variable player set.
A CRCP-situation corresponds to a special type of cost sharing problem. Let
Z = (S, q) ∈ ZN be a capacity restricted cooperative purchasing situation. We
naturally extend the minimal purchasing costs and define γS(t) for all t ∈ [0, QA+QB ]
as follows:

γS(t) = min {cA(tA) + cB(tB) | tA + tB = t, 0 ≤ tA ≤ QA, 0 ≤ tB ≤ QB} . (5.3)

Clearly, γ(Z) = γS
(∑

i∈N qi

)
.

Then we can determine the corresponding cost sharing problem (CZ , q), in which CZ

is the restriction of γS to the domain [0,
∑

i∈N qi]. It can be readily verified that
(CZ , q) ∈ CSN . Note that the value CZ(t) does not depend on N and q. Only the
domain of the function CZ is determined by

∑
i∈N qi. Similar to Theorem 5.1, we

have the following, more general, result. The proof can be easily obtained by following
the proof of Theorem 5.1, basically by replacing

∑
i∈N qi with t ∈ [0, QA + QB ].
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Theorem 5.2 Let Z = (S, q) ∈ ZN with S = (QA, pA, QB , pB) be a capacity re-
stricted cooperative purchasing situation and let (CZ , q) ∈ CSN be the corresponding
cost sharing problem. Then, for all t ∈ [0, QA + QB ],

γS(t) =


min{cB(t), cA(t)}, if t ∈ [0, QA];
min{cB(t), cA(QA) + cB(t − QA)}, if t ∈ (QA, QB ];
min{cB(QB) + cA(t − QB),

cA(QA) + cB(t − QA)}, if t ∈ (QB , QA + QB ].

Consequently, for all t ∈ [0,
∑

i∈N qi],

CZ(t) = γS(t) = min
{

cA(min{QA, t}) + cB(max{t − QA, 0}),

cA(max{t − QB , 0}) + cB(min{QB , t})
}

.
(5.4)

Thus, for each level of order quantities, the minimal purchasing costs follow from
dividing these order quantities optimally over the two suppliers. To reach this optimal
division, one has to compare the two extreme policies: order as much as possible at
one of the two suppliers first and the remaining part at the other one, or the other way
around. The actual unit price functions and total order quantity determines whether
one prefers ‘A first’ or ‘B first’.
For an increasing level of order quantities, switches from one policy to the other
and back can occur. We call these switches policy switches. They arise from the
minimization process according to Equation (5.4) of Theorem 5.2. At these points,
switching from one extreme policy to the other, that is going to the other supplier
first, result in lower purchasing costs.
The following example illustrates such a policy switch. Besides, it also demonstrates
the use of Theorem 5.2 in finding the function of the cost sharing problem correspond-
ing to a CRCP-situation.

Example 5.2 Consider the capacity restricted cooperative purchasing situation
Z = (S, q) ∈ ZN with S = (QA, pA, QB , pB) given by QA = 16, QB = 20 and{

pA(t) = 18 − 1
3 t, for all t ∈ [0, 16];

pB(t) = 20 − 1
2 t, for all t ∈ [0, 20].

Note that we now do not need exact specifications of N and q in order to compute
the value γS(t) for all t ∈ [0, 36]. Rather, we can use Theorem 5.2 and compare the
two extreme policies for three separate cases:
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I) t ∈ [0, QA];

II) t ∈ (QA, QB ];

III) t ∈ (QB , QA + QB ].

Case I) For the first case, let t ∈ [0, QA] = [0, 16] and note that cA(t) = 18t − 1
3 t2

and cB(t) = 20t − 1
2 t2. Then it is readily verified that cA(t) ≤ cB(t) for all t ∈ [0, 12]

and cB(t) < cA(t) for all t ∈ (12, 16]. In the first part, it is thus optimal to order at
A first. Then there is a policy switch at t = 12. In the second part, it is optimal to
order at B first.
Therefore, we have that, for t ∈ [0, 16],

γS(t) = min{cB(t), cA(t)} =
{

cA(t), if t ∈ [0, 12]; (A first)
cB(t), if t ∈ (12, 16]. (B first)

Case II) For the second case, let t ∈ (QA, QB ] = (16, 20] and note that

cA(16) + cB(t − 16) = 202 2
3 + 20(t − 16) − 1

2 (t − 16)2.

Then it is readily verified that cB(t) < cA(16) + cB(t − 16) for all t ∈ (16, 20].
Consequently, the optimal policy in this case is to order at B first. Therefore, for all
t ∈ (16, 20],

γS(t) = min{cB(t), cA(16) + cB(t − 16)} = cB(t). (B first)

Case III) Finally, for the third case, let t ∈ (QB , QA + QB ] = (20, 36] and note that

cB(20) + cA(t − 20) = 200 + 18(t − 20) − 1
3 (t − 20)2.

Then it is readily verified that cB(20) + cA(t − 20) ≤ cA(16) + cB(t − 16) for all
t ∈ (20, 36]. So also in this case, it is optimal to order B first. Consequently, for all
t ∈ (20, 36],

γS(t) = min{cB(20)+cA(t−20), cA(16)+cB(t−16)} = cB(20)+cA(t−20). (B first)

Summarizing, we find that for all t ∈ [0, 36],

γS(t) =


cA(t) = 18t − 1

3 t2, if t ∈ [0, 12]; (A first)
cB(t) = 20t − 1

2 t2, if t ∈ (12, 20]; (B first)
cB(20) + cA(t − 20)

= 200 + 18(t − 20) − 1
3 (t − 20)2, if t ∈ (20, 36], (B first)

(5.5)

as drawn in Figure 5.2b.
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Figure 5.2 – The two extreme policies and the cost function γS

of the CRCP-situation of Example 5.2.

As stated in Theorem 5.2, the cost function CZ , which is the restriction of γS to the
domain [0,

∑
i∈N qi], is the minimum of the following two policies: order as much as

possible at A first and then go to B or order as much as possible at B first and then
go to A. The cost functions of these two policies are shown in Figure 5.2a. In this
case, there is only one policy switch between the two extreme policies, at t = 12. △

Note that in Example 5.2, the cost function γS is piecewise concave with two maximal
intervals of concavity: [0, 20] and [20, 36]. These intervals of concavity arise not from
switching policies, but from the necessity of changing supplier within one policy due
to the capacity restriction. At a certain point, one supplier hits its capacity and
players have to order the remaining part at the other supplier. We call such a point
a concavity break.
The following example shows that there can be several policy switches as well as
several concavity breaks. However, due to the fact that there are only two suppliers,
the number of concavity breaks is at most two, leading to at most three maximal
intervals of concavity. In fact, this is the case in Example 5.3 below.

Example 5.3 Consider the capacity restricted cooperative purchasing situation
Z = (S, q) ∈ ZN with S = (QA, pA, QB , pB) given by QA = 16, QB = 20 and1{

pA(t) = 20 − 1
2 t, for all t ∈ [0, 16];

pB(t) = 18 − 1
3 t, for all t ∈ [0, 20].

Figure 5.3a depicts the cost functions corresponding to the two extreme policies (A
1The careful reader might notice that this CRCP-situation is almost identical to the one discussed

in Example 5.2, except that the unit price functions of the suppliers are interchanged.
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Figure 5.3 – The two extreme policies and the cost function γS

of the CRCP-situation of Example 5.3.

first or B first). In this situation we see three policy switches: at t = 12, t = 17
and t = 32. This can also be seen from the following explicit expression of γS(t), as
depicted in Figure 5.3b, for all t ∈ [0, 36]:

γS(t) =



cB(t) = 18t − 1
3 t2, if t ∈ [0, 12]; (B first)

cA(t) = 20t − 1
2 t2, if t ∈ (12, 16]; (A first)

cA(16) + cB(t − 16)
= 192 + 18(t − 16) − 1

3 (t − 16)2, if t ∈ (16, 17]; (A first)
cB(t) = 18t − 1

3 t2, if t ∈ (17, 20]; (B first)
cB(20) + cA(t − 20)

= 226 2
3 + 20(t − 20) − 1

2 (t − 20)2, if t ∈ (20, 32]; (B first)
cA(16) + cB(t − 16)

= 192 + 18(t − 16) − 1
3 (t − 16)2, if t ∈ (32, 36]. (A first)

(5.6)

Note that there are two concavity breaks: at t = QA = 16 and t = QB = 20. Fur-
thermore, γS is piecewise concave and there are three maximal intervals of concavity:
[0, 16], [16, 20] and [20, 36]. △

One can readily generalize the observations made in Example 5.2 and 5.3: the cost
function γS will be non-decreasing and piecewise concave with at most three maximal
intervals of concavity and hence, so will the cost function CZ corresponding to a
CRCP-situation Z = (S, q).
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Chapter 5. Cost sharing methods for CRCP-situations 101

5.4 Cost sharing rules for piecewise concave cost
functions

In this section, we develop the new class of piecewise serial rules for the class of cost
sharing problems with piecewise concave cost functions. These cost sharing rules are
all based on the serial cost sharing rule (Moulin and Shenker, 1992) and are tailor-
made in the sense that they fit with two context specific properties that are desirable
from a CRCP-perspective.

5.4.1 The serial cost sharing rule

The serial cost sharing rule is based on the requirement that a player’s costs should
not depend on the size of the order quantity of larger players. For a concave cost
function, this requirement implies that smaller players profit less from the economies
of scale than the larger players. If we think of CRCP-situations in which large players
generally account for higher quantity discounts, this seems a suitable solution method
for dividing costs that follow from purchasing cooperatively.
Formally, the serial (cost sharing) rule (cf. Moulin and Shenker, 1992), Ser, on the
class CS of cost sharing problems2 is such that for all (C, q) ∈ CSN ,

Ser1(C, q) = C(s1)
n

;

Seri(C, q) = Seri−1(C, q) + C(si) − C(si−1)
n − (i − 1) , for all i ∈ N \ {1},

where the intermediate points s0, s1, . . . , sn are recursively given by{
s0 = 0;
si =

∑i−1
j=1 qj +

(
n − (i − 1)

)
qi, for all i ∈ N.

The serial rule is illustrated in Example 5.4 below.

Example 5.4 [cf. Moulin and Shenker, 1994] Consider the cost sharing prob-
lem (C, q) ∈ CSN with N = {1, 2, 3}, q = (3, 5, 7) and (concave) cost function
C : [0, 15] → R+ given by

C(t) = min
{

t, 9 + 1
10 t
}

,

for all t ∈ [0, 15].
First, the intermediate points that are needed to compute Ser(C, q) are given by
s1 = 3 · 3 = 9, s2 = 3 + 2 · 5 = 13 and s3 = 3 + 5 + 7 = 15.

2Recall that for all cost sharing problems (C, q) ∈ CSN , it holds that q1 ≤ . . . ≤ qn.
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102 5.4. Cost sharing rules for piecewise concave cost functions

Next, it readily follows that C(s1) = C(9) = min
{

9, 9 + 9
10
}

= 9 are the costs
corresponding to the intermediate point of player 1. Similarly, C(s2) = C(13) = 10.3
and C(s3) = C(15) = 10.5. Consequently,

Ser1(C, q) =C(9)
3 = 9

3 = 3,

Ser2(C, q) =Ser1(C, q) + C(13) − C(9)
2 = 3 + 1.3

2 = 3.65,

Ser3(C, q) =Ser2(C, q) + C(15) − C(13)
1 = 3.65 + 0.2 = 3.85.

The serial rule thus assigns 3 to player 1, 3.65 to player 2 and 3.85 to player 3. △

There are many equivalent ways of presenting the serial rule. The above-mentioned
recursive definition underlines the serial behavior. Alternatively, the serial rule can
be reformulated as in the following lemma.

Lemma 5.1 [cf. Moulin and Shenker, 1992, 1994] Let (C, q) ∈ CSN . Then,
for all i ∈ N ,

i) Seri(C, q) =
i∑

j=1

C(sj) − C(sj−1)
n − (j − 1) ;

ii) Seri(C, q) = C(si)
n − (i − 1) −

i−1∑
j=1

C(sj)(
n − (j − 1)

)
(n − j)

.

The serial rule is also studied from an axiomatic point of view by Moulin and Shenker
(1992, 1994, 1999) and Friedman and Moulin (1999), among others. In fact, Moulin
and Shenker (1992) originally defined the serial rule as the unique rule that satisfies
two properties: anonymity and independence of the size of larger demands.
A cost sharing rule satisfies anonymity if the outcome only depends on the size of the
demand rather than on the identity, or index, of the players.
A cost sharing rule satisfies independence of the size of larger demands (ISLAD) if
the outcome of a player does not depend on the demands that are larger than his own
demand. Formally, a cost sharing rule f satisfies ISLAD if, for all (C, q) ∈ CSN , all
i, j ∈ N with qi ≤ qj , and all (C, q̄) ∈ CSN with q̄ = ((qk)k∈N\{j}, r), with r ≥ qj , it
holds that fi(C, q) = fi(C, q̄).

Theorem 5.3 [cf. Moulin and Shenker, 1992] The serial rule is the unique
cost sharing rule satisfying both anonymity and independence of the size of larger
demands.
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Let CCSN denote the subclass of all (C, q) ∈ CSN in which the cost function C
is concave. On CCS, the serial rule satisfies two attractive properties: unit cost
monotonicity and monotonic vulnerability for the absence of the smallest player. Both
properties are inspired by the CRCP-context and formulated on the class of all cost
sharing problems.
First, we focus on unit cost monotonicity, which requires that for a player with a
(weakly) higher demand than an other player, the former is assigned a (weakly) lower
cost per unit than the latter. This is formalized in Definition 5.1.

Definition 5.1 A cost sharing rule f satisfies unit cost monotonicity (UCM) on
C ⊆ CSN if, for all (C, q) ∈ C and for all i ∈ N \ {n},

fi(C, q)
qi

≥ fi+1(C, q)
qi+1

. ◁

The following theorem shows that the serial rule satisfies unit cost monotonicity on
the class of cost sharing problems with concave cost functions.3 The proof of this
theorem is based on some basic features of concave functions. These features are first
summarized in the following lemma.

Lemma 5.2 Let X be a convex subset of R and let f : X → R with f(0) = 0 be a
non-decreasing and concave function. Then the following three statements hold:

i) f(x)
x ≥ f(y)

y , for all x, y ∈ X with 0 < x ≤ y;

ii) f(x + z) − f(x) ≥ f(y + z) − f(y), for all x, y, z ∈ X with 0 < x ≤ y and z > 0;

iii) f(y)−f(x)
y−x ≥ f(z)−f(x)

z−x ≥ f(z)−f(y)
z−y , for all x, y, z ∈ X with 0 < x < y < z.

Theorem 5.4 The serial rule satisfies UCM on CCSN .

Proof: Let (C, q) ∈ CCSN . For all i ∈ N \ {n}, we have that

Seri(C, q)
qi

− Seri+1(C, q)
qi+1

= Seri(C, q)
qi

− Seri(C, q)
qi+1

− C(si+1) − C(si)
(n − i)qi+1

= (qi+1 − qi)Seri(C, q)
qiqi+1

− C(si+1) − C(si)
(n − i)qi+1

= (qi+1 − qi)Seri(C, q)
qiqi+1

− (qi+1 − qi)(C(si+1) − C(si))
(n − i)(qi+1 − qi)qi+1

= (qi+1 − qi)Seri(C, q)
qiqi+1

− (qi+1 − qi)(C(si+1) − C(si))
(si+1 − si)qi+1

,

3It is readily seen that the average cost sharing rule satisfies unit cost monotonicity on the class
of all cost sharing problems.
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104 5.4. Cost sharing rules for piecewise concave cost functions

by noting that

si+1 − si =
i∑

j=1
qj + (n − i)qi+1 −

i−1∑
j=1

qj −
(
n − (i − 1)

)
qi

= qi + (n − i)qi+1 −
(
n − (i − 1)

)
qi

= (n − i)(qi+1 − qi),

for the last equality.
Hence, to show that

Seri(C, q)
qi

≥ Seri+1(C, q)
qi+1

, (5.7)

for all i ∈ N \{n}, it is sufficient to show, by factoring out the common factor qi+1−qi

qi+1
,

that
Seri(C, q)

qi
≥ C(si+1) − C(si)

si+1 − si
, (5.8)

for all i ∈ N \ {n}.

Next, we proceed by induction and start out with the base case. So, let i = 1.
Obviously, if q1 = q2, then Ser1(C, q) = Ser2(C, q) and hence,

Ser1(C, q)
q1

= Ser2(C, q)
q2

.

Consequently, Equation (5.7) is satisfied.
If q1 ̸= q2, then

Ser1(C, q)
q1

− C(s2) − C(s1)
s2 − s1

= C(s1)
nq1

− C(s2) − C(s1)
s2 − s1

= C(s1)
s1

− s1C(s2) − s1C(s1)
s1(s2 − s1)

= (s2 − s1)C(s1) − s1C(s2) + s1C(s1)
s1(s2 − s1)

= s2C(s1) − s1C(s2)
s1(s2 − s1) ≥ 0,

where the inequality follows from Lemma 5.2 part i), by using that 0 < s1 ≤ s2 and
the fact that C is a concave function. Consequently, Equation (5.8) is satisfied for
i = 1.
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Advancing to the induction step, take i ∈ N \ {n}, i > 1 and assume that for all
j ∈ N \ {n}, j < i,

Serj(C, q)
qj

≥ Serj+1(C, q)
qj+1

,

which is equivalent to
Serj(C, q) ≥ qj

qj+1
Serj+1(C, q).

If qi = qi+1, then Seri(C, q) = Seri+1(C, q) and hence,

Seri(C, q)
qi

= Seri+1(C, q)
qi+1

.

Consequently, Equation (5.7) is satisfied.
If qi < qi+1, we distinguish between two cases:

I) q1 = q2 = . . . = qi−1 = qi;

II) there exists a k ∈ N such that qk < qi and qℓ = qi for all ℓ ∈ {k + 1, . . . , i − 1}.

Case I) Assume that q1 = q2 = . . . = qi−1 = qi. Then s1 = s2 = . . . = si = nqi and
hence,

Seri(C, q)
qi

− C(si+1) − C(si)
si+1 − si

= C(s1)
nqi

+ C(s2) − C(s1)
(n − 1)qi

+ . . .

+ C(si) − C(si−1)
(n − i)qi

− C(si+1) − C(si)
si+1 − si

= C(s1)
nqi

− C(si+1) − C(si)
si+1 − si

= C(s1)
s1

− C(si+1) − C(s1)
si+1 − s1

= si+1C(s1) − s1C(si+1)
s1(si+1 − s1) ≥ 0,

where the inequality follows from Lemma 5.2 part i), by using that 0 < s1 ≤ si+1 and
the fact that C is a concave function. Consequently, Equation (5.8) is satisfied.
Case II) Let k ∈ N be such that qk < qi and qℓ = qi for all ℓ ∈ {k + 1, . . . , i − 1}.
Then sk < si < si+1 and hence,

C(si+1) − C(si)
si+1 − si

≤ C(si) − C(sk)
si − sk

= C(si) − C(sk)
(n − k)(qi − qk)
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106 5.4. Cost sharing rules for piecewise concave cost functions

= Seri(C, q) − Serk(C, q)
qi − qk

≤
Seri(C, q) − qk

qi
Seri(C, q)

qi − qk

= Seri(C, q)
qi

,

where the second inequality follows from the induction hypothesis and the first in-
equality from Lemma 5.2 part iii), by using that 0 < sk < si < si+1 and the fact that
C is a concave function. Consequently, Equation (5.8) is satisfied.
This concludes the induction step and hence, the proof. □

Secondly, we focus on monotonic vulnerability for the absence of the smallest player,
which requires that for a player with a (weakly) higher demand than an other player,
the former has a (weakly) higher increase in cost allocation when the player with the
lowest demand is not present than the latter. This is formalized in Definition 5.2.

Definition 5.2 A cost sharing rule f satisfies monotonic vulnerability for the ab-
sence of the smallest player (MOVASP) on C ⊆ CS if, for all (C, q) ∈ C with
(C, q) ∈ CSN and (C, q|N\{1}) ∈ C and for all i ∈ N \ {1, 2},4

fi(C, q) − fi(C, q|N\{1}) ≤ fi−1(C, q) − fi−1(C, q|N\{1}). ◁

MOVASP thus ensures that also the player with the lowest demanded output con-
tributes to lower cost allocations of players with larger demanded output. The follow-
ing theorem shows that the serial rule satisfies MOVASP on the class of cost sharing
problems with concave cost functions.5

Theorem 5.5 The serial rule satisfies MOVASP on CCS.

Proof: Let (C, q) ∈ CCSN . Define ∆Serj = Serj(C, q) − Serj(C, q|N\{1}) for all
j ∈ N \ {1}. We have to show that

∆Ser2 ≥ ∆Ser3 ≥ . . . ≥ ∆Sern. (5.9)

According to Lemma 5.1 we have, for all i ∈ {2, 3, . . . , n},

Seri(C, q) = C(si)
n − i + 1 −

i−1∑
j=1

C(sj)
(n − j + 1)(n − j)

4Here, q|N\{1} = (qj)j∈N\{1}. Moreover, with minor abuse of notation and spelling, in
(C, q|N\{1}), the players are labeled {2, 3, . . . , n} with q2 ≤ q3 ≤ . . . ≤ qn.

5It is readily seen that the average cost sharing rule satisfies MOVASP on the class of cost sharing
problems with concave cost functions.
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Chapter 5. Cost sharing methods for CRCP-situations 107

and, also (with some technical variation6)

Seri(C, q|N\{1}) = C(si − q1)
n − i + 1 −

i−1∑
j=2

C(sj − q1)
(n − j + 1)(n − j) .

Hence, for all i ∈ {2, 3, . . . , n},

∆Seri = C(si) − C(si − q1)
n − i + 1 − C(s1)

n(n − 1) −
i−1∑
j=2

C(sj) − C(sj − q1)
(n − j + 1)(n − j) .

Consequently, for i ∈ {3, 4, . . . , n},

∆Seri − ∆Seri−1 = C(si) − C(si − q1)
n − i + 1 − C(s1)

n(n − 1) −
i−1∑
j=2

C(sj) − C(sj − q1)
(n − j + 1)(n − j)

− C(si−1) − C(si−1 − q1)
n − i + 2 + C(s1)

n(n − 1) +
i−2∑
j=2

C(sj) − C(sj − q1)
(n − j + 1)(n − j)

= C(si) − C(si − q1)
n − i + 1 − C(si−1) − C(si−1 − q1)

(n − i + 2)(n − i + 1)

− C(si−1) − C(si−1 − q1)
n − i + 2

= C(si) − C(si − q1)
n − i + 1 − C(si−1) − C(si−1 − q1)

n − i + 1

≤ C(si−1) − C(si−1 − q1)
n − i + 1 − C(si−1) − C(si−1 − q1)

n − i + 1 = 0,

where the inequality follows from Lemma 5.2 part ii), by using that 0 < si−1 − q1 ≤
si − q1 and q1 > 0 and the fact that C is a concave function. Consequently, Equation
(5.9) is satisfied. □

Unfortunately, on the larger class of cost sharing problems with piecewise concave cost
functions, the serial rule loses both UCM and MOVASP as is seen in the following
two examples.7

6Let s0, s1, s2, . . . , sn with s0 = 0 be the intermediate points that are used to compute Ser(C, q).
Let s′

1, s′
2, s′

3, . . . , s′
n with s′

1 = 0 be the intermediate points used to compute Ser(C, q|N\{1}). Clearly,
s′

j = sj − q1 for all j ∈ N \ {1}.
7Example 5.6 can be adapted to show that the average cost sharing rule does not satisfy MOVASP

on the class of cost sharing problems with piecewise concave cost functions. More precisely, by
changing the demand of player 4 to 10, i.e. q4 = 10, and restrict the cost function C in Equation
(5.11) to [0, 25], the resulting cost allocation violates MOVASP.
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108 5.4. Cost sharing rules for piecewise concave cost functions

Example 5.5 Consider the cost sharing problem (C, q) ∈ CSN with N = {1, 2, 3},
q = (8, 9, 15) and cost function C given by

C(t) =


18t − 1

3 t2, if t ∈ [0, 12];
20t − 1

2 t2, if t ∈ (12, 20];
200 + 18(t − 20) − 1

3 (t − 20)2, if t ∈ (20, 32],
(5.10)

for all t ∈ [0, 32].
Note that this cost function is the restriction of the function as specified by Equation
(5.5) and hence, visualized in Figure 5.2b. As can be seen in Figure 5.2, C is piecewise
concave with two maximal intervals of concavity: [0, 20] and [20, 32].
One readily checks that

Ser(C, q) =
(
88 8

9 , 103 5
9 , 175 5

9
)

.

Hence, e.g.,
Ser1(C, q)

q1
= 11 9

81 <
Ser2(C, q)

q2
= 11 41

81 ,

contradicting UCM. △

Example 5.6 Consider the cost sharing problem (C, q) ∈ CSN with N = {1, 2, 3, 4},
q = (2, 4, 9, 15) and cost function C given by

C(t) =



18t − 1
3 t2, if t ∈ [0, 12];

20t − 1
2 t2, if t ∈ (12, 16];

192 + 18(t − 16) − 1
3 (t − 16)2, if t ∈ (16, 17];

18t − 1
3 t2, if t ∈ (17, 20];

226 2
3 + 20(t − 20) − 1

2 (t − 20)2, if t ∈ (20, 30],

(5.11)

for all t ∈ [0, 30].
Note that this cost function is the restriction of the function as specified by Equation
(5.6) and hence, visualized in Figure 5.3b. As can be seen in Figure 5.3, C is piecewise
concave with three maximal intervals of concavity: [0, 16], [16, 20] and [20, 30].
One readily checks that

Ser(C, q) =
(
30 2

3 , 50 4
9 , 108 7

9 , 186 7
9
)

,

while
Ser(C, q|N\{1}) =

(
56, 104 1

3 , 194 1
3
)

.

Hence, e.g.,

Ser3(C, q) − Ser3(C, q|N\{1}) = 4 4
9 > −5 5

9 = Ser2(C, q) − Ser2(C, q|N\{1}),

contradicting MOVASP. △
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Chapter 5. Cost sharing methods for CRCP-situations 109

5.4.2 Piecewise serial rules

In this section, we use claims rules (see Section 2.2) to modify the serial rule into
piecewise serial rules that are tailor-made for cost sharing problems with piecewise
concave cost functions and thus applicable as solution method for the allocation prob-
lem within a CRCP-situation. We pinpoint a specific piecewise serial rule that satisfies
UCM and a specific piecewise serial rule that satisfies MOVASP. Moreover, it is seen
that these two properties are incompatible for piecewise serial rules on the class of all
cost sharing problems with piecewise concave cost functions.
Let CCSN,m ⊆ CSN with m ∈ {1, 2, . . .} denote the class of cost sharing problems
where the cost function is piecewise concave with exactly m maximal intervals of
concavity.
First, we explain the idea for a piecewise serial rule by means of an example and then
present the formal definition.

Example 5.7 Reconsider the cost sharing problem (C, q) ∈ CCSN,2, as described
in Example 5.5, with N = {1, 2, 3}, q = (8, 9, 15) and cost function C given by

C(t) =


18t − 1

3 t2, if t ∈ [0, 12];
20t − 1

2 t2, if t ∈ (12, 20];
200 + 18(t − 20) − 1

3 (t − 20)2, if t ∈ (20, 32],

for all t ∈ [0, 32].
Recall that C is the restriction of the function as visualized in Figure 5.2b. For
convenience, C is also visualized in Figure 5.4. Moreover, recall that the two maximal
intervals of concavity are given by [0, 20] and [20, 32].
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Figure 5.4 – The cost function C of the cost sharing problem of
Example 5.7.

If we could divide the vector q over these two intervals, i.e., find a suitable vector
x1 ∈ RN with

∑
j∈N x1

j = 20 for the first interval and a suitable vector x2 = q − x1
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110 5.4. Cost sharing rules for piecewise concave cost functions

for the second interval, we could apply the serial rule on each of these two cost sharing
problems separately and then add the resulting vectors. For this, the demands, given
by q, are considered as claims on their preferred interval [0, 20] (since in this interval,
the returns to scale are larger than in the other interval) and we use a claims rule φ
to determine x1 = φ(20, q). Arguing that large players should obtain a lower cost per
unit than small players and therefore should be allocated a relatively higher part of
the preferred interval [0, 20], we can opt for the constrained equal losses rule. In that
case, it gives {

x1 = CEL (20, (8, 9, 15)) = (4, 5, 11);
x2 = (8, 9, 15) − (4, 5, 11) = (4, 4, 4).

Subsequently, on the interval [0, 20] we face the cost sharing problem (C1, x1) with
C1(t) = C(t) for t ∈ [0, 20] and on the second interval we face the cost sharing problem
(C2, x2) with C2(t) = C(t + 20) − C(20) = C(t + 20) − 200 for all t ∈ [0, 12]. Using
the serial rule as the leading principle for concave cost functions, it is readily verified
that {

Ser(C1, x1) = (56, 63, 81);
Ser(C2, x2) = (56, 56, 56).

Consequently, for the cost allocation specified by this so-called CEL-piecewise serial
rule, denoted by ΨCEL(C, q), we have

ΨCEL(C, q) = (56, 63, 81) + (56, 56, 56) = (112, 119, 137).

On the other hand, one could also argue that the players should have ‘relatively equal’
rights to all of the intervals, which can be realized by dividing q proportionally over
the intervals. In that case, it gives{

x1 = PROP (20, (8, 9, 15)) = (5, 5 5
8 , 9 3

8 );
x2 = (8, 9, 15) − (5, 5 5

8 , 9 3
8 ) = (3, 3 3

8 , 5 5
8 ).

Subsequently, since {
Ser(C1, x1) = (62 1

2 , 65 15
64 , 72 17

64 );
Ser(C2, x2) = (45, 49 13

32 , 73 19
32 ),

we obtain the so-called PROP-piecewise serial rule, denoted by ΨPROP(C, q) and given
by

ΨPROP(C, q) = (107 1
2 , 114 41

64 , 145 55
64 ). △

The idea for a piecewise serial rules based on claims rules is now formalized in Defi-
nition 5.3 below.
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Chapter 5. Cost sharing methods for CRCP-situations 111

Definition 5.3 Let m ∈ {1, 2, . . .} and let φ be a claims rule. Furthermore, let
(C, q) ∈ CCSN,m be a cost sharing problem with a piecewise concave cost function
with exactly m maximal intervals of concavity. Let [t0, t1], [t1, t2], . . . , [tm−1, tm] with
0 = t0 < t1 < t2 < . . . < tm−1 < tm =

∑
i∈N qi be these maximal intervals of

concavity of C.
Then first the separate cost sharing problems on each of these intervals are defined as
follows. With q1(φ) = q, recursively define the vectors qr(φ) ∈ RN and xr(φ) ∈ RN

for r ∈ {1, . . . , m} in the following way:{
xr(φ) = φ(tr − tr−1, qr(φ));
qr+1(φ) = qr(φ) − xr(φ).

Moreover, the modified cost function on the interval [tr−1, tr] is denoted by
Cr : [0, tr − tr−1] → R+ and defined by

Cr(t) = C(t + tr−1) − C(tr−1),

for all t ∈ [0, tr − tr−1]. Consequently, (Cr, xr(φ)) is a cost sharing problem with a
concave cost function.8

Next, the φ-piecewise serial rule Ψφ : CCSN,m → RN is defined by

Ψφ(C, q) =
m∑

r=1
Ser(Cr, xr(φ)). ◁

From Definition 5.3, it immediately follows that, for all cost sharing problems with
exactly one maximal interval of concavity, all piecewise serial rules boil down to the
serial rule.
We specifically focus on ΨPROP and on ΨCEL as allocation methods for cost sharing
problems with piecewise concave cost functions. Importantly, both the proportional
rule and the constrained equal losses rule satisfy order preservation. This implies
that both claims and allocations underlying the recursive procedure for the piecewise
serial rule based on either the proportional rule or the constrained equal losses rule
are non-decreasing over the players in each maximal interval of concavity,9 that is,{

xr
1(PROP) ≤ xr

2(PROP) ≤ . . . ≤ xr
n(PROP);

qr
1(PROP) ≤ qr

2(PROP) ≤ . . . ≤ qr
n(PROP),

(5.12)

8To draw this conclusion, we realize that we need that xr(φ) is non-decreasing over the players.
For arbitrary φ, this may not be the case and therefore, the players should be reordered. However,
to avoid a notational overburden, this reordering is left implicit in the definition. If needed in the
proofs, the reordering of the players will be made explicit.

9Thus, if a claims rule φ satisfies order preservation, then there is no need to reorder the players
to ensure that xr(φ) is non-decreasing over the players.
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112 5.4. Cost sharing rules for piecewise concave cost functions

and {
xr

1(CEL) ≤ xr
2(CEL) ≤ . . . ≤ xr

n(CEL);
qr

1(CEL) ≤ qr
2(CEL) ≤ . . . ≤ qr

n(CEL),
(5.13)

for all r ∈ {1, . . . , m}.
The following theorem shows that the piecewise serial rule based on the proportional
rule satisfies unit cost monotonicity.

Theorem 5.6 ΨPROP satisfies UCM on CCSN,m for all m ∈ {1, 2, . . .}.

Proof: The theorem clearly holds for m = 1, by using the facts that the serial rule
satisfies UCM according to Theorem 5.4 and that CCSN,1 = CCSN .
Let m ∈ {2, 3, . . .} and let (C, q) ∈ CCSN,m and denote by [t0, t1], [t1, t2], . . . , [tm−1, tm]
with 0 = t0 < t1 < t2 < . . . < tm−1 < tm =

∑
i∈N qi the maximal intervals of concav-

ity of C. For the remainder of the proof, we abbreviate xr(PROP) and qr(PROP) to
xr and qr for all r ∈ {1, . . . , m}.
We first show that, for all r ∈ {1, . . . , m}, (Cr, xr) ∈ CCSN . For this, note that
Cr is the restriction of C to the concave interval [tr−1, tr] and hence, satisfies all
requirements of a cost sharing problem. With regard to xr, note that

xr
1 ≤ xr

2 ≤ . . . ≤ xr
n,

for all r ∈ {1, . . . , m}, in line with Equation (5.12), since the proportional rule satisfies
order preservation. Finally, to show that xr

1 > 0, for all r ∈ {1, . . . , m}, we first show
that qr

1 > 0, for all r ∈ {1, . . . , m}. Starting from the fact that q1
1 = q1 > 0, this can

be recursively followed by qr+1
1 = qr

1 − xr
1, for all r ∈ {1, . . . , m − 1}. Subsequently,

for all r ∈ {1, . . . , m − 1}, it holds that

xr
1 = PROP1(tr − tr−1, qr) < qr

1,

since tr − tr−1 <
∑

i∈N qr
i for all r ∈ {1, . . . , m − 1}:

tr − tr−1 < tm − tr−1 = tm − t0 − (t1 − t0) − (t2 − t1) − . . . (tr−1 − tr−2)

=
∑
i∈N

q1
i −

∑
i∈N

x1
i −

∑
i∈N

x2
i −

∑
i∈N

x3
i − . . . −

∑
i∈N

xr−1
i

=
∑
i∈N

q2
i −

∑
i∈N

x2
i −

∑
i∈N

x3
i − . . . −

∑
i∈N

xr−1
i

=
∑
i∈N

q3
i −

∑
i∈N

x3
i − . . . −

∑
i∈N

xr−1
i

= . . .

=
∑
i∈N

qr
i .
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Due to the nature of the proportional rule qr
1 > 0 implies that, for all r ∈ {1, . . . , m},

xr
1 = PROP1(tr − tr−1, qr) > 0.

Consequently, we now can conclude that, for all r ∈ {1, . . . , m}, (Cr, xr) ∈ CCSN .
Secondly, we ue Theorem 5.4 to conclude that, for all i ∈ N \ {n},

Seri(Cr, xr)
xr

i

≥ Seri+1(Cr, xr)
xr

i+1
. (5.14)

For the rest of the proof, fix i ∈ N \{n}. For UCM of ΨPROP, it suffices to prove that

ΨPROP
i (C, q)

qi
≥

ΨPROP
i+1 (C, q)

qi+1
.

We first prove, by using induction, that xr
i

qi
= xr

i+1
qi+1

for all r ∈ {1, 2, . . . , m}. Clearly,

PROPi(t1, q)
qi

= PROPi+1(t1, q)
qi+1

,

and thus,
x1

i

qi
=

x1
i+1

qi+1
.

This finishes the proof of the base case. Proceeding to the induction step, take
r ∈ {2, . . . , m} and assume that, for all s ∈ {1, . . . , r − 1},

xs
i

qi
=

xs
i+1

qi+1
.

Then it follows that

qr
i

qi
= qr−1

i − xr−1
i

qi
= . . . = qi −

∑r−1
s=1 xs

i

qi
= 1 −

r−1∑
s=1

xs
i

qi

(IH)= 1 −
r−1∑
s=1

xs
i+1

qi+1
=

qi+1 −
∑r−1

s=1 xs
i+1

qi+1
= . . . =

qr−1
i+1 − xr−1

i+1
qi+1

=
qr

i+1
qi+1

,

where IH stands for the induction hypothesis. Moreover,

xr
i

qr
i

= PROPi(tr − tr−1, qr)
qr

i

= PROPi+1(tr − tr−1, qr)
qr

i+1
=

xr
i+1

qr
i+1

.

Hence,

xr
i

qi
= xr

i

qr
i

qr
i

qi
=

xr
i+1

qr
i+1

qr
i+1

qi+1
=

xr
i+1

qi+1
.
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114 5.4. Cost sharing rules for piecewise concave cost functions

We may conclude that, for all r ∈ {1, . . . , m},
xr

i

qi
=

xr
i+1

qi+1
. (5.15)

Using Equations (5.14) and (5.15), we find that

ΨPROP
i (C, q)

qi
=

m∑
r=1

Seri(Cr, xr)
qi

=
m∑

r=1

Seri(Cr, xr)
xr

i

xr
i

qi

(5.15)=
m∑

r=1

Seri(Cr, xr)
xr

i

xr
i+1

qi+1

(5.14)
≥

m∑
r=1

Seri+1(Cr, xr)
xr

i+1

xr
i+1

qi+1

=
m∑

r=1

Seri+1(Cr, xr)
qi+1

=
ΨPROP

i+1 (C, q)
qi+1

.

Hence, ΨPROP satisfies UCM on CCSN,m for all m ∈ {1, 2, . . .}. □

Next, we show that ΨPROP is the unique piecewise serial rule based on a claims rule
that satisfies unit cost monotonicity.

Theorem 5.7 Let φ be a claims rule such that Ψφ satisfies UCM on CCSN,m for
all m ∈ {1, 2 . . .}. Then φ = PROP.

Proof: Suppose for the sake of contradiction that φ ̸= PROP. Then there exists
(E, c) ∈ CN with 0 < c1 ≤ . . . ≤ cn,

∑
j∈N cj > E and i ∈ N with ci ̸= ci+1 such that

φi(E, c)
ci

>
φi+1(E, c)

ci+1
(5.16)

or
φi(E, c)

ci
<

φi+1(E, c)
ci+1

. (5.17)

For both cases, we show that there exists a cost sharing problem (C, q) ∈ CCSN,2 for
which

Ψφ
i (C, q)

qi
<

Ψφ
i+1(C, q)

qi+1
,

contradicting UCM.

Suppose Equation (5.16) holds. Consider (C, q) ∈ CCSN,2 with q = c and the cost
function C given by

C(t) =
{

2t, if t ∈ [0, E];
5t − 3E, if t ∈ (E,

∑
j∈N cj ],
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for all t ∈ [0,
∑

j∈N cj ]. One readily verifies that all assumptions on a cost sharing
problem are satisfied. Note that C has two maximal intervals of concavity: [0, E] and
[E,
∑

j∈N cj ].
For the first interval, we have that C1(t) = 2t for all t ∈ [0, E] and q1(φ) = q = c. For
x1(φ), the players should be reordered in such a way that x1(φ) is non-decreasing over
the players. Let σ : N → {1, . . . , n} be a bijection such that for all k ∈ {1, . . . , n},
σ−1(k) is the player with the kth lowest value allocated by φ, that is,

φσ−1(1)(E, c) ≤ φσ−1(2)(E, c) ≤ . . . ≤ φσ−1(n)(E, c).

Next, let x1
k(φ) = φσ−1(k)(E, c) for all k ∈ {1, . . . , n}, or equivalently, for all j ∈ N ,

x1
σ(j)(φ) = φj(E, c), which means that player j ∈ N is on position σ(j) of x1(φ).

Then (C1, x1(φ)) is a cost sharing problem on (positions) {1, 2, . . . , n} and10

Ser(C1, x1(φ)) = 2x1(φ).

For the second interval, we have that C2(t) = 5t for all t ∈ [0,
∑

j∈N cj − E]. For
q2(φ), let σ̄ : N → {1, . . . , n} be a bijection such that

cσ̄−1(1) − φσ̄−1(1)(E, c) ≤ . . . ≤ cσ̄−1(n) − φσ̄−1(n)(E, c).

Next, let q2
k(φ) = cσ̄−1(k) − φσ̄−1(k)(E, c) for all k ∈ {1, . . . , n}, or equivalently, for all

j ∈ N , q2
σ̄(j)(φ) = cj − φj(E, c). Moreover,

x2(φ) = φ(
∑
j∈N

cj − E, q2(φ)) = q2(φ),

since
∑

j∈N q2
j (φ) =

∑
j∈N cj −

∑
j∈N φj(E, c) =

∑
j∈N cj − E. Then (C2, x2(φ)) is

a cost sharing problem on (positions) {1, 2, . . . , n} and

Ser(C2, x2(φ)) = 5x2(φ).

Consequently,

Ψφ
i (C, q) = Serσ(i)(C1, x1(φ)) + Serσ̄(i)(C2, x2(φ))

= 2x1
σ(i)(φ) + 5x2

σ̄(i)(φ)
= 2φi(E, c) + 5(ci − φi(E, c))
= 5ci − 3φi(E, c),

and similarly,
Ψφ

i+1(C, q) = 5ci+1 − 3φi+1(E, c).
10In general, for a cost sharing problem (C, q) ∈ CSN with an affine cost function C(t) = αt + β,

with α, β ∈ R, it can be readily verified that Ser(C, q) = αq.
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Hence, using that q = c,

Ψφ
i (C, q)

qi
−

Ψφ
i+1(C, q)

qi+1
= 5 − 3φi(E, c)

ci
− 5 + 3φi+1(E, c)

ci+1

= 3
(

φi+1(E, c)
ci+1

− φi(E, c)
ci

)
< 0,

where the inequality follows from Equation (5.16). This shows that

Ψφ
i (C, q)

qi
<

Ψφ
i+1(C, q)

qi+1
,

contradicting UCM.

Next, suppose Equation (5.17) holds. In order to define a cost sharing problem for
this case, we first need two things: First, reconsider σ̄ : N → {1, . . . , n}, the bijection
for which

cσ̄−1(1) − φσ̄−1(1)(E, c) ≤ . . . ≤ cσ̄−1(n) − φσ̄−1(n)(E, c).

Secondly, let ε > 0 be such that

ε < min {rk | rk > 0, k ∈ {1, . . . , n}} ,

where, for every k ∈ {1, . . . , n},

rk =
k−1∑
ℓ=1

(cσ̄−1(ℓ) − φσ̄−1(ℓ)(E, c)) + (n − k + 1)(cσ̄−1(k) − φσ̄−1(k)(E, c)).

In particular,

ε < rn =
n∑

ℓ=1
cσ̄−1(ℓ) −

n∑
ℓ=1

φσ̄−1(ℓ)(E, c) =
∑
j∈N

cj − E.

Consider (Cε, q) ∈ CCSN,2 with q = c and the cost function Cε given by

Cε(t) =


2t, if t ∈ [0, E];
5t − 3E, if t ∈ (E, E + ε];
t + E + 4ε, if t ∈ (E + ε,

∑
j∈N cj ],

for all t ∈ [0,
∑

j∈N cj ]. One readily verifies that all assumptions on a cost sharing
problem are satisfied. Note that C has two maximal intervals of concavity: [0, E] and
[E,
∑

j∈N cj ].
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For the first interval, we have that C1(t) = 2t for all t ∈ [0, E] and q1(φ) = q = c.
For x1(φ), let σ : N → {1, . . . , n} be a bijection such that

φσ−1(1)(E, c) ≤ φσ−1(2)(E, c) ≤ . . . ≤ φσ−1(n)(E, c).

Let x1
k(φ) = φσ−1(k)(E, c) for all k ∈ {1, . . . , n}. Then (C1, x1(φ)) is a cost sharing

problem on (positions) {1, 2, . . . , n} and

Ser(C1, x1(φ)) = 2x1(φ).

For the second interval, we have that

C2(t) =
{

5t, if t ≤ ε;
t + 4ε, otherwise,

for all t ∈ [0,
∑

j∈N cj − E]. For q2(φ), we can use the bijection σ̄ as defined above
to reorder the players such that q2(φ) is non-decreasing over the players. That is, let
q2

k(φ) = cσ̄−1(k) − φσ̄−1(k)(E, c) for all k ∈ {1, . . . , n} and note that again,

x2(φ) = q2(φ).

To determine which part of the function C2 applies, we consider the intermediate
points used to compute Ser(C2, x2(φ)): s2

0 = 0,

s2
1 = nx2

1(φ) = n(cσ̄−1(1) − φσ̄−1(1)(E, c)),

and, for all k ∈ {2, . . . , n},

s2
k =

k−1∑
ℓ=1

x2
ℓ(φ) + (n − k + 1)x2

k(φ)

=
k−1∑
ℓ=1

(cσ̄−1(ℓ) − φσ̄−1(ℓ)(E, c)) + (n − k + 1)(cσ̄−1(k) − φσ̄−1(k)(E, c)).

Note that s2
k = rk for all k ∈ {1, . . . , n}. Therefore, for all k ∈ {1, . . . , n}, if s2

k = 0,
then C2(s2

k) = 0, and if s2
k > 0, then s2

k = rk > ε and hence, C2(s2
k) = s2

k + 4ε. This
implies that,

Ser(C2, x2(φ)) = x2(φ).
Consequently,

Ψφ
i (C, q) = Serσ(i)(C1, x1(φ)) + Serσ̄(i)(C2, x2(φ))

= 2x1
σ(i)(φ) + x2

σ̄(i)(φ)
= 2φi(E, c) + ci − φi(E, c)
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118 5.4. Cost sharing rules for piecewise concave cost functions

= ci + φi(E, c),

and similarly,
Ψφ

i+1(C, q) = ci+1 + φi+1(E, c).
Hence, using that q = c,

Ψφ
i (C, q)

qi
−

Ψφ
i+1(C, q)

qi+1
= 1 + φi(E, c)

ci
− 1 − φi+1(E, c)

ci+1

= φi(E, c)
ci

− φi+1(E, c)
ci+1

< 0,

where the inequality follows from Equation (5.17). This shows that

Ψφ
i (C, q)

qi
<

Ψφ
i+1(C, q)

qi+1
,

contradicting UCM.
Together, this leads to the conclusion that φ = PROP. □

The next example shows that ΨPROP does not satisfy MOVASP on CCS.

Example 5.8 Consider the cost sharing problem (C, q) ∈ CSN with N = {1, 2, 3, 4},
q = (2, 5, 6, 9) and cost function C given by

C(t) =



18t − 1
3 t2, if t ∈ [0, 12];

20t − 1
2 t2, if t ∈ (12, 16];

192 + 18(t − 16) − 1
3 (t − 16)2, if t ∈ (16, 17];

18t − 1
3 t2, if t ∈ (17, 18];

216 + 20(t − 18) − 1
2 (t − 18)2, if t ∈ (18, 22],

(5.18)

for all t ∈ [0, 22].
This cost function is visualized in Figure 5.5. As can be seen in Figure 5.5, C is piece-
wise concave with three maximal intervals of concavity: [0, 16], [16, 18] and [18, 22].
It can be calculated that

ΨPROP(C, q) ≈ (33.6, 71.8, 80.5, 102.1),

while
ΨPROP(C, q|N\{1}) ≈ (72.6, 80.8, 100.6).

Hence, e.g.,

ΨPROP
3 (C, q) − ΨPROP

3 (C, q|N\{1}) ≈ −0.3
> −0.8 ≈ ΨPROP

2 (C, q) − ΨPROP
2 (C, q|N\{1}),

contradicting MOVASP. △
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Figure 5.5 – The cost function C of the cost sharing problem of
Example 5.8.

As a result of both Example 5.8 and Theorem 5.7, there is no piecewise serial rule
based on a claims rule that satisfies both UCM and MOVASP. On the class of cost
sharing problems with piecewise concave cost functions, these two properties are thus
incompatible.
Interestingly, the CEL-piecewise serial rule does satisfy MOVASP on CCSm for all
m ∈ {1, 2, . . .}, as shown in Theorem 5.8. The proof of Theorem 5.8 uses, among other
things, a feature of the constrained equal losses rule as provided below in Lemma 5.3.

Lemma 5.3 Let (E, c) ∈ CN be a claims problem with N = {1, 2, . . . , n} such that
c1 ≤ c2 ≤ . . . ≤ cn and c2 + c3 + . . . + cn ≥ E. Then the following two statements
hold:

i) if CEL1(E, c) = 0, then CELj(E, c|N\{1}) = CELj(E, c) for all j ∈ N \ {1};

ii) if CEL1(E, c) > 0, then

CELj(E, c) = cj −
∑

k∈N ck − E

n
,

for all j ∈ N , and

CELj(E, c|N\{1}) = CELj(E, c) + CEL1(E, c)
n − 1 ,

for all j ∈ N \ {1}.

The following theorem shows that the piecewise serial based on the constrained equal
losses rule satisfies monotonic vulnerability for the absence of the smallest player.
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120 5.4. Cost sharing rules for piecewise concave cost functions

Theorem 5.8 ΨCEL satisfies MOVASP on CCSm for all m ∈ {1, 2, . . .}.

Proof: The theorem clearly holds for m = 1, using Theorem 5.5 and the fact that
CCS1 = CCS.
Let m ∈ {2, 3, . . .} and let (C, q) ∈ CCSN,m and denote, as before, the maximal
intervals of concavity of C by [t0, t1], [t1, t2], . . . , [tm−1, tm] with
0 = t0 < t1 < t2 < . . . < tm−1 < tm =

∑
i∈N qi , with modified cost functions

Cr : [0, tr − tr−1] → R+, for r ∈ {1, . . . , m}, defined by Cr(t) = C(t+ tr−1)−C(tr−1),
for all t ∈ [0, tr − tr−1]. Also, abbreviate for all r ∈ {1, . . . , m}, qr(CEL) to qr and
xr(CEL) to xr. Similarly, denote by q̄r and x̄r, r ∈ {1, . . . , m}, the respective vectors
in RN\{1} as provided in the definition of ΨCEL(C, q|N\{1}).
Note that, by definition, ΨCEL(C, q) =

∑m
r=1 Ser(Cr, xr) and

ΨCEL(C, q|N\{1}) =
∑m

r=1 Ser(Cr, x̄r). So, in order to show MOVASP it suffices to
show that, for all i ∈ {3, . . . , n} and for all r ∈ {1, . . . , m},

Seri(Cr, xr) − Seri(Cr, x̄r) ≤ Seri−1(Cr, xr) − Seri−1(Cr, x̄r). (5.19)

Let i ∈ {3, . . . , n} and r ∈ {1, . . . , m}.
We need to fix some notation regarding the intermediate points needed to calculate
Ser(Cr, xr) and Ser(Cr, x̄r). Regarding Ser(Cr, xr), these points are denoted by

0 = sr
0, sr

1, . . . , sr
n−1, sr

n,

with, for ℓ ∈ {1, . . . , n},

sr
ℓ =

ℓ−1∑
k=1

xr
k + (n − ℓ + 1)xr

ℓ .

Similarly, the intermediate points regarding Ser(Cr, x̄r) are denoted by

0 = s̄r
1, s̄r

2, . . . , s̄r
n−1, s̄r

n,

with, for all ℓ ∈ {1, . . . , n},

s̄r
ℓ =

ℓ−1∑
k=2

x̄r
k + (n − ℓ + 1)x̄r

ℓ .

First, assume that qr
|N\{1} ̸= q̄r. Then, obviously, r > 1 and qr

k ̸= q̄r
k for some

k ∈ {2, . . . , n}. Then we have that xs
1 > 0 for some s ∈ {1, . . . , r − 1}, since otherwise

we would have that qr
|N\{1} = q̄r, as a consequence of Lemma 5.3 part i). Assume

w.l.o.g. that s is the first index for which this happen, i.e., x1
1 = . . . = xs−1

1 = 0. This
implies that qs

|N\{1} = q̄s and, by using Lemma 5.3 part ii),{
xs

j = qs
j −

∑
h∈N

qs
h−(ts−ts−1)

n ;
x̄s

j = xs
j + xs

1
n−1 ,
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for all j ∈ N \ {1} and consequently, by using that q̄s
j = qs

j , qs+1
j = qs

j − xs
j =

∑
h∈N

qs
h−(ts−ts−1)

n ;

q̄s+1
j = q̄s

j − x̄s
j = qs

j − xs
j − xs

1
n−1 =

∑
h∈N

qs
h−(ts−ts−1)

n − xs
1

n−1 ,

are independent of j ∈ N \ {1}. Thus, in particular,{
qs+1

i = qs+1
i−1 ;

q̄s+1
i = q̄s+1

i−1 ,

and, by using the symmetry of the constrained equal losses rule,{
xs+1

i = xs+1
i−1 ;

x̄s+1
i = x̄s+1

i−1 .

Subsequently, we have that {
qℓ

i = qℓ
i−1;

q̄ℓ
i = q̄ℓ

i−1,

and {
xℓ

i = xℓ
i−1;

x̄ℓ
i = x̄ℓ

i−1,

for all ℓ ∈ {s + 1, . . . , m} and in particular, xr
i = xr

i−1 and x̄r
i = x̄r

i−1, since s < r.
The first equality implies that, by using the symmetry of the serial rule,

Seri(Cr, xr) = Seri−1(Cr, xr),

while the latter inequality implies that, by again using the symmetry of the serial
rule,

Seri(Cr, x̄r) = Seri−1(Cr, x̄r).
Consequently, Equation (5.19) holds under the assumption that qr

|N\{1} ̸= q̄r.
In the rest of the proof, we assume that qr

|N\{1} = q̄r.
We distinguish between three cases with respect to tr − tr−1:

I)
∑
k∈N

qr
k ≤ tr − tr−1;

II)
∑

k∈N\{1}

qr
k < tr − tr−1 <

∑
k∈N

qr
k;

III) tr − tr−1 ≤
∑

k∈N\{1}

qr
k.



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 134PDF page: 134PDF page: 134PDF page: 134

122 5.4. Cost sharing rules for piecewise concave cost functions

Case I) In this case, we assume that
∑

k∈N qr
k ≤ tr − tr−1. Then also∑

k∈N\{1}

q̄r
k =

∑
k∈N\{1}

qr
k ≤

∑
k∈N

qr
k ≤ tr − tr−1.

Hence, {
xr = CEL(tr − tr−1, qr) = qr;
x̄r = CEL(tr − tr−1, q̄r) = q̄r = qr

|N\{1}.

Since (Cr, qr) ∈ CCSN , the fact that the serial rule satisfies MOVASP according to
Theorem 5.5 implies that

Seri(Cr, xr) − Seri(Cr, x̄r) = Seri(Cr, qr) − Seri(Cr, qr
|N\{1})

≤ Seri−1(Cr, qr) − Seri−1(Cr, qr
|N\{1})

= Seri−1(Cr, xr) − Seri−1(Cr, x̄r).

Thus, in case I, Equation (5.19) holds.
Case II) In this case, we assume that

∑
k∈N\{1} qr

k < tr − tr−1 <
∑

k∈N qr
k. Then also∑

k∈N\{1}

q̄r
k =

∑
k∈N\{1}

qr
k < tr − tr−1 <

∑
k∈N

qr
k,

and thus,

x̄r
k = CELk(tr − tr−1, q̄r) = CELk(tr − tr−1, qr

|N\{1}) = qr
k,

for all k ∈ N \ {1}. Moreover, with

ε = qr
1 −

(∑
h∈N

qr
h − (tr − tr−1)

)
,

we have that ε = tr − tr−1 −
∑

k∈N\{1} qr
k > 0 and thus, qr

1 >
∑

h∈N qr
h − (tr − tr−1).

Consequently, since

qr
1 −

∑
h∈N qr

h − (tr − tr1)
n

> qr
1 − qr

1
n

> 0,

we have, due to the nature of the constrained equal losses rule, for all k ∈ N ,

xr
k = CELk(tr − tr−1, qr) = qr

k −
∑

h∈N qr
h − (tr − tr−1)

n
.

Then, for all ℓ ∈ {2, . . . , n},

sr
ℓ =

ℓ−1∑
k=1

xr
k + (n − ℓ + 1)xr

ℓ
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=
ℓ−1∑
k=1

(
qr

k −
∑

h∈N qr
h − (tr − tr−1)

n

)
+ (n − ℓ + 1)

(
qr

ℓ −
∑

h∈N qr
h − (tr − tr−1)

n

)

=(n − ℓ + 1)qr
ℓ +

ℓ−1∑
k=1

qr
k − [(n − ℓ + 1) + (ℓ − 1)]

(∑
h∈N qr

h − (tr − tr−1)
n

)

=(n − ℓ + 1)qr
ℓ +

ℓ−1∑
k=1

qr
k −

(∑
h∈N

qr
h − (tr − tr−1)

)

=(n − ℓ + 1)qr
ℓ +

ℓ−1∑
k=2

qr
k + qr

1 −

(∑
h∈N

qr
h − (tr − tr−1)

)

=(n − ℓ + 1)x̄r
ℓ +

ℓ−1∑
k=2

x̄r
k + ε

=s̄r
ℓ + ε.

Consequently,

Seri(Cr, xr) − Seri−1(Cr, xr) −
(

Seri(Cr, x̄r) − Seri−1(Cr, x̄r)
)

=
Cr(sr

i ) − Cr(sr
i−1)

n − i + 1 −
Cr(s̄r

i ) − Cr(s̄r
i−1)

n − i + 1

=
Cr(s̄r

i + ε) − Cr(s̄r
i−1 + ε)

n − i + 1 −
Cr(s̄r

i ) − Cr(s̄r
i−1)

n − i + 1

= 1
n − i + 1

(
Cr(s̄r

i + ε) − Cr(s̄r
i ) − Cr(s̄r

i−1 + ε) + Cr(s̄r
i−1)

)
≤ 0,

where the inequality follows from Lemma 5.2 part ii), by using that 0 < s̄r
i−1 ≤ s̄r

i

and ε > 0. Consequently, also in case II, Equation (5.19) holds.
Case III) In this final case, we assume that tr − tr−1 ≤

∑
k∈N\{1} qr

k. Then also

tr − tr−1 ≤
∑

k∈N\{1}

qr
k =

∑
k∈N\{1}

q̄r
k,

and,

x̄r
ℓ = CELℓ(tr − tr−1, q̄r)

= CELℓ(tr − tr−1, qr
|N\{1})

= CELℓ(tr − tr−1, qr) + CEL1(tr − tr−1, qr)
n − 1
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124 5.4. Cost sharing rules for piecewise concave cost functions

= xr
ℓ + xr

1
n − 1 ,

for all ℓ ∈ {2, . . . , n}, where the third equality is a consequence of Lemma 5.3. Hence,

s̄r
2 = (n − 1)x̄r

2 = (n − 1)(xr
2 + xr

1
n − 1) = (n − 1)xr

2 + xr
1 = sr

2,

and for all ℓ ∈ {3, . . . , n},

s̄r
ℓ =

ℓ−1∑
k=2

x̄r
k + (n − ℓ + 1)x̄r

ℓ

=
ℓ−1∑
k=2

(xr
k + xr

1
n − 1) + (n − ℓ + 1)(xr

ℓ + xr
1

n − 1)

= (n − ℓ + 1)xr
ℓ +

ℓ−1∑
k=2

xr
k +

(
(n − ℓ + 1) + (ℓ − 2)

) xr
1

n − 1

= (n − ℓ + 1)xr
ℓ +

ℓ−1∑
k=2

xr
k + xr

1

= (n − ℓ + 1)xr
ℓ +

ℓ−1∑
k=1

xr
k

= sr
ℓ .

Thus, s̄r
ℓ = sr

ℓ for all ℓ ∈ {2, . . . , n}. Consequently, for all ℓ ∈ {2, 3, . . . , n},

Serℓ(Cr, xr) − Serℓ(Cr, x̄r) =
ℓ∑

k=1

Cr(sr
k) − Cr(sr

k−1)
n − k + 1 −

ℓ∑
k=2

Cr(s̄r
k) − Cr(s̄r

k−1)
n − k + 1

= Cr(sr
1)

n
+ Cr(sr

2) − Cr(sr
1)

n − 1 +
ℓ∑

k=3

Cr(sr
k) − Cr(sr

k−1)
n − k + 1

−

(
Cr(s̄r

2)
n − 1 +

ℓ∑
k=3

Cr(s̄r
k) − Cr(s̄r

k−1)
n − k + 1

)

= Cr(sr
1)

n
+ Cr(sr

2) − Cr(sr
1)

n − 1 − Cr(s̄r
2)

n − 1

= Cr(sr
1)

n
− Cr(sr

1)
n − 1 ,

is independent of ℓ. Hence,

Seri(Cr, xr) − Seri(Cr, x̄r) = Seri−1(Cr, xr) − Seri−1(Cr, x̄r),
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Chapter 5. Cost sharing methods for CRCP-situations 125

which proves Equation (5.19) in case III with an equality.
We can conclude that Equation (5.19) also holds in case qr

|N\{1} = q̄r. Overall, this
shows that ΨCEL satisfies MOVASP on CCSm for all m ∈ {1, 2, . . .}. □

5.5 Cost allocations for CRCP-situations

In this chapter, we introduced capacity restricted cooperative purchasing situations
and modeled the problem of finding an adequate allocation of the joint purchasing
costs as a cost sharing problem. This final section focuses on the class of cost sharing
problems that indeed stem from capacity restricted cooperative purchasing situations.
This is especially valuable with respect to a possible compatibility result of UCM and
MOVASP on this specific domain that is smaller than the whole class of cost sharing
problems with piecewise concave cost functions.
We denoted (CZ , q) ∈ CSN as the cost sharing problem corresponding to the CRCP-
situation Z = (S, q) ∈ ZN . Let ZCCSN denote the class of all such cost sharing
problems on fixed N , and ZCCS the class of all such cost sharing problems on variable
but finite N . The cost function CZ of a cost sharing problem (CZ , q) ∈ ZCCSN

turned out to be piecewise concave with finitely many (maximal) intervals of concavity.
Hence,

ZCCSN ⊆
∞⋃

m=1
CCSN,m.

Example 5.5 shows that the serial rule does not satisfy UCM on the class of all
cost sharing problems with piecewise concave cost functions. In fact, the cost sharing
problem as described in Example 5.5 originates from the CRCP-situation as described
in Example 5.2. Hence, the serial rule does not satisfy UCM on ZCCSN either.
Similarly, the cost sharing problem as described in Example 5.6 originates from the
CRCP-situation as described in Example 5.3. Hence, the serial rule does not satisfy
MOVASP on ZCCS.
Also the cost sharing problem of Example 5.8, which shows that the PROP-piecewise
serial rule does not satisfy MOVASP on CCS, corresponds to a CRCP-situation. It can
be readily verified that the cost function C of Equation (5.18) is the restriction of the
cost function γS of the CRCP-situation Z = (S, q) ∈ ZN , with S = (QA, pA, QB , pB)
be given by QA = 16, QB = 18 and{

pA(t) = 20 − 1
2 t, for all t ∈ [0, 16];

pB(t) = 18 − 1
3 t, for all t ∈ [0, 18].

Hence, the PROP-piecewise serial rule does not satisfy MOVASP on ZCCS.
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126 5.5. Cost allocations for CRCP-situations

On the other hand, the CEL-piecewise serial rule satisfies MOVASP on CCSm ac-
cording to Theorem 5.8. This implies that the CEL-piecewise serial rule also satisfies
MOVASP on ZCCS.
With regard to UCM, Theorem 5.7 shows that the PROP-piecewise serial rule is the
only piecewise serial rule based on a claims rule that satisfies UCM on CCSN,m. In
particular, this implies that the PROP-piecewise serial rule satisfies UCM on ZCCSN .
More importantly, it implies that the CEL-piecewise serial rule does not satisfy UCM
on CCSN,m. The proof of Theorem 5.7 however does not immediately guarantee that
this is also the case on ZCCS. In other words, the two properties UCM and MOVASP
are possibly compatible on the class of cost sharing problems corresponding to CRCP-
situations.
Compatibility can be reached if the CEL-piecewise serial rule satisfies UCM on ZCCS.
To investigate whether this is indeed the case, we compute its average unit prices for
specific numerical cost sharing problems arising from CRCP-situations using simu-
lation techniques. For comparison reasons, we also compute the average unit prices
according to both the PROP-piecewise serial rule and the classical serial rule.
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Figure 5.6 – The two extreme policies and the cost function γS

for the simulation.

As input, we take CRCP-situations Z = (S, q) ∈ ZN , with S = (QA, pA, QB , pB) be
given by QA = 29, QB = 35 and{

pA(t) = 60 − 1
2 t, for all t ∈ [0, 29];

pB(t) = 140 − 2t, for all t ∈ [0, 35].

We also keep
∑

i∈N qi = 52, such that the cost function CZ of the associated cost
sharing problem (CZ , q) ∈ ZCCSN remains the same for all CRCP-situations. This
cost function is depicted in Figure 5.6b and has 2 maximal intervals of concavity:
[0, 29] and [29, 52].
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Chapter 5. Cost sharing methods for CRCP-situations 127

To create a CRCP-situation, we set N = {1, 2, 3, 4} and randomly generate an integer-
valued vector q of order quantities such that the sum of the order quantities equals 52.
We compare two separate scenarios: qi ∈ {10, 11, 12, 13, 14, 15, 16} for all i ∈ N and
qi ∈ {1, 5, 9, 13, 17, 21, 25} for all i ∈ N , that is, a first scenario with ‘small’ differences
between the possible order quantities and a second scenario with ‘big’ differences. For
each generated instance (C, q), ΨCEL(C, q), ΨPROP(C, q) and Ser(C, q) are calculated.
Per integer value of the order quantity (independent of the corresponding player), the
resulting allocations are stored and, in the end, averaged over the number of times it
has occurred in the simulated instances.
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(b) The scenario with ‘big’ differences.

Figure 5.7 – The average unit prices of the cost sharing rules for
two different scenarios.

In Figure 5.7 we plotted the (average) unit prices according to ΨCEL, ΨPROP and Ser
for a player i ∈ N in the scenario with ‘small’ differences, i.e., with order quantities
qi ∈ {10, 11, 12, 13, 14, 15, 16}, and in the scenario with ‘big’ differences, i.e., with
order quantities qi ∈ {1, 5, 9, 13, 17, 21, 25}.
In order to satisfy UCM, the average unit price should be (weakly) decreasing for
increasing order quantities. Note that this is not the case for the serial rule, as was
already indicated by the observations made above. For example, in Figure 5.7a, the
average unit price for a player with an order quantity of 11 is strictly higher than for
a player with an order quantity of 10. A similar observation is seen in Figure 5.7b
for, e.g., players with order quantities 5 and 9 respectively.
More importantly, both figures clearly point out that both the PROP-piecewise serial
rule and the CEL-piecewise serial rule satisfy UCM. The former is no surprise as
this is proven in Theorem 5.6. The latter however is remarkable. The data seem to
suggest that UCM is in fact satisfied by the CEL-piecewise serial rule for cost sharing
problems arising from CRCP-situations.
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6 Strategy in claims problems
with estate holders

— A squirrel collects
and claims nuts ev-
erywhere6.1 Introduction

The claims problem of dividing a remaining estate upon death among the creditors
is one that stems from way back. Written guidelines on how to solve these problems
include the Babylonian Talmud (O’Neill, 1982; Aumann and Maschler, 1985). Accord-
ing to Moulin (2000) and Thomson (2003), among others, the idea of proportional
division is the most well-known solution, which is also used in modern law (Aumann
and Maschler, 1985).
Formally, a claims problem consists of a (monetary) estate that has to be divided
among the claimants, where each claimant has a non-negative justifiable (monetary)
claim on the estate. Initiated by O’Neill (1982) and followed by, among others,
Aumann and Maschler (1985), significant research has been done in the study of
finding fair allocations of the estate over the players. A wide variety of these so-called
claims rules have been proposed, among which the proportional rule, the constrained
equal awards rule, the constrained equal losses rule and the (reverse) Talmud rule.
For an extensive overview, we refer to Thomson (2003, 2013, 2015).

129
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130 6.1. Introduction

Besides such a direct approach, O’Neill (1982) already bundles various game theoretic
approaches, including a cooperative and a strategic approach. In the cooperative
approach, the worth of a coalition is defined in a pessimistic way as the maximum of
zero and the amount of money that is not claimed by all non-coalitional members.
Such a cooperative game allows for applying standard cooperative game theoretic
solution concepts and interpret the resulting vector as an allocation vector. In the
strategic approach, the players choose specific parts of the estate to claim and every
part that is claimed multiple times is divided equally among the corresponding players.
This particular approach leads to, possibly multiple, Nash equilibria of which the pay-
off vectors are interpreted as allocation vectors.
More strategic approaches are proposed over the years, including various sequential
move games, strategic bargaining games and strategic games. For example, Chun
(1989) devised a sequential procedure that yields the constrained equal awards solu-
tion as unique Nash equilibrium outcome. Herrero (2003) proposed a dual version,
leading to the constrained equal losses solution. Serrano (1995) proposed, and Da-
gan, Serrano, and Volij (1997) extended, a sequential move game that attains any
claims rule satisfying estate monotonicity and consistency as unique subgame perfect
equilibrium. A strategic game was developed by Garćıa-Jurado, González-Dı́az, and
Villar (2006), who showed that any (acceptable) claims rule can be the unique Nash
equilibrium outcome. Finally, Li and Ju (2016), Tsay and Yeh (2019), and Hagiwara
and Hanato (2021) proposed different strategic bargaining games. A cooperative ap-
proach worth mentioning is the one studied by Calleja, Borm, and Hendrickx (2005),
who dealt with multi-issue allocation problems. In such a problem, the claims of the
players are multi-dimensional.

In this chapter, we propose a new strategic model: claims problems with estate hold-
ers. In the standard claims problem, players have a claim on a single estate. However,
in practice, it might happen that this estate is separated into smaller parts. In that
case, there is in fact not one single estate that is divided, but multiple estates. In gen-
eral, the division of each part of the estate does not necessarily have to be according
to the same principle. Having multiple estates naturally leads to the assumption that
there are also multiple executors or estate holders, who each can apply a particular
allocation principle.
Since the total estate is divided into multiple estates with separate estate holders, the
players are forced to divide their claims over these estates. Taking into account the
various claims rules used by the estate holders, this leads to a strategic approach in
which the players seek to maximize their sum of all the awards vectors specified by
the claims rules.
As a motivation for our new model, we present two applications: a subsidy system
and a taxation model. In a subsidy system, each player wants to launch a project for
which the player needs a certain amount of money. To get this money, the players can
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Chapter 6. Strategy in claims problems with estate holders 131

request a subsidy from several different authorities. One can think of different layers
of government: national government, regional government, municipality, and so on.
Of course, the players can only request up to their demand for the particular project
and thus have to decide how to divide their demand over the several authorities. Each
authority has a specified budget available and uses its own way of dividing this bud-
get among the applicants. Alternatively, the traditional claims problem can also be
interpreted as a taxation problem in order to assess taxes as a function of incomes,
as pointed out by Thomson (2003). With the free movement of workers within, for
example, the European Union, it becomes more and more important to determine
how much taxes one has to pay in which country. To put it differently, how to divide
one’s income over the different countries, with possibly different taxation rates, that
are eligible for paying taxes?

The focus of this chapter is on the Nash equilibria of the strategic game associated
to a claims problem with estate holders. We show that existence of Nash equilibria
can be guaranteed if each underlying claims rule satisfies a property called partial
concavity. In order to satisfy partial concavity, the awards of every player specified
by a claims rule need to be concave in the claim of this player, given the claims of
the other players. Claims rules that satisfy partial concavity include the constrained
equal awards rule and the proportional rule. The constrained equal losses rule and the
Talmud rule do not, in general, satisfy partial concavity. Using the constrained equal
losses rule, we also show that existence of Nash equilibria is indeed not guaranteed.
A subsequent question that arises is one regarding efficiency of Nash equilibria. In a
standard claims problem, efficiency requires that the whole estate is divided among
the players, if their sum total claim is more than the estate. This naturally extends
to a claims problem with estate holders for which the total claim is more than the
total available estate, in which efficiency for a Nash equilibrium requires that each
estate is completely divided among the players. We show that efficiency is guaranteed
for all Nash equilibria under a weak condition called strict marginality. A claims rule
satisfies strict marginality if there exists a player for which a small decrease ε > 0 in
this player’s claim leads to a decrease in the awards of this player smaller than ε. All
common rules satisfy strict marginality.
A consequence of having efficiency for Nash equilibria is the fact that it allows for a
direct comparison between Nash equilibrium pay-off vectors and the awards vectors
of the underlying claims rules applied to the claims problem in which all estates are
consolidated. In particular, by restricting attention to uniform claims problems with
estate holders, that is, problems in which all underlying claims rules are identical, we
can directly compare Nash equilibria pay-off vectors with the awards vector of the
common claims rule. Focusing on two specific claims rules, the proportional rule and
the constrained equal awards rule, we show that each Nash equilibrium pay-off vector
is equal to the awards vector of the corresponding claims rule. For the proportional
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rule, we also show that this result can be used to determine the full set of Nash equi-
libria in case there are two estate holders and two players.

This chapter is structured as follows. Section 6.2 introduces the new model of claims
problems with estate holders and the associated strategic ceh-games. Section 6.3
studies the existence of Nash equilibria in ceh-games, whereas Section 6.4 focuses on
efficiency of these Nash equilibria. Furthermore, Section 6.5 studies uniform claims
problems with estate holders and in particular, Section 6.5.1 focuses on the pro-
portional rule as underlying common claims rule, while Section 6.5.2 focuses on the
constrained equal awards rule.

6.2 Claims problems with estate holders and asso-
ciated strategic games

In this section, we introduce the concepts of a claims problem with estate holders
and the associated strategic game. Traditionally, a claims problem (O’Neill, 1982)
occurs as the result of a bankruptcy and consists of an estate and a claims vector
summarizing the claims of the players on this estate. In that case, a single executor
or arbiter holds the estate and determines the outcome for the players based on a
pre-determined claims rule.
One could however imagine that in practical cases, the estate is separated in multiple
parts, each held by a different estate holder. In that case, there are multiple estates
summing up to the total available estate. Each estate is held by a particular executor,
applying a particular claims rule. This new concept extends the traditional concept of
a claims problem and is called a claims problem with estate holders, which is formally
defined below.

Definition 6.1 A claims problem with estate holders (ceh-problem) is a tuple
(M, N, {Ek}k∈M , {φk}k∈M , c) where M is a non-empty, finite set of estate holders, N
is a non-empty, finite set of players, c = (ci)i∈N ∈ RN

+ summarizes the outstanding
claims and for each k ∈ M , there is an estate Ek ∈ R+ and corresponding claims rule
φk : CN → RN

+ .
The total available estate is given by E =

∑
k∈M Ek.

The set of all claims problems with estate holders M and players N is denoted by
CM,N and a claims problem with estate holders (M, N, {Ek}k∈M , {φk}k∈M , c) is also
denoted by ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N . ◁

Due to the fact that the total estate is now separated over multiple estates, players
are forced to divide their claims over these estates. This naturally leads to a strategic
approach where the set of strategies of a player consists of all such divisions of the
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claim over the estates and the pay-offs are given by the sum of the award vectors of
the claims rules. This is formalized in Definition 6.2 below.

Definition 6.2 Let ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N be a claims problem with estate
holders. Then the (associated) strategic ceh-game is given by G = (N, {Xi}i∈N , {πi}i∈N )
where, for all i ∈ N ,

Xi =
{

xi ∈ RM

∣∣∣∣∣ xi ≥ 0 and
∑
k∈M

xk
i = ci

}
,

and, for all x = (xj)j∈N ∈ Πj∈N Xj ,

πi(x) =
∑
k∈M

φk
i (Ek, (xk

j )j∈N ). ◁

Logically, for a claims problem with estate holders, we are interested in finding the set
of Nash equilibria of the associated strategic ceh-game. As a result of the structure of
the pay-offs and the fact that claims rules satisfy non-negativity and claims bounded-
ness, we directly see that the pay-off in a Nash equilibrium is also non-negative and
bounded from above by the respective claims.
Formally, for a ceh-problem ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N , the associated ceh-game
G = (N, {Xi}i∈N , {πi}i∈N ) and a Nash equilibrium x̂ ∈ NE(G), we have that, for all
i ∈ N ,

0 ≤ πi(x̂) ≤ ci. (6.1)

The following example illustrates the strategic aspects that occur in the ceh-game
associated to a ceh-problem, as well as the process of finding the set of Nash equilibria.

Example 6.1 Consider the ceh-problem ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N with
M = {A, B}, N = {1, 2}, EA = EB = 4, φA = φB = CEA and c = (8, 4).
Here, the set of strategies for player 1 is given by

X1 =
{

x1 ∈ R{A,B}
∣∣∣ x1 ≥ 0 and xA

1 + xB
1 = 8

}
,

whereas the set of strategies for player 2 is given by

X2 =
{

x2 ∈ R{A,B}
∣∣∣ x2 ≥ 0 and xA

2 + xB
2 = 4

}
.

Clearly, both sets can be represented by a line segment1, which is visualized in Figure
6.1. Here, the numbers on both axes represent the amount that is claimed at estate
EA. For example, a strategy combination (x̄1, x̄2) ∈ X1 ×X2 with x̄A

1 = 2 and x̄A
2 = 1

automatically imply that x̄B
1 = c1 − x̄A

1 = 8 − 2 = 6 and x̄B
2 = c2 − x̄A

2 = 4 − 1 = 3.
1In general, the dimension of the set of strategies is one less than the number of estate holders.
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Figure 6.1 – A visualization of a strategy combination x̄ ∈ X and
the two areas where the estate is sufficient to cover the claims of
Example 6.1.

Furthermore, the two gray areas indicate the sets of strategy combinations for which
the corresponding estate is sufficient to cover the claims on this estate. More specif-
ically, the left area corresponds to all strategy combinations x = (x1, x2) ∈ X1 × X2
for which xA

1 + xA
2 ≤ EA = 4, while the right area corresponds to all strategy combi-

nations x = (x1, x2) ∈ X1 × X2 for which xB
1 + xB

2 ≤ EB = 4.
To determine the sets of best reply strategies, we divide the set of strategy combina-
tions into several areas based on the paths of awards (see Section 2.2) of the claims
rule used. For each of these areas, we compute the award specified by the constrained
equal awards rule dividing estate EA and the award specified by the constrained equal
awards rule dividing estate EB . Together, this results in the pay-off for both players
in each of these areas.

0 2 4 6 8X1

0

2

4

X2

I

II

III

IV

(a) For estate EA.

0 2 4 6 8X1

X2

0

2

4

I

II

III

IV

(b) For estate EB.

Figure 6.2 – A division of the set of strategy combinations in four
areas for the two estates of Example 6.1.

First, Figure 6.2a provides an overview of the four different areas. These areas are
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based on the path of awards for the constrained equal awards rule, as depicted in
Figure 2.2a.
Area I) The first area corresponds exactly to the left gray area of Figure 6.1 and is
given by all strategy combinations x ∈ X for which xA

1 + xA
2 ≤ EA = 4. Clearly,

CEA
(
EA, (xA

1 , xA
2 )
)

=
(
xA

1 , xA
2
)

.

Area II) The second area is given by all strategy combinations x ∈ X for which both
0 ≤ xA

1 ≤ 2 and 4 − xA
1 ≤ xA

2 ≤ 4. Consequently, we have that

CEA
(
EA, (xA

1 , xA
2 )
)

=
(
xA

1 , 4 − xA
1
)

.

Area III) The third area is in some sense the reverse of the second area and is given
by all strategy combinations x ∈ X for which both 0 ≤ xA

2 ≤ 2 and 4 − xA
2 ≤ xA

1 ≤ 4.
Consequently, we have that

CEA
(
EA, (xA

1 , xA
2 )
)

=
(
4 − xA

2 , xA
2
)

.

Area IV) Finally, the fourth area is given by all strategy combinations x ∈ X for
which both 2 ≤ xA

1 ≤ 8 and 2 ≤ xA
2 ≤ 4. Consequently, we have that

CEA
(
EA, (xA

1 , xA
2 )
)

= (2, 2) .

Secondly, Figure 6.2b provides an overview of the four areas for estate EB . As it is
also based on the path of awards for the constrained equal awards rule, the overall
structure of the areas is similar to the structure in Figure 6.2a.
Area I) The first area corresponds exactly to the right gray area of Figure 6.1 and is
given by all strategy combinations x ∈ X for which xB

1 + xB
2 ≤ EB = 4. Clearly,

CEA
(
EB , (xB

1 , xB
2 )
)

=
(
xB

1 , xB
2
)

=
(
8 − xA

1 , 4 − xA
2
)

.

Area II) The second area is given by all strategy combinations x ∈ X for which both
6 ≤ xA

1 ≤ 8 (or equivalently, 0 ≤ xB
1 ≤ 2) and 0 ≤ xA

2 ≤ 8 − xA
1 (or equivalently,

4 − xB
1 ≤ xB

2 ≤ 4). Consequently, we have that

CEA
(
EB , (xB

1 , xB
2 )
)

=
(
xB

1 , 4 − xB
1
)

=
(
8 − xA

1 , xA
1 − 4

)
.

Area III) The third area is in some sense the reverse of the second area and is given
by all strategy combinations x ∈ X for which both 2 ≤ xA

2 ≤ 4 (or equivalently,
0 ≤ xB

2 ≤ 2) and 0 ≤ xA
1 ≤ 8 − xA

2 (or equivalently, 4 − xB
1 ≤ xB

1 ≤ 4). Consequently,
we have that

CEA
(
EB , (xB

1 , xB
2 )
)

=
(
4 − xB

2 , xB
2
)

=
(
xA

2 , 4 − xA
2
)

.
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Area IV) Finally, the fourth area is given by all strategy combinations x ∈ X for which
both 0 ≤ xA

1 ≤ 6 (or equivalently, 2 ≤ xB
1 ≤ 8) and 0 ≤ xA

2 ≤ 2 (or equivalently,
2 ≤ xB

2 ≤ 4). Consequently, we have that

CEA
(
EB , (xB

1 , xB
2 )
)

= (2, 2) .

By combining Figures 6.2a and 6.2b, we can divide the set of all strategy combinations
into eight areas for which we can readily compute the corresponding pay-off. This is
visualized in Figure 6.3.

0 2 4 6 8X1

X2

0

2

4

I

II

III
IV

V
VI

VII

VIII

Figure 6.3 – A division of the set of strategy combinations in
Example 6.1.

Clearly, by adding both awards vectors dividing the estate EA and EB , respectively,
we obtain the pay-off functions for each of the eight areas. For this, let x ∈ X and
without again specifying the exact conditions on x, the eight possible pay-off functions
are listed below for each of the eight areas:

I) π(x1, x2) =
(
xA

1 , xA
2
)

+ (2, 2) =
(
2 + xA

1 , 2 + xA
2
)
;

II) π(x1, x2) =
(
xA

1 , xA
2
)

+
(
xA

2 , 4 − xA
2
)

=
(
xA

1 + xA
2 , 4

)
;

III) π(x1, x2) =
(
xA

1 , 4 − xA
1
)

+
(
xA

2 , 4 − xA
2
)

=
(
xA

1 + xA
2 , 8 − xA

1 − xA
2
)
;

IV) π(x1, x2) = (2, 2) +
(
xA

2 , 4 − xA
2
)

=
(
2 + xA

2 , 6 − xA
2
)
;

V) π(x1, x2) =
(
4 − xA

2 , xA
2
)

+ (2, 2) =
(
6 − xA

2 , 2 + xA
2
)
;

VI) π(x1, x2) =
(
4 − xA

2 , xA
2
)

+
(
8 − xA

1 , xA
1 − 4

)
=
(
12 − xA

1 − xA
2 , xA

1 + xA
2 − 4

)
;

VII) π(x1, x2) =
(
4 − xA

2 , xA
2
)

+
(
8 − xA

1 , 4 − xA
2
)

=
(
12 − xA

1 − xA
2 , 4

)
;

VIII) π(x1, x2) = (2, 2) +
(
8 − xA

1 , 4 − xA
2
)

=
(
10 − xA

1 , 6 − xA
2
)
.



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 149PDF page: 149PDF page: 149PDF page: 149

Chapter 6. Strategy in claims problems with estate holders 137

Having this list of possible pay-off functions per area of strategy combinations, it is
straightforward to compute the sets of best reply strategies in order to compute the
Nash equilibria. The set of best reply strategies for player 1 against a strategy of
player 2 is visualized in Figure 6.4a and is, for all x̂2 ∈ X2, given by

BR1(x̂2) =
{{

x1 ∈ X1
∣∣ 4 − x̂A

2 ≤ xA
1 ≤ 6

}
, if 0 ≤ x̂A

2 ≤ 2;{
x1 ∈ X1

∣∣ 2 ≤ xA
1 ≤ 8 − x̂A

2
}

, if 2 < x̂A
2 ≤ 4.

(6.2)

To show that this is indeed the set of best reply strategies for player 1, let x̂2 ∈ X2
and distinguish between the two indicated cases.
First, assume that 0 ≤ x̂A

2 ≤ 2. Then the pay-off of player 1 is indeed maximized for
all x1 ∈ X1 for which 4−x̂A

2 ≤ xA
1 ≤ 6, that is, in area V. Note that the corresponding

pay-off for these strategy combinations is given by

π1(x1, x̂2) = 6 − x̂A
2 .

Let x1 ∈ X1 with xA
1 < 4 − x̂A

2 (that is, a strategy combination in area I). Then it
readily follows that

π1(x1, x̂2) = 2 + xA
1 < 2 + 4 − x̂A

2 = 6 − x̂A
2 .

On the other hand, let x1 ∈ X1 with xA
1 > 6 (that is, a strategy combination in either

area VI or VII). Then it readily follows that

π1(x1, x̂2) = 12 − xA
1 − x̂A

2 < 12 − 6 − x̂A
2 = 6 − x̂A

2 .

Secondly, assume that 2 ≤ x̂A
2 ≤ 4. Then the pay-off of player 1 is maximized for all

x1 ∈ X1 for which 2 ≤ xA
1 ≤ 8 − x̂A

2 , that is, in area IV, with corresponding pay-off
given by

π1(x1, x̂2) = 2 + xA
2 .

As before, let x1 ∈ X1 with xA
1 < 2 (that is, a strategy combination in either II or

III). Then it readily follows that

π1(x1, x̂2) = xA
1 + x̂A

2 < 2 + x̂A
2 .

Moreover, let x1 ∈ X1 with xA
1 > 8 − x̂A

2 (that is, a strategy combination in area
VIII). Then it readily follows that

π1(x1, x̂2) = 10 − xA
1 < 10 − (8 − x̂A

2 ) = 2 + x̂A
2 .

This shows that Equation (6.2) indeed provides the set of best reply strategies for
player 1 against any strategy of player 2.
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0 2 4 6 8X1

X2

0

2

4

BR1(x̂2)

NE(G)

(a) For player 1.

0 2 4 6 8X1

X2

0

2

4

BR2(x̂1) NE(G)

(b) For player 2.

Figure 6.4 – The sets of best reply strategies and the set of Nash
equilibria of the strategic ceh-game of Example 6.1.

Next, using a similar analysis as before, one can show that the set of best reply
strategies for player 2 against a strategy of player 1, which is visualized in Figure
6.4b, is, for all x̂1 ∈ X1, given by

BR2(x̂1) =


{

x2 ∈ X2
∣∣ 2 ≤ xA

2 ≤ 4 − x̂A
1
}

, if 0 ≤ x̂A
1 < 2;{

x2 ∈ X2
∣∣ xA

2 = 2
}

, if 2 ≤ x̂A
1 ≤ 6;{

x2 ∈ X2
∣∣ 8 − x̂A

1 ≤ xA
2 ≤ 2

}
, if 6 < x̂A

1 ≤ 8.

(6.3)

Combining both sets of best reply strategies yield the set of Nash equilibria. In this
example, it follows that

NE(G) =
{

(x1, x2) ∈ X1 × X2
∣∣ 2 ≤ xA

1 ≤ 6 and xA
2 = 2

}
,

as also indicated in Figure 6.4.

We conclude this example by remarking that, for all x ∈ NE(G), it holds that

π(x) = π((xA
1 , xB

1 ), (2, 2)) = (4, 4),

whereas CEA (E, c) = CEA (8, (8, 4)) = (4, 4) too. △

Example 6.1 exposes various features of the newly introduced model of claims prob-
lems with estate holders. In the example Nash equilibria exist. This leads to the
obvious question whether this is the case for all strategic ceh-games associated to
ceh-problems. In Section 6.3, we study this question.
Moreover, in the example all Nash equilibria lead to the same pay-off vector, which
is in fact also equal to the awards vector specified by the constrained equal awards
rule used to divide both estates. In Section 6.5, it becomes clear that, if either the
constrained equal awards rule (Section 6.5.2) or the proportional rule (Section 6.5.1)
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is used to divide all estates, it is always the case that all Nash equilibria lead to the
awards vector specified by the corresponding clams rule.
Furthermore, the unique Nash equilibrium pay-off vector of Example 6.1 is efficient,
that is, the sum of the pay-offs of the players is equal to the total available estate.
Section 6.4 studies the question whether Nash equilibrium pay-off vectors are efficient
in general.
Finally, Example 6.1 also indicates that computing the set of Nash equilibria is not a
straightforward task. In fact, the computation of the pay-off vector for every possible
strategy combination strongly relies on the (combination of) claims rules that are
used to divide the estates. Each claims rule has its own path of awards (see Section
2.2) which ultimately determines the number of convenient areas in which the set of
strategy combinations can be divided. Interestingly, for the proportional rule, this
path of awards is just one line segment, which allows for a streamlined computation
of the set of Nash equilibria in case there are only two estate holders and two players.
This is formalized in Section 6.5.1.

6.3 Existence of Nash equilibria in ceh-games

This section studies the question whether Nash equilibria exist for all strategic ceh-
games associated to ceh-problems, as was the case in Example 6.1. We formulate a
sufficient condition on the underlying claims rules to guarantee the existence of Nash
equilibria in ceh-games. We show that there always exists a Nash equilibrium, if all
underlying claims rules satisfy a property called partial concavity.

Definition 6.3 Let φ be a claims rule. Then φ satisfies partial concavity on CN if,
for all (E, c) ∈ CN and all i ∈ N , the function fi : R+ → R+ defined by
fi(x) = φi(E, (c−i, x)) for all x ∈ R+ is concave. ◁

In other words, a claims rule satisfies partial concavity if for every player it is concave
in the claim of this player, given the claims of the other players. Requiring partial
concavity is sufficient to show the existence of Nash equilibria in ceh-games, using the
(general) existence theorem for Nash equilibria as formulated in Theorem 2.1.

Theorem 6.1 Let ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N be a ceh-problem and let
G = (N, {Xi}i∈N , {πi}i∈N ) be the associated strategic ceh-game. If, for all k ∈ M ,
φk satisfies partial concavity, then NE(G) ̸= ∅.

Proof: Assume that, for all k ∈ M , φk satisfies partial concavity. We show that
NE(G) ̸= ∅ by verifying the four conditions as formulated in Theorem 2.1.
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Let i ∈ N . Recall that

Xi =
{

xi ∈ RM

∣∣∣∣∣ xi ≥ 0 and
∑
k∈M

xk
i = ci

}
.

Consequently, Xi ⊆ Rmi , with mi = |M | ∈ N fulfilling the first condition. Fur-
thermore, it can be easily seen that Xi is non-empty, convex, closed and bounded,
satisfying the second condition.
The third condition, that is, πi is continuous, follows from the fact πi is the sum of the
awards specified by φk for all k ∈ M , according to Definition 6.2, and the (general)
assumption that φk

i is continuous for all k ∈ M .
Finally, to prove that gi : Xi → R, with gi(xi) = πi(xi, x−i) is concave for all
x−i ∈ X−i, note that

πi(x) =
∑
k∈M

φk
i (Ek, (xk

i )i∈N ).

Then it immediately follows that gi is concave, since φk
i is concave in the claim of

player i and the sum of concave functions is again concave. Hence, also the fourth
condition is satisfied.
Consequently, by using Theorem 2.1, we can conclude that NE(G) ̸= ∅. □

Theorem 6.1 shows that partial concavity for all the underlying claims rules is a suf-
ficient condition to guarantee the existence of Nash equilibria in ceh-games. Proposi-
tion 6.1 shows that both the constrained equal awards rule and the proportional rule
satisfy partial concavity, as well as the concede and divide rule on CN with |N | = 2.

Proposition 6.1 CEA, PROP and CD satisfy partial concavity.

Proof: First, we focus on the constrained equal awards rule. Let (E, c) ∈ CN and
let i ∈ N . To show that fi : R+ → R+ with fi(x) = CEAi (E, (c−i, x)) for all x ∈ R+
is concave, we show that

CEAi (E, (c−i, (1 − λ)x + λy)) ≥ (1 − λ)CEAi (E, (c−i, x)) + λCEAi (E, (c−i, y)) ,
(6.4)

for all x, y ∈ R+ and all λ ∈ [0, 1]. So, let x, y ∈ R+ and λ ∈ [0, 1] and assume w.l.o.g.
that x ≤ y, so that x ≤ (1 − λ)x + λy ≤ y. We distinguish between three cases:

I) CEAi (E, (c−i, y)) ≤ x;

II) x < CEAi (E, (c−i, y)) ≤ (1 − λ)x + λy;

III) (1 − λ)x + λy < CEAi (E, (c−i, y)) ≤ y.

Case I) For the first case, where CEAi (E, (c−i, y)) ≤ x, we immediately have that,
due to the nature of the constrained equal awards rule,

CEAi (E, (c−i, x)) = CEAi (E, (c−i, (1 − λ)x + λy)) = CEAi (E, (c−i, y)) .



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 153PDF page: 153PDF page: 153PDF page: 153

Chapter 6. Strategy in claims problems with estate holders 141

Consequently, Equation (6.4) is satisfied with equality.
Case II) In the second case, where x < CEAi (E, (c−i, y)) ≤ (1 − λ)x + λy, we have
that {

CEAi (E, (c−i, x)) = x;
CEAi (E, (c−i, (1 − λ)x + λy)) = CEAi (E, (c−i, y)) .

Hence,

CEAi (E, (c−i, (1 − λ)x + λy)) = (1 − λ)CEAi (E, (c−i, (1 − λ)x + λy))
+ λCEAi (E, (c−i, (1 − λ)x + λy))

= (1 − λ)CEAi (E, (c−i, y)) + λCEAi (E, (c−i, y))
> (1 − λ)x + λCEAi (E, (c−i, y))
= (1 − λ)CEAi (E, (c−i, x)) + λCEAi (E, (c−i, y)) ,

proving Equation (6.4).
Case III) Finally, for the third case, where

(1 − λ)x + λy < CEAi (E, (c−i, y)) ≤ y,

we have that {
CEAi (E, (c−i, x)) = x;
CEAi (E, (c−i, (1 − λ)x + λy)) = (1 − λ)x + λy.

Hence,

CEAi (E, (c−i, (1 − λ)x + λy)) = (1 − λ)x + λy

≥ (1 − λ)CEAi (E, (c−i, x)) + λCEAi (E, (c−i, y)) ,

where the inequality follows from claims boundedness. This proves Equation (6.4).
Consequently, the constrained equal awards rule satisfies partial concavity on CN .

Secondly, we show that the proportional rule satisfies partial concavity. Let
(E, c) ∈ CN and i ∈ N . As before, to show that fi : R+ → R+ with
fi(x) = PROPi (E, (c−i, x)) for all x ∈ R+ is concave, we show that

PROPi (E, (c−i, (1 − λ)x + λy)) ≥ (1−λ)PROPi (E, (c−i, x))+λPROPi (E, (c−i, y)) ,
(6.5)

for all x, y ∈ R+ and all λ ∈ [0, 1]. So, let x, y ∈ R+ and λ ∈ [0, 1] and again assume
w.l.o.g. that x ≤ y, so that x ≤ (1 − λ)x + λy ≤ y. Here, we distinguish between four
cases:

I) E ≤ x +
∑

j∈N\{i} cj ;
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II) x +
∑

j∈N\{i} cj < E ≤ (1 − λ)x + λy +
∑

j∈N\{i} cj ;

III) (1 − λ)x + λy +
∑

j∈N\{i} cj < E ≤ y +
∑

j∈N\{i} cj ;

IV) y +
∑

j∈N\{i} cj < E.

Before dealing with the four cases separately, define g : R+ → R+ as

g(z) = zE

z +
∑

j∈N\{i} cj
,

for all z ∈ R+. Then we have that g is concave, since

g′′(z) =
−2E

∑
j∈N\{i} cj

(z +
∑

j∈N\{i} cj)3 ≤ 0,

for all z ∈ R+. In particular, we have that

g((1 − λ)x + λy) ≥ (1 − λ)g(x) + λg(y). (6.6)

Case I) In the first case, where E ≤ x +
∑

j∈N\{i} cj , we immediately have that
PROPi (E, (c−i, x)) = g(x);
PROPi (E, (c−i, (1 − λ)x + λy)) = g((1 − λ)x + λy);
PROPi (E, (c−i, y)) = g(y).

Hence,

PROPi (E, (c−i, (1 − λ)x + λy)) = g((1 − λ)x + λy)
≥ (1 − λ)g(x) + λg(y)
= (1 − λ)PROPi (E, (c−i, x)) + λPROPi (E, (c−i, y)) ,

where the inequality follows from Equation (6.6). This shows that Equation (6.5) is
satisfied.
Case II) In the second case, we assume that

x +
∑

j∈N\{i}

cj < E ≤ (1 − λ)x + λy +
∑

j∈N\{i}

cj .

Then we have that
PROPi (E, (c−i, x)) = x;
PROPi (E, (c−i, (1 − λ)x + λy)) = g((1 − λ)x + λy);
PROPi (E, (c−i, y)) = g(y).
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Hence,

PROPi (E, (c−i, (1 − λ)x + λy)) = g((1 − λ)x + λy)
≥ (1 − λ)g(x) + λg(y)

= (1 − λ) xE

x +
∑

j∈N\{i} cj
+ λg(y)

> (1 − λ)x + λg(y)
= (1 − λ)PROPi (E, (c−i, x)) + λPROPi (E, (c−i, y)) ,

proving Equation (6.5).
Case III) In the third case, we assume that

(1 − λ)x + λy +
∑

j∈N\{i}

cj < E ≤ y +
∑

j∈N\{i}

cj .

Then we have that
PROPi (E, (c−i, x)) = x;
PROPi (E, (c−i, (1 − λ)x + λy)) = (1 − λ)x + λy;
PROPi (E, (c−i, y)) = g(y).

Hence,

PROPi (E, (c−i, (1 − λ)x + λy)) = (1 − λ)x + λy

≥ (1 − λ)x + λ
yE

y +
∑

j∈N\{i} cj

= (1 − λ)x + λg(y)
= (1 − λ)PROPi (E, (c−i, x)) + λPROPi (E, (c−i, y)) ,

proving Equation (6.5).
Case IV) Finally, in the fourth case, where y +

∑
j∈N\{i} cj < E, we have that

PROPi (E, (c−i, x)) = x;
PROPi (E, (c−i, (1 − λ)x + λy)) = (1 − λ)x + λy;
PROPi (E, (c−i, y)) = y.

Hence,

PROPi (E, (c−i, (1 − λ)x + λy)) = (1 − λ)x + λy

= (1 − λ)PROPi (E, (c−i, x)) + λPROPi (E, (c−i, y)) ,
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proving Equation (6.5).
Together, this shows that the proportional rule satisfies partial concavity on CN .

For the third and final statement, we show that the concede and divide rule satisfies
partial concavity. Let (E, c) ∈ CN with |N | = 2, i ∈ N and j ∈ N \ {i}. To show that
fi : R+ → R+ with fi(x) = CDi (E, (cj , x)) for all x ∈ R+ is concave, we provide an
explicit expression for fi and sketch its graph. For this, we distinguish between two
cases:

I) cj ≥ E;

II) cj < E.

Case I) For the first case, we assume that cj ≥ E. Then it readily follows that, for
all x ∈ R+,

fi(x) =
{

1
2 x, if x ≤ E;
1
2 E, if x > E,

since player j concedes nothing in this case. This is visualized in Figure 6.5a. Clearly,
fi is concave.

R+

R+

0
0 E

1
2E

fi(x)

(a) Case I.

R+

R+

0
0 E − cj E

E − 1
2cj

E − cj

fi(x)

(b) Case II.

Figure 6.5 – The function values fi(x) for the concede and divide
rule in the proof of Proposition 6.1.

Case II) For the second case, we assume that cj < E. To provide the explicit expres-
sion for fi, we first remark that

fi(x) = x, (6.7)
for all x ≤ E − cj , because player j concedes enough to player i. Secondly, for all
E − cj < x ≤ E, we see that

fi(x) = max {E − cj , 0} + E − max {E − x, 0} − max {E − cj , 0}
2

= E − cj + E − (E − x) − (E − cj)
2
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= 1
2 (E + x − cj) . (6.8)

Finally, for all x > E, we see that

fi(x) = max {E − cj , 0} + E − max {E − x, 0} − max {E − cj , 0}
2

= E − cj + E − (E − cj)
2

= E − 1
2 cj . (6.9)

By combining Equations (6.7), (6.8) and (6.9), we thus have that, for all x ∈ R+,

fi(x) =


x, if x ≤ E − cj ;
1
2 (E + x − cj) , if E − cj < x ≤ E;
E − 1

2 cj , if x > E.

This is visualized in Figure 6.5b. Clearly, fi(x) is concave.
Consequently, the concede and divide rule satisfies partial concavity on CN with
|N | = 2. □

The following two examples show that, in general, the constrained equal losses rule
and the reverse Talmud rule do not satisfy partial concavity.

0 5 10 15
0

5
2

f2(x)

Figure 6.6 – The function values f2(x) for the constrained equal
losses rule of Example 6.2.

Example 6.2 Consider the claims problem (E, c) ∈ CN with N = {1, 2}, E = 10
and c = (20, 15). We show that the constrained equal losses rule does not satisfy
partial concavity by showing that f2(x) = CEL2 (10, (20, x)) is not concave on [0, 15].
First, note that f2(x) = 0 for all 0 ≤ x ≤ 10, due to the nature of the constrained
equal losses rule. Secondly, for 10 < x ≤ 15, it can be readily verified that

f2(x) = CEL2 (10, (20, x)) = 1
2 x − 5.

Together, we have that, for all x ∈ [0, 15],

f2(x) =
{

0, if 0 ≤ x ≤ 10;
1
2 x − 5, if 10 < x ≤ 15,

which is visualized in Figure 6.6. Clearly, f2 is not concave. △



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 158PDF page: 158PDF page: 158PDF page: 158

146 6.3. Existence of Nash equilibria in ceh-games

0 2 4 6 8 10 12 14 15
0

2

4

6

8
8.25

f1(x)

Figure 6.7 – The function values f1(x) for the reverse Talmud
rule of Example 6.3.

Example 6.3 Consider the claims problem (E, c) ∈ CN with N = {1, 2}, E = 10
and c = (15, 2). We show that the reverse Talmud rule does not satisfy partial
concavity by showing that f1(x) = RTAL1 (10, (x, 2)) is not concave on [0, 15].
Obviously, for 0 ≤ x ≤ 8, it holds that f1(x) = x. Furthermore, due to the nature of
the reverse Talmud rule, it can be readily verified that

f1(x) = RTAL1 (10, (x, 2))) = 8,

for 8 < x ≤ 14 and
f1(x) = RTAL1 (10, (x, 2))) = 1

4 x + 9
2 ,

for 14 < x ≤ 15. Together, we have that, for all x ∈ [0, 15],

f1(x) =


x, if 0 ≤ x ≤ 8;
8, if 8 < x ≤ 14;
1
4 x − 9

2 , if 14 < x ≤ 15,

which is visualized in Figure 6.7. Clearly, f1 is not concave. △

For claims problems with only two players, the Talmud rule boils down to the concede
and divide rule, which does satisfy partial concavity. However, for claims problems
with three (or more) players, partial concavity is no longer guaranteed, as the following
example shows.

Example 6.4 Consider the claims problem (E, c) ∈ CN with N = {1, 2, 3}, E = 20
and c = (12, 10, 7). We show that the Talmud rule does not satisfy partial concavity
by showing that f3(x) = TAL3 (20, (12, 10, x)) is not concave on [0, 7].
First, note that, for all x ∈ [0, 7], it holds that 1

2 (12 + 10 + x) = 11 + 1
2 x < 20.

Consequently, for all x ∈ [0, 7],

f3(x) = TAL3 (20, (12, 10, x)) = x − CEA3
(
2 + x, (6, 5, 1

2 x)
)

.
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0 1 2 3 4 5 6 7
0

1

2

3

4

f3(x)

Figure 6.8 – The function values f3(x) for the Talmud rule of
Example 6.4.

Focusing on the latter term, we see that, for all 0 ≤ x ≤ 4, it holds that 1
2 x ≤ 1

3 (2+x)
and hence, player 3 is awarded his full claim. Consequently, for all 0 ≤ x ≤ 4,

f3(x) = x − CEA3
(
2 + x, (6, 5, 1

2 x)
)

= x − 1
2 x = 1

2 x.

Furthermore, we see that, for all 4 ≤ x ≤ 7, it holds that 1
3 (2 + x) ≤ 1

2 x ≤ 5.
Consequently, for all 4 ≤ x ≤ 7,

f3(x) = x − CEA3
(
2 + x, (6, 5, 1

2 x)
)

= x − 1
3 (2 + x) = 2

3 x − 2
3 .

Together, we have that, for all x ∈ [0, 7],

f3(x) =
{

1
2 x, if 0 ≤ x ≤ 4;
2
3 x − 2

3 , if 4 < x ≤ 7,

which is visualized in Figure 6.8. Due to the change in slope at x = 4 it can be seen
that f3 is not concave. △

To conclude this section, we return to claims problems with estate holders. Theorem
6.1 guarantees the existence of Nash equilibria in case all underlying claims rules sat-
isfy partial concavity, that is, it shows that partial concavity is a sufficient condition.
In the three examples above, we showed that, in general, the constrained equal losses
rule, the reverse Talmud rule and the Talmud rule do not satisfy partial concavity.
This leaves the question whether Nash equilibria also always exist for ceh-problems
with underlying claims rules that do not satisfy partial concavity. In Example 6.5
below, we show that the answer to this question is, in general, negative. In the ex-
ample, we provide a claims problem with two estate holders, two players and the
constrained equal losses rule as underlying claims rule for both estates and show that
for this ceh-problem, there are no Nash equilibria in the associated ceh-game. In
fact, this ceh-problem stems from the claims problem as described in Example 6.2 by
separating the estate in two equal parts.



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 160PDF page: 160PDF page: 160PDF page: 160

148 6.3. Existence of Nash equilibria in ceh-games

Similarly, by separating the estate of the claims problem as described in Example
6.3, one can construct a ceh-problem with two estate holders, two players and the
reverse Talmud rule as underlying claims rule for both estates and show that for this
ceh-problem, there are no Nash equilibria in the associated ceh-game. For the Talmud
rule however, a ceh-problem with at least three players is needed and in that case,
constructing such a ceh-problem with no Nash equilibria in the associated ceh-game
is more complex.
For Example 6.5 below, we benefited from the path of awards for the constrained
equal losses rule as depicted in Figure 2.2b in Section 2.2.

Example 6.5 Consider the ceh-problem ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N with
M = {A, B}, N = {1, 2}, EA = EB = 5, φA = φB = CEL and c = (20, 15).
Moreover, consider its associated strategic ceh-game G = (N, {Xi}i∈N , {πi}i∈N ).
To show that NE(G) = ∅, we determine, for all (x1, x2) ∈ X1 × X2, both BR1(x2)
and BR2(x1).
With regard to set of best reply strategies for player 1, let x2 ∈ X2. We show that

BR1(x2) =
{

x1 ∈ X1
∣∣ 5 ≤ xA

1 + xA
2 ≤ 30 and xA

2 ≤ xA
1 ≤ xA

2 + 5
}

, (6.10)

which is visualized in Figure 6.9.
We start out by showing that x1 ∈ BR1(x2) implies that 5 ≤ xA

1 + xA
2 ≤ 30, which is

equivalent to {
xA

1 + xA
2 ≥ 5;

xB
1 + xB

2 ≥ 5.

Let x1 ∈ BR1(x2). For the sake of contradiction, we distinguish between two cases:
either I) xA

1 + xA
2 < 5 or II) xB

1 + xB
2 < 5.

Case I) First, we assume that xA
1 + xA

2 < 5, that is, the strategy combination (x1, x2)
lies inside the bottom left light gray area of Figure 6.9. Then it holds that

CEL1
(
EA, (xA

1 , xA
2 )
)

= xA
1 ,

for the estate EA and similarly, for the estate EB , it holds that, by using that
xA

1 + xB
1 = c1 = 20 and xA

2 + xB
2 = c2 = 15 (see also Figure 6.9),

CEL1
(
EB , (xB

1 , xB
2 )
)

=
{

5, if xA
1 ≤ xA

2 ;
5 − 1

2 (xA
1 − xA

2 ), if xA
1 > xA

2 .

Consequently,

π1(x1, x2) =
{

xA
1 + 5, if xA

1 ≤ xA
2 ;

5 + 1
2 (xA

1 + xA
2 ), if xA

1 > xA
2 .
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To show that we now have that x1 /∈ BR1(x2), define x̄1 ∈ X1 as follows:{
x̄A

1 = 5 − xA
2 ;

x̄B
1 = 15 + xA

2 .

Then it readily follows that

CEL1
(
EA, (x̄A

1 , xA
2 )
)

= x̄A
1 ,

and

CEL1
(
EB , (x̄B

1 , xB
2 )
)

=
{

5
2 + xA

2 , if xA
2 ≤ 5

2 ;
5, if xA

2 > 5
2 .

Hence, it follows that π1(x̄1, x2) > π1(x1, x2). Indeed, if xA
2 ≤ 5

2 and xA
1 < xA

2 , then
xA

1 < 5
2 and consequently,

π1(x̄1, x2) = x̄A
1 + 5

2 + xA
2 = 5 − xA

2 + 5
2 + xA

2 = 15
2 > xA

1 + 5 = π1(x1, x2).

Furthermore, if xA
2 ≤ 5

2 and xA
1 > xA

2 , and since xA
1 + xA

2 < 5, we have that

π1(x̄1, x2) = 15
2 > 5 + 1

2 (xA
1 + xA

2 ) = π1(x1, x2).

If xA
2 ≤ 5

2 and xA
1 = xA

2 , then xA
1 < 5

2 and xA
2 < 5

2 due to the fact that xA
1 + xA

2 < 5
and consequently,

π1(x̄1, x2) = x̄A
1 + 5

2 + xA
2 = 5 − xA

2 + 5
2 + xA

2 = 15
2 > xA

1 + 5 = π1(x1, x2).

Finally, if xA
2 > 5

2 , then automatically xA
1 < xA

2 due to the fact that xA
1 + xA

2 < 5 and
consequently,

π1(x̄1, x2) = x̄A
1 + 5 = 10 − xA

2 > xA
1 + 5 = π1(x1, x2).

Ultimately, this proves that x1 /∈ BR1(x2) as x̄1 ∈ X1 always yields a strictly higher
pay-off. Consequently, xA

1 + xA
2 ≥ 5.

Case II) Secondly, we assume that xB
1 + xB

2 < 5, that is, the strategy combination
(x1, x2) lies inside the top right light gray area of Figure 6.9. Following a similar
(symmetric in fact) line of reasoning as above, we also reach the conclusion that
x1 /∈ BR1(x2). Consequently, xB

1 + xB
2 ≥ 5 and thus, x1 ∈ BR1(x2) implies that{

xA
1 + xA

2 ≥ 5;
xB

1 + xB
2 ≥ 5.
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What is left to prove is the fact that x1 ∈ BR1(x2) implies that xA
2 ≤ xA

1 ≤ xA
2 + 5.

For this, let x1 ∈ BR1(x2) and note that we can assume that 5 ≤ xA
1 + xA

2 ≤ 30.
Then it is readily verified that

CEL1
(
EA, (xA

1 , xA
2 )
)

=


max

{
0, 5

2 − 1
2 (xA

2 − xA
1 )
}

, if xA
1 < xA

2 ;
5
2 + 1

2 (xA
1 − xA

2 ), if xA
2 ≤ xA

1 ≤ xA
2 + 5;

5, if xA
1 > xA

2 + 5,

and, by using that xA
1 + xB

1 = 20 and xA
2 + xB

2 = 15,

CEL1
(
EB , (xB

1 , xB
2 )
)

=


5, if xA

1 < xA
2 ;

5 − 1
2 (xA

1 − xA
2 ), if xA

2 ≤ xA
1 ≤ xA

2 + 5;
max

{
0, 5 − 1

2 (xA
1 − xA

2 )
}

, if xA
1 > xA

2 + 5.

Hence,

π1(x1, x2) =


max

{
0, 5

2 − 1
2 (xA

2 − xA
1 )
}

+ 5, if xA
1 < xA

2 ;
15
2 , if xA

2 ≤ xA
1 ≤ xA

2 + 5;
5 + max

{
0, 5 − 1

2 (xA
1 − xA

2 )
}

, if xA
1 > xA

2 + 5.

To show that for x1 ∈ X1 with xA
1 < xA

2 it holds that x1 /∈ BR1(x2), assume that
xA

1 < xA
2 and define x̄1 ∈ X1 as follows:{

x̄A
1 = xA

2 ;
x̄B

1 = 20 − xA
2 .

Then it readily follows that

π1(x̄1, x2) = 15
2 > max

{
0, 5

2 − 1
2 (xA

2 − xA
1 )
}

+ 5 = π1(x1, x2), (6.11)

since 5
2 − 1

2 (xA
2 − xA

1 ) < 5
2 . Consequently, x1 /∈ BR1(x2).

Finally, to show that for x1 ∈ X1 with xA
1 > xA

2 + 5 it holds that x1 /∈ BR1(x2),
assume that xA

1 > xA
2 + 5 and define x̄1 ∈ X1 as follows:{

x̄A
1 = xA

2 + 5;
x̄B

1 = 15 − xA
2 .

Then it readily follows that

π1(x̄1, x2) = 15
2 > 5 + max

{
0, 5 − 1

2 (xA
1 − xA

2 )
}

= π1(x1, x2), (6.12)

since 5 − 1
2 (xA

1 − xA
2 ) < 5

2 . Consequently, x1 /∈ BR1(x2).
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0 5 10 15 20
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X1
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BR1(x2)

BR2(x1)

BR2(x1)

Figure 6.9 – The sets of best reply strategies for both players of
the strategic ceh-game of Example 6.5.

Together, this shows that xA
2 ≤ xA

1 ≤ xA
2 + 5.

To conclude the proof that Equation (6.10) indeed describes the set of best reply
strategies for player 1 against x2, note that the above analysis proves one inclusion.
The reverse inclusion immediately follows from the observation that the pay-off for
player 1 within this set is equal to 15

2 and thus independent of x2. Together with
the inequalities of Equations (6.11) and (6.12), this shows that playing x1 ∈ X1 with
5 ≤ xA

1 + xA
2 ≤ 30 and xA

2 ≤ xA
1 ≤ xA

2 + 5 is indeed a best reply strategy.

Next, with regard to player 2, it can be verified along similar lines that

BR2(x1) =


{

x2 ∈ X2
∣∣ xA

2 ≥ 5 + xA
1
}

, if 0 ≤ xA
1 < 10;{

x2 ∈ X2
∣∣ xA

2 = 15 or xA
2 = 0

}
, if xA

1 = 10;{
x2 ∈ X2

∣∣ xA
2 ≤ xA

1 − 10
}

, if 10 < xA
1 ≤ 20,

(6.13)

for all x1 ∈ X1, as visualized in Figure 6.9.
Then it follows, as also can be seen from Figure 6.9, that there is no strategy combina-
tion x = (x1, x2) ∈ X for which x1 ∈ BR1(x2) and x2 ∈ BR2(x1). This immediately
implies that NE(G) = ∅. △
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6.4 Efficiency of Nash equilibria in ceh-games

This section studies efficiency of Nash equilibria in ceh-games associated to ceh-
problems, which means that, in a Nash equilibrium, all estates are completely divided
among the players. All Nash equilibrium pay-off vectors of Example 6.1 turned out to
be efficient. In fact, Theorem 6.2 shows that efficiency is satisfied if a weak condition
on the underlying claims rules is satisfied. This condition is called strict marginality
and is formalized in Definition 6.4.

Definition 6.4 Let φ be a claims rule. Then φ satisfies strict marginality on CN if,
for all (E, c) ∈ CN with

∑
i∈N ci > E, it holds that there exists a player j ∈ N and

ε > 0 such that

i) cj − ε ≥ 0;

ii)
∑

i∈N ci − ε > E;

iii) for all 0 < δ ≤ ε : φj(E, c) − φj(E, (c−j , cj − δ)) < δ. ◁

Strict marginality thus requires that there exists a player for which a small decrease
in this player’s claim leads to an even smaller decrease in the award of this player.
Moreover, it is a weak condition in the sense that basically all common rules satisfy
strict marginality. This includes the constrained equal awards rule, the constrained
equal losses rule, the proportional rule, the Talmud rule, and the concede and divide
rule, for which the proofs are straightforward.
Theorem 6.2 shows that strict marginality is a sufficient condition to guarantee effi-
ciency for all Nash equilibria.

Theorem 6.2 Let ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N be a claims problem with es-
tate holders and let G = (N, {Xi}i∈N , {πi}i∈N ) be the associated strategic ceh-game.
Moreover, let x̂ ∈ NE(G) be a Nash equilibrium. Then the following two statements
hold:

i) if
∑

i∈N ci ≤ E, then
π(x̂) = c;

ii) if
∑

i∈N ci > E and, for all k ∈ M , φk satisfies strict marginality, then∑
i∈N

πi(x̂) = E.

Proof: i) For the first statement, assume that
∑

i∈N ci ≤ E. Let i ∈ N and note
that

πi(x̂−i, x̂i) ≥ πi(x̂−i, xi),
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for all xi ∈ Xi. The idea of the proof is to pinpoint a specific strategy yi ∈ Xi for
player i for which πi(x̂−i, yi) = ci. For this, choose yi ∈ Xi such that, for all k ∈ M ,

0 ≤ yk
i ≤ max{0, Ek −

∑
j∈N\{i}

x̂k
j }. (6.14)

Note that such a strategy exists, since, for all k ∈ M ,∑
k∈M

max{0, Ek −
∑

j∈N\{i}

x̂k
j } ≥

∑
k∈M

Ek −
∑
k∈M

∑
j∈N\{i}

x̂k
j

= E −
∑

j∈N\{i}

∑
k∈M

x̂k
j

= E −
∑

j∈N\{i}

cj

≥ ci,

where the final inequality follows from the fact that
∑

i∈N ci ≤ E.
To show that πi(x̂−i, yi) = ci, we first show that, for all k ∈ M ,

φk
i (Ek, (x̂k

−i, yk
i )) = yk

i .

Let k ∈ M . We distinguish between two cases: either I) Ek −
∑

j∈N\{i} x̂k
j ≤ 0 or

II) Ek −
∑

j∈N\{i} x̂k
j > 0.

Case I) In the first case, assume that

Ek −
∑

j∈N\{i}

x̂k
j ≤ 0.

Then it follows from Equation (6.14) that yk
i = 0. Consequently, by combining non-

negativity and claims boundedness,

φk
i (Ek, (x̂k

−i, yk
i )) = 0 = yk

i .

Case II) In the second case, assume that

Ek −
∑

j∈N\{i}

x̂k
j > 0.

Then it follows from Equation (6.14) that

yk
i +

∑
j∈N\{i}

x̂k
j ≤ Ek.
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Consequently,
φk

i (Ek, (x̂k
−i, yk

i )) = yk
i .

We may conclude that φk
i (Ek, (x̂k

−i, yk
i )) = yk

i for all k ∈ M . Hence,

πi(x̂−i, yi) =
∑
k∈M

φk
i (Ek, (x̂k

−i, yk
i )) =

∑
k∈M

yk
i = ci.

Ultimately, we obtain that

π(x̂) = πi(x̂−i, x̂i) ≥ πi(x̂−i, yi) = ci.

Furthermore, due to claims boundedness for the Nash equilibrium pay-off (see Equa-
tion (6.1)), we also have that

πi(x̂) ≤ ci.

Consequently, πi(x̂) = ci.

ii) For the second statement, assume that
∑

i∈N ci > E and that, for all k ∈ M , φk

satisfies strict marginality. To show that
∑

i∈N πi(x̂) = E, we first show that, for all
k ∈ M , ∑

i∈N

x̂k
i ≥ Ek. (6.15)

Suppose for the sake of contradiction that there exists an ℓ ∈ M for which∑
i∈N x̂ℓ

i < Eℓ. Furthermore, since
∑

i∈N ci > E in this case, there also exists a
h ∈ M for which

∑
i∈N x̂h

i > Eh.
Since φh satisfies strict marginality, we know that there exists a player j ∈ N and
ε > 0 such that x̂h

j − ε ≥ 0,
∑

i∈N x̂h
i − ε > Eh and, for all 0 < δ ≤ ε,

φh
j (Eh, (x̂h

−j , x̂h
j )) − φh

j (Eh, (x̂h
−j , x̂h

j − δ)) < δ. (6.16)

Let δ > 0 be such that δ ≤ ε and
∑

i∈N x̂ℓ
i + δ < Eℓ. Define xj ∈ Xj for all k ∈ M

as follows:

xk
j =


x̂ℓ

j + δ, if k = ℓ;
x̂h

j − δ, if k = h;
x̂k

j , otherwise.

Consequently,2

πj(x̂) − πj(x̂−j , xj) =
∑
k∈M

φk
j (Ek, (x̂k

i )i∈N ) −
∑
k∈M

φk
j (Ek, (x̂k

−j , xk
j ))

= φℓ
j(Eℓ, (x̂ℓ

i)i∈N ) − φℓ
j(Eℓ, (x̂ℓ

−j , xℓ
j))

2Here, we use the feature that the pay-off functions of the players are separable in the estates.
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+ φh
j (Eh, (x̂h

i )i∈N ) − φh
j (Eh, (x̂h

−j , xh
j ))

= x̂ℓ
j − xℓ

j + φh
j (Eh, (x̂h

i )i∈N ) − φh
j (Eh, (x̂h

−j , xh
j ))

= x̂ℓ
j − (x̂ℓ

j + δ) + φh
j (Eh, (x̂h

i )i∈N ) − φh
j (Eh, (x̂h

−j , xh
j ))

< −δ + δ = 0.

Here, the second equality follows from the fact that

φk
j (Ek, (x̂k

i )i∈N ) = φk
j (Ek, (x̂k

−j , xk
j )),

for all k ∈ M with k ̸= ℓ, h. Moreover, for the third and fourth equality, we used that{
φℓ

j(Eℓ, (x̂ℓ
i)i∈N ) = x̂ℓ

j ;
φℓ

j(Eℓ, (x̂ℓ
−j , xℓ

j)) = xℓ
j = x̂ℓ

j + δ,

since both
∑

i∈N x̂ℓ
i < Eℓ and

∑
i∈N x̂ℓ

i + δ < Eℓ. Finally, the inequality is due to
Equation (6.16).
Subsequently, we thus have that πj(x̂) < πj(x̂−j , xj), contradicting the fact that x̂ is
a Nash equilibrium. Hence, Equation (6.15) is satisfied, i.e, for all k ∈ M ,∑

i∈N

x̂k
i ≥ Ek.

This immediately implies that, for all k ∈ M ,∑
i∈N

φk
i (Ek, (x̂k

j )j∈N ) = Ek.

Consequently, ∑
i∈N

πi(x̂) =
∑
i∈N

∑
k∈M

φk
i (Ek, (x̂k

j )j∈N )

=
∑
k∈M

∑
i∈N

φk
i (Ek, (x̂k

j )j∈N )

=
∑
k∈M

Ek = E. □

The proof of Theorem 6.2 indicates that, besides efficiency for Nash equilibria, it
also holds that, for each estate, the players claim in total at least the estate in every
Nash equilibrium. In other words, a strategy combination for which there exists an
estate that is (strictly) sufficient to fulfill all claims on this estate, that is, a strategy
combination for which Equation (6.15) is not satisfied for all k ∈ M , is not a Nash
equilibrium.
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6.5 Uniform claims problems with estate holders

The previous section establishes efficiency for the Nash equilibrium pay-off under the
condition of strict marginality for the underlying claims rules. Since claims rules also
satisfy efficiency, this allows for a direct comparison between Nash equilibria pay-off
vectors in a strategic ceh-game and the awards vectors of the claims rules underlying
the associated ceh-problem. Recall that in Example 6.1, all Nash equilibria lead to
the same pay-off vector, which is equal to the awards vector of the common underlying
claims rule, the constrained equal awards rule.
In this section, we study a special type of ceh-problems: uniform ceh-problems. In
a uniform claims problem with estate holders, all the underlying claims rules are
identical. As a consequence, there is only one awards vector to compare with the
Nash equilibria pay-off vectors. In particular, we deal with uniform ceh-problems
with the proportional rule and the constrained equal awards rule as common claims
rule.

6.5.1 Proportional rule

First, we focus on uniform ceh-problems with the proportional rule as underlying
common claims rule. In Theorem 6.3, we show that each Nash equilibrium results in
a pay-off vector which is equal to the awards vector of the proportional rule applied
to the claims problem in which all estates are consolidated.

Theorem 6.3 Let ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N be a uniform ceh-problem and
let G = (N, {Xi}i∈N , {πi}i∈N ) be the associated strategic ceh-game. Moreover, let
x̂ ∈ NE(G) be a Nash equilibrium. If, for all k ∈ M , φk = PROP, then

π(x̂) = PROP (E, c) .

Proof: Assume that, for all k ∈ M , φk = PROP. Note that, if
∑

i∈N ci ≤ E, then

π(x̂) = c = PROP (E, c) ,

according to Theorem 6.2.
Therefore, for the remainder of the proof, assume that

∑
i∈N ci > E. The idea of the

proof is to pinpoint, for all i ∈ N , a strategy yi ∈ Xi for which it holds that

πi(x̂−i, yi) ≥ PROPi (E, c) . (6.17)

If we manage to do so, then it follows that

πi(x̂) = πi(x̂−i, x̂i) ≥ πi(x̂−i, yi) ≥ PROPi (E, c) ,
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for all i ∈ N , where the inequality is due to the fact that x̂ ∈ NE(G). Furthermore,
since the proportional rule satisfies strict marginality, we have that∑

i∈N

πi(x̂) = E =
∑
i∈N

PROPi (E, c) ,

according to Theorem 6.2. Consequently, for all i ∈ N ,

πi(x̂) = PROPi (E, c) .

To pinpoint, for all i ∈ N , a strategy yi ∈ Xi for which Equation (6.17) holds, let
i ∈ N . For notational convenience, denote for all k ∈ M ,{

Σx̂k
−i =

∑
j∈N\{i} x̂k

j ;
Σc−i =

∑
j∈N\{i} cj .

We distinguish between two cases:

I) Σx̂k
−i +

Σx̂k
−i

Σc−i
ci ≥ Ek for all k ∈ M ;

II) there exists M ′ ⊊ M, M ′ ̸= ∅ for which

Σx̂k
−i +

Σx̂k
−i

Σc−i
ci < Ek,

for all k ∈ M ′, while

Σx̂ℓ
−i +

Σx̂ℓ
−i

Σc−i
ci ≥ Eℓ,

for all ℓ ∈ M \ M ′.

Case I) In this first case, we assume that

Σx̂k
−i +

Σx̂k
−i

Σc−i
ci ≥ Ek,

for all k ∈ M . Choose the strategy yi ∈ Xi with, for all k ∈ M ,

yk
i =

Σx̂k
−i

Σc−i
ci.

Note that indeed yi ∈ Xi, since yk
i ≥ 0 for all k ∈ M and

∑
k∈M

yk
i =

∑
k∈M

Σx̂k
−i

Σc−i
ci =

∑
k∈M

∑
j∈N\{i} x̂k

j

Σc−i
ci
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=
∑

j∈N\{i}
∑

k∈M x̂k
j

Σc−i
ci =

∑
j∈N\{i} cj

Σc−i
ci = Σc−i

Σc−i
ci = ci.

Then it readily follows that

πi(x̂−i, yi) =
∑
k∈M

PROPi

(
Ek, (x̂k

−i, yk
i )
)

=
∑
k∈M

yk
i

yk
i + Σx̂k

−i

Ek

=
∑
k∈M

Σx̂k
−i

Σc−i
ci

Σx̂k
−i

Σc−i
ci + Σx̂k

−i

Ek

=
∑
k∈M

ci

ci + Σc−i
Ek

= ci∑
j∈N cj

∑
k∈M

Ek

= ci∑
j∈N cj

E

= PROPi (E, c) ,

where the second equality follows from the fact that, for all k ∈ M , Σx̂k
−i + yk

i ≥ Ek.
Hence, Equation (6.17) is satisfied.
Case II) In the second case, we assume that there exists M ′ ⊊ M, M ′ ̸= ∅ for which

Σx̂k
−i +

Σx̂k
−i

Σc−i
ci < Ek, (6.18)

for all k ∈ M ′, while

Σx̂ℓ
−i +

Σx̂ℓ
−i

Σc−i
ci ≥ Eℓ, (6.19)

for all ℓ ∈ M \ M ′. In this case, we can assume that∑
k∈M ′

(
Ek − Σx̂k

−i

)
≤ ci.

Indeed, if
∑

k∈M ′

(
Ek − Σx̂k

−i

)
> ci, then player i is unable to make sure that every

estate Ek for k ∈ M ′ is fully divided among the players. In other words, there exists
k ∈ M ′ for which it holds that the estate Ek is large enough to fulfill all claims, i.e.,

x̂k
i + Σx̂k

−i < Ek.
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Consequently, Ek is (strictly) sufficient to fulfill all the claims, which, as was seen
in the proof of Theorem 6.2, leads to a contradiction with the fact that x̂ is Nash
equilibrium and thus efficient.
Next, we can choose a strategy yi ∈ Xi for player i using the following idea: every
estate Ek for k ∈ M ′ is exactly equal to the sum of the respective claims on that estate.
Furthermore, every estate Eℓ for ℓ ∈ M \M ′ if sufficient to cover the respective claims
on that estate. More formally, choose a strategy yi ∈ Xi with, for all k ∈ M ′,

yk
i = Ek − Σx̂k

−i,

and, for all ℓ ∈ M \ M ′,

yℓ
i =

Σx̂ℓ
−i

Σc−i
ci − εℓ,

where εℓ ≥ 0 is such that 
εℓ ≤

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i − Eℓ; (6.20)

εℓ ≤
Σx̂ℓ

−i

Σc−i
ci, (6.21)

for all ℓ ∈ M \ M ′, and

∑
ℓ∈M\M ′

εℓ =
∑

k∈M ′

(
Ek − Σx̂k

−i −
Σx̂k

−i

Σc−i
ci

)
. (6.22)

Note that εℓ exists for all ℓ ∈ M \ M ′, basically due to the fact that
∑

i∈N ci > E.
Equation (6.20) makes sure that yℓ

i + Σx̂ℓ
−i ≥ Eℓ for all ℓ ∈ M \ M ′. Moreover,

to see that indeed yi ∈ Xi, note that Equation (6.21) guarantees that yℓ
i ≥ 0 for all

ℓ ∈ M \M ′. For all k ∈ M ′, it follows from Equation (6.18) that yk
i ≥ 0. Furthermore,

by using Equation (6.22),

∑
k∈M ′

yk
i +

∑
ℓ∈M\M ′

yℓ
i =

∑
k∈M ′

(
Ek − Σx̂k

−i

)
+

∑
ℓ∈M\M ′

(
Σx̂ℓ

−i

Σc−i
ci − εℓ

)

=
∑

k∈M ′

(
Ek − Σx̂k

−i

)
+

∑
ℓ∈M\M ′

(
Σx̂ℓ

−i

Σc−i
ci

)
−

∑
ℓ∈M\M ′

εℓ

(6.22)=
∑

k∈M ′

(
Ek − Σx̂k

−i

)
+

∑
ℓ∈M\M ′

(
Σx̂ℓ

−i

Σc−i
ci

)

−
∑

k∈M ′

(
Ek − Σx̂k

−i −
Σx̂k

−i

Σc−i
ci

)
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=
∑

ℓ∈M\M ′

(
Σx̂ℓ

−i

Σc−i
ci

)
+
∑

k∈M ′

(
Σx̂k

−i

Σc−i
ci

)

=
∑
p∈M

(Σx̂p
−i

Σc−i
ci

)
= ci

Σc−i

∑
p∈M

Σx̂p
−i

= ci

Σc−i
Σc−i

= ci.

Together, we see that indeed yi ∈ Xi.
To show that Equation (6.17) is satisfied in case II, we first show that, for all
ℓ ∈ M \ M ′, it holds that

PROPi

(
Eℓ, (x̂ℓ

−i, yℓ
i )
)

≥ PROPi

(
Eℓ, (x̂ℓ

−i,
Σx̂ℓ

−i

Σc−i
ci)
)

− Σc−i∑
j∈N cj

εℓ. (6.23)

To prove Equation (6.23), let ℓ ∈ M \ M ′. Then it holds that, by using Equation
(6.20),

PROPi

(
Eℓ, (x̂ℓ

−i,
Σx̂ℓ

−i

Σc−i
ci)
)

− PROPi

(
Eℓ, (x̂ℓ

−i, yℓ
i )
)

= PROPi

(
Eℓ, (x̂ℓ

−i,
Σx̂ℓ

−i

Σc−i
ci)
)

− PROPi

(
Eℓ, (x̂ℓ

−i,
Σx̂ℓ

−i

Σc−i
ci − εℓ)

)

(6.20)=
Σx̂ℓ

−i

Σc−i
ci

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i

Eℓ −
Σx̂ℓ

−i

Σc−i
ci − εℓ

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i − εℓ
Eℓ

=
Σx̂ℓ

−i

Σc−i
ci

(
Σx̂ℓ

−i

Σc−i
ci + Σx̂ℓ

−i − εℓ
)

−
(

Σx̂ℓ
−i

Σc−i
ci − εℓ

)
·
(

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i

)
(Σx̂ℓ

−i

Σc−i
ci + Σx̂ℓ

−i

)
·
(Σx̂ℓ

−i

Σc−i
ci + Σx̂ℓ

−i − εℓ
) Eℓ

=
EℓεℓΣx̂ℓ

−i(Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i

)
·
(Σx̂ℓ

−i

Σc−i
ci + Σx̂ℓ

−i − εℓ
)

= Eℓ

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i − εℓ
·

Σx̂ℓ
−i

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i

εℓ

= Eℓ

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i − εℓ
· Σc−i

ci + Σc−i
εℓ
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= Eℓ

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i − εℓ
· Σc−i∑

j∈N cj
εℓ

(6.20)
≤ Σc−i∑

j∈N cj
εℓ.

Rewriting then gives exactly Equation (6.23).
Subsequently, by using Equations (6.22) and (6.23), we can show that Equation (6.17)
also holds in this case:

πi(x̂−i, yi) =
∑

k∈M ′

PROPi

(
Ek, (x̂k

−i, yk
i )
)

+
∑

ℓ∈M\M ′

PROPi

(
Eℓ, (x̂ℓ

−i, yℓ
i )
)

=
∑

k∈M ′

yk
i +

∑
ℓ∈M\M ′

PROPi

(
Eℓ, (x̂ℓ

−i, yℓ
i )
)

=
∑

k∈M ′

(
Ek − Σx̂k

−i

)
+

∑
ℓ∈M\M ′

PROPi

(
Eℓ, (x̂ℓ

−i, yℓ
i )
)

=
∑

k∈M ′

Σx̂k
−i

Σc−i
ci +

∑
k∈M ′

(
Ek − Σx̂k

−i −
Σx̂k

−i

Σc−i
ci

)
+

∑
ℓ∈M\M ′

PROPi

(
Eℓ, (x̂ℓ

−i, yℓ
i )
)

(6.22)=
∑

k∈M ′

Σx̂k
−i

Σc−i
ci +

∑
ℓ∈M\M ′

εℓ +
∑

ℓ∈M\M ′

PROPi

(
Eℓ, (x̂ℓ

−i, yℓ
i )
)

(6.23)
≥

∑
k∈M ′

Σx̂k
−i

Σc−i
ci +

∑
ℓ∈M\M ′

εℓ

+
∑

ℓ∈M\M ′

PROPi

(
Eℓ, (x̂ℓ

−i,
Σx̂ℓ

−i

Σc−i
ci)
)

−
∑

ℓ∈M\M ′

Σc−i∑
j∈N cj

εℓ

=
∑

k∈M ′

Σx̂k
−i

Σc−i
ci +

(
1 − Σc−i∑

j∈N cj

) ∑
ℓ∈M\M ′

εℓ +
∑

ℓ∈M\M ′

Σx̂ℓ
−i

Σc−i
ci

Σx̂ℓ
−i

Σc−i
ci + Σx̂ℓ

−i

Eℓ

= ci∑
j∈N cj

∑
k∈M ′

Σx̂k
−i

Σc−i

∑
j∈N

cj

+ ci∑
j∈N cj

∑
ℓ∈M\M ′

εℓ +
∑

ℓ∈M\M ′

ci

ci + Σc−i
Eℓ

(6.22)= ci∑
j∈N cj

∑
k∈M ′

Σx̂k
−i

Σc−i

∑
j∈N

cj

+ ci∑
j∈N cj

∑
k∈M ′

(
Ek − Σx̂k

−i −
Σx̂k

−i

Σc−i
ci

)

+
∑

ℓ∈M\M ′

ci

ci + Σc−i
Eℓ
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= ci∑
j∈N cj

(∑
k∈M ′

Ek +
∑

k∈M ′

(
Σx̂k

−i

Σc−i
Σc−i +

Σx̂k
−i

Σc−i
ci − Σx̂k

−i −
Σx̂k

−i

Σc−i
ci

))
+ ci∑

j∈N cj

∑
ℓ∈M\M ′

Eℓ

= ci∑
j∈N cj

∑
k∈M ′

Ek + ci∑
j∈N cj

∑
ℓ∈M\M ′

Eℓ

= ci∑
j∈N cj

E = PROPi (E, c) .

Consequently, we also have that Equation (6.17) is satisfied in case II.

This finishes both cases and hence, the proof. □

Interestingly, Theorem 6.3 can be used to determine the full set of Nash equilibria
of the strategic ceh-game associated to a uniform claims problem with two estate
holders, both using the proportional rule, and with two players. As we have seen
in Examples 6.1 and 6.5, computing the set of Nash equilibria is, in general, not
straightforward. Generally, this requires a tailor-made approach due to the fact that
different combinations of claims rules result in a wide variety of different pay-off
vectors.
The following theorem shows that, for a uniform claims problem with two estate
holders, both using the proportional rule, and with two players, it holds that the set
of Nash equilibria is a singleton and consists of the strategy combination in which
the players proportionally divide their claim over the two estates. The intricate proof
illustrates once more that computing the set of Nash equilibria is, in general, not
straightforward. More importantly, it relies on the fact that the path of awards for
the proportional rule, as depicted in Figure 2.2e in Section 2.2, is identified by a line
segment. This contrasts the paths of awards for the other well-known claims rules,
which all consist of multiple line segments.

Theorem 6.4 Let ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N be a uniform ceh-problem and
let G = (N, {Xi}i∈N , {πi}i∈N ) be the associated strategic ceh-game. If M = {A, B},
N = {1, 2}, φA = φB = PROP and

∑
i∈N ci > E, then

NE(G) =
{(( EA

EA + EB
c1,

EB

EA + EB
c1
)
,
( EA

EA + EB
c2,

EB

EA + EB
c2
))}

.

Proof: Assume that M = {A, B}, N = {1, 2}, φA = φB = PROP and∑
i∈N ci > E. First note that, since the proportional rule satisfies partial concavity

according to Proposition 6.1, it follows from Theorem 6.1 that NE(G) ̸= ∅.
Let x̂ ∈ NE(G) be a Nash equilibrium. Then, by using Theorem 6.2, it follows that
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∑
i∈N πi(x̂) = E and more specifically, that{

x̂A
1 + x̂A

2 ≥ EA;
x̂B

1 + x̂B
2 ≥ EB .

(6.24)

This is indicated in Figure 6.10 by the gray areas.
Furthermore, by using Theorem 6.3, we have that

π(x̂) = PROP (E, c) .

Elaborating on this, we first show that it implies that

x̂A
2 = c2

c1
x̂A

1 or x̂A
2 = EA

EA + EB
(c1 + c2) − x̂A

1 . (6.25)

Focusing on player 1 first, we have that, by using Equation (6.24),

π1(x̂) − PROP1 (E, c) = x̂A
1

x̂A
1 + x̂A

2
EA + x̂B

1
x̂B

1 + x̂B
2

EB − c1

c1 + c2
(EA + EB)

= x̂A
1

x̂A
1 + x̂A

2
EA + c1 − x̂A

1
c1 − x̂A

1 + c2 − x̂A
2

EB − c1

c1 + c2
(EA + EB)

= x̂A
1 EA(c1 + c2)(c1 + c2 − x̂A

1 − x̂A
2 )

(c1 + c2)(x̂A
1 + x̂A

2 )(c1 + c2 − x̂A
1 − x̂A

2 )

+ (c1 − x̂A
1 )EB(c1 + c2)(x̂A

1 + x̂A
2 )

(c1 + c2)(x̂A
1 + x̂A

2 )(c1 + c2 − x̂A
1 − x̂A

2 )

− c1(EA + EB)(x̂A
1 + x̂A

2 )(c1 + c2 − x̂A
1 − x̂A

2 )
(c1 + c2)(x̂A

1 + x̂A
2 )(c1 + c2 − x̂A

1 − x̂A
2 )

=
(c2x̂A

1 − c1x̂A
2 )
(

(c1 + c2)EA − (x̂A
1 + x̂A

2 )(EA + EB)
)

(c1 + c2)(x̂A
1 + x̂A

2 )(c1 + c2 − x̂A
1 − x̂A

2 )
. (6.26)

Here, the last equality follows by rewriting the nominator:

x̂A
1 EA(c1 + c2)(c1 + c2 − x̂A

1 − x̂A
2 ) + (c1 − x̂A

1 )EB(c1 + c2)(x̂A
1 + x̂A

2 )
− c1(EA + EB)(x̂A

1 + x̂A
2 )(c1 + c2 − x̂A

1 − x̂A
2 )

= c1c1x̂A
1 EA + c1c2x̂A

1 EA − c1x̂A
1 x̂A

1 EA + c1c2x̂A
1 EA + c2c2x̂A

1 EA − c2x̂A
1 x̂A

1 EA

− x̂A
2
(
c1x̂A

1 EA + c2x̂A
1 EA

)
+ c1c1x̂A

1 EB − c1x̂A
1 x̂A

1 EB + c1c2x̂A
1 EB − c2x̂A

1 x̂A
1 EB

+ x̂A
2
(
c1c1EB − c1x̂A

1 EB + c1c2EB − c2x̂A
1 EB

)
− c1c1x̂A

1 EA − c1c2x̂A
1 EA + c1x̂A

1 x̂A
1 EA − c1c1x̂A

1 EB − c1c2x̂A
1 EB + c1x̂A

1 x̂A
1 EB
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+ x̂A
2
(
c1x̂A

1 EA + c1x̂A
1 EB − c1c1EA − c1c2EA + c1x̂A

1 EA − c1c1EB − c1c2EB + c1x̂A
1 EB

)
+ x̂A

2 x̂A
2 (c1EA + c1EB)

= c1c2x̂A
1 EA + c2c2x̂A

1 EA − c2x̂A
1 x̂A

1 EA − c2x̂A
1 x̂A

1 EB

+ x̂A
2
(
c1x̂A

1 EA + c1x̂A
1 EB − c1c1EA − c1c2EA − c2x̂A

1 EA − c2x̂A
1 EB

)
+ x̂A

2 x̂A
2
(
c1EA + c1EB

)
= (c2x̂A

1 − c1x̂A
2 )
(
c1EA + c2EA − x̂A

1 EA − x̂A
1 EB − x̂A

2 EA − x̂A
2 EB

)
= (c2x̂A

1 − c1x̂A
2 )
(

(c1 + c2)EA − (x̂A
1 + x̂A

2 )(EA + EB)
)

.

Consequently, π1(x̂) = PROP1 (E, c) implies that

(c2x̂A
1 − c1x̂A

2 )
(

(c1 + c2)EA − (x̂A
1 + x̂A

2 )(EA + EB)
)

= 0,

and hence,

c2x̂A
1 − c1x̂A

2 = 0 or (c1 + c2)EA − (x̂A
1 + x̂A

2 )(EA + EB) = 0,

or equivalently,

x̂A
2 = c2

c1
x̂A

1 or x̂A
2 = EA

EA + EB
(c1 + c2) − x̂A

1 ,

satisfying Equation (6.25).
Note that, since π2(x̂) = E − π1(x̂) and PROP2 (E, c) = E − PROP1 (E, c) due to
efficiency, π1(x̂) = PROP1 (E, c) and π2(x̂) = PROP2 (E, c) are equivalent.
Figure 6.10 provides an overview of the set of strategy combinations, including the
ones for which Equation (6.25) holds. For this, note that

∑
i∈N ci > E implies that

EA <
EA

EA + EB
(c1 + c2) < c1 + c2 − EB .

In other words, all strategy combinations for which the second part of Equation (6.25)
holds, lie in between the two lines that identify the efficiency boundary.
The only strategy combination for which both parts of Equation (6.25) hold, is re-
flected by the intersection point and is given by(( EA

EA + EB
c1,

EB

EA + EB
c1
)
,
( EA

EA + EB
c2,

EB

EA + EB
c2
))

.

To show that this strategy combination indeed is the only Nash equilibrium, we show
that all other strategy combinations for which Equation (6.25) is satisfied, are not
Nash equilibria. Therefore, we distinguish between four cases (corresponding to four
line segments in Figure 6.10):
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0 EA EA

EA+EB (c1 + c2)
c1
c1 + c2 − EB

0

EA

c2

EA

EA+EB (c1 + c2)

c1 + c2 − EB

(c1, c2)

I

II III

IV

Figure 6.10 – An overview of the set of strategy combinations in
the proof of Theorem 6.4 with four line segments indicated by I, II,
III and IV.

I) x̂A
2 = c2

c1
x̂A

1 and x̂A
2 < EA

EA+EB (c1 + c2) − x̂A
1 ;

II) x̂A
2 = EA

EA+EB (c1 + c2) − x̂A
1 and x̂A

2 > c2
c1

x̂A
1 ;

III) x̂A
2 = c2

c1
x̂A

1 and x̂A
2 > EA

EA+EB (c1 + c2) − x̂A
1 ;

IV) yx̂A
2 = EA

EA+EB (c1 + c2) − x̂A
1 and x̂A

2 < c2
c1

x̂A
1 .

Note that, in all cases, we know that Equation (6.24) is still satisfied, that is,{
x̂A

1 + x̂A
2 ≥ EA;

x̂B
1 + x̂B

2 ≥ EB .

Case I) In this case, we assume that x̂A
2 = c2

c1
x̂A

1 and x̂A
2 < EA

EA+EB (c1 + c2) − x̂A
1 . In

order to show that x̂ /∈ NE(G), we show that x̂1 /∈ BR1(x̂2). Therefore, consider the
strategy x1 ∈ X1 for player 1, given by{

xA
1 = x̂A

1 + ε;
xB

1 = x̂B
1 − ε,
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for ε > 0 such that 
xA

1 + x̂A
2 ≥ EA;

xB
1 + x̂B

2 ≥ EB ;
x̂A

2 < EA

EA+EB (c1 + c2) − xA
1 .

In Figure 6.10, this means that player 1 is moving to the right a little bit. Then it
holds that

c2

c1
xA

1 = c2

c1
x̂A

1 + c2

c1
ε > x̂A

2 and x̂A
2 <

EA

EA + EB
(c1 + c2) − xA

1 ,

and consequently,

c2xA
1 − c1x̂A

2 > 0 and (c1 + c2)EA − (xA
1 + x̂A

2 )(EA + EB) > 0.

By using Equation (6.26), this implies that

π1(x1, x̂2) > PROP1 (E, c) = π1(x̂1, x̂2).

Hence, x̂1 /∈ BR1(x̂2). Consequently, x̂ /∈ NE(G) in this case.

Case II) In the second case, we assume that x̂A
2 = EA

EA+EB (c1+c2)−x̂A
1 and x̂A

2 > c2
c1

x̂A
1 .

Again, we show that x̂1 /∈ BR1(x̂2). Therefore, consider the strategy x1 ∈ X1 for
player 1, given by {

xA
1 = x̂A

1 + ε;
xB

1 = x̂B
1 − ε,

for ε > 0 such that 
xA

1 + x̂A
2 ≥ EA;

xB
1 + x̂B

2 ≥ EB ;
x̂A

2 > c2
c1

xA
1 .

In Figure 6.10, this means that player 1 is moving to the right a little bit. Then it
holds that

x̂A
2 >

c2

c1
xA

1 and EA

EA + EB
(c1 + c2) − xA

1 = EA

EA + EB
(c1 + c2) − x̂A

1 − ε < x̂A
2 ,

and consequently,

c2xA
1 − c1x̂A

2 < 0 and (c1 + c2)EA − (xA
1 + x̂A

2 )(EA + EB) < 0.

By using Equation (6.26), this implies that

π1(x1, x̂2) > PROP1 (E, c) = π1(x̂1, x̂2).

Hence, x̂1 /∈ BR1(x̂2). Consequently, x̂ /∈ NE(G) also in the second case.
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Case III) In the third case, we assume that x̂A
2 = c2

c1
x̂A

1 and x̂A
2 > EA

EA+EB (c1+c2)−x̂A
1 .

Here, consider the strategy x1 ∈ X1 for player 1, given by{
xA

1 = x̂A
1 − ε;

xB
1 = x̂B

1 + ε,

for ε > 0 such that 
xA

1 + x̂A
2 ≥ EA;

xB
1 + x̂B

2 ≥ EB ;
x̂A

2 > EA

EA+EB (c1 + c2) − xA
1 .

In Figure 6.10, this means that player 1 is moving to the left a little bit. Then it
holds that

c2

c1
xA

1 = c2

c1
x̂A

1 − c2

c1
ε < x̂A

2 and x̂A
2 >

EA

EA + EB
(c1 + c2) − xA

1 ,

and consequently,

c2xA
1 − c1x̂A

2 < 0 and (c1 + c2)EA − (xA
1 + x̂A

2 )(EA + EB) < 0.

By using Equation (6.26), this implies that

π1(x1, x̂2) > PROP1 (E, c) = π1(x̂1, x̂2).

Hence, x̂1 /∈ BR1(x̂2). Consequently, x̂ /∈ NE(G) in this case.

Case IV) Finally, in the fourth case, we assume that yx̂A
2 = EA

EA+EB (c1 + c2) − x̂A
1

and x̂A
2 < c2

c1
x̂A

1 . Consider the strategy x1 ∈ X1 for player 1, given by{
xA

1 = x̂A
1 − ε;

xB
1 = x̂B

1 + ε,

for ε > 0 such that 
xA

1 + x̂A
2 ≥ EA;

xB
1 + x̂B

2 ≥ EB ;
x̂A

2 < c2
c1

xA
1 .

In Figure 6.10, this means that player 1 is moving to the left a little bit. Then it
holds that

x̂A
2 <

c2

c1
xA

1 and EA

EA + EB
(c1 + c2) − xA

1 = EA

EA + EB
(c1 + c2) − x̂A

1 + ε > x̂A
2 ,

and consequently,

c2xA
1 − c1x̂A

2 > 0 and (c1 + c2)EA − (xA
1 + x̂A

2 )(EA + EB) > 0.
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By using Equation (6.26), this implies that

π1(x1, x̂2) > PROP1 (E, c) = π1(x̂1, x̂2).

Hence, x̂1 /∈ BR1(x̂2). Consequently, x̂ /∈ NE(G) also in the fourth case.

Consequently, we see that x̂ /∈ NE(G) in all four cases. We can thus conclude that
x̂ ∈ NE(G) implies that

x̂ =
(( EA

EA + EB
c1,

EB

EA + EB
c1
)
,
( EA

EA + EB
c2,

EB

EA + EB
c2
))

.

Since NE(G) ̸= ∅, it immediately follows that

NE(G) =
{(( EA

EA + EB
c1,

EB

EA + EB
c1
)
,
( EA

EA + EB
c2,

EB

EA + EB
c2
))}

.

This completes the proof. □

6.5.2 Constrained equal awards rule

Secondly, we focus on the constrained equal awards rule. Also for the constrained
equal awards rule, each Nash equilibrium pay-off vector of the strategic ceh-game
associated to the uniform ceh-problem is equal to the awards vector specified by the
constrained equal awards rule. The proof of this statement follows a similar structure
as the proof of Theorem 6.3 in the sense that, for each player, a strategy is pinpointed
for which the pay-off is at least the award for this player specified by the constrained
equal awards rule. In this proof, we use the following lemma.

Lemma 6.1 Let (E, c) ∈ CN be a claims problem and let i ∈ N . Moreover, let
N ′ ⊆ N \ {i}. Then the following two statements hold:

i) if ci ≤ 1
|N |−|N ′| (E −

∑
j∈N ′ cj), then

CEAi (E, c) = ci;

ii) if ci ≥ 1
|N |−|N ′| (E −

∑
j∈N ′ cj), then

CEAi (E, c) ≥ 1
|N | − |N ′|

(E −
∑

j∈N ′

cj).

Proof: i) For the first statement, assume that ci ≤ 1
|N |−|N ′| (E −

∑
j∈N ′ cj). Then

it holds that

CEAi (E, c) = CEAi

 ∑
j∈N\N ′

CEAj (E, c) , (cj)j∈N\N ′


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≥ CEAi

E −
∑

j∈N ′

cj , (cj)j∈N\N ′


= ci.

Here, we used that the constrained equal awards rule satisfies (see Section 2.2) con-
sistency for the first equality, estate monotonicity for the inequality and exemption
for the final equality. Note that estate monotonicity applies, since, by using efficiency
and claims boundedness,∑

j∈N\N ′

CEAj (E, c) = E −
∑

j∈N ′

CEAj (E, c) ≥ E −
∑

j∈N ′

cj .

Moreover, note that exemption is applied to the claims problemE −
∑

j∈N ′

cj , (cj)j∈N\N ′

 ∈ CN\N ′
.

This completes the proof of the first statement.

ii) For the second statement, assume that ci ≥ 1
|N |−|N ′| (E −

∑
j∈N ′ cj). Then, by

consecutively applying consistency, estate monotonicity, claims monotonicity and ex-
emption, we have that

CEAi (E, c) = CEAi

 ∑
j∈N\N ′

CEAj (E, c) , (cj)j∈N\N ′


≥ CEAi

E −
∑

j∈N ′

cj , (cj)j∈N\N ′


≥ CEAi

E −
∑

j∈N ′

cj , ((cj)j∈N\(N ′∪{i}),
1

|N | − |N ′|
(E −

∑
j∈N ′

cj))


= 1

|N | − |N ′|
(E −

∑
j∈N ′

cj).

Here, claims monotonicity applies, since ci ≥ 1
|N |−|N ′| (E −

∑
j∈N ′ cj). Hence, by

replacing player i’s claim, we can use exemption for the final equality. This completes
the proof of the second statement. □

Theorem 6.5 Let ({Ek}k∈M , {φk}k∈M , c) ∈ CM,N be a uniform ceh-problem and
let G = (N, {Xi}i∈N , {πi}i∈N ) be the associated strategic ceh-game. Moreover, let
x̂ ∈ NE(G) be a Nash equilibrium. If, for all k ∈ M , φk = CEA, then

π(x̂) = CEA (E, c) .
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Proof: Assume that, for all k ∈ M , φk = CEA. Note that, if
∑

i∈N ci ≤ E, then

π(x̂) = c = CEA (E, c) ,

according to Theorem 6.2.
Therefore, for the remainder of the proof, assume that

∑
i∈N ci > E. Furthermore,

set N = {1, 2, . . . , n} and assume w.l.o.g. that c1 ≤ c2 ≤ . . . ≤ cn.
Next, we distinguish between the following cases:

I) c1 ≥ 1
n E;

II) c2 ≥ 1
n−1 (E − c1) and c1 < 1

n E ,

and, proceeding recursively, for h ∈ {3, . . . , n},

III) ch ≥ 1
n−h+1 (E − c1 − . . . − ch−1) and

c1 < 1
n E;

c2 < 1
n−1 (E − c1);

...
ch−1 < 1

n−h+2 (E − c1 − . . . − ch−2).

In each case, we pinpoint, for all i ∈ N , a specific strategy yi ∈ Xi such that

πi(x̂−i, yi) ≥ CEAi (E, c) . (6.27)

Similar as in the proof of Theorem 6.3, it then follows that

πi(x̂) = πi(x̂−i, x̂i) ≥ πi(x̂−i, yi) ≥ CEAi (E, c) ,

for all i ∈ N . Moreover, due to the fact that the constrained equal awards rule satisfies
strict marginality, we have that∑

i∈N

πi(x̂) = E =
∑
i∈N

CEAi (E, c) ,

according to Theorem 6.2. Consequently, for all i ∈ N ,

πi(x̂) = CEAi (E, c) .

Case I) In the first case, we assume that c1 ≥ 1
n E. This implies that ci ≥ 1

n E for all
i ∈ N , which in turn implies that, for all i ∈ N ,

CEAi (E, c) = 1
n

E,
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according to Lemma 6.1 together with efficiency. To pinpoint, for all i ∈ N , a strategy
yi ∈ Xi for which Equation (6.27) holds, let ∈ N . Choose a strategy yi ∈ Xi such
that, for all k ∈ M ,

yk
i ≥ 1

n
Ek.

Note that such a strategy exists, since ci =
∑

k∈M yk
i ≥

∑
k∈M

1
n Ek = 1

n E. Conse-
quently,

πi(x̂−i, yi) =
∑
k∈M

CEAi

(
Ek, (x̂k

−i, yk
i )
)

≥
∑
k∈M

1
n

Ek = 1
n

E = CEAi (E, c) ,

where we used part ii) of Lemma 6.1 with N ′ = ∅ for the inequality. This shows that
Equation (6.27) is satisfied in this first case.

Case II) In the second case, we assume that both c1 < 1
n E and c2 ≥ 1

n−1 (E − c1).
This implies that ci ≥ 1

n−1 (E − c1) for all i ∈ N \ {1}, which in turn implies that, for
all i ∈ N ,

CEAi (E, c) =
{

c1, if i = 1;
1

n−1 (E − c1), otherwise,

according to Lemma 6.1 together with efficiency. Next, we pinpoint, for all i ∈ N , a
strategy yi ∈ Xi for which Equation (6.27) holds.
First, for player 1, choose y1 ∈ X1 such that, for all k ∈ M ,

yk
1 <

1
n

Ek.

Then it holds that

π1(x̂−1, y1) =
∑
k∈M

CEA1
(
Ek, (x̂k

−1, yk
1 )
)

=
∑
k∈M

yk
1 = c1 = CEA1 (E, c) ,

where we used part i) of Lemma 6.1 with N ′ = ∅ for the second equality. Hence,
Equation (6.27) is satisfied for player 1.
Secondly, let i ∈ N \ {1} and choose yi ∈ Xi such that, for all k ∈ M ,

yk
i ≥ 1

n − 1(Ek − x̂k
1).

As before, such a strategy exists, since ci ≥ 1
n−1 (E − c1). Consequently,

πi(x̂−i, yi) =
∑
k∈M

CEAi

(
Ek, (x̂k

−i, yk
i )
)
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≥
∑
k∈M

1
n − 1(Ek − x̂k

1)

= 1
n − 1(E − c1) = CEAi (E, c) ,

where we used part ii) of Lemma 6.1 with N ′ = {1} for the inequality. Hence,
Equation (6.27) is also satisfied for all i ∈ N \ {1}.
Case III) Proceeding recursively, let h ∈ {3, . . . , n} and assume that
ch ≥ 1

n−h+1 (E − c1 − . . . − ch−1) and
c1 < 1

n E;
c2 < 1

n−1 (E − c1);
...
ch−1 < 1

n−h+2 (E − c1 − . . . − ch−2).

This implies that ci ≥ 1
n−h+1 (E − c1 − . . . − ch−1) for all i ∈ N \ {1, 2, . . . , h − 1},

which in turn implies that, for all i ∈ N ,

CEAi (E, c) =
{

ci, if i ∈ {1, 2, . . . , h − 1};
1

n−h+1 (E − c1 − . . . − ch−1), otherwise,

according to Lemma 6.1 together with efficiency. To pinpoint, for all i ∈ N , a strategy
yi ∈ Xi for which Equation (6.27) holds, we first focus on the players in
{1, 2, . . . , h − 1}. For each of them, we separately choose a strategy such that, for all
k ∈ M , 

yk
1 < 1

n Ek;
yk

2 < 1
n−1 (Ek − x̂k

1);
...
yk

h−1 < 1
n−h+2 (E − x̂k

1 − . . . − x̂k
h−2).

As before, it follows that, by using part i) of Lemma 6.1,
π1(x̂−1, y1) = c1 = CEA1 (E, c) ;
π2(x̂−2, y2) = c2 = CEA2 (E, c) ;
...
πh−1(x̂−(h−1), yh−1) = ch−1 = CEAh−1 (E, c) .

Hence, Equation (6.27) is satisfied for these players.
Secondly, let i ∈ N \ {1, 2, . . . , h − 1} and choose yi ∈ Xi such that, for all k ∈ M ,

yk
i ≥ 1

n − h + 1(Ek − x̂k
1 − . . . − x̂k

h−1).
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Again, such a strategy clearly exists. Consequently

πi(x̂−i, yi) =
∑
k∈M

CEAi

(
Ek, (x̂k

−i, yk
i )
)

≥
∑
k∈M

1
n − h + 1(Ek − x̂k

1 − . . . − x̂k
h−1)

= 1
n − h + 1(E − c1 − . . . − ch−1) = CEAi (E, c) ,

where we used part ii) of Lemma 6.1 with N ′ = {1, 2, . . . , h − 1} for the inequality.
Hence, Equation (6.27) is also satisfied for these players.
Ultimately, this finishes all cases and hence, the proof. □

For the proportional rule, Theorem 6.4 shows that the set of Nash equilibria of the
strategic ceh-game associated to a uniform ceh-problem with two estate holders, both
using the proportional rule, and two players is a singleton. In contrast, for the
constrained equal awards rule, Example 6.1 already indicates that the set of Nash
equilibria of the strategic ceh-game associated to a uniform ceh-problem using the
constrained equal awards rule is much larger. In fact, one can show that different
structures are possible for the set of Nash equilibria for various uniform ceh-problems
using the constrained equal awards rule, depending on the sizes of both the claims
and the estates.
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7 Unilateral support equilibria

— A meerkat sup-
ports the pack by
keeping watch7.1 Introduction

An essential issue within the field of strategic game theory is to provide equilibrium
concepts to somehow solve situations of interaction and conflicts between players.
The standard equilibrium concept of Nash (1950, 1951) is based on the fact that no
player should have an incentive to unilaterally deviate from an equilibrium strategy.
More specifically, a Nash equilibrium is a strategy combination in which every player
maximizes his own pay-off by playing the equilibrium strategy, given the equilibrium
strategy combination of the other players. In other words, for every player there is no
strategy that, given the Nash equilibrium strategy combination of the other players
results in a strictly higher pay-off for this player than the Nash equilibrium strategy.
In contrast to the fully selfish behavior in a Nash equilibrium, an alternative equi-
librium concept based on fully altruistic behavior is proposed by Berge (1957). In a
so-called Berge equilibrium, players are not maximizing their own pay-offs, but max-
imize the other players’ pay-offs instead. More precisely, a Berge equilibrium is a
strategy combination in which the group of all players except one player maximizes
the pay-off of this one player by playing the Berge equilibrium strategy combination,

175
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176 7.1. Introduction

given the equilibrium strategy of this one player. In other words, every player’s pay-
off is maximized by the group of all other players, that is, every player is supported
by all other players together. Therefore, a Berge equilibrium is also called a mutual
support equilibrium (Colman, Körner, Musy, and Tazdäıt, 2011).

The study of Berge equilibria has focused on several aspects. For example, Radjef
(1988), Abalo and Kostreva (2004), Nessah, Larbani, and Tazdäıt (2007) and Larbani
and Nessah (2008) focused on finding existence theorems for general classes of strate-
gic games. Specific classes of games (in particular, mixed extensions of finite games)
are studied by Colman et al. (2011), Musy, Pottier, and Tazdäıt (2012), Corley and
Kwain (2014) and Corley (2015). Both Colman et al. (2011) and Musy et al. (2012)
also pay special attention to experimental results. Algorithms to find Berge equilibria
are studied in Corley and Kwain (2015) and Sawicki, Pykacz, and Bytner (2020).
Moreover, Abalo and Kostreva (1996), Colman et al. (2011), Corley (2015) and Cour-
tois, Nessah, and Tazdäıt (2017) studied the relation between the Nash equilibrium
concept and the Berge equilibrium concept.

In this chapter, based on Schouten, Borm, and Hendrickx (2019), we focus on the
essence of the concept of a Berge equilibrium, which is supportive behavior. It aims
to provide more insight into the idea of supportive behavior, which then can be used in
the study to both the Nash and Berge equilibrium concepts. In a Berge equilibrium,
every player is supported by the group of all other players together and in that sense, a
Berge equilibrium reflects the idea of mutual support. To quote Colman et al. (2011):

“A Berge equilibrium can be viewed as an implication of the altruistic so-
cial value orientation of interdependence theory, just as Nash equilibrium
is an implication of the individualistic orientation.”

In other words, in a Nash equilibrium players choose for themselves and behave self-
ishly, whereas in a Berge equilibrium players collectively support the other players,
sometimes at the cost of themselves. According to both Larbani and Nessah (2008)
and Corley (2015), this altruistic behavior follows the idea of ‘one for all, and all for
one’. Indeed, every player supports (as part of a larger group) every other player
and all other players support every single player. However, the support relation in a
Berge equilibrium is restricted to group support: the group of all players except for
one single player supports the single player in the best way possible. To do so, they
have to coordinate their actions, which can cause coordination issues for the players.
To avoid these rather complex coordination issues, we consider individual support
rather than group support.
The main contribution of this chapter is to introduce a new equilibrium concept for
strategic games, which is based on individual support only. For that reason, we
introduce support relations between the individual players, which can be modeled by
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Chapter 7. Unilateral support equilibria 177

using a special type of bijections, called derangements. The interpretation of such a
derangement is that every player supports exactly one other player and every player
is supported by exactly one other player. Subsequently, we define a new equilibrium
concept, called a unilateral support equilibrium, which is unilaterally supportive with
respect to every possible derangement. More specifically, the set of unilateral support
equilibria is equal to the intersection of the sets of unilaterally supportive strategy
combinations with respect to all derangements.
From a computational perspective, it might be a hard task to compute all sets of uni-
laterally supportive strategy combinations with respect to a derangement, since for
a large number of players, there are many derangements. However, it is shown that
it is sufficient to only consider cyclic derangements, a special type of derangements:
every strategy combination that is unilaterally supportive with respect to every pos-
sible cyclic derangement is a unilateral support equilibrium. This leads to a drastic
reduction of the number of derangements that have to be considered.
The idea of using individual support only is elegantly reflected by our main result in
Theorem 7.1: in a unilateral support equilibrium, every player is supported by every
other player individually, whereas in a Berge equilibrium, every player is supported by
the group of all other players. This shows the key difference in the underlying support
relations: a unilateral support equilibrium is based on everybody’s individual support,
while a Berge equilibrium is based on group support. Moreover, Theorem 7.1 provides
an alternative formulation of the set of unilateral support equilibria directly in terms
of pay-off functions, instead of using derangements.
Another consequence of using individual support rather than group support is the fact
that group support directly implies individual support. Subsequently, every Berge
equilibrium is also a unilateral support equilibrium. In that sense, this new equilib-
rium concept extends the concept of Berge equilibria. For any two-person strategic
game, the set of unilateral support equilibria coincides with the set of Berge equilibria.
Moreover, we see that in an example of Corley (2015) without Berge equilibria, the
set of unilateral support equilibria is non-empty, which shows that the set of Berge
equilibria is strictly included in the set of unilateral support equilibria. However,
existence of unilateral support equilibria is not guaranteed. We provide an example
of a trimatrix game in which there is no unilateral support equilibrium.
The fact that Berge equilibria are unilateral support equilibria can also be used to
exploit the existence theorems for Berge equilibria to guarantee the existence of uni-
lateral support equilibra, as was recently pointed out by Crettez and Nessah (2020).
Besides, Crettez and Nessah (2020) studied, as a follow-up of Schouten et al. (2019),
specific existence theorems for unilateral support equilibria.

Finally, we explore the relation between the set of unilateral support equilibria and the
set of Nash equilibria. We show that the intersection between these two sets coincides
with the intersection of the sets of unilaterally supportive strategy combinations with
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respect to every possible bijection, not only with respect to every possible derange-
ment. Consequently, a strategy combination is both a unilateral support equilibrium
and a Nash equilibrium if and only if it is a Nash equilibrium of all coordination
games in which all players face the pay-off function of a single player.

This chapter is structured in the following way. Section 7.2 studies the concept of
Berge equilibria. Section 7.3 introduces and analyzes the set of unilateral support
equilibria. In particular, it contains a characterization of unilateral support equilibria
in terms of pay-off functions. Section 7.4 studies the set of strategy combinations that
are both a unilateral support equilibrium and a Nash equilibrium.

7.2 Berge equilibria

For a strategic game G = (N, {Xi}i∈N , {πi}i∈N ), a strategy combination x̂ ∈ X is
called a Berge equilibrium (cf. Berge, 1957) if, for all i ∈ N , it holds that

πi(x̂i, x̂−i) ≥ πi(x̂i, x−i),

for all x−i ∈ X−i. The set of Berge equilibria for G is denoted by BE(G). In a Berge
equilibrium it thus holds that for every player there is no strategy combination of
all other players that, given the Berge equilibrium strategy of this particular player
results in a strictly higher pay-off for this player than the Berge equilibrium strategy
combination of the other players. In other words, a Berge equilibrium is a strategy
combination in which the group of all players except one player maximizes the pay-
off of this one player by playing the equilibrium strategy combination, given the
equilibrium strategy of this one player.
Clearly, with

BS−i(xi) =
{

x−i ∈ X−i

∣∣ πi(xi, x−i) ≥ πi(xi, x′
−i) for all x′

−i ∈ X−i

}
,

for all xi ∈ Xi and all i ∈ N , denoting the set of best support strategy combinations
against xi (cf. Musy et al., 2012), we have that x̂ ∈ BE(G) if and only if
x̂−i ∈ BS−i(x̂i) for all i ∈ N .
Berge equilibria always exist for bimatrix games. This readily follows from the obser-
vation that, for all bimatrix games (A, B), it holds that

BE(A, B) = NE(B, A),

and the fact that Nash equilibria always exist for bimatrix games. However, even for
the class of trimatrix games, existence of Berge equilibria is no longer guaranteed, as
is seen in the following counterexample provided by Corley (2015).
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Example 7.1 [cf. Corley, 2015] Consider the following trimatrix game
G = (A, B, C):

G = (A, B, C) =

f1 f2 f1 f2[ ]
e1 (1, 1, 0) (0, 0, 0) (0, 0, 1) (0, 0, 0)
e2 (0, 0, 0) (0, 0, 1) (0, 0, 0) (1, 1, 0)

g1 g2

.

Here, the first coordinate represents the entries of matrix A, the second coordinate
the entries of B and the third coordinate the entries of C.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(a) For player 1.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(b) For player 2.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(c) For player 3.

Figure 7.1 – The three sets of best support strategy combinations
corresponding to BE(G).

The sets of best support strategy combinations are presented in Figure 7.1.
For example, Figure 7.1a shows the set of best support strategy combinations for
player 1. For each strategy p = p1e1 + (1 − p1)e2 ∈ ∆1 of player 1, the corresponding
pay-offs of player 1 are shown below:

f1 f2 f1 f2[ ]
p1e1 + (1 − p1)e2 p1 0 0 1 − p1

g1 g2

.

For p1 ∈ [0, 1
2 ), it clearly holds that 1 − p1 > p1, such that players 2 and 3 maximize

player 1’s pay-off by choosing the strategies f2 and g2, respectively. In other words,
the best support strategy combination against the strategy p = p1e1 + (1 − p1)e2
of player 1 with p1 ∈ [0, 1

2 ) is given by (f2, g2) ∈ ∆2 × ∆3. In Figure 7.1a, this is
visualized as the upper bold part.
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180 7.3. Unilateral support equilibria

Next, it is readily seen that the best support strategy combination against the strategy
p = p1e1 + (1 − p1)e2 with p1 ∈ ( 1

2 , 1] is given by (f1, g1) ∈ ∆2 × ∆3. This is the
bottom bold part of Figure 7.1a.
Finally, the set of best support strategy combinations against the strategy
p = 1

2 e1 + 1
2 e2 consists of both (f1, g1) ∈ ∆2 × ∆3 and (f2, g2) ∈ ∆2 × ∆3.

In a similar way, we can derive the sets of best support strategy combinations of
players 2 and 3, by using the pay-off function of player 2 for each strategy
q = q1f1 + (1 − q1)f2 ∈ ∆2,

q1f1 + (1 − q1)f2 q1f1 + (1 − q1)f2[ ]
e1 q1 0
e2 0 1 − q1

g1 g2

,

and the pay-off function of player 3 for each strategy r = r1g1 + (1 − r1)g2 ∈ ∆3,

f1 f2[ ]
e1 1 − r1 0
e2 0 r1

r1g1 + (1 − r1)g2

,

respectively. The results are shown in Figures 7.1b and 7.1c.
Using Figure 7.1, it can be readily seen that the intersection between the three sets of
best support strategy combinations is empty. Hence, BE(G) = ∅. The reason for this
is that, for example, player 1 is cleaved in simultaneously supporting both players 2
and 3 as part of a larger group. To support player 2, player 1 has to choose e1 and
player 3 has to choose g1 if player 2 chooses f1. However, if player 3 chooses g1, then
player 1 has to choose e2 (and player 2 f2) to support player 3. △

7.3 Unilateral support equilibria

Berge equilibria are based on mutually supportive behavior, which means that every
player is supported by the group of all other players together. This mutually sup-
portive behavior however could create coordination issues, as seen in Example 7.1.
Our new concept of a unilateral support equilibrium will retain supportive behav-
ior, but eliminates the coordination issues by narrowing down supportive behavior to
individual support.
For this, we first specify the exact meaning of a support relation. To do so, set
N = {1, 2, . . . , n} throughout this chapter. A bijection σ : N → N is a transformation
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of N where each player is mapped to exactly one player and there are no other players
mapped to this one player. We denote such a bijection by σ = (σ(1), σ(2), . . . , σ(n)).
The set of all such bijections is denoted by Π(N).1 The identity bijection is denoted
by σid, i.e., σid = (1, 2, . . . , n). In the context of supportive behavior, a bijection
σ ∈ Π(N), for a player set N , should be interpreted as follows: player i ∈ N supports
player σ(i) ∈ N .
The set of derangements is given by

D(N) = {δ ∈ Π(N) | δ(i) ̸= i for all i ∈ N} .

In a derangement, no player supports himself. Finally, we introduce the set C(N) of
cyclic derangements, given by

C(N) = {γ ∈ D(N) | there exists a number α ∈ {1, 2, . . . , n − 1}
such that for all i ∈ N : γ(i) = (i + α) mod n}.2

In a cyclic derangement, every player supports the player that is a fixed number of
shifts away from himself. The number α ∈ {1, . . . , n − 1} represents this number of
shifts. Derangements and cyclic derangements are illustrated in the following example.

Example 7.2 Consider a player set with four players, N = {1, 2, 3, 4}. Then the
identity bijection is given by σid = (1, 2, 3, 4). In a derangement, the players cannot
be mapped to themselves. The set of all derangements is thus given by

D(N) = {(2, 1, 4, 3), (2, 3, 4, 1), (2, 4, 1, 3),
(3, 1, 4, 2), (3, 4, 1, 2), (3, 4, 2, 1),
(4, 1, 2, 3), (4, 3, 1, 2), (4, 3, 2, 1)}.

There are three derangements that are cyclic: for α = 1, we obtain (2, 3, 4, 1), while
α = 2 results in (3, 4, 1, 2) and α = 3 gives the cyclic derangement (4, 1, 2, 3). Thus,
the set of cyclic derangements is given by

C(N) = {(2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)}. △

We start by introducing unilaterally supportive strategy combinations with respect
to a bijection. Afterwards, this is generalized to the definition of a unilateral support
equilibrium, where the dependence on a certain bijection is removed.

Definition 7.1 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game. Moreover, let
σ ∈ Π(N) be a bijection on the set of players. A strategy combination x̂ ∈ X is called

1In this chapter, Π(N) denotes a slightly different set compared to Chapter 4 where it denotes
the set of all processing orders. However, in essence, both sets are identical.

2Here, (i + α) mod n is the unique player j ∈ N for which there exists a k ∈ Z such that
j = i + α + kn.
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unilaterally supportive with respect to σ if, for all i ∈ N , it holds that

πσ(i)(x̂−i, x̂i) ≥ πσ(i)(x̂−i, xi),

for all xi ∈ Xi. The set of all such strategy combinations is denoted by USEσ(G). ◁

A unilaterally supportive strategy combination with respect to a bijection σ ∈ Π(N)
is thus a strategy combination in which every player i ∈ N maximizes the pay-off
of player σ(i) ∈ N by playing the prescribed strategy, given the prescribed strategy
combination of the other players. This also applies to the identity bijection, which
implies that every player maximizes his own pay-off in a unilaterally supportive strat-
egy combination with respect to the identity bijection. Consequently, for a strategic
game G = (N, {Xi}i∈N , {πi}i∈N ),

USEσid
(G) = NE(G).

More generally, we see that the notion of unilaterally supportive strategy combinations
with respect to a bijection is closely related to the notion of a Nash equilibrium: every
player maximizes the pay-off of a pre-specified (by the bijection) player. This results in
the proposition below, which shows that every set of unilaterally supportive strategy
combinations with respect to a bijection σ coincides with the set of Nash equilibria
of the game with twisted pay-off functions, in which player i’s pay-off function is
replaced by the pay-off function of player σ(i).
Formally, for a strategic game G = (N, {Xi}i∈N , {πi}i∈N ) and a bijection
σ ∈ Π(N), the game with twisted pay-off functions is given by
Gσ =

(
N, {Xi}i∈N , {πσ(i)}i∈N

)
. The proof of the proposition is straightforward and

therefore omitted.

Proposition 7.1 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game and let
σ ∈ Π(N) be a bijection. Then it holds that

USEσ(G) = NE(Gσ).

For each bijection, the corresponding set of unilaterally supportive strategy combi-
nation with respect to that bijection can be defined. However, only derangements
truly reflect the idea of supportive behavior. If a player is mapped to himself, then
this player does not support another player. The set of unilaterally supportive strat-
egy combinations with respect to a derangement has the disadvantage that it is not
anonymous in the sense that it relies on the predetermined support relations given
by the derangement. For this reason, in order to define the set of unilateral support
equilibria, we consider the set of unilaterally supportive strategy combinations with
respect to all derangements.
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Definition 7.2 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game. Then the set
of unilateral support equilibria is defined as

USE(G) =
⋂

δ∈D(N)

USEδ(G). ◁

The set of unilateral support equilibria is thus equal to the intersection of all sets
of unilaterally supportive strategy combinations with respect to a derangement. For
bimatrix games, this boils down to just one set, which is, according to Proposition
7.1, the set of Nash equilibria with twisted pay-off functions. So, for a bimatrix game
(A, B), we have that

USE(A, B) = NE(B, A) = BE(A, B).

In fact, a similar reasoning applies for any strategic game with two players:

USE(G) = NE(G(2,1)) = BE(G),

for all strategic games G = (N, {Xi}i∈N , {πi}i∈N ) with N = {1, 2}. Here, (2, 1)
denotes the only possible derangement in this situation.
For strategic games with more than two players, computing the set of unilateral
support equilibria is more involved. The following example illustrates how one can
use Proposition 7.1 to facilitate the process.

Example 7.3 Consider the following trimatrix game G = (A, B, C):

G = (A, B, C) =

f1 f2 f1 f2[ ]
e1 (1, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)
e2 (2, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

g1 g2

.

Clearly, for N = {1, 2, 3}, there are only two derangements, (2, 3, 1) and (3, 1, 2)
respectively. Thus, to compute USE(G), we compute USE(2,3,1)(A, B, C) and
USE(3,1,2)(A, B, C) separately and take the intersection.
First, consider δ = (2, 3, 1). Using Proposition 7.1, we see that

USE(2,3,1)(A, B, C) = NE(B, C, A).

In other words, the pay-off function of player 1 in the game (B, C, A) is provided by
matrix B, the original pay-off function of player 2 (since player 1 supports player 2
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in δ), and is given by
f1 f2 f1 f2[ ]

e1 1 0 0 0
e2 0 0 0 0

g1 g2

,

or equivalently, with obvious notation,{
π̃BCA

1 (e1, q, r) = q1r1;
π̃BCA

1 (e2, q, r) = 0,

for all (q, r) ∈ ∆2 × ∆3. The set of best reply strategies against (q, r) for player 1
consists of e1 if both q1 > 0 and r1 > 0 and equals ∆1 if either q1 = 0 (that is, player
2 chooses f2) or r1 = 0 (that is, player 3 chooses g2). This is visualized in Figure
7.2a.
Similarly, the pay-off function of player 2 in (B, C, A) is provided by matrix C and
thus given by {

π̃BCA
2 (p, f1, r) = p1r1;

π̃BCA
2 (p, f2, r) = 0,

for all (p, r) ∈ ∆1 × ∆3. Consequently, the set of best reply strategies against (p, r)
for player 2 consists of f1 if both p1 > 0 and r1 > 0 and equals ∆2 if either p1 = 0 or
r1 = 0. This is visualized in Figure 7.2b.
Finally, the pay-off function of player 3 in (B, C, A) is provided by A and thus given
by {

π̃BCA
3 (p, q, g1) = p1q1 + 2q1(1 − p1) = q1(2 − p1);

π̃BCA
3 (p, q, g2) = 0,

for all (p, q) ∈ ∆1 × ∆2. Consequently, the set of best reply strategies against (p, q)
for player 3 consists of g1 in almost all situations except if q1 = 0 (that is, if player 2
chooses f2), in which case the set of best reply strategies equals ∆3. This is visualized
in Figure 7.2c.
The intersection of the three sets of best reply strategies corresponding to NE(B, C, A)
as visualized in Figure 7.2 yields the set of Nash equilibria NE(B, C, A) and thus the
set of unilaterally supportive strategy combinations with respect to the derangement
(2, 3, 1):

USE(2,3,1)(G) =
{

(e1, f1, g1)
}

∪ Conv
{

(e2, f2, g1), (e2, f2, g2)
}

∪ Conv
{

(e2, f2, g2), (e1, f2, g2)
}

.
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e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(a) For player 1.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(b) For player 2.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(c) For player 3.

Figure 7.2 – The three sets of best reply strategies corresponding
to USE(2,3,1)(G).

Secondly, consider δ = (3, 1, 2). Using Proposition 7.1, we see that

USE(3,1,2)(A, B, C) = NE(C, A, B).

In (C, A, B), player 1 is thus facing pay-off matrix C, which can be rewritten to{
π̃CAB

1 (e1, q, r) = q1r1;
π̃CAB

1 (e2, q, r) = 0,

for all (q, r) ∈ ∆2 × ∆3. The corresponding set of best reply strategies for player 1 is
in fact equal to the one corresponding to the game (B, C, A) and is again visualized
in Figure 7.3a.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(a) For player 1.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(b) For player 2.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(c) For player 3.

Figure 7.3 – The three sets of best reply strategies corresponding
to USE(3,1,2)(G).

The pay-off function of player 2 is provided by matrix A and given by{
π̃CAB

2 (p, f1, r) = p1r1 + 2r1(1 − p2) = r1(2 − p1);
π̃CAB

2 (p, f2, r) = 0,
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for all (p, r) ∈ ∆1 × ∆3. Consequently, the set of best reply strategies against (p, r)
for player 2 consists of f1 if r1 > 0 and is equal to ∆2 if r1 = 0 (that is, if player 3
chooses g2). This is visualized in Figure 7.3b.
Finally, for player 3, the pay-off function in (C, A, B) is given by{

π̃CAB
3 (p, q, g1) = p1q1;

π̃CAB
3 (p, q, g2) = 0,

for all (p, q) ∈ ∆1 × ∆2. Consequently, the set of best reply strategies against (p, q)
for player 3 consists of g1 if both p1 > 0 and q1 > 0 and equals ∆3 if either p1 = 0
(that is, if player 1 chooses e2) or q1 = 0 (that is, if player 2 chooses f2). This is
visualized in Figure 7.3c (left side, back side and bottom side).
As before, the intersection of the three sets of best reply strategies yields NE(C, A, B),
is visualized in Figure 7.3 and is equal to the set of unilaterally supportive strategy
combinations with respect to the derangement (3, 1, 2):

USE(3,1,2)(G) =
{

(e1, f1, g1)
}

∪ Conv
{

(e2, f1, g2), (e2, f2, g2)
}

∪ Conv
{

(e2, f2, g2), (e1, f2, g2)
}

.

Using Definition 7.2, we thus have that

USE(G) = USE(2,3,1)(G) ∩ USE(3,1,2)(G)
=
{

(e1, f1, g1)
}

∪ Conv
{

(e2, f2, g2), (e1, f2, g2)
}

.

This can be readily seen from Figures 7.4a and 7.4b.

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(a) USE(2,3,1)(G).

e2
f1

g2

g1e1

f2

∆1

∆3

∆2

(b) USE(3,1,2)(G).

Figure 7.4 – The two sets USE(2,3,1)(G) and USE(3,1,2)(G) and
the intersection USE(G).

△
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Example 7.3 highlights the importance of the use of best reply strategies in the compu-
tation of unilateral support equilibria. The following theorem provides an alternative
formulation of the set of unilateral support equilibria directly in terms of the pay-
off functions. This contrasts the definition, which is formulated as the intersection
of sets of unilaterally supportive strategy combinations. The theorem clearly high-
lights the underlying feature of unilaterally supportive behavior, that is, it shows that
in a unilateral support equilibrium, every player is supported by every other player
individually.

Theorem 7.1 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game and let x̂ ∈ X
a strategy combination. Then x̂ ∈ USE(G) if and only if, for all i ∈ N and all
j ∈ N \ {i}, it holds that

πi(x̂−j , x̂j) ≥ πi(x̂−j , xj) for all xj ∈ Xj . (7.1)
Proof: Let x̂ ∈ USE(G) and let i ∈ N, j ∈ N \ {i} and xj ∈ Xj . Now, define a
bijection σ ∈ Π(N) as follows: σ(k) = (k + i − j) mod n for all k ∈ N . Since i ̸= j, it
follows that σ ∈ D(N). Moreover, σ(j) = i. Then it holds that

πi(x̂−j , x̂j) = πσ(j)(x̂−j , x̂j) ≥ πσ(j)(x̂−j , xj) = πi(x̂−j , xj),
where the inequality follows from the fact that x̂ ∈ USEσ(G).
For the reverse implication, assume that for all i ∈ N and all j ∈ N \{i} it holds that

πi(x̂−j , x̂j) ≥ πi(x̂−j , xj) for all xj ∈ Xj . (7.2)
Suppose for the sake of contradiction that x̂ /∈ USE(G). Then there is a derangement
δ ∈ D(N) such that x̂ /∈ USEδ(G). Accordingly, there is a player k ∈ N and a strategy
xk ∈ Xk such that

πδ(k)(x̂−k, x̂k) < πδ(k)(x̂−k, xk).
However, this contradicts Equation (7.2), thus proving that x̂ ∈ USE(G). □

Theorem 7.1 also captures the main difference between a unilateral support equilib-
rium and a Berge equilibrium: the former is based on individual support, while the
latter is based on group support. Group support might cause coordination issues,
as was seen in Example 7.1, in which there were no Berge equilibrium. However,
the following example shows that unilateral support equilibria do exist in that case.
Furthermore, it illustrates the use of Theorem 7.1 to find unilateral support equilibria.

Example 7.4 Reconsider the following trimatrix game G = (A, B, C), as described
in Example 7.1:

G = (A, B, C) =

f1 f2 f1 f2[ ]
e1 (1, 1, 0) (0, 0, 0) (0, 0, 1) (0, 0, 0)
e2 (0, 0, 0) (0, 0, 1) (0, 0, 0) (1, 1, 0)

g1 g2

.
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As noted before, BE(G) = ∅. It holds that (e1, f1, g1) ∈ USE(G). Using the charac-
terization provided in Theorem 7.1, this can be seen from the following six inequalities:

i = 1 :
{

π1(e1, f1, g1) = 1 ≥ q1 = π1(e1, q, g1), for all q ∈ ∆2;
π1(e1, f1, g1) = 1 ≥ r1 = π1(e1, f1, r), for all r ∈ ∆3,

i = 2 :
{

π2(e1, f1, g1) = 1 ≥ p1 = π2(p, f1, g1), for all p ∈ ∆1;
π2(e1, f1, g1) = 1 ≥ r1 = π2(e1, f1, r), for all r ∈ ∆3,

i = 3 :
{

π3(e1, f1, g1) = 0 = π3(p, f1, g1), for all p ∈ ∆1;
π3(e1, f1, g1) = 0 = π3(e1, q, g1), for all q ∈ ∆2.

For the sake of completeness, we show that the set of all unilateral support equilibria
is given by

USE(G) =
{

(e1, f1, g1), (e2, f2, g2),
( 1

2 e1 + 1
2 e2, 1

2 f1 + 1
2 f2, 1

2 g1 + 1
2 g2
)}

.

This can be checked by using Theorem 7.1: first, let i = 1 and j = 2. For all strategy
combinations (p, r) ∈ ∆1 × ∆3 of players 1 and 3, the pay-off function of player 1 is
given by {

π1(p, f1, r) = p1r1;
π1(p, f2, r) = (1 − p1)(1 − r1).

Consequently, if p1r1 > (1 − p1)(1 − r1), or equivalently p1 + r1 > 1, then player 2
maximizes the pay-off of player 1 by choosing f1. On the other hand, if p1 + r1 < 1,
then player 2 should choose f2. Finally, if p1 + r1 = 1, then player 2 is indifferent
and can choose any strategy q ∈ ∆2 to maximize the pay-off of player 1. These best
choices for player 2 are visualized in Figure 7.5a.
Similarly, for i = 1 and j = 3, it is seen that the pay-off function of player 1 is given
by {

π1(p, q, g1) = p1q1;
π1(p, q, g2) = (1 − p1)(1 − q1),

for all (p, q) ∈ ∆1 × ∆2. Consequently, following a similar reasoning as above, Figure
7.5b visualizes the best choices for player 3 to support player 1.
Proceeding in a similar way, one can obtain the remaining four support relations, as
visualized in Figure 7.5. Since according to Theorem 7.1, the set of unilateral support
equilibria is equal to the intersection of the depicted sets in Figure 7.5, the result
follows. △

Example 7.4 shows how one can use the characterization of a unilateral support equi-
librium in terms of pay-off functions of Theorem 7.1 to compute the set of unilateral
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(a) i = 1 and j = 2.
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(b) i = 1 and j = 3.
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(d) i = 2 and j = 3.
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(e) i = 3 and j = 1.
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(f) i = 3 and j = 2

Figure 7.5 – A visualization of the use of Theorem 7.1 in Example
7.4.

support equilibria. In fact, for a trimatrix game, this boils down to the exact same
analysis as in Example 7.3, where it was shown how Proposition 7.1 can facilitate
the process to determine the set of unilateral support equilibria using Definition 7.2.
More precisely, both examples evaluated exactly six support relations: in Example
7.4, each of the three players supports exactly each of the two other players, whereas
in Example 7.3, two derangements with each three players also lead to the evaluation
of six support relations.
However, for strategic games with more than three players, there is a difference in
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the aforementioned analyses: for Definition 7.2 and the helpful Proposition 7.1, it
involves computing the set of Nash equilibria (i.e. the intersection of sets of best
reply strategies) for each derangement separately. In doing so, it might occur that the
support of a certain player for another player is evaluated multiple times. For example,
for four players there are already nine derangements, leading to the evaluation of 36
support relations.
On the other hand, if one uses Theorem 7.1, every support relation is evaluated exactly
once: each player supports each of the other players individually. For four players,
this leads to the evaluation of only 12 support relations.
The following theorem brings these analyses together. We show that in order to
compute the set of unilateral support equilibria, one can restrict to the intersection
of the sets of unilaterally supportive strategy combinations with respect to cyclic
derangements only.

Theorem 7.2 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game. Then it holds
that

USE(G) =
⋂

γ∈C(N)

USEγ(G).

Proof: Obviously, C(N) ⊆ D(N). Hence,

USE(G) =
⋂

δ∈D(N)

USEδ(G) ⊆
⋂

γ∈C(N)

USEγ(G).

To prove that
⋂

γ∈C(N) USEγ(G) ⊆ USE(G), let x̂ ∈
⋂

γ∈C(N) USEγ(G). Using
Theorem 7.1, it suffices to show that for all i ∈ N and all j ∈ N \ {i} it holds that

πi(x̂−j , x̂j) ≥ πi(x̂−j , xj) for all xj ∈ Xj .

Let i ∈ N, j ∈ N \ {i} and xj ∈ Xj . Define σ ∈ Π(N) in the following cyclic way:
σ(k) = (k + i − j) mod n for all k ∈ N . Clearly, σ(j) = i and σ ∈ C(N). Then,

πi(x̂−j , x̂j) = πσ(j)(x̂−j , x̂j) ≥ πσ(j)(x̂−j , xj) = πi(x̂−j , xj),

where the inequality follows from the fact that x̂ ∈ USEσ(G). □

Table 7.1 gives an overview of the number of bijections, the number of derangements
and the number of cyclic derangements for a given number of players. It shows that
Theorem 7.2 leads to a drastic reduction of the number of sets of unilaterally sup-
portive strategy combinations that have to be computed in order to compute the set
of unilateral support equilibria. Moreover, since there are |N |−1 cyclic derangements
for a player set N , every cyclic derangement is responsible for exactly one support
relation for every player. In other words, every player supports another player due to
exactly one cyclic derangement.
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|N | |Π(N)| |D(N)| |C(N)|
2 2 1 1
3 6 2 2
4 24 9 3
5 120 44 4
6 720 265 5
7 5040 1854 6
...

...
...

...
|N | |N |! |N |! ·

∑|N |
k=0

(−1)k

k! |N | − 1

Table 7.1 – The number of bijections, derangements and cyclic
derangements for player set N .

We conclude this section with several remarks regarding the existence of unilateral
support equilibria. First, we provide an example of a trimatrix game in which no
unilateral support equilibria exist. This example is inspired by the trimatrix game as
discussed in Example 7.1.

Example 7.5 Consider the following trimatrix game G = (A, B, C):

G = (A, B, C) =

f1 f2 f1 f2[ ]
e1 (0, 1, 1) (0, 0, 0) (1, 0, 0) (1, 0, 0)
e2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 1, 1)

g1 g2

.

To show that USE(G) = ∅, we show that USE(2,3,1)(G) ∩ USE(3,1,2)(G) = ∅.
First, consider γ = (2, 3, 1). Using Proposition 7.1, we see that

USE(2,3,1)(A, B, C) = NE(B, C, A).

The pay-off function of player 1 in the game (B, C, A) is thus given by{
π̃BCA

1 (e1, q, r) = q1r1;
π̃BCA

1 (e2, q, r) = (1 − q1)(1 − r1),

for all (q, r) ∈ ∆2 × ∆3. The set of best reply strategies against (q, r) for player 1
consists of e1 if q1 + r1 > 1, while it consists of e2 if q1 + r1 < 1. If q1 + r1 = 1, then
the set of best reply strategies against (q, r) for player 1 equals ∆1. This is visualized
in Figure 7.6a.
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The pay-off function of player 2 in (B, C, A) is provided by matrix C and thus given
by {

π̃BCA
2 (p, f1, r) = p1r1;

π̃BCA
2 (p, f2, r) = (1 − p1)(1 − r1),

for all (p, r) ∈ ∆1 × ∆3. Consequently, the set of best reply strategies against (p, r)
for player 2 consists of f1 if p1 + r1 > 1, it consists of f2 if p1 + r1 < 1 and it equals
∆2 if p1 + r1 = 1. This is visualized in Figure 7.6b.
Player 3 supports player 1 in γ such that the pay-off functions of player 3 is given by{

π̃BCA
3 (p, q, g1) = (1 − p1)(1 − q1);

π̃BCA
3 (p, q, g2) = p1q1 + p1(1 − q1) = p1,

for all (p, q) ∈ ∆1 × ∆2. Consequently, the set of best reply strategies against (p, q)
for player 3 consists of g1 if p1 < 1−q1

2−q1
, it consists of g2 if p1 > 1−q1

2−q1
and it equals ∆3

if p1 = 1−q1
2−q1

. This is visualized in Figure 7.6c.

e2
f1

g2

g1e1

f2

(e2, f2, g2)

X1

X3

X2

(a) For player 1.

e2
f1

g2

g1e1

f2

(e2, f2, g2)

X1

X3

X2

(b) For player 2.

e2
f1

g2

g1e1

f2

(e2, f2, g2)

X1

X3

X2

(c) For player 3.

Figure 7.6 – The three sets of best reply strategies corresponding
to USE(2,3,1)(G).

By intersecting the three sets of best reply strategies as shown in Figure 7.6, we
obtain the set of unilaterally supportive strategy combinations with respect to the
derangement (2, 3, 1):

USE(2,3,1)(G) =
{

(e1, f1, g2), (e2, f2, g1),
(αe1 + (1 − α)e2, αf1 + (1 − α)f2, (1 − α)g1 + αg2)

}
,

with α = 3−
√

5
2 .3

3This α can be obtained by solving the system of q1 + r1 = 1, p1 + r1 = 1 and p1 = 1−q1
2−q1

for p1.
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(a) For player 1.
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(b) For player 2.
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X3
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(c) For player 3.

Figure 7.7 – The three sets of best reply strategies corresponding
to USE(3,1,2)(G).

Figure 7.7 summarizes a similar analysis when one considers γ = (3, 1, 2). Conse-
quently,

USE(3,1,2)(G) = Conv
{

(e1, f1, g1), (e1, f2, g1)
}

∪ Conv
{

(e2, f1, g2), (e2, f2, g2)
}

.

Hence,
USE(G) = USE(2,3,1)(G) ∩ USE(3,1,2)(G) = ∅. △

Secondly, we show that every Berge equilibrium is also a unilateral support equilib-
rium.

Theorem 7.3 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game. Then it holds
that BE(G) ⊆ USE(G).

Proof: Let x̂ ∈ BE(G). Moreover, let δ ∈ D(N), i ∈ N and xi ∈ Xi. Then it holds
that4

πδ(i)(x̂−i, x̂i) = πδ(i)(x̂δ(i), x̂−i,−δ(i), x̂i)
≥ πδ(i)(x̂δ(i), x̂−i,−δ(i), xi) = πδ(i)(x̂−i, xi),

where the inequality follows from the fact that x̂ ∈ BE(G), since the group of all
players except δ(i) support player δ(i). Hence, x̂ ∈ USEδ(G) for all δ ∈ D(N) and
consequently, x̂ ∈ USE(G). □

Theorem 7.3 allows for the use of existence theorems for Berge equilibria to guarantee
the existence of unilateral support equilibria, as also pointed out by Crettez and
Nessah (2020). For example, Radjef (1988), Abalo and Kostreva (2004), Nessah et al.

4Here, x̂−i,−δ(i) is the notation for the strategy combination induced by x̂ for the players in
N \ {i, δ(i)}. Consequently, (x̂−i,−δ(i), xi) ∈ X−δ(i).
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(2007) and Larbani and Nessah (2008), among others, focused on finding existence
theorems for Berge equilibria.
More recently, Crettez and Nessah (2020) studied, as a follow-up of Schouten et al.
(2019), specific existence theorems for unilateral support equilibria. Theorem 7.4 be-
low formulates the sufficient conditions to guarantee a unilateral support equilibrium.
Formally, for a strategic game G = (N, {Xi}i∈N , {πi}i∈N ) and a strategy combination
x ∈ X, the so-called set of unilateral best reply strategy combinations (cf. Crettez and
Nessah, 2020) is given by

C(x) = {y ∈ X | for all i ∈ N and all j ∈ N \ {i} :
πi(yj , x−j) ≥ πi(zj , x−j) for all zj ∈ Xj}. (7.3)

Theorem 7.4 [cf. Crettez and Nessah, 2020] Let G = (N, {Xi}i∈N , {πi}i∈N )
be a strategic game. If the following four conditions hold:

i) for all i ∈ N , Xi is closed and bounded;

ii) for all i ∈ N , πi : X → R is continuous;

iii) for all i ∈ N and all j ∈ N \ {i}, gj : Xj → R defined by gj(xj) = πi(xj , x−j)
is quasiconcave5 for all x−j ∈ X−j;

iv) for all x ∈ X, C(x) ̸= ∅,

then USE(G) ̸= ∅.

Recall that in Example 7.5, no unilateral support equilibria exist. Indeed, the trima-
trix as discussed in Example 7.5 does not satisfy the fourth condition, as is seen in
the following example.

Example 7.6 Reconsider the following trimatrix game G = (A, B, C), as described
in Example 7.5:

G = (A, B, C) =

f1 f2 f1 f2[ ]
e1 (0, 1, 1) (0, 0, 0) (1, 0, 0) (1, 0, 0)
e2 (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 1, 1)

g1 g2

.

We show that C
(
(e1, f1, g1)

)
= ∅.

5A function f : S → R is called quasiconcave if S is convex and, for all x, y ∈ S and all λ ∈ [0, 1]
it holds that f(λx + (1 − λ)y) ≥ min {f(x), f(y)}.
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Suppose for the sake of contradiction that y ∈ C
(
(e1, f1, g1)

)
. Following the quan-

tifiers of Equation (7.3), consider i = 1 and j = 3. Then it follows that, for all
r ∈ ∆3,

π1(e1, f1, y3) ≥ π1(e1, f1, r).

This implies that y3 = g2, since π1(e1, f1, g2) = 1, while π1(e1, f1, g1) = 0.
On the other hand, consider i = 2 and j = 3. Then it follows that, for all r ∈ ∆3,

π2(e1, f1, y3) ≥ π2(e1, f1, r).

This implies that y3 = g1, since π2(e1, f1, g1) = 1, while π2(e1, f1, g2) = 0. This
clearly yields a contradiction. △

7.4 Unilateral support equilibria and Nash equilib-
ria

In this last section of this chapter, we study the relation between unilateral support
equilibria and Nash equilibria. In particular, we focus on strategy combinations that
are both a unilateral support equilibrium and a Nash equilibrium.
In a unilateral support equilibrium, every player is supported by every other player
individually. In a Nash equilibrium, which is a strategy combination that is unilater-
ally supportive with respect to the identity, every player supports himself. Together
this implies that if a strategy combination is both a unilateral support equilibrium
and a Nash equilibrium, every player is supported by every player, including himself.
This is captured in the following theorem.

Theorem 7.5 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game. Then it holds
that

USE(G) ∩ NE(G) =
⋂

σ∈Π(N)

USEσ(G).

Proof: First, let N = {1, 2}. As seen before, USE(G) = USE(2,1)(G) and
NE(G) = USE(1,2)(G). Consequently,

USE(G) ∩ NE(G) = USE(2,1)(G) ∩ USE(1,2)(G) =
⋂

σ∈Π(N)

USEσ(G).

Secondly, let |N | ≥ 3. For the first inclusion, let x̂ ∈
⋂

σ∈Π(N) USEσ(G). Then
it holds that x̂ ∈ USEσ(G) for all σ ∈ D(N) and x̂ ∈ USEσid

(G). The former
implies that x̂ ∈ USE(G), while the latter implies that x̂ ∈ NE(G). Consequently,⋂

σ∈Π(N) USEσ(G) ⊆ USE(G) ∩ NE(G).



584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten584958-L-bw-Schouten
Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022Processed on: 7-10-2022 PDF page: 208PDF page: 208PDF page: 208PDF page: 208

196 7.4. Unilateral support equilibria and Nash equilibria

For the reverse inclusion, let x̂ ∈ USE(G)∩NE(G). Since x̂ ∈ USE(G), it holds that
πi(x̂−j , x̂j) ≥ πi(x̂−j , xj) for all i ∈ N , all j ∈ N \ {i} and all xj ∈ Xj , according to
Theorem 7.1. Moreover, since x̂ ∈ NE(G), it holds that πi(x̂−i, x̂i) ≥ πi(x̂−i, xi) for
all i ∈ N and all xi ∈ Xi, according to the definition of a Nash equilibrium. Hence,

πi(x̂−j , x̂j) ≥ πi(x̂−j , xj) for all i, j ∈ N and all xj ∈ Xj . (7.4)

It suffices to prove that x̂ ∈ USEσ(G) for all σ ∈ Π(N) \ D(N) with σ ̸= σid. Let
σ ∈ Π(N) \ D(N), σ ̸= σid. As a direct consequence of Equation (7.4), we obtain

πσ(i)(x̂−i, x̂i) ≥ πσ(i)(x̂−i, xi),

for all i ∈ N and all xi ∈ Xi. Hence, x̂ ∈ USEσ(G). □

An alternative characterization of a strategy combination that is both a unilateral
support equilibrium and a Nash equilibrium is based on Nash equilibria of so-called
coordination games.
Formally, a strategic game G = (N, {Xi}i∈N , {πi}i∈N ) is a coordination game if
πi = πj for all i, j ∈ N . In the light of supportive behavior, this means that if a player
supports another player, he also supports himself. Interestingly, this fact can be used
to describe the intersection between the set of unilateral support equilibria and the
set of Nash equilibria for general games. First, we show that for a coordination game,
the set of unilateral support equilibria coincides with the set of Nash equilibria.

Proposition 7.2 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a coordination game. Then,
for all σ ∈ Π(N), it holds that

USEσ(G) = NE(G).

Consequently, USE(G) = NE(G).

Proof: Let σ ∈ Π(N). Proposition 7.1 implies that USEσ(G) = NE(Gσ), where
Gσ is the game with twisted pay-off functions. Since G is a coordination game,
Gσ = G. Consequently, USEσ(G) = NE(Gσ) = NE(G). □

Next, we reformulate Theorem 7.5 in terms of coordination games. More specifically, it
turns out that every strategy combination that is both a unilateral support equilibrium
and a Nash equilibrium corresponds to a Nash equilibrium of all coordination games
in which all players face the pay-off function of a single player.
For a given strategic game G = (N, {Xi}i∈N , {πi}i∈N ) and a player k ∈ N , we can
define the coordination game Gk = (N, {Xi}i∈N , {πk}i∈N ), in which every player
faces the pay-off function of player k.

Theorem 7.6 Let G = (N, {Xi}i∈N , {πi}i∈N ) be a strategic game. Then it holds
that

USE(G) ∩ NE(G) =
⋂

k∈N

NE(Gk).
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Proof: First, similar to Equation (7.4) in the proof of Theorem 7.5, note that for a
strategy combination x̂ ∈ X it holds that x̂ ∈ USE(G) ∩ NE(G) if and only if

πi(x̂−j , x̂j) ≥ πi(x̂−j , xj) for all i, j ∈ N and all xj ∈ Xj . (7.5)

For the first inclusion, let x̂ ∈ USE(G) ∩ NE(G) and let k ∈ N . As a direct conse-
quence of Equation (7.5), we obtain

πk(x̂−i, x̂i) ≥ πk(x̂−i, xi),

for all i ∈ N and all xi ∈ Xi. This implies that x̂ ∈ NE(Gk).
For the reverse inclusion, let x̂ ∈

⋂
k∈N NE(Gk). It suffices to prove Equation (7.5).

However, this follows immediately from the fact that x̂ ∈ NE(Gi) for all i ∈ N . □
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This dissertation studies the theoretical model of a transferable utility game 
with limited cooperation possibilities as well as altruistic equilibrium concepts 
for the model of a strategic game. Furthermore, this dissertation deals with 
several interactive allocation and operations research problems related to claims, 
sequencing and purchasing situations in which both cooperative and strategic 
approaches play a role.
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