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Abstract
For a given polynomial P with simple zeros, and a given semiclassical weight w, we
present a construction that yields a linear second-order differential equation (ODE),
and in consequence, an electrostatic model for zeros of P . The coefficients of this
ODE are written in terms of a dual polynomial that we call the electrostatic partner of
P . This construction is absolutely general and can be carried out for any polynomial
with simple zeros and any semiclassical weight on the complex plane. An additional
assumption of quasi-orthogonality of P with respect tow allows us to givemore precise
bounds on the degree of the electrostatic partner. In the case of orthogonal and quasi-
orthogonal polynomials, we recover some of the known results and generalize others.
Additionally, for the Hermite–Padé or multiple orthogonal polynomials of type II, this
approach yields a system of linear second-order differential equations, from which we
derive an electrostatic interpretation of their zeros in terms of a vector equilibrium.
More detailed results are obtained in the special cases of Angelesco, Nikishin, and
generalized Nikishin systems. We also discuss the discrete-to-continuous transition of
these models in the asymptotic regime, as the number of zeros tends to infinity, into the
known vector equilibrium problems. Finally, we discuss how the system of obtained
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second-order ODEs yields a third-order differential equation for these polynomials,
well described in the literature. We finish the paper by presenting several illustrative
examples.

Keywords Orthogonal polynomials · Multiple orthogonal polynomials · Zeros ·
Electrostatic model · Equilibrium · Linear differential equations

Mathematics Subject Classification Primary: 42C05; Secondary: 30C15 · 31A15 ·
33C45 · 33C47

1 Introduction

Hermite polynomials1

HN (x) = N !
[N/2]∑

�=0

(−1)�(2x)N−2�

�! (N − 2�)! = 2N x N + . . . (1.1)

are probably the simplest representatives of the family of classical orthogonal poly-
nomials. They satisfy the linear differential equation

y′′(x) − 2xy′(x) + 2N y(x) = 0 (1.2)

and the orthogonality conditions

∫ +∞

−∞
x j HN (x)e−x2 dx = 0, j = 0, 1, . . . , N − 1,

∫ +∞

−∞
x N HN (x)e−x2 dx �= 0.

As a consequence, their zeros are all real and simple. A well-known calculation that
goes back to Stieltjes [94] (see also [97, Theorem 6.8] or [98]) shows that there are
two equivalent physical interpretations of these zeros:

• As equilibrium positions of equally charged points on the plane in the presence of
an external field (background potential); or

• As an appropriately rescaled configuration of vortices on the plane under assump-
tion that they all have same circulations and rotate as a rigid body.

We explain these notions in more detail in Sect. 2. Both models are rooted in the
linear second order differential equation (1.2) satisfied by these polynomials. There
are several ways of obtaining this equation, all of them relying on a specific feature of
the orthogonality weight, namely the fact that its logarithmic derivative is a rational
function. This idea allows to extend the classical theory to the so-called semiclassical

1 [·] stands for the integer part or the floor function.
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orthogonal polynomials, a construction that probably goes back to J. Shohat [90], see
also [68, 69]. This generalization preserves several convenient features of classical
orthogonal polynomials, such as a Rodrigues-type formula or the existence of raising
and lowering operators, see e.g. [49] or [52]; each one of these properties leads to
(1.2).

The elegance of the above mentioned model attracted attention of generations of
researchers and lead to several generalizations. For instance, we can choose as a
starting point a second-order linear differential equation with polynomial coefficients
(generalized Lamé equations in algebraic form), whose particular cases are the hyper-
geometric and the Heun differential equation [87], and develop an electrostatic/vortex
dynamics interpretation for the zeros of its polynomial solutions (Heine–Stieltjes poly-
nomials). This was carried out in the classical works of Bôcher [23], Heine [48] and
Van Vleck [105]; for more modern treatment, see e.g. [39, 40, 47, 67], as well as
[70–72] for the asymptotic results.

Another approach starts from the orthogonality conditions with respect to a semi-
classical (or even a more general) weight, as it was done in the pioneering work of
Ismail [49–51], which has been extended in many directions, see e.g. [27, 44, 88, 91,
93, 103, 104], to cite a few. One of such generalizations is the case of quasi-orthogonal
polynomials, which satisfy “incomplete” orthogonality conditions. As it was shown
in [53] in the simplest case of one condition short of full orthogonality, such polyno-
mials also satisfy a linear second order differential equation that can be interpreted in
electrostatic terms.

Hermite–Padé or multiple orthogonal polynomials (MOP) of type II are defined by
distributing the orthogonality conditions among different weights or measures. In the
simplest case of two weightsw1,w2, supported on�1 ⊂ R and�2 ⊂ R, respectively,
and for a given multi-index n = (n1, n2) ∈ Z

2≥0, it is a polynomial Pn of total degree
at most N = |n| := n1 + n2, such that

∫

�i

x j Pn(x)wi (x)dx

{
= 0, j ≤ ni − 1,

�= 0, j = ni ,
i = 1, 2. (1.3)

Polynomial Pn appears as a common denominator of a pair of rational approximants
to Markov functions related to the weights wi ’s, see Sect. 5.1. For a more detailed
account of the corresponding theory we recommend the monograph [81], as well as
the works of Aptekarev, Gonchar, Kuijlaars, Rakhmanov, Stahl, Suetin, Van Assche,
Yattselev, and others, see e.g. [4, 5, 7, 12–14, 21, 46, 84–86, 99–102] (the list is
far from complete). MOP find applications in number theory, numerical analysis,
integrable systems, interacting particle systems and random matrix models [9, 11, 59,
76]. Although the general analytic theory of multiple orthogonal polynomials is in
its infancy, their zeros (especially, their asymptotic behavior) have been studied in
several particular situations, known as the Angelesco and Nikishin cases, described
in Sect. 5.2. However, there is no known electrostatic interpretation of these zeros.
Linear differential equations satisfied by multiple orthogonal polynomials have been
found for many families of polynomials, see e.g. [7, 12, 32, 43], but in all cases these
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are equations of order 3 and higher. The problem is that an electrostatic interpretation
of the solutions to these ODE is not straightforward.

Our main goal is to present a unified construction that yields an electrostatic model
for polynomials related with a (system of) semiclassical weights. As it was mentioned,
the known constructions of the differential equations for polynomials use either a
Rodrigues formula or the so-called raising and loweringoperators that canbe combined
into a single ODE [32, 43, 52]. Instead of that, we start from a construction that can
associate to an arbitrary polynomial P and to a semiclassical weight w supported on
a set � ⊂ C another polynomial S, that we have called its electrostatic partner, see
Definition 3.5 and the schematic representation below.

w

�

P

S

Using S andw we can write a linear second order differential equation with polyno-
mial coefficients whose solutions are P and the corresponding function of the second
kind q, defined in Sect. 3. This shows that the zeros of P (assumed simple) are in an
electrostatic equilibrium in an external field created by w and by the attracting zeros
of S (understanding by this a stationary point of their energy, and not necessarily its
local or global minimum). This construction uses only the semiclassical character of
w; no orthogonality conditions on P are required. An additional assumption that P
is quasi-orthogonal with respect to w (in the complex case, we mean by that a non-
hermitian orthogonality, see (4.1)) allows us tomakemore precise statements about the
electrostatic partner of P . Moreover, two alternative representations for S in this case
yield a generalization of an identity involving Wronskian and Casorati determinants
of P and q, known in the case of classical orthogonal polynomials, see Sect. 4.

Since the definition of type II Hermite–Padé orthogonal polynomials (1.3) boils
down to two simultaneous quasi-orthogonality conditions, we can associate with the
corresponding MOP Pn two electrostatic partners, Sn,1 and Sn,2, and a system of two
linear differential equations of order 2, whose solution is Pn. This apparent redundancy
can be used to find an electrostatic model for the zeros of Pn. Namely, by a procedure
similar to the definition of an electrostatic partner, we associate with Pn, w1 and w2 a
polynomial Rn:

w2

�2

w1

�1

Pn

Rn

With this construction, the zeros of Pn and the zeros of Sn,1 (or Sn,2) are in a
vector equilibrium given by their mutual interaction and by the vector external field
created by w1, w2 and the zeros of Rn, see Sect. 5 for details. This model is especially
convenient because it is known that the asymptotic distribution of the zeros of Pn
is usually described by vector equilibria. We discuss this connection and provide
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some heuristic arguments for this discrete-to-continuous transition in Sect. 6, where
several particular configurations are analyzed in detail. So far, both two- and three-
component critical vector measures have been used to describe asymptotics in several
cases. Our construction suggests that there is one universal two-component vector
equilibrium valid for all known configurations corresponding to perfect systems, and
that all descriptions constitute just its particular manifestations.

In order to establish another connection with previous literature, we describe in
Sect. 7 how to combine the system of ODEs from Sect. 5 into a third order linear
differential equation whose solutions are Pn and the corresponding functions of the
second kind. An additional advantage of this construction is that it is possibly gener-
alized to the case of more than 2 weights and explains the appearance of higher order
ODEs (see Remark 7.2 in Sect. 7).

In the last section we discuss several examples of multiple orthogonal polynomials
well known in the literature.

We hope that this approach can be applied in some other contexts; in particular, it
would be interesting to explore a possible electrostatic interpretation of the zeros of
the Type I multiple orthogonal polynomials, see e.g. [81].

Since this paper unfortunately contains a large amount of technical details and
auxiliary results (some of them, relegated to Appendices A and B), we finish this
introduction with a short navigation guide for the reader interested in the main high-
lights:

• An electrostatic partner S of a given polynomial P (in a sense, the starting funda-
mental construction) is introduced in Definition 3.5, whose consistency is justified
by Theorem 3.3.

• The second order linear differential equations whose solution is P is introduced in
Theorem 3.7, which leads to an electrostatic model (Proposition 3.9) for zeros of
P , which are shown to be in equilibrium in a field created in part by the attracting
zeros of the electrostatic partner S. Additional properties of S under assumptions
that P satisfies some orthogonality conditions are discussed in Sect. 4.

• This construction is extended to a type II Hermite–Padé orthogonal polynomial
with respect to two weights, giving us now two second order linear differential
equations (Theorem 5.2). Additionally, we get another set of differential equations,
now for the electrostatic partners (Theorem 5.7, which is based on a construction
from Proposition 5.5).

• As a consequence, we derive a vector equilibrium model for the two sets of point
charges: the zeros of the Hermite–Padé orthogonal polynomial and the zeros of its
electrostatic partner(s), Theorem 5.10.

• More precise results about the location of the zeros of the electrostatic partners in
some widely studied cases of Hermite–Padé orthogonal polynomials are matter of
Sect. 5.2. They allow us to discuss in Sect. 6 the discrete-to-continuous transition
in the equilibrium model as the degrees tend to ∞, and to compare the resulting
models with the description of the asymptotic distribution of zeros in terms of
the vector equilibrium, both with 2 and 3 components. In particular, Corollary 6.2
suggests that the universal description can be achieved using a 2-component vector
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equilibrium with the interaction matrix

(
1 −1/2

−1/2 1

)
.

• Since third order linear differential equations associated to the multiple orthogonal
polynomials are well known in the literature, we have included in Sect. 7 their
derivation from the system of second order ODEs described in Theorem 5.2.

• Last, but definitely not least, we have a set of curious examples in Sect. 8, whose
examination poses several interesting questions and suggests possible lines of
further research.

2 Electrostatics of Point Charges and Vortex Dynamics

2.1 Identical Point Charges andVortices

We can associate with N pairwise distinct points ζi on the plane (ζi �= ζ j for i �= j)
their discrete “counting” measure

μ =
N∑

k=1

δζk , (2.1)

where δx is a unit mass (Dirac delta) at x , and define its (discrete) logarithmic energy2

E(μ) :=
∑

i �= j

log
1

|ζi − ζ j | (2.2)

(we can extend the notion of the energy to the case when two or more ζ j ’s coincide by
assuming that then E(μ) = +∞). Additionally, given a real-valued function (external
field or background potential) ϕ, finite at supp(μ), we consider the weighted energy

Eϕ(μ) := E(μ) + 2
N∑

k=1

ϕ(ζk) . (2.3)

For our purposes, it will be sufficient to assume that ϕ = Re �, where � is an ana-
lytic (in general, multivalued) function in C, excluding its (finite number) of isolated
singularities and branch points, with a single-valued derivative �′.

Definition 2.1 [71] We say that μ in (2.1) is ϕ-critical or just critical measure if
supp(μ) is disjoint with the set of singularities of ϕ, and is a stationary point of the

2 Actually, the magnitude in (2.2) is twice the logarithmic energy, which is not relevant, but explains the
factor 2 in (2.3) introduced for consistency.
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weighted discrete energy Eϕ(μ) = Eϕ(ζ1, . . . , ζN ) defined in (2.3) :

∇ Eϕ(ζ1, . . . , ζN ) = 0 , (2.4)

or equivalently,

∂

∂z
Eϕ(ζ1, . . . , z, . . . ζN )

∣∣
z=ζk

= 0, k = 1, . . . , N ,
∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂ y

)
.

We also say that the configuration of points (or charges) is in electrostatic equilib-
rium in the external field ϕ. Notice that with ϕ = Re �, we can write explicitly the
equilibrium conditions for Eϕ(ζ1, . . . , ζN ) as the system of equations

N∑

i, j=1
i �= j

1

ζ j − ζi
− �′ (ζ j

) = 0, j = 1, . . . , N . (2.5)

Let

y(z) :=
N∏

j=1

(z − ζ j ); (2.6)

a common terminology is thatμ in (2.1) is the zero counting measure of the polynomial
y, for which we will use the notation

ν(y) :=
n∑

j=1

δζ j . (2.7)

It is easy to check that

y′(z) = y(z)
N∑

j=1

1

z − ζ j
, y′′(z) = y(z)

N∑

i, j=1
i �= j

1

(z − ζi )(z − ζ j )
, (2.8)

from where

N∑

i, j=1
i �= j

1

ζ j − ζi
= y′′

2y′ (ζ j ).

In particular, (2.5) is equivalent to

(
y′′ − 2�′y′) (

ζ j
) = 0, j = 1, . . . , N . (2.9)

In the case when all zeros ζ j ’s are on the real line and the external field is given
by ϕ(x) = x2/2, we get from (2.9) that y′′ − 2xy′ matches y up to a multiplicative
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constant. Comparing the leading coefficients we conclude that y solves the differential
equation (1.2); in other words, the zeros of Hermite polynomials are in electrostatic
equilibriumonR in the external fieldϕ(x) = x2/2, as observed byStieltjes in [94].3 He
also realized that this electrostatic model is easily generalized to all classical families
of polynomials (Jacobi, Laguerre and Bessel), see [95, 96], or [97] and [52] for a more
modern account.

Another approach to zeros of these polynomials is via vortex dynamics. The notion
of a point vortex is a classical approximation in ideal hydrodynamics of planar flow,
introduced almost 150 years ago in Helmholtz’s classical paper on vortex dynamics
[106]. Considering the flow plane to be the complex plane, the equations of motion
for N point vortices with circulations γi ∈ R at positions ζi , i = 1, . . . , N , in a
background flow �, is

(
dζ j

dt

)
= 1

2π i

N∑

i=1
i �= j

γi

ζ j − ζi
+ 1

2π i
�(ζ j ), j = 1, 2, . . . , N . (2.10)

In this paper, the overline indicates complex conjugation.
By (2.5), stationary vortices (dζ j/dt = 0) correspond to electrostatic equilibrium

in the external field ϕ = Re � if the background flow � satisfies �(ζ j ) = −�′(ζ j ),
j = 1, . . . , N .
Alternatively, if a vortex configuration rotates as a rigid body with angular velocity

, then dζ j/dt is equal to ζ j times a purely imaginary constant proportional to the
angular velocity. If we assume additionally that all ζ j ’s are real and identical (all γi ’s
are equal) and there is no external flow field, then after rescaling (2.10) boils down to

ζ j =
N∑

i=1
i �= j

1

ζ j − ζi
, j = 1, 2, . . . , N . (2.11)

Let us use again the polynomial y defined in (2.6), known in this field as the generating
polynomial for the vortex configuration (see [78]). We can rewrite the second identity
in (2.8) equivalently as

y′′(z) = −2y(z)
N∑

j=1

N∑

i=1
i �= j

1

(ζi − ζ j )(z − ζ j )
, (2.12)

which together with (2.11) yields again the differential equation (1.2). Thus, the zeros
of the Hermite polynomials give us the positions of vortices on R such that the con-
figuration rotates like a rigid body. Clearly, these considerations can be extended to
more general families of polynomials.

A reader interested in vortex dynamics should check the nice surveys [15] and [30].

3 As it is pointed out in [98], Stieltjes mentions without proving that the equilibrium configuration is
actually the minimum of the energy. The proof can be found for instance in [97, Sect. 6.7].
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2.2 Groups of Point Charges andVortices

We can extend Definition 2.1 to a vector setting (for our purpose, it will be sufficient
to consider two-component vectors) that allows us to handle groups of differently
charged particles. Given a vector of discrete measures 
μ = (μ1, μ2), with supp(μ1)∩
supp(μ2) = ∅,

μ1 =
n1∑

k=1

δζk , μ2 =
n2∑

j=1

δξ j , (2.13)

a real interaction parameter −1 < a < 1, and a vector external field 
ϕ = (ϕ1, ϕ2),
both ϕi real-valued and finite at supp(μ1) ∪ supp(μ2), the corresponding weighted
vector energy is

E 
ϕ,a( 
μ) := E(μ1) + 2a
n1∑

k=1

n2∑

j=1

log
1

|ζk − ξ j | + E(μ2) + 2
n1∑

k=1

ϕ1(ζk) + 2
n2∑

j=1

ϕ2(ξ j )

(2.14)
(see the notation in (2.2)). We can restate this definition using vector notation and the
symmetric positive-definite matrix

M :=
(
1 a
a 1

)

and say that the weighted vector energy in (2.14) corresponds to the interaction matrix
M . Moreover, for measures (2.13) we can write alternatively

E 
ϕ,a(ζ1, . . . , ζn1 , ξ1, . . . , ξn2) := E 
ϕ,a( 
μ).

Definition 2.2 We say that 
μ is a critical vector measure for E 
ϕ,a if supp(μ1) ∪
supp(μ2) is a stationary configuration for E 
ϕ,a :

∇ E 
ϕ,a(ζ1, . . . , ζn1 , ξ1, . . . , ξn2) = 0.

For any Borel measure μ on C we can define its logarithmic potential,

Uμ(z) :=
∫

log
1

|z − t | dμ(t). (2.15)

From the expression for E 
ϕ,a it follows that Definition 2.2 is equivalent to simultaneous
equilibrium conditions

μ1 is F1-critical, with F1 := a Uμ2 + ϕ1,

μ2 is F2-critical, with F2 := a Uμ1 + ϕ2.
(2.16)
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Alternatively, consider the situation when in the absence of the background flow,
the circulations γi ’s in (2.10) take only two possible values,

γk =
{

γ > 0, for k = 1, 2, . . . , n1,

−γ, for k = n1 + 1, n1 + 2, . . . , n1 + n2 = N .

We can rename ξk := ζn1+k , k = 1, . . . , n2; in this way, for stationary vortices we
have the equations

n1∑

i=1
i �= j

1

ζ j − ζi
=

n2∑

k=1

1

ζ j − ξk
, j = 1, 2, . . . , n1,

n2∑

i=1
i �= j

1

ξ j − ξi
=

n1∑

k=1

1

ξ j − ζk
, j = 1, 2, . . . , n2.

(2.17)

To study these vortex patterns, we define again the generating polynomials

y(z) =
n1∏

j=1

(
z − ζ j

)
, v(z) =

n2∏

k=1

(z − ξk) .

Formulas (2.8) and (2.12) show that (2.17) yield the bilinear identity

y′′v − 2y′v′ + yv′′ = 0. (2.18)

This is currently known as Tkachenko’s equation, since it was first derived by
Tkachenko in his dissertation in 1964. Polynomial solutions of this equation were
studied by Burchnall and Chaundy [25]. Adler and Moser [1] showed that (2.18) is
solved by two consecutive polynomials that nowadays are know as Adler-Moser poly-
nomials, see also [36]. Moreover, comparing (2.17) with (2.5) and (2.16) we conclude
that the zeros of consecutive Adler-Moser polynomials are stationary configurations
(or equivalently, 
μ = (μ1, μ2) defined in (2.13) is a critical vector measure) for the
vector energy E 
ϕ,a( 
μ) defined in (2.14), with


ϕ ≡ (0, 0) and a = −1

2
,

fact that was already observed in [17].
Further generalizations of these ideas, and in particular, their relation to rational

solutions of Painlevé equations, can be found in [15, 16, 30, 34, 35, 37, 38, 57, 62,
78], to cite a few.
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3 Electrostatics for Semiclassical Weight

In the rest of the paper we will try to adhere to the following notational convention,
whenever possible: we will use capital letters to denote polynomials, and small letters
to indicate general, usually multivalued, functions. A few exceptions of these rules
will be clearly indicated.

3.1 The SemiclassicalWeight

We start from a monic polynomial

A(z) = zdeg(A) + lower degree terms;

we use the notation A for the set of zeros of A on C and admit A = ∅. Let

� := �1 ∪ · · · ∪ �k,

where each� j , j = 1, . . . , k, is an oriented Jordan piece-wise analytic arc joining pairs

of points from A ∪ {∞} and not containing any other point from A in its interior
◦
� j .

For simplicity, we assume that the interiors of � j ’s are pairwise disjoint (
◦
�i ∩ ◦

� j = ∅,
i �= j), but as it will be clear from what follows, this is not an actual restriction.

Given another polynomial, B, we define, up to a normalization constant, (multival-
ued) analytic functions in C,

w(z) := exp

(∫ z B(t)

A(t)
dt

)
, v(z) := A(z)w(z), (3.1)

with only possible singularities (either isolated or branch points) at A ∪ {∞}. Notice
that a priori we do not assume that A and B are relatively prime. This implies in
particular, that B/A can be analytic at some zero of A, so that not all end-points of
the arcs � j ’s are necessarily branch points, zeros or isolated singularities of w.

The orientation of the arcs � j in � defines the left- and right-side boundary values
of the function w on � j that we denote by w+ and w−, respectively; two different
values of w+, as well as w+ and w−, differ by a multiplicative constant. We fix on
� the weight by assuming that on each component � j it coincides, up to a non-zero
multiplicative constant, with w+; for the sake of simplicity of notation, we will be
denoting this weight by the same letter w. A fundamental assumption is that such a
weight has finite moments:

∫

�

|z|m |w(z)||dz| < +∞, m = 0, 1, 2, . . .

As consequence, for m = 0, 1, 2, . . . ,

zmv(z) = 0 at endpoints of every subinterval of�. (3.2)
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Clearly, w is piece-wise differentiable on � and

w′(z)
w(z)

= B(z)

A(z)
, z ∈ �; (3.3)

this equality is actually valid in C\A.
The weight w is known as semiclassical, and the value

σ := max{deg(A) − 2, deg(B) − 1} (3.4)

is often referred to as its class, see e.g. [68, 69]. This is ambiguous in the case when A
and B have a common factor, so we prefer to say that σ is the class of the pair (A, B)

and assume σ ≥ 0. Relation (3.3) can be written in the form

(Aw)′ − (
A′ + B

)
w = 0,

known as the Pearson differential equation, see e.g. [29, 97].

Example 3.1 The simplest and well known example is the case of the Jacobi weight,
when

A(x) = x2 − 1, B(x) = (α + β)x + α − β. (3.5)

If Re α,Re β > −1 then condition (3.2) is satisfied for � = [−1, 1].
This is an example of a classical weight (σ = 0); here

w(z) = (z − 1)α(z + 1)β, v(z) = (z − 1)α+1(z + 1)β+1.

Example 3.2 With

A(x) = x(x − a)(x − b), b < 0 < a, B(x)

= αx(x − b) + βx(x − a) + γ (x − a)(x − b),

we have

w(x) = (x − a)α(x − b)β xγ , v(x) = (x − a)α+1(x − b)β+1xγ+1.

If α, β, γ > −1, we may take

�1 = [b, 0], �2 = [0, a], � = �1 ∪ �2,

so that condition (3.2) holds. This is a semiclassical weight of class σ = 1.
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3.2 The Electrostatic Partner

In this section we carry out a purely formal construction that will gain content with
additional assumptions in Sects. 4 and 5.

For any w-integrable function f on � we define its weighted Cauchy transform

Cw[ f ](z) :=
∫

�

f (t)w(t)

t − z
dt, (3.6)

holomorphic in C\�. The case of f ≡ 1 is particularly important, so we will use a
brief notation

ŵ(z) := Cw[1](z) =
∫

�

w(t)

t − z
dt; (3.7)

ŵ is also known as a Markov function related to the weight w.
Given a polynomial P �≡ 0, its polynomial4 of the second kind Q is defined as

Q(z) :=
∫

�

P(t) − P(z)

t − z
w(t)dt . (3.8)

Additionally, we call

q(z) := Cw[P](z)
w(z)

, z ∈ C\�, (3.9)

the corresponding function of the second kind of P . They are related by the evident
identity

P(z)ŵ(z) + Q(z) = Cw[P](z) = q(z)w(z). (3.10)

Although q is not necessarily single-valued in C\�,

wq ′ = (Cw[P])′ − Cw[P] w′

w
= (Cw[P])′ − Cw[P] B

A
(3.11)

is meromorphic in C\�, with only possible poles at the poles of B/A.
We denote by Wrons[ f1, . . . , fk] the Wronskian determinant of the functions

f1, . . . , fk , namely

Wrons[ f1, . . . , fk] := det

⎛

⎜⎜⎜⎝

f1 . . . fk

f ′
1 . . . f ′

k
... . . .

...

f (k−1)
1 . . . f (k−1)

k

⎞

⎟⎟⎟⎠ . (3.12)

Finally, for a polynomial P , we define the transform

Dw[P] := det

(
P Cw[P]

AP ′ A (Cw[P])′ − BCw[P]
)

= vWrons[P, q], (3.13)

4 Hilbert’sNullstellensatz implies that P(t)−P(z) can be factored as (t−z)P̃(t, z), where P̃ is a polynomial
in its both variables, which implies that Q defined in (3.8) is a polynomial in z.
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(with v from (3.1)), a priori holomorphic in C\�.

Theorem 3.3 If P is a polynomial of degree N ∈ N then there exist a polynomial U
of degree ≤ N − 1 and a polynomial H of degree ≤ σ such that

Dw[P] = det

(
P Cw[P]
U Cw[U ] + H

)
. (3.14)

Moreover, Dw[P] is a polynomial of degree ≤ N + σ .

Proof We start with an identity for Cw[P]: for z ∈ C\�,

Cw[AP ′ + B P](z) = A(z) (Cw[P])′ (z) − D(z), (3.15)

where

D(z) :=
∫

�

A(z) − A(x) + A′(x)(x − z)

(x − z)2
P(x)w(x) dx (3.16)

is a polynomial of degree ≤ deg(A) − 2. In particular, D ≡ 0 if deg(A) ≤ 1.
The identity can be established by direct calculation: integrating by parts and with

account of (3.2)–(3.3),

Cw[AP ′ + B P](z) =
∫

�

A(x)

x − z

d (Pw)

dx
dx = −

∫

�

d

dx

(
A(x)

x − z

)
P(x)w(x)dx,

so that the left-hand side in (3.15) is equal to

∫

�

A(x) − A′(x)(x − z)

(x − z)2
P(x)w(x) dx,

and (3.15) follows.
Denote by E the polynomial part of the expansion of AP ′/P at ∞, i.e.

A(z)
P ′

P
(z) = E(z) + O

(
1

z

)
, z → ∞.

It is easy to see that E is polynomial of degree ≤ deg(A) − 1. In this way,

U := AP ′ − E P (3.17)

is a polynomial of degree ≤ N − 1.
By (3.15),

Cw[U ] = Cw[AP ′ − E P] = Cw[AP ′ + B P] + Cw[(−E − B)P]
= A (Cw[P])′ − (B + E)(z)Cw[P] − H ,
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where, with the definition (3.16),

H(z) := D(z) +
∫

�

(E + B)(x) − (E + B)(z)

x − z
p(x)w(x) dx (3.18)

is a polynomial of degree ≤ σ . In particular (see (3.11)),

vq ′ = Awq ′ = A (Cw[P])′ − BCw[P] = Cw[U ] + ECw[P] + H . (3.19)

Using (3.17) and (3.19) in (3.13) we conclude that

Dw[P] = det

(
P Cw[P]

AP ′ Cw[U ] + ECw[P] + H

)
= det

(
P Cw[P]
U Cw[U ] + H

)
,

establishing (3.14).
In order to show thatDw[p] is a polynomial (of degree at most N + σ ) we use the

standard arguments from the Riemann–Hilbert characterization of orthogonal poly-
nomials (see e.g. [33]). Namely, denote by Y the matrix in the right-hand side of
(3.14),

Y(z) :=
(

P Cw[P]
U Cw[U ] + H

)
,

which by definition is holomorphic in C\�. The Sokhotsky-Plemelj formulas imply
that Y satisfies that

Y+(x) = Y−(x)

(
1 w(x)

0 1

)
, x ∈ �, (3.20)

where Y± denote the boundary values of Y on� from the left/right sides, respectively.
Taking determinants in both sides of (3.20) the Morera theorem yields that det(Y) is
analytic across �. Since the first column of Y is bounded at each finite point ofC, and
the local behavior of the second column at the end points of � essentially matches
that of ŵ (see [45, Ch. 1]), it follows that det(Y) is an entire function. Moreover, since
H is a polynomial of degree ≤ σ , there exist a constant c ∈ C\{0} and s ∈ N ∪ {0},
s ≤ σ , such that

Y(z) =
(
1 0
0 c

) (
I + O

(
1

z

))
diag

(
zN , zs

)
, z → ∞.

Liouville’s theorem shows that det(Y) = Dw[P] is a polynomial of degree N + s ≤
N + σ , which concludes the proof. ��
Remark 3.4 A relation of the form (3.19) was used in [65] as a definition of the semi-
classical character of the weight, and in fact, it characterizes (3.3).
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Definition 3.5 Let P �= 0 be a polynomial. Then we call the polynomial

S := Dw[P], (3.21)

defined by (3.13), the electrostatic partner of P induced by the weight w.

Remark 3.6 The definition (3.21) shows that normalization of S is equivalent to nor-
malization of P: the scaling P �→ λP , λ ∈ C, is equivalent to S �→ λ2S. As it will be
clear in the next section (Proposition 3.9), the actual normalization of S is irrelevant
to the electrostatic model.

Some properties of the electrostatic partner S and of the function of the second kind
q of P are established in the Appendix A.

3.3 The Differential Equation and Electrostatic Model

Theorem 3.7 Let P be a polynomial, q its function of the second kind defined in (3.9),
and S the electrostatic partner defined in (3.21). Then P and q are two solutions of
the same second order linear differential equation with polynomial coefficients

ASy′′ + (A′S − AS′ + BS)y′ + Cy = 0. (3.22)

If deg(A) ≤ 1 then C = Dv[P ′], with v = Aw.

Proof Away from the zeros of A, the formal identity

A(z)v(z)Wrons[y, P, q](z) = A2(z)w(z) det

⎛

⎝
y P q
y′ P ′ q ′
y′′ P ′′ q ′′

⎞

⎠ (z) = 0 (3.23)

is clearly satisfied by y = P and y = q, and thus, by any linear combination of these
two functions. Expanding the determinant along the first column yields the following
second order differential equation with respect to y:

f (z) = f2(z)y′′(z) + f1(z)y′(z) + f0(z)y(z) = 0, (3.24)

where (see (3.13)),

f2 = Av det

(
P q
P ′ q ′

)
, (3.25)

f1 = −Av det

(
P q
P ′′ q ′′

)
, (3.26)

f0 = Av det

(
P ′ q ′
P ′′ q ′′

)
(z) = det

(
P ′ vq ′

AP ′′ Avq ′′
)

. (3.27)
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By (3.13), f2 = AS, and thus it is a polynomial. Furthermore, differentiating f2 and
using (3.1), (4.7), it is straightforward to deduce that

f1 = A′S − AS′ + BS

is also a polynomial.
By (3.11) and (3.15),

vq ′ = A (Cw[P])′ − BCw[P] = Cw[AP ′] + D = Cv[P ′] + D.

Differentiating this identity and using (3.3) we obtain that

Avq ′′ = A
(
Cv[P ′])′ − (A′ + B)Cv[P ′] + [

AD′ − A′D − B D
]
.

Thus,

f0 = det

(
P ′ vq ′

AP ′′ Avq ′′
)

= det

(
P ′ Cv[P ′]

AP ′′ A
(
Cv[P ′])′ − (A′ + B)Cv[P ′]

)
+ det

(
P ′ D

AP ′′ AD′ − A′D − B D

)
.

Observe that the weight v = Aw is also semiclassical, with

v′(z)
v(z)

= B1(z)

A(z)
, B1(z) = A′(z) + B(z), z ∈ �,

so that by (3.13),

(
P ′ Cv[P ′]

AP ′′ A
(
Cv[P ′])′ − (A′ + B)Cv[P ′]

)
= Dv[P ′],

and we get that

f0 = Dv[P ′] + det

(
P ′ D

AP ′′ AD′ − A′ D − B D

)
:= C . (3.28)

The first term in the right hand side is the electrostatic partner to P ′ induced by the
semiclassical weight v, while the determinant is clearly a polynomial. Moreover, if
deg(A) ≤ 1, it follows from (3.16) that D ≡ 0, which concludes the proof. ��
Remark 3.8 Incidentally, we have established the following differential identity:

L[y] := (Av)Wrons[y, P, q] = ASy′′ + (A′S − AS′ + BS)y′ + Cy, (3.29)

for some polynomial C . We will use this later, in the proof of Theorem 7.1.

123



Constructive Approximation

Moreover, formula (3.28) and Remark 3.6 show that equation (3.22) is independent
of normalization of S: a scaling S �→ λ2S, λ ∈ C, can be interpreted as P �→ λP ,
and thus, C �→ λ2C .

Using the notions of Sect. 2, and in particular, characterization (2.9), we see that
(3.22) yields that zeros of P are in electrostatic equilibrium in the external field ϕ(z) =
Re �(z), if

�′(z) := −1

2

A′S − AS′ + BS

AS
(z) = −1

2

(
A′(z)
A(z)

+ B(z)

A(z)
− S′(z)

S(z)

)
.

Taking into account the definition (3.1), we conclude:

Proposition 3.9 Assume that the polynomial P of degree N does not vanish at the zeros
of AS, where S = Dw[P] is its electrostatic partner. Then the discrete zero-counting
measure ν(P) of P is ϕ-critical for the external field

ϕ(z) = 1

2
log

∣∣∣∣
S

v

∣∣∣∣ (z). (3.30)

We can write alternatively that

ϕ(z) = 1

2

(
U ν(A)(z) − U ν(S)(z) + log

∣∣∣∣
1

w

∣∣∣∣ (z)
)

.

In other words, the zeros of P (which under assumptions of Proposition 3.9 are nec-
essarily simple) are in equilibrium in the external field ϕ induced by the orthogonality
weight w, with an additional contribution from point charges of size 1/2: a repulsion
from positive charges at A and an attraction from negative charges at the zeros of the
electrostatic partner S (whose location is a priori unknown). The presence of attract-
ing “ghost charges” was observed already by M. H. Ismail [49, 50] in his electrostatic
interpretation for zeros of orthogonal polynomials with respect to generalized Jacobi
weights.

Remark 3.10 The study of polynomial solutions of second order ODE of the form
(3.22) is a very classical problem that goes back at least 200 years, see e.g. [71, 72, 89]
for some historical references and background. In this context, polynomial coefficients
C are known as Van Vleck polynomials, and the solution P is the corresponding
Heine–Stieltjes polynomial.

The one-to-one correspondence between Heine–Stieltjes polynomials and the
discrete critical measures has been established in [71]. Recently, an additional char-
acterization in terms of non-Hermitian orthogonality satisfied by Heine–Stieltjes
polynomials was found in [18]. For the differential equation (3.22), it follows from
their work that there exist a set � and the constants defining the weight w (see the
explanation in Sect. 3.1) such that P satisfies n + σ orthogonality conditions with
respect to w/S2. The close connection between orthogonality and electrostatics is
well known. In this sense, the electrostatic model in Proposition 3.9, and especially,
the form of the external field (3.30), is compatible with the findings of [18].
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4 Quasi-Orthogonality

We revisit the facts established in Sect. 3 under an additional assumption on our
polynomial P . A (monic) polynomial PN of degree N is called quasi-orthogonal5 with
respect to the weight w on � if it satisfies the following (in general, non-Hermitian)
orthogonality relations: for n ∈ N, n ≤ N ,

∫

�

x j PN (x)w(x)dx = 0 , j = 0, 1, . . . , n − 1,

mn :=
∫

�

xn PN (x)w(x)dx �= 0.
(4.1)

In particular, if n = N , polynomial PN is the N -th monic orthogonal polynomial.
Clearly, last condition in (4.1), that is, mn �= 0, is a constraint on the weight w and
orthogonality contour �.

Using the notation introduced in (3.6)–(3.9), we denote

QN (z) :=
∫

�

PN (t) − PN (z)

t − z
w(t)dt (4.2)

and

Cw[PN ](z) =
∫

�

PN (t)w(t)

t − z
dt, z ∈ C\�. (4.3)

It is useful to observe that (4.1) yields that for any polynomial T of degree ≤ n,

TCw[PN ] = Cw[T PN ], that is, T (z)
∫

�

PN (t)w(t)

t − z
dt =

∫

�

T (t)PN (t)w(t)

t − z
dt,

(4.4)
which by (3.10) in particular shows that, as z → ∞,

Cw[PN ](z) = PN (z)ŵ(z) + QN (z) = − mn

zn+1 + . . . ; (4.5)

if � is unbounded, we understand the equality above in the asymptotic sense. Notice
also that if PN satisfies a full set of orthogonality conditions (N = n), then (4.5) shows
that the rational function

πN := − QN

PN

is the N -th diagonal Padé approximant to ŵ at infinity, fact that is well known.
We denote by qN , UN and HN the functions q, U and H introduced in (3.9), (3.17)

and (3.18) for P = PN , and let

SN := Dw[PN ] = det

(
PN Cw[PN ]

AP ′
N A (Cw[PN ])′ − BCw[PN ]

)
(4.6)

5 A more restrictive notion of quasi-orthogonality was introduced by Chihara [28], where he assumed a
condition equivalent to n = N − 1; see also [53].
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be the electrostatic partner to PN , induced by the weight w. By Theorem 3.3,

SN = vWrons[PN , qN ] = det

(
PN Cw[PN ]
UN Cw[UN ] + HN

)
, (4.7)

and SN is a polynomial of degree≤ N +σ . In fact, due to quasi-orthogonality relations
we can say more: the upper bound on the degree of SN is lessened by the number of
orthogonality conditions:

Corollary 4.1 If PN satisfies (4.1) then for the electrostatic partner SN ,

SN (z) = mn zN−n
[
(N + n + 1) zdeg(A)−2 (1 + O (1/z)) + κ zdeg(B)−1 (1 + O (1/z))

]
,

z → ∞, (4.8)

where κ is the leading coefficient of the polynomial B. In particular, with assumptions
(4.1), deg(SN ) ≤ N − n + σ and can be strictly less only if deg(A) = deg(B) + 1
and κ = −(N + n + 1).

Moreover, if n ≥ σ + 1 then HN ≡ 0, and if n ≥ σ + 2, then additionally, UN (of
degree ≤ N − 1) is quasi-orthogonal:

∫

�

x jUN (x)w(x)dx = 0, j = 0, . . . , n − σ − 2. (4.9)

Proof Using (4.5) in the definition (4.6) we obtain (4.8). Also from (4.5), (3.19) and
since deg(B + E) ≤ σ + 1, we see that

Cw[UN ](z) + H(z) = A(z)(Cw[PN ])′(z) − (B + E)(z)Cw[PN ](z)
= O

(
1

zn−σ

)
, z → ∞. (4.10)

If n ≥ σ + 1, (4.10) implies that H ≡ 0; with the assumption n ≥ σ + 2 we also get
the quasi-orthogonality conditions (4.9). ��
Remark 4.2 It is interesting to examine the conclusions of Corollary 4.1 in the par-
ticular case of polynomials PN orthogonal on � with respect to the weight w (so
that n = N ). Consequently, the degree of SN is uniformly bounded: deg SN ≤ σ .
Furthermore, deg SN = σ if either

deg(A) �= deg(B) + 1 or κ �= −(N + n + 1),

see (4.8). If additionally σ = 0 (i. e. when PN is basically a classical orthogonal
polynomial), (4.9) asserts that UN is the (N − 1)-th orthogonal polynomial, and up to
normalization, UN = PN−1, in which case (4.7) boils down to

SN = V det

(
PN qN

P ′
N q ′

N

)
= const× det

(
PN Cw[PN ]

PN−1 Cw[PN−1]
)

,
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that is, polynomial SN is the product of a factor related with the weight and the
Wronskian of PN andqN , and also is theCasorati determinant associatedwith PN ; such
an identity appears for instance in [52, formula (3.6.13)]. Thus, (4.7) is a generalization
of such kind of relations to quasi-orthogonal polynomials with respect to semiclassical
weights, a fact that has an independent interest.

With the additional assumption of quasi-orthogonality of PN , Theorem 3.7 and
Proposition 3.9 are still valid, with S replaced by SN . For instance, PN satisfying (4.1)
and its function of the second kind qN are solutions of the linear differential equation
with polynomial coefficients

ASN y′′ + (A′SN − AS′
N + BSN )y′ + CN y = 0, (4.11)

where SN is the electrostatic partner defined in (4.6), andCN is a polynomial. Its degree
can be easily estimated by using in (4.11) that deg PN = N and deg(SN ) ≤ N −n+σ ,
which yields that

deg(CN ) ≤ N − n + 2σ. (4.12)

In some cases, we can be more precise. For instance, if deg(A) ≤ deg(B) and
deg(PN ) = N then using (4.8) and (4.11) we conclude that

deg(SN ) = N − n + deg(B) − 1, deg(CN ) = N − n + 2 deg(B) − 2.

Equation (4.11) is known in the literature on semiclassical orthogonal polynomials,
see for instance [90, Eq. (20)] or [65, Eq. (18)]. The equation in [65] was obtained
for orthogonal polynomials only, when the polynomial SN (denoted by �n there) has
degree ≤ σ . In this sense, (4.11) is an extension of these results. Recall that Magnus
uses in [65] an alternative definition for the semiclassical weights, in terms of an
identity for the Cauchy transform (3.6), which is equivalent to (3.3), see Remark 3.4.

Example 4.3 Let us return to Jacobi polynomials

PN (x) = P(α,β)
N (x) = 1

2N N ! (x − 1)−α(x + 1)−β
[
(x − 1)α+N (x + 1)β+N

](N )

,

(4.13)
corresponding to the weight considered in Example 3.1, for which

A(x) = x2 − 1, B(x) = (α + β)x + α − β,

and σ = 0. It is known that P(α,β)
N may have a multiple zero at x = 1 if α ∈

{−1, . . . ,−N }, at x = −1 if β ∈ {−1, . . . ,−N } or, even, at x = ∞ (which means a
degree reduction) if N + α + β ∈ {−1, . . . ,−N }; otherwise, all zeros are simple, see
e.g. [58, 97].

If α, β > −1, we can take � = [−1, 1]. By Corollary 4.1, the electrostatic partner
SN is a constant (�≡ 0 if α + β �= −2N − 1). Since

v(z) = (z − 1)α+1(z + 1)β+1,
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the zeros of PN are in equilibrium in the external field

ϕ(z) = 1

2
log

∣∣∣∣
1

(z − 1)α+1(z + 1)β+1

∣∣∣∣ = α + 1

2
U δ1(z) + β + 1

2
U δ−1(z). (4.14)

In other cases, considered non-standard, when either α ≤ −1 or β ≤ −1, Jacobi
polynomials satisfy non-hermitian quasi-orthogonality conditions, see [58, Theorem
4.1].

For instance, if α, β, α+β /∈ Z, and−N < α < −1, then all zeros of PN = P(α,β)
N

are simple, and PN (−1) �= 0, see e.g. [97, Ch. IV]. Polynomial PN satisfies also a
quasi-orthogonality relation (4.1) with n = N − [−α], but with a modified weight,
w(z) = (z − 1)α+[−α](z + 1)β , so that now

v(z) = (z − 1)α+[−α]+1(z + 1)β+1.

Moreover, as � we can take an arbitrary curve oriented clockwise, connecting 1− i0
with 1 + i0 and lying entirely in C\[−1,+∞), except for its endpoints; if β > −1,
then � can be deformed into [−1, 1].

By Corollary 4.1, the electrostatic partner SN is of degree exactly [−α]. We will
show next that, up to a normalizing constant,

SN (x) = (x − 1)[−α]. (4.15)

However, notice that by Proposition 3.9, the discrete zero-counting measure ν(PN ) of
PN = P(α,β)

N is ϕN -critical in the external field

ϕ(z) = 1

2
log

∣∣∣∣
SN

v

∣∣∣∣ (z),

which coincides with the one given in (4.14). In other words, even with the non-
standard values of the parameters α, β, we still get equilibrium in the field (4.14).

Returning to the expression for SN in the case under consideration, it is known that
for all values of the parameters, PN is a solution of the differential equation

Ay′′ + (B + A′)y′ − λN y = 0, λN = N (N + α + β + 1),

with A and B given in (3.5), see e.g. [97, Ch. IV] or [82, Sect. 18.8]. At the same time,
from our discussion it follows that PN is a solution of the differential equation (4.11),
namely

ASN y′′ + (A′SN − AS′
N + B1SN )y′ + CN y = 0,

B1(x) = (α + [−α] + β)x + α + [−α] − β.

Combining these two equations we obtain the identity

(
(B − B1)SN + AS′

N

)
P ′

N = (λN SN + CN ) PN ,
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which using the explicit expressions for A, B and B1, can be rewritten as

(x +1)
(
(x − 1)S′

N (x) − [−α]SN (x)
)

P ′
N (x) = (λN SN (x)+CN (x))PN (x). (4.16)

Recall that deg SN = [−α] ≤ N ; a simple argument shows that

deg
(
(x − 1)S′

N (x) − [−α]SN (x)
)

< N .

Indeed, the assertion is obvious for deg SN < N ; if deg SN = [−α] = N then the
leading coefficients of (x − 1)S′

N (x) and [−α]SN (x) match, so the assertion follows
also in this case.

Since in the situationwe are analyzing PN (x) and (x +1)P ′
N (x) are relatively prime

(up to amultiplicative constant), by (4.16)we conclude that (x−1)S′
N (x)−[−α]SN (x)

must vanish at all N distinct zeros of PN , which is possible only if (x − 1)S′
N (x) −

[−α]SN (x) ≡ 0, which implies (4.15). Incidentally, we also obtain that in this case,
CN = −λN SN .

We will return to the example of Jacobi polynomials with non-standard values of
the parameters in the Sect. 8.1, when we will address multiple orthogonality.

Example 4.4 It is instructive to compare our construction with the results of [53] in
the case of quasi-orthogonal Jacobi polynomials. These are polynomials

PN (x) = P̂N (x) + c P̂N−1(x), c ∈ R,

where P̂N is the N -th orthonormal Jacobi polynomial

P̂N (x) =
√

(α + β + 2N + 1)�(α + β + N + 1)N !
2α+β+1�(α + N + 1)�(β + N + 1)

P(α,β)
N (x)

and P(α,β)
N is defined in (4.13). Obviously, for α, β > −1, PN satisfies (4.1) with

n = N − 1 and the weight w(x) = (x − 1)α(x + 1)β . According to Corollary 4.1,
SN (x) = x − tN (up to a multiplicative constant), and by Proposition 3.9, the discrete
zero-counting measure ν(PN ) of PN is ϕ-critical in the external field

ϕ(x) = α + 1

2
U δ1(x) + β + 1

2
U δ−1(x) − 1

2
U δtN (x)

= α + 1

2
log

1

|x − 1| + β + 1

2
log

1

|x + 1| − 1

2
log

1

|x − tN | .

Explicit expressions allow to calculate tN by definition (4.7):

tN = − (α + β + 1 + 2N ) + c2(α + β − 1 + 2N )

(2N + α + β)c
aN + β2 − α2

(2N + α + β)2
,

123



Constructive Approximation

where

aN = 2

α + β + 2N

√
N (α + N )(β + N )(α + β + N )

(α + β − 1 + 2N )(α + β + 1 + 2N )
.

This expression coincides with the one obtained in [53, Sect. 5.2].

5 Multiple Orthogonality of Type II

5.1 The General Case

We are interested in type II multiple or Hermite–Padé orthogonal polynomials with
respect to semiclassical weights. For the sake of simplicity, we restrict ourselves to
two positive weights w1, w2, supported on �1 ⊂ R and �2 ⊂ R, respectively. Given
an ordered pair n = (n1, n2) ∈ Z

2≥0, where Z≥0 = N ∪ {0}, we look for a (monic)
polynomial Pn of total degree at most N = |n| := n1 + n2, such that

∫

�i

x j Pn(x)wi (x)dx

{
= 0, j ≤ ni − 1,

�= 0, j = ni ,
i = 1, 2. (5.1)

In this way, the definition of type II Hermite–Padé orthogonal polynomials (5.1) boils
down to two simultaneous quasi-orthogonality conditions.

Additionally, we assume that both weights are semiclassical and belong to the
framework discussed in Sect. 3. More precisely, we assume that for each i = 1, 2,
�i ⊂ R is a finite union of non-overlapping intervals joining real zeros of a real
polynomial Ai and eventually ∞, and that each weight wi is defined on �i in such a
way that on each component � j it coincides, up to a non-zero multiplicative constant,
with a boundary value (wi )+ of the function defined below:

wi (z) := exp

(∫ z Bi (t)

Ai (t)
dt

)
, i = 1, 2, (5.2)

for some real polynomials B1, B2. As before, we use the notation Ai for the set of
zeros of Ai on C, i = 1, 2.

We assume also that wi ’s have finite moments:

∫

�i

|x |m |wi (x)|dx < +∞, m = 0, 1, 2, . . . , i = 1, 2.

As a consequence, for m = 0, 1, 2, . . . ,

zmvi (z) = 0 at endpoints of every subinterval of�i , i = 1, 2, (5.3)

with
vi (z) := Ai (z)wi (z), i = 1, 2. (5.4)
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We also have that
w′

i (z)

wi (z)
= Bi (z)

Ai (z)
, i = 1, 2, (5.5)

with the identity taking place away from the singularities of wi . As in (3.4),

σi := max{deg(Ai ) − 2, deg(Bi ) − 1}, i = 1, 2. (5.6)

Remark 5.1 In the special case when A1 = A2 = A and B1 = B2 = B, we will
always assume, without loss of generality, that both wi are normalized in such a way
that for every selection of the branch,

w1(z) = w2(z) = w(z) = exp

(∫ z B(t)

A(t)
dt

)
.

This situation was considered for instance in [12] (and previously, in [54] and [56]).
Several examples of the case when �1 = �2, A1 = A2, but B1 �= B2 for classical
weights (σi = 0) appear in [7].

For Pn we define the corresponding polynomials

Qn,i (z) :=
∫

�i

Pn(t) − Pn(z)

t − z
wi (t)dt, i = 1, 2, (5.7)

and functions of the second kind,

qn,i (z) := Cwi [Pn](z)
wi (z)

= 1

wi (z)

∫

�

Pn(t)wi (t)

t − z
dt, i = 1, 2. (5.8)

By (4.4)–(4.5), for i = 1, 2,

Cwi [Pn](z) = Pn(z)ŵi (z) + Qn,i (z) = O(z−ni −1), z → ∞. (5.9)

This shows that the pair of rational functions

(
πn,1, πn,2

) :=
(

− Qn,1

Pn
,− Qn,2

Pn

)
(5.10)

are the simultaneous or Hermite–Padé approximants of type II to the pair of functions
(ŵ1, ŵ2), and that the functions Cwi [Pn] are the corresponding residues, see e.g. [12,
60].

Wewill impose an additional condition enforcing an independence of both weights,
namely we will assume that

Wrons[Pn, qn,1, qn,2] �≡ 0. (5.11)
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It is equivalent to assuming that Wrons[Pn, qn,1, qn,2] �= 0 at some point different
from the zeros of A1A2. Possibly, condition (5.11) is equivalent to n being a normal
index, although this is just a natural conjecture that deserves further study.

By the analysis from Sect. 3, Pn has now two electrostatic partners,

Sn,i (z) := Dwi [Pn] = vi (z) fn,i (z), i = 1, 2, (5.12)

where
fn,i := Wrons[Pn, qn,i ], i = 1, 2, (5.13)

andWrons[·, ·] stands for the Wronskian as defined in (3.12). An equivalent formula
that might shed some light on the behavior of these polynomials is

Sn,i (z) = v(z)P2
n (z)

(
ŵi (z) − πn,i (z)

wi (z)

)′
= v(z)P2

n (z)

(
Cwi [Pn](z)
wi (z)Pn(z)

)′
, i = 1, 2,

(5.14)
where πn,i are defined in (5.10); it can be checked using (5.9) by direct computation.

By Theorem 3.7,

Theorem 5.2 Let n = (n1, n2) ∈ Z
2≥0, and let Pn be a monic polynomial of degree

N = n1 + n2 (assuming it exists) that satisfies the multiple orthogonality conditions
(5.1). Then Sn,i are polynomials of degree at most N − ni + σi , i = 1, 2, and there
exist polynomials Cn,i ,

deg(Cn,i ) ≤ N − ni + 2σi , i = 1, 2,

such that Pn is a solution of the system of linear differential equations

Ai Sn,i y′′ + (A′
i Sn,i − Ai S′

n,i + Bi Sn,i ) y′ + Cn,i y = 0, i = 1, 2. (5.15)

Remark 5.3 In the case when A1 = A2 and B1 = B2 we can replace in the expressions
(5.15) the polynomial Sn,i by any linear combination

a Sn,1 + b Sn,2, a, b ∈ R.

The resulting differential equations still have Pn as one of their solutions; see the result
of numerical experiments for Appell’s polynomials at the end of Sect. 8.6, especially
the plots in Fig. 6.

An application of Proposition 3.9 yields:

Corollary 5.4 Assume that the polynomial Pn has no common zeros neither with A1Sn,1
nor with A2Sn,2. Then the discrete zero-counting measure ν(Pn) of Pn is ϕi -critical,
in the sense of Definition 2.1, for the external field

ϕi (z) = 1

2
log

∣∣∣∣
Sn,i

vi

∣∣∣∣ (z), (5.16)

for both i = 1, 2.
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Thus, the zeros of the Hermite–Padé polynomial Pn are in equilibrium (i.e., their
counting measure is critical) in two different external fields, each one induced by the
corresponding orthogonality weight wi , with an addition of attracting charges placed
at the zeros of the electrostatic partner Sn,i . This “redundancy” allows us to provide
also an electrostatic model for these additional charges forming the external fields ϕi .
Formally, it will be a consequence of the differential equations for the electrostatic
partners Sn,i that we establish next, but we need to introduce first another auxiliary
polynomial, this time generated by both weights simultaneously.

We define the following differential operators:

Li [y] := (Aivi )Wrons[y, Pn, qn,i ], i = 1, 2. (5.17)

Notice that we omit indicating the dependence of Li from n for the sake of brevity of
notation.

Proposition 5.5 Function

Rn := A2v2 L1[qn,2] = −A1v1 L2[qn,1] = (A1A2v1v2)Wrons[Pn, qn,1, qn,2]
(5.18)

is a polynomial of degree ≤ 2σ1 + 2σ2 + 3.
If A1 = A2 =: A, then A is a factor of Rn. If in addition B1 = B2, then A2 is a

factor of Rn, i.e.

R∗
n := Rn

A2 = v2 Wrons[Pn, qn,1, qn,2], v := Aw, (5.19)

is a polynomial.

Notice that by our assumption (5.11), Rn �≡ 0.

Proof Let us define

Rn := A1Sn,1Cn,2 − A2Sn,2Cn,1

P ′
n

. (5.20)

Multiplying the equations in (5.15) evaluated at y = Pn by A2Sn,2/Pn and A1Sn,1/Pn,
respectively, and subtracting we obtain

Rn Pn = −Wrons[A1, A2]Sn,1Sn,2 + A1A2 Wrons[Sn,1, Sn,2]
+(A2B1 − A1B2)Sn,1Sn,2. (5.21)

Notice that Rn Pn is a polynomial. An immediate consequence of the statement a) of
Proposition A.1 is that Sn,1/P ′

n and Sn,2/P ′
n are analytic at the zeros of Pn, which

together with the bounds on the degree of Cn,i from Theorem 5.2 yields that Rn is a
polynomial of degree at most 2σ1 + 2σ2 + 3.

On the other hand, straightforward calculation using (5.5) and (5.13) shows also
that

− Wrons[A1, A2]Sn,1Sn,2 + A1A2Wrons[Sn,1, Sn,2] + (A2B1 − A1B2)Sn,1Sn,2
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= A1A2v1v2Wrons[ fn,1, fn,2],

so that (5.20) reduces to

A1A2v1v2 Wrons[ fn,1, fn,2] = Pn Rn. (5.22)

Let

dn := Wrons[ fn,1, fn,2].

Since

f ′
n,i = Wrons[Pn, qn,i ]′ = det

(
Pn qn,i

P ′′
n q ′′

n,i

)
,

this gives us the following identity for dn:

dn = det

(
Pn qn,1
P ′
n q ′

n,1

)
det

(
Pn qn,2
P ′′
n q ′′

n,2

)
− det

(
Pn qn,2
P ′
n q ′

n,2

)
det

(
Pn qn,1
P ′′
n q ′′

n,1

)

=Pn Wrons[Pn, qn,1, qn,2],
(5.23)

which together with (5.22) proves the first part of assertion.
If A1 = A2 =: A then (5.21) becomes

A2(Sn,1S′
n,2 − S′

n,1Sn,2) + A(B1 − B2)Sn,1Sn,2 = A
Rn

A
Pn,

with
Rn

A
= Sn,1Cn,2 − Sn,2Cn,1

P ′
n

. (5.24)

Assume that A(z0) = 0. If also Pn(z0) = 0 then by the same argument as before,
Sn,1/P ′

n and Sn,2/P ′
n are analytic at z0, as well as the right hand side of (5.24). If

Pn(z0) �= 0 but P ′
n(z0) = 0, then by (5.15),

Cn,i (z0) Pn(z0) = −A(z0)Sn,i (z0) P ′′
n (z0), i = 1, 2.

In this case, AP ′′
n /P ′

n is analytic at z0, which implies again that the expression in the
right hand side of (5.24) is analytic at z0. This proves that Rn/A is a polynomial.

If in addition B1 = B2, then (5.21) reduces to

A2(Sn,1S′
n,2 − S′

n,1Sn,2) = RnPn ⇒ Rn

A2 = Sn,1S′
n,2 − S′

n,1Sn,2

Pn
. (5.25)

Hence, Rn/A2 could have poles only at the common roots of A and Pn. But in this
case, by Proposition A.1, Sn,1/Pn and Sn,2/Pn are analytic at the zeros of Pn. The
proof is complete. ��
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Remark 5.6 In the case when

A1 = A2 = A, deg(A) < deg(Bi ) + 1, i = 1, 2,

formula (5.21) shows that

deg

(
Rn

A

)
= deg(B1) + deg(B2) + deg(B1 − B2) − 2. (5.26)

If on the other hand, A1 = A2 = A, B1 = B2 = B,

σ = max{deg(A) − 2, deg(B) − 1} = 1 and n1 = n2,

then R∗
n is a constant; in other words,

Rn(x) = const×A2.

Indeed, by (5.25),

R∗
n = Sn,1S′

n,2 − S′
n,1Sn,2

Pn

is a polynomial. Since deg(Sn,1) = n2 +1 and deg(Sn,2) = n1 +1, deg(R∗
n) ≤ 1. The

assumption that n1 = n2 implies that the leading coefficient of Sn,1S′
n,2 and S′

n,1Sn,2
match, which proves that R∗

n is a constant.

Now we are ready to produce the promised differential equations satisfied by the
electrostatic partners:

Theorem 5.7 There exist polynomials D1 and D2 (in general, dependent on n) such
that Sn,1 is solution of the linear differential equation

A1A2PnRn y′′+((2A1A′
2+A1B2−A2B1)PnRn−A1A2(PnR′

n+P ′
nRn))y′+D1y = 0 ,

(5.27)
and Sn,2 satisfies

A1A2PnRn y′′+((2A′
1A2−A1B2+A2B1)PnRn−A1A2(PnR′

n+P ′
nRn))y′+D2y = 0.

(5.28)
If A1 = A2 and B1 = B2, then the two differential equations coincide, i.e., Sn,1

and Sn,2 are solutions of the same differential equation

PnR∗
ny′′ − (P ′

nR∗
n + Pn(R∗

n)
′)y′ + D∗y = 0 ,

where R∗
n was defined in (5.19), and D∗ is a certain polynomial, dependent on n.
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Proof Notice that, away from the zeros of A1 and A2, the formal identity

Wrons[y, fn,1, fn,2] = det

⎛

⎝
y fn,1 fn,2
y′ f ′

n,1 f ′
n,2

y′′ f ′′
n,1 f ′′

n,2

⎞

⎠ (z) = 0 (5.29)

is satisfied by y = fn,i , i = 1, 2. Expanding the determinant along the first column
yields

u2(z)y′′(z) − u1(z)y′(z) + u0(z)y(z) = 0,

with

u2 = Wrons[ fn,1, fn,2] = dn, u1 = det

(
fn,1 fn,2
f ′′
n,1 f ′′

n,2

)
(z) = Wrons[ fn,1, fn,2]′ = d ′

n,

and

u0 = det

(
f ′
n,1 f ′

n,2
f ′′
n,1 f ′′

n,2

)
(z) = Wrons[ f ′

n,1, f ′
n,2](z). (5.30)

Differentiating (5.12) we get that for i = 1, 2,

Ai Vi f ′
n,i = Ai S′

n,i − Sn,i
(

A′
i + Bi

)
,

A2
i Vi f ′′

n,i = Ai
(−Sn,i

(
A′′

i + B ′
i

) + Ai S′′
n,i − Bi S′

n,i

)

+ (
2A′

i + Bi
) (

Sn,i
(

A′
i + Bi

) − Ai S′
n,i

)
.

This shows that

D := A2
1A2

2v1v2u0 = det

(
A2
1v1 f ′

n,1 A2
2v2 f ′

n,2
A2
1v1 f ′′

n,1 A2
2v2 f ′′

n,2

)

is a polynomial.
Thus, we conclude that with this polynomial D, functions fn,i are two independent

solutions of the linear differential equation

dny′′ − d ′
ny′ + D

A2
1A2

2v1v2
y = 0.

With the change of variable y �→ y/v1 and using the definition (5.12) we see that
Sn,1 is a solution of the equation

g2(z)y′′(z) + g1(z)y′(z) + g0(z)y(z) = 0,

with

g2 = dn
v1

= RnPn

A1A2v
2
1v2

,
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g1 = −d ′
n

v1
− 2dnv′

1

v21

= − RnPn

A1A2v
2
1v2

(
P ′
n

Pn
+ R′

n
Rn

− 2A′
1 + B1

A1
− 2A′

2 + B2

A2
+ 2

A′
1 + B1

A1

)
,

g0 = d ′
nv′

1

v21

+ 2dn(v′
1)

2

v31

− dnv′′
1

v21

+ D

A2
1A2

2v
2
1v2

= RnPn

A2
1A2v

2
1v2

((
P ′
n

Pn
+ R′

n
Rn

− 2A′
2 + B2

A2

)
(A′

1 + B1) − A′′
1 − B′

1 + D

A2

)
,

which shows that each A2
1A2

2v
2
1v2g j is a polynomial. The differential equation for Sn,2

is obtained in an analogous way.
Finally, in the case A1 = A2 and B1 = B2 (and as explained in Remark 5.1,

w1 = w2 = w), both changes of variable coincide, so we have the same linear
differential equation of order 2 with polynomial coefficients for Sn,1 and Sn,2. Indeed

Wrons[y, Sn,1, Sn,2] = det

⎛

⎝
y Sn,1 Sn,2
y′ S′

n,1 S′
n,2

y′′ S′′
n,1 S′′

n,2

⎞

⎠ = 0 (5.31)

is satisfied by y = Sn,i , i = 1, 2 and by (5.25), the coefficients of y′′, y′ and y are

Wrons[Sn,1, Sn,2] = PnR∗
n , −Wrons[Sn,1, Sn,2]′ = −(PnR∗

n)
′ ,

Wrons[S′
n,1, S′

n,2] = D∗ ,

respectively. The statement is proved. ��
The differential equations (5.27)–(5.28) imply that, respectively,

y′′ +
(
2A′

2

A2
− B1

A1
+ B2

A2
− R′

n

Rn
− P ′

n

Pn

)
y′ = 0 at the zeros of Sn,1,

y′′ +
(
2A′

1

A1
+ B1

A1
− B2

A2
− R′

n

Rn
− P ′

n

Pn

)
y′ = 0 at the zeros of Sn,2,

and the characterization (2.9), along with definitions (5.5), yields an electrostatic
interpretation of the zeros of its solutions. Recall that Rn �≡ 0 is the polynomial
defined in (5.18) (see alternative expressions in (5.20), (5.21)). Then

Corollary 5.8 Let i = 1, 2, and let

φ1 := 1

2
log

∣∣∣∣
PnRn

A1A2

∣∣∣∣ + 1

2
log

∣∣∣∣
v1

v2

∣∣∣∣ , φ2(z) := 1

2
log

∣∣∣∣
PnRn

A1A2

∣∣∣∣ + 1

2
log

∣∣∣∣
v2

v1

∣∣∣∣ .

If for i ∈ {1, 2}, the roots of Sn,i are simple, then the discrete zero-counting measure
ν

(
Sn,i

)
of Sn,i is φi -critical in the sense of Definition 2.1.

Remark 5.9 As it follows from (5.27)–(5.28), zeros of Sn,i can be multiple only at
zeros of A1A2PnRn. By the definition of Sn,i via Dwi [Pn] as in (3.13), if Ai and Bi
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share a common root (case not excluded by our assumptions) then this root is also a
zero of Sn,i .

Notice that the roots of Sn,i are in equilibrium in the external field φi created not
only by charges fixed at the zeros of A2 or A1, but also by additionalmasses, all charged
as −1/2, placed at the roots of PnRn. As N = n1 + n2 grows large, the dominant
interaction is provided by the relation between the zeros of Sn,i and Pn. This motivates
to combine the statements of Corollaries 5.4 and 5.8 into a single electrostatic model
that we formulate using the notion of the critical vector measures (see Definition 2.2):

Theorem 5.10 Let Rn �≡ 0 be the auxiliary polynomial of degree ≤ 2σ1 + 2σ2 + 3
defined in (5.18). If the roots of Pn and of Sn,1 are simple, then the discrete vector
measure 
ν1 := (ν(Pn), ν(Sn,1)) is a critical vector measure for the energy functional
E 
ϕ,a, with a = −1/2 and


ϕ =
(
1

2
log

∣∣∣∣
1

v1

∣∣∣∣ ,
1

2
log

∣∣∣∣
Rn

A1A2

∣∣∣∣ + 1

2
log

∣∣∣∣
v1

v2

∣∣∣∣

)
. (5.32)

Analogously, if the roots of Pn and of Sn,2 are simple, then the discrete vector
measure 
ν2 := (ν(Pn), ν(Sn,2)) is a critical vector measure for the energy functional
E 
ϕ,a, with a = −1/2 and


ϕ =
(
1

2
log

∣∣∣∣
1

v2

∣∣∣∣ ,
1

2
log

∣∣∣∣
Rn

A1A2

∣∣∣∣ + 1

2
log

∣∣∣∣
v2

v1

∣∣∣∣

)
. (5.33)

Some observations are in order. First, the negative value of the interaction parameter
a = −1/2 in the electrostatic model above shows that zeros of Pn and zeros of Sn,i

have opposite charges, and thus are mutually attracting. This indicates that in general
we should not expect the equilibrium configurations to provide minima for the energy
functionals, at least, without additional constraints.

In the case when Sn,i ≡ const, the assertion of the theorem is still valid taking
ν(Sn,i ) = 0.

If A1 = A2 = A and B1 = B2, we have that v1 = v2 = v, so same external field,


ϕ =
(
1

2
log

∣∣∣∣
1

v

∣∣∣∣ ,
1

2
log

∣∣R∗
n

∣∣
)

(5.34)

is acting both on the zeros of Sn,1 and Sn,2. Moreover, as observed in Remark 5.6 ii),
if additionally

σ = max{deg(A) − 2, deg(B) − 1} = 1 and n1 = n2,

then R∗
n is a constant. In other words, the second component of 
ϕ is zero, so the external

field acts only on the zeros of Pn.
The electrostatic model formulated above becomes meaningful if we complement

it with some additional information, such as the localization of the zeros of the par-
ticipating polynomials (or at least, of the bulk of them). This is impossible in the
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general case considered so far. Hence, we need to impose additional assumptions on
the weights wi ’s. This will be carried out in the next section.

5.2 Some Special Cases of Multiple Orthogonal Polynomials

In this section we will try to make our construction more informative by clarifying the
location of the zeros of the electrostatic partners Sn,i of Pn. Many of these results can
be predicted by observing that the roots of Sn,i are de facto critical points of the error
function of the Hermite–Padé approximants, see (5.14).

5.2.1 Angelesco Systems

The best understood situation when the existence and uniqueness of the Hermite–
Padé orthogonal polynomial Pn satisfying relations (5.1) is assured is the so–called
Angelesco case, introduced by Angelesco [2] in 1919, and later studied in [24] and
in the works of Aptekarev, Gonchar, Kaliaguin, Nikishin, Rakhmanov and others, see
e.g. [8, 46, 55, 81]. We assume now that �1 and �2 are real intervals, and

◦
�1 ∩ ◦

�2 = ∅, (5.35)

and w1, w2 are ≥ 0 on their supports. Under these conditions, for every multi-index
n = (n1, n2), polynomial Pn is of maximal degree,

deg Pn = n1 + n2 = N ,

(in other words, n is a normal index); since this is valid for every n = (n1, n2), the
system is known as perfect, see [66].

Moreover, in the Angelesco case, Pn has exactly n1 and n2 simple zeros in the
interiors of�1 and�2, respectively (see [81, Sect. 5.6]). Additionally, the localization
of the majority of the zeros of the polynomials Sn,i is given in the following result:

Proposition 5.11 Polynomial Sn,1 (respect. Sn,2) has n2 − 1 (respect. n1 − 1) zeros
interlacing with those of Pn on �2 (respect. �1).

Proof Let us write
Pn(x) = Pn,1(x) Pn,2(x), (5.36)

where Pn,i is themonic polynomialwhose zeros agreewith those of Pn on�i , i = 1, 2.
Taking T = Pn,i in (4.4), we conclude that

Cwi [Pn] = 1

Pn,i
Cwi [Pn,i Pn].

Since the integrand in Cwi [Pn,i Pn] preserves sign on �i , it implies that for i = 1, 2,
the Cauchy transform Cwi [Pn] has no zeros in R\�i .

It remains to apply Lemma B.1 with S = Sn,i . ��
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Recall that by Theorem 5.2, Sn,i are polynomials of degree at most N − ni + σi ,
i = 1, 2. Proposition 5.11 shows that all zeros of Sn,i , i = 1, 2, except for at most
σi +1 of them (amount only depending on the classes of theweights), arewell localized
by this interlacing property.

Thus, the electrostatic model for the zeros of Pn, stated in Corollary 5.4, is as
follows. If we consider each one of the n1 zeros of Pn on �1 as a positive unit charge,
then they are in equilibrium (or more exactly, they are in critical configuration) in the
field generated by:

• The repulsion of the unit positive charges placed at rest of the zeros of Pn, on �2,
• The attraction of the zeros of Sn,1, this time with charge −1/2, all except at most

σ1 + 1 of them interlacing with the zeros of Pn on �2, and
• The background potential from the orthogonality weight w1 on �1.

A symmetric picture is obviously valid on �2.
Angelesco–Jacobi polynomials constitute an example of an Angelesco system.

They are considered in detail in Sect. 8.6.

5.2.2 AT Systems and Generalized Nikishin Systems

We assume now that, unlike the Angelesco case, both weights wi ≥ 0, i = 1, 2, are
supported on the same interval:

�1 = �2 = � = [a, b] ⊂ R. (5.37)

These two weights form an algebraic Chebyshev system (or an AT system) for the
multi-index n = (n1, n2) if

{
w1(x), xw1(x), . . . , xn1−1w1(x), w2(x), xw2(x), . . . , xn2−1w2(x)

}
(5.38)

is a Chebyshev systemon�, that is, if every non-trivial linear combination of functions
from (5.38) with real coefficients has at most N = n1 + n2 zeros on �. For further
details, see e.g. [81, Chapter 4, §4] or [52, Sect. 23.1.2].

It is known (see e.g. [52, Theorem 23.1.4]) that if the multi-index n = (n1, n2) is
such that (w1, w2) is an AT system on [a, b] for every index m = (m1, m2) for which
m j ≤ n j , j = 1, 2, then n is normal, and the multiple orthogonal polynomial Pn has
all its N zeros, all simple, on (a, b).

A construction of an AT system that now is known to be perfect (see [42]) was put
forward by E. M. Nikishin [79]; it is called an MT -system in [81], but is nowadays
known as a Nikishin system. Namely, we assume additionally that the ratio w2/w1 is
the Cauchy transform (also known as a Markov function) of a non-negative function
on an interval [c, d] ⊂ R, whose interior is disjoint with �. Besides normality for
all multi-indices n and that all zeros of Pn are simple and belong to the open interval
(a, b), this allows localization of zeros of the electrostatic partner, as we show below.

Remark 5.12 Nikishin [79] proved the normality for all indices of the form (n, n)

and (n + 1, n), asserting without proof that it holds for any index (n1, n2) such that
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n1 ≥ n2. He called it a weakly perfect system, but a result for Markov functions (see
e.g. [92, Lemma 6.3.5]) implies that weak perfectness is equivalent to perfectness of
the system. Later, K. Driver and H. Stahl established the normality for any index in
the case of Nikishin systems of two functions [41] (see also [26]), and more recently,
U. Fidalgo and G. López proved perfectness of a Nikishin system of any order [42].

As before, we restrict our attention to semiclassical weights, but slightly weaken
Nikishin’s assumptions. Namely, in the situation (5.37) we suppose that w1, w2 are
non-negative weights on [a, b] such that:
• w1 is a semiclassical weight on [a, b].
• Weight w2 is of the form

w2(x) = |�(x)u(x)|w1(x), x ∈ [a, b], (5.39)

where

u(x) =
∫ d

c

U (t)

x − t
dt (5.40)

is semiclassical, with (a, b) ∩ (c, d) = ∅, U continuous and non-negative on
(c, d), and � is an arbitrary polynomial with real coefficients, non-vanishing on
(a, b) ∪ (c, d).

Under these assumptions the weight w2 is also semiclassical. The fact that (w1, w2)

forms an AT-system for n1 ≥ n2 +m can be deduced from the fact that the linear form
p + q�u, for arbitrary polynomials p, q of respective degrees ≤ n1 − 1, n2 − 1, and
n1 ≥ n2 + m, has at most n1 + n2 − 1 zeros in [c, d] (see [79] and [61, p. 1022]).

Example 5.13 It is easy to see that if c < d, then for γ, δ /∈ Z, γ + δ < 0, γ + δ ∈ Z,
function

u(x) = (x − c)γ (d − x)δ

can be represented as the Cauchy integral (5.40). As a consequence, a pair of weights

w1(x) = |x − a|α |x − b|β, w2(x) = |x − a|α |x − b|β |x − c|γ |x − d|δ, x ∈ (a, b),

where (a, b) ∩ (c, d) = ∅, and α, β, γ, δ > −1, γ, δ /∈ Z, γ + δ ∈ Z, constitute an
example of a system defined above.

Since we do not assume that the intervals (a, b) and (c, d) are bounded, another
example is the pair of weights of the form

w1(x) = exp(−xr ), w2(x) = |x − a|γ |x − b|δ exp(−xr ), x ∈ [0,+∞),

with r ∈ N, −∞ < a < b < 0, γ, δ > −1, γ, δ /∈ Z, and γ + δ ∈ Z.

With the introduction of the polynomial factor� in the weightw2 we can no longer
guarantee that all the zeros of Pn are in (a, b); however, the following result still holds:
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Proposition 5.14 Under the conditions on the weights w1 and w2 stated above, the
Hermite–Padé polynomial Pn, satisfying (5.1), has at least n1 + � + 1 sign changes
on (a, b), where

� = min(n2 − 1, n1 − m), m = deg(�),

while its Cauchy transform Cw1 [Pn] has at least � + 1 sign changes in (c, d).

Proof We basically follow the arguments in [99, Sect. 2.5]. Suppose that n1 ≥ m.
Taking in (4.4) T = P�, where P is and arbitrary polynomial of degree k ≤ n1 − m,
we get that

P(x)�(x)

∫ b

a

Pn(t)

t − x
w1(t)dt =

∫ b

a

P(t) Pn(t)�(t)

t − x
w1(t)dt .

Integrating this identity with respect to dσ in [c, d], applying Fubini’s theorem and
using (5.40) yields

∫ d

c
P(x)Cw1 [Pn](x)�(x)v(x) dx =

∫ b

a
P(t) Pn(t) w2(t)dt = 0 ,

as long as the degree k of P is ≤ n2 − 1. Since polynomial �(x) does not vanish in
(c, d) it proves that Cw1 [Pn] changes sign at least � + 1 times in (c, d).

To prove the first part of the proposition, let P be a polynomial non vanishing
on (a, b) and such that Cw1 [Pn]/P is analytic in C\[a, b]. By the assertion we just
proved, we can take P of degree at least � + 1, so that by (5.9),

Cw1

P
(z) = O

(
1

zn1+�+2

)
, z → ∞.

Let � be a positively oriented Jordan contour encircling [a, b] and leaving [c, d] in
its exterior. Then for k = 0, 1, . . . , n1 + �,

0 = 1

2π i

∮

�

zk Cw1 [Pn](z)
P(z)

dx = 1

2π i

∮

�

zk

P(z)

(∫ b

a

Pn(t)

t − z
w1(t)dt

)
dz

=
∫ b

a
Pn(t)

(
1

2π i

∮

�

zk

P(z)

1

t − z
dz

)
w1(t) dt

=
∫ b

a
tk Pn(t)

w1(t)dt

P(t)
,

(5.41)
where we have used Fubini’s and Cauchy’s theorems. Since w1/P has a constant sign
on (a, b), Pn satisfies quasi–orthogonality conditions (of order at least n1 + �) there.
Standard arguments yield that Pn has at least n1 + � + 1 sign changes on (a, b). ��

Consider the case when n2 ≤ n1 − m + 1, so that � = n2 − 1. According to
Proposition 5.14, Pn has exactly N = n1 + n2 zeros, all simple, in (a, b), while
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Cw1 [Pn] has ≥ n2 zeros in (c, d), exactly as in the classical Nikishin setting (m = 0).
Moreover, if these zeros of Cw1 [Pn] are disjoint with the zeros of A1Sn,1 then, by the
second assertion of Proposition B.1, at least � = n2 − 1 zeros of polynomial Sn,1 (out
of a total of ≤ n2 + σ1 of its zeros) interlace with those of Cw1 [Pn].

5.2.3 Generalized Nikishin Systems: Case of Overlapping Supports

Generalized Nikishin systems (GN systems) were introduced in [46] using a rooted
tree graph. A particular example of such a system, whose asymptotics was studied
in [5], [10] and [84], shares characteristics of both cases described in Sects. 5.2.1
and 5.2.2. Namely, we assume that

�1 ⊆ �2, (5.42)

in addition to the Nikishin relation between the non-negative semiclassical weights
w1 and w2, given by conditions (5.39)–(5.40), with � ≡ 1, and the assumption that
the interior of

�3 := [c, d]

is disjoint with �2. On one hand, when �1 extends to the whole �2, we obtain the
classical Nikishin configuration of Sect. 5.2.2. On the other, if �1 and �2 share an
endpoint then redefinition of the support �2 into �2\�1 yields the Angelesco setting
of Sect. 5.2.1.

Let us study the diagonal case of n1 = n2 = n, so that N = 2n. As before, the
key ingredient is the location of the zeros of the Hermite–Padé polynomial Pn and its
electrostatic partners Sn,1 and Sn,2. It was proved in [84] that for any n, the zeros of the
Hermite–Padé polynomial Pn, with the possible exception of five of them, are in �2.
Recall that by orthogonality assumptions, at least n of them belong to the subinterval
�1. Additionally, we have:

Proposition 5.15 If Pn has n + k1 ≥ n sign changes in �1 and k2 ≥ 0 sign changes
in �2\�1, then Sn,1 has at least max{k2 −2, 0} zeros in �2\�1, which interlace with
the zeros of Pn, and at least max{k1 − 3, 0} zeros in �3, interlacing with the zeros of
Cw1 [Pn].
Proof Let us denote by xi , i = 1, . . . , n + k1 the points of sign change of Pn in �1,
and by y j , j = 1, . . . , k2 the corresponding points of sign change in �2\�1. Using
(4.4) with

�(x) =
k2∏

j=1

(x − y j ),

we conclude again that Cw1 [Pn] does not change sign in each component of �2\�1.
Then, the first part of Lemma B.1 asserts that Sn,1 has at least k2 − 2 zeros in �2\�1,
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interlacing with those of Pn (observe that �2\�1 can have up to two disjoint compo-
nents).

Notice that k1 + k2 ≤ n, so that if k2 = n, our proof is finished. Suppose that
k2 < n, and let us see that Cw1 [Pn] has at least k2 − 2 sign changes in �3. From (5.1)
and (5.39)–(5.40), we have that for any polynomial P ∈ Pn−1,

0 =
∫

�1

P(x)Pnw1(x)u(x)dx +
∫

�2\�1

P(x)Pnw2(x)dx

= −
∫

�3

π(t)Cw1[Pn](t)σ (t)dt +
∫

�2\�1

P(x)Pnw2(x)dx ,

(5.43)

where we have used Fubini’s theorem for the last identity. Now, denote by zi , i =
1, . . . , k3 the pointswhereCw1 [Pn] changes sign in�3. Let us suppose that k3 < k1−2
and define

P(x) := (x − ζ1)
ε1(x − ζ2)

ε2

k2∏

i=1

(x − yi )

k3∏

j=1

(x − z j ) ,

where εi ∈ {0, 1} , i = 1, 2 , ζ1 ∈ �1 and ζ2 is located in the “gap” between �2
and �3 (which may consist of a single point, since we only require the interiors to be
disjoint). We can use the parameters ζ1, ζ2 and ε1, ε2 to guarantee that

P(t)Cw1 [Pn](t)σ (t) ≥ 0, t ∈ �3

and

P(x)Pn(x)w2(x) ≤ 0, x ∈ �2.

Since by assumption, deg(P) = k2 + k3 + 2 < k1 + k2 ≤ n, so that (5.43) should
hold for this particular choice of P . This is possible only if both integrands in the right
hand side of (5.43) were identically 0, which is a contradiction. Hence, k3 ≥ k1 − 2,
and it remains to use again the second assertion in Lemma B.1 to conclude the proof.

��

Thus, as expected from an intermediate case between Angelesco and Nikishin
settings, now a part of the zeros of the electrostatic partner Sn,1 lie on �3 (as in the
Nikishin case) while the rest are located in �2\�1 (Angelesco). Therefore, in this
situation, part of the “ghosts” attractive charges interlace with part of the zeros of Pn
in �2\�1, while other part are placed in �3. Of course, depending on the specific
case we are dealing with, some of these sets of attractive charges may be empty.
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6 Asymptotic Zero Distribution

It is instructive to observe the discrete-to-continuous transition of the electrostatic
model described in the previous section, assuming that the total degree N = n1+n2 →
∞.

6.1 Vector Critical Measures

If μ1, μ2 are two finite positive Borel measures with compact support then their
(continuous) mutual logarithmic energy is

〈μ1, μ2〉 :=
∫∫

log
1

|x − y| dμ1(x)dμ2(y); (6.1)

and the logarithmic energy of μi is

E(μi ) := 〈μi , μi 〉, i = 1, 2. (6.2)

Given a vector of measures 
μ = (μ1, . . . , μk), and a symmetric positive-definite
interaction matrix

M = (mi j )
k
i, j=1,

the vector energy of 
μ is

EM ( 
μ) :=
k∑

i, j=1

mi j 〈μi , μ j 〉. (6.3)

In the particular case of k = 2, when

M =
(
1 a
a 1

)
, −1 < a < 1,

we call a the interaction parameter.
We define the critical vector measures following [71] and [73]. Recall that any

smooth complex-valued function h in the closure  of a domain  generates a local
variation of  by z �→ zt = z + t h(z), t ∈ C. It is easy to see that z �→ zt is injective
for small values of the parameter t . The transformation above induces a variation of
sets e �→ et := {zt : z ∈ e}, and measures: μ �→ μt , defined by μt (et ) = μ(e); in
the differential form, the pullback measure μt can be written as dμt (xt ) = dμ(x).
Recall also the notation, introduced in Sect. 5.1, of Ai for the set of zeros of Ai on C,
i = 1, 2.
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Definition 6.1 (see [73]) A vector measure 
μ = (μ1, . . . , μk) is a (continuous) crit-
ical vector measure if for any h smooth in C\(A1 ∪ A2) such that h

∣∣
A1∪A2

≡ 0,

d

dt
EM ( 
μt )

∣∣
t=0 = lim

t→0

EM ( 
μt ) − EM ( 
μ)

t
= 0. (6.4)

As in the discrete case,

μi is Fi -critical, with Fi :=
∑

1≤ j≤k, j �=i

mi j

mii
Uμ j , i ∈ {1, . . . , k},

which yields the following variational conditions on the components of 
μ: for x ∈
supp(μi ), with a possible exception of a subset of logarithmic capacity 0,

Uμi (x) +
∑

1≤ j≤k, j �=i

mi j

mii
Uμ j = ci = const, i ∈ {1, . . . , k}. (6.5)

6.2 Asymptotic Electrostatic Model: General Case

Under a general assumption that for eachmulti-index n = (n1, n2) ∈ N
2 the Hermite–

Padé polynomial Pn exists and is of degree N = n1 + n2, as well as that deg(Sn,i ) =
N − ni + 1, we consider the zero-counting measures (see the definition in (2.7)) for
Pn, Sn,1 and Sn,2 in the asymptotic regime

N = n1 + n2 → ∞, lim
N→∞

n2

N
= t ∈ [0, 1]. (6.6)

Let us assume that (perhaps, along a subsequence of multi-indices), weak limits

μ := lim
n

1

N
ν(Pn), ν1 := lim

n

1

N
ν(Sn,1), ν2 := lim

n

1

N
ν(Sn,2), (6.7)

exist. With our assumptions,

‖μ‖ :=
∫

dμ = 1, ‖ν1‖ :=
∫

dν1 = t, ‖ν2‖ :=
∫

dν2 = 1 − t . (6.8)

Since everyweak-* limit of a sequence of discrete critical vectormeasures is critical
in the sense of Definition 6.1 (a proof for the scalar case can be found in [71, Theorem
7.1]; it applies to the vector equilibriumwithout substantial modifications), we obtain:

Corollary 6.2 With the assumptions and notations above, each vector measure (μ, ν1)

and (μ, ν2) is critical in the sense of Definition 6.1, with the interaction parameter
a = −1/2 and constraints (6.8).
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It is worth also discussing a connection with a more traditional model involving
3-component vector measures. Define

 = {x ∈ R : μ = ν1}, λ1 := μ
∣∣

, λ2 = μ − λ1, λ3 = ν1 − λ1. (6.9)

Obviously,
‖λ1‖ + ‖λ2‖ = 1, ‖λ1‖ + ‖λ3‖ = t . (6.10)

Variational conditions (6.5) for (μ, ν1) with the interaction matrix

(
1 −1/2

−1/2 1

)

imply that

Uμ(x) − 1

2
U ν1(x) = c1 = const, x ∈ supp(μ),

U ν1(x) − 1

2
Uμ(x) = c2 = const, x ∈ supp(ν1),

or equivalently,

1

2
Uλ1(x) + Uλ2(x) − 1

2
Uλ3(x) = c1 = const, x ∈ supp(μ) = supp(λ1) ∪ supp(λ2),

1

2
Uλ1(x) − 1

2
Uλ2(x) + Uλ3(x) = c2 = const, x ∈ supp(ν1) = supp(λ1) ∪ supp(λ3).

Additionally, on supp(λ1), where both identities hold, we have that

Uλ1(x) + 1

2
Uλ2(x) + 1

2
Uλ3(x) = c1 + c2.

Corollary 6.3 With the assumptions and notations above, (λ1, λ2, λ3) is a critical vec-
tor measure satisfying the constraints (6.10) and with the interaction matrix

⎛

⎝
1 1/2 1/2
1/2 1 −1/2
1/2 −1/2 1

⎞

⎠ .

This electrostatic model has been used to describe the asymptotics of the zeros of
Hermite–Padé polynomials in several situations, see e.g. [5, 11, 73–75, 84]. In partic-
ular, a spectral curve for such critical measures was derived in [73], and it was shown
that λi ’s are supported on a finite number of analytic arcs, that are trajectories of a
quadratic differential globally defined on a three-sheeted Riemann surface.
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6.3 Asymptotic Electrostatic Model: Angelesco Case

Using the notation (6.7) and Proposition 5.11, in this case

supp(μ) ⊆ �1 ∪ �2, supp(ν1) ⊆ �2, supp(ν2) ⊆ �1,

and

ν1 = μ
∣∣
�2

, ν2 = μ
∣∣
�1

,

so that in notation (6.9),

λ1 = ν1, λ2 = ν2, λ3 = 0.

Thus, in this case the electrostatic vector model of Corollary 6.3 reduces to a 2 × 2
equilibrium for (ν1, ν2), with the interaction matrix

M =
(

1 1/2
1/2 1

)

and constraints

supp(ν1) ⊂ �1, ‖ν1‖ = t, and supp(ν2) ⊂ �2, ‖ν2‖ = 1 − t .

This is already classical, see e.g. [81, Ch. 5]; actually, a stronger result is valid: the
vector measure (ν1, ν2) is a global minimum for (2.14) and a = 1/2. This does not
follow directly from our electrostatic model.

Notice that measure ν = ν1 + ν2 is the limit zero distribution of both Pn and
Sn,1Sn,2.

Remark 6.4 Although in the Angelesco case the zeros of Pn are confined in �1 ∪ �2,
in principle up to σi + 1 of Sn,i , i = 1, 2, are out of our control. Same happens
with (a bounded number of) zeros of the polynomials Rn. In order to guarantee weak
convergence of the zero-counting measures, it is sufficient to impose an additional
assumption: that the zeros of Sn,1, Sn,2 and Rn are uniformly bounded along the
double sequence (n1, n2).

6.4 Asymptotic Electrostatic Model: Nikishin Case

Consider the generalized Nikishin system as described in Sect. 5.2.2, in the asymptotic
regime (6.6) and with the additional assumption that

n2 ≤ n1 − m + 1, (6.11)

so that
t = lim

N→∞
n2

N
∈ [0, 1/2]. (6.12)
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As we have seen, all N zeros of Pn live on [a, b]; according to Theorem 5.10, each
one of them, endowed with a charge +1, interacts with zeros of Sn,1, each one with
charge −1/2. We have seen that the majority of them (at least � = n2 − 1 out of
n2 + σ1 possible) belongs to [c, d]. Imposing the same additional assumption that
before, that the zeros of both Sn,1 and Rn are uniformly bounded along the double
sequence (n1, n2), we can use again the weak-* compactness of measures.

With the notation (6.7),

supp(μ) ⊆ �1 = [a, b], supp(ν1) ⊆ �2 = [c, d],

so that in notation (6.9),

λ1 = 0, λ2 = μ, λ3 = ν1.

Thus, in this case the electrostatic vector model of Corollary 6.3 reduces to a 2 × 2
equilibrium for (μ, ν1), with the interaction matrix

M =
(

1 −1/2
−1/2 1

)

and constraints

supp(μ) ⊂ �1, ‖μ‖ = 1, and supp(ν1) ⊂ �2, ‖ν2‖ = 1 − t .

This model was initially put forward by Nikishin himself in [80]. Again, a stronger
result is valid: the vector measure (μ, ν1) is a global minimum for the vector energy,
which does not follow directly from our electrostatic model.

Observe that the roles of the weights w1 and w2 in a Nikishin system are not
symmetric, or at least the symmetry is not immediate. An argument that allows to
swap w1 and w2, and thus break the barrier of n2 ≤ n1, is based on the fact (see e.g.
[92, Lemma 6.3.5]) that if u is a Markov function (5.40), then

1

u(x)
= r(x) −

∫
dτ(t)

x − t
,

where r is a polynomial of degree ≤ 1 and τ is a positive measure on [c, d]. Standard
arguments allow to extend the previous result when m = 0 (the classical Nikishin
case), see e.g. [61]. Unfortunately, the presence of a non-trivial polynomial factor
� in (5.39) prevents these arguments from going through. Thus, if m = 0, in the
asymptotic regime (6.6) we can drop the restriction (6.11), and the electrostatic model
discussed above is still valid. Another interesting result that sheds light on the roles
of w1 and w2, allowing to connect the situations of n1 ≤ n2 and n1 ≥ n2, appears in
[64].
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6.5 Asymptotic Electrostatic Model: Case of the Overlapping Supports

Here we consider the asymptotic electrostatics for the intermediate case studied in [5,
84] and partially analyzed in Sect. 5.2.3. Recall that here we consider n1 = n2 = n,
and thus, we are interested in what happens as n → ∞.

With our notation in the current section, we have that suppμ ⊆ �2 and supp ν1 ⊆
(�2\�1) ∪ �3, in such a way that now we have,

supp λ1 ⊆ �2\�1 , supp λ2 ⊆ �1 , supp λ3 ⊆ �3 ,

The results in Proposition 5.15 guarantee that

‖λ1‖ + ‖λ2‖ = 1 , ‖λ2‖ = ‖λ3‖ + 1

2
.

Since in this intermediate case none of the measures λi becomes null, the 3 × 3
interaction matrix in Corollary 6.3 does not reduce to a 2 × 2 one, as in the previous
(extremal) cases. As for the constraints on the size of the measures, in this case we
have

‖λ1‖ = 1

2
− θ , ‖λ2‖ = 1

2
+ θ , ‖λ3‖ = θ ,

where θ ∈ [0, 1/2] is a parameter which depends on the relative sizes and mutual
positions of the three intervals �i , i = 1, 2, 3; but especially on the first two ones, as
asserted by the author of [84].

Moreover, as in the previous cases, for this “critical” value of the parameter θ , a
stronger result is valid. The vector measure (λ1, λ2, λ3) described above is a global
minimum of the vector energy (see [84]); but, again, this result does not follow directly
from our electrostatic approach.

7 Differential Equation of Order 3

The system of second order linear differential equations in Theorems 5.2 and 5.7
allowed us to derive an electrostatic interpretation of the zeros of the Hermite–Padé
polynomials of type II. In this section, we show how these equations can be combined
into a single third order homogeneous differential equation, satisfied simultaneously
by the polynomial Pn and by the functions of the second kind qn,1 and qn,2. Notice
that if we only cared about a third order ODE solved by Pn, it would be sufficient to
differentiate one of the equations (5.15); thus, it is convenient to stress here that we
seek equations whose basis of solutions is precisely (Pn, qn,1, qn,2).

As itwasmentioned in the introduction, third order homogeneous linearODEwhose
solutions are Pn have been already described in the literature. For instance, such an
equationwas found in [56] for the Jacobi–Angelescomultiple orthogonal polynomials,
see Sect. 8.6. In [12], Aptekarev et al. considered the case of a semiclassical weight
w of class σ and multiple orthogonal polynomials Pn of type II with respect to w and
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σ + 1 non-homotopic paths of integration, showing for instance that in the diagonal
setting n = (n, n, ..., n), Pn satisfies a linear differential equation of order σ + 2. A
kind of opposite case, when distinct classical (σ = 0) weights w j are supported on
the same contour �, was analyzed in [7], where again a linear ODE of order r + 1,
where r is the number of weights, was derived.

In a clear resemblance to the definition of the polynomial Rn in (5.17)–(5.18), let

En := A2
1A2

2v1v2 det

⎛

⎝
Pn qn,1 qn,2
P ′′
n q ′′

n,1 q ′′
n,2

P ′′′
n q ′′′

n,1 q ′′′
n,2

⎞

⎠ , Fn := A2
1A2

2v1v2 det

⎛

⎝
P ′
n q ′

n,1 q ′
n,2

P ′′
n q ′′

n,1 q ′′
n,2

P ′′′
n q ′′′

n,1 q ′′′
n,2

⎞

⎠ .

(7.1)
In this section we maintain the assumption (5.11).

Theorem 7.1 (a) Functions En and Fn, defined above, are polynomials, with

deg(En) ≤ max{deg(A1) + σ2 + deg(Rn), deg(A2)

+ σ1 + deg(Rn), deg(B1) + deg(B2) + deg(Rn)},
deg(Fn) ≤ σ1 + σ2 + deg(Rn) + 1,

and σi defined in (5.6).
(b) Pn, qn,1 and qn,2 are solutions of the linear differential equation with polynomial

coefficients

A1A2Rny′′′ + [
(A1(2A′

2 + B2) + A2(2A′
1 + B1))Rn − A1A2R′

n
]

y′′

+Eny′ + Fny = 0. (7.2)

(c) In the particular case when A1 = A2 = A, B1 = B2 = B (so that w1 = w2),
and σ = 1, n1 = n2, the differential equation (7.2) reduces to

A2y′′′ + 2A(A′ + B)y′′ + E∗
n y′ + F∗

n y = 0, (7.3)

where E∗
n and F∗

n are polynomials of degree at most 4 and 3, respectively.

Proof Recall the second order differential operators introduced in (5.17),

Li [y] := Ai Vi Wrons[y, Pn, qn,i ], i = 1, 2.

By (3.29) (see Remark 3.8),

Li [y] = Ai Sn,i y′′ + (A′
i Sn,i − Ai S′

n,i + Bi Sn,i ) y′ + Cn,i y.

Clearly, Li [Pn] = Li [qn,i ] = 0, and by (5.18),

L1[qn,2] = Rn

A2v2
, L2[qn,1] = − Rn

A1v1
. (7.4)
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Consider the third order linear differential operator

M[y] := A2
2v2

Sn,1

(
L1[qn,2] (L1[y])′ − (L1[qn,2]

)′ L1[y]
)

. (7.5)

By construction, the differential equation M[y] = 0 is solved by Pn, qn,1 and qn,2.
Using (5.18) and (7.4) we can find the explicit expressions for the coefficients ofM.
For instance, the coefficient at y′′′ is

A2
2v2

Sn,1

Rn

A2v2
A1Sn,1 = A1A2Rn.

The one at y′′ is

A2
2v2

Sn,1

(
Rn

A2v2

(
(A1Sn,1)

′ + (−A1S′
n,1 + A′

1Sn,1 + B1Sn,1)
)

−
(

Rn

A2v2

)′
A1Sn,1

)

= A2
2v2

Sn,1

(
Rn

A2v2

(
2A′

1Sn,1 + B1Sn,1
) − Rn

A2v2

(
R′
n

Rn
− A′

2

A2
− v′

2

v2

)
A1Sn,1

)

= A2Rn

((
2A′

1 + B1
) −

(
R′
n

Rn
− A′

2

A2
− v′

2

v2

)
A1

)

= A2Rn

((
2A′

1 + B1
) −

(
R′
n

Rn
− A′

2

A2
− A′

2 + B2

A2

)
A1

)

= A1(2A′
2 + B2)Rn + A2(2A′

1 + B1)Rn − A1A2R′
n.

Similar calculations for the rest of the coefficients show that

M[y] = A1A2Rny′′′ + (A1(2A′
2 + B2)Rn + A2(2A′

1 + B1)Rn − A1A2R′
n)y′′

+Eny′ + Fny,

where

En = −A1A2RnS′′
n,1 + ((−A1(2A′

2 + B2) + A2B1)Rn + A1A2R′
n)S′

n,1 + A2RnCn,1

Sn,1

+ (A′′
1 A2 + A′

1(2A′
2 + B2) + 2A′

2B1 + A2B ′
1 + B1B2)Rn − A2(A′

1 + B1)R′
n ,

(7.6)

and

Fn = (A2C ′
n,1 + (B2 + 2A′

2)Cn,1)Rn − A2Cn,1R′
n

Sn,1
. (7.7)

Construction (7.5) can be carried out exchanging the role of the indices i = 1 and
i = 2. It yields a third order linear differential equation with the same coefficient at
y′′′. Since Pn, qn,1 and qn,2 are linearly independent (assumption (5.11)), we conclude
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that this is the same ODE. In other words, (7.6) and (7.7) are invariant by exchange
of the indices i = 1 and i = 2.

Moreover, a third order linear differential equation with the same set of solutions
is

A2
1A2

2v1v2 Wrons[Pn, qn,1, qn,2, y] = 0.

Again, by (5.18), the coefficient at y′′′ is A1A2Rn, which shows that

M[y] = A2
1A2

2v1v2 Wrons[Pn, qn,1, qn,2, y]. (7.8)

In particular, functions En and Fn in (7.6) and (7.7) coincide with those defined in
(7.1).

From (7.6) and (7.7) it follows that En and Fn are rational functions. By (7.8) and
the definition of qn,i , i = 1, 2, their poles can be located at the zeros of A1 and A2
only. However, expressions (7.1) and assertion c) of Proposition A.1 imply that all
their singularities are all removable, so that En and Fn are polynomials. Since by
(3.22), deg(Cn,1)−deg(Sn,1) ≤ σ1, identities (7.6) and (7.7) imply the claimed upper
bounds for the degrees of En and Fn . This proves a) and b) of the statement of the
theorem.

Finally, let A1 = A2 = A, B1 = B2 = B (so that w1 = w2), and σ = 1, n1 = n2.
In this situation, Rn = cA2, c ∈ R\{0} (see Remark 5.6), so that by (7.6),

En = cA2

(
A

−AS′′
n,i + Cn,i

Sn,i
+ AA′′ + A′B + AB ′ + B2

)
, i = 1, 2, (7.9)

while by (7.7),

Fn = cA2
BCn,i + AC ′

n,i

Sn,i
, i = 1, 2. (7.10)

Dividing (7.2) through by cA2 we get (7.3). ��
Remark 7.2 The construction given in this proof can be, apparently, extended to MOP
of type II with respect tomore than twoweights. For instance, for amultiple orthogonal
polynomial Pn with respect to semiclassical weightss wi , i = 1, 2, . . . , m ≥ 3, we
get the corresponding ODEs

Li [y] := Ai Sn,i y′′ + (A′
i Sn,i − Ai S′

n,i + Bi Sn,i )y′ + Cn,i y = 0, i = 1, 2, . . . , m.

Then Pn and qn,i , i = 1, 2, . . . , m, are solutions of the fourth order ODE

M[y] := 1

Sn,1

⎛

⎝
m∏

i=2

Am−1
i vi

⎞

⎠ Wrons[L1[y],L1
[
qn,2], . . . ,L1[qn,3], . . . ,L1[qn,m ]] = 0.

(7.11)
As in the proof above, one could expect that the coefficients of this ODE are rational
functionswith onlypossible poles at the roots of Sn,1.AnalogousODEscanbeobtained
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by replacing in (7.11) Sn,1 by Sn,i and L1 by Li , with i = 2, . . . , m. This will imply
again that the poles of the coefficients of the ODE could be only at common roots of
the electrostatic partners. On the other hand, these ODEs are equivalent to

(
m∏

i=1

Am
i vi

)
Wrons

[
y, Pn, qn,1, qn,2, . . . , qn,m

] = 0.

Assertion c) of PropositionA.1 yields again that all the possible poles of the coefficients
should be removable. This construction leads to a linear ODE of order m + 1 with
polynomials coefficients whose degrees depend only on the classes of the weights wi ,
i = 1, 2, . . . , m.

8 Further Examples

In this section, we discuss several examples of multiple orthogonal polynomials.

8.1 Jacobi Polynomials with Non-standard Parameters

Les us return to Jacobi polynomials PN = P(α,β)
N in the non-standard situation con-

sidered already in Example 4.3, namely, when neither α, β, or α + β are integers,
β > −1, and −N < α < −1. As it was shown in [58, Theorem 6.1], in this case PN

is a type II multiple orthogonal polynomial. Indeed, on one hand it satisfies

∫ 1

−1
x j PN (x)w1(x)dx = 0 , j = 0, 1, . . . , n1 − 1,

where �1 = [−1, 1], n1 = N − [−α], and w1(x) = (x − 1)α+[−α](x + 1)β (see
Example 4.3). On the other,

∫

�2

z j PN (z)w2(z)dz = 0 , j = 0, 1, . . . , n2 − 1,

where �2 is an arbitrary curve oriented clockwise, connecting −1− i0 with −1+ i0
and lying entirely in C\(−∞, 1], except for its endpoints, n2 = [−α], and w2(z) =
(z − 1)α(z + 1)β .

We have established in Example 4.3 that

Sn,1(x) = (x − 1)[−α],

as well as that Cn,1(x) = −λn,1Sn,1(x). As for Sn,2, we lack in this case the second
condition in (5.1), that is, we cannot guarantee that

∫

�2

zn2 PN (z)w2(z)dz �= 0, (8.1)
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(and in general, this is false), which makes the formula (4.8) of no value.
Reasoning as in Example 4.3 and combining (4.11) and the standard differential

equation for the Jacobi polynomials we arrive at the identity

(x2 − 1)S′
n,2(x)P ′

N (x) = (λN Sn,2(x) + Cn,2(x)) PN (x) . (8.2)

Again, we have two options: either S′
n,2 ≡ 0 and, thus,

Sn,2(x) ≡ const , Cn,2 = −λN Sn,2 ≡ const , (8.3)

or, otherwise, the identity

P ′
N (x)

PN (x)
= λN Sn,2(x) + Cn,2(x)

(x + 1)
(
(x − 1)S′

n,2(x) − [−α]Sn,2(x)
) (8.4)

holds. In this case, the facts that PN and P ′
N are relatively prime (PN has no multiple

roots) and that the degree of Sn,2 ≤ N − [−α] , with −N < α < −1 , imply that this
cannot take place, and thus, (8.3) is the unique possible solution.

We already saw in Example 4.3 that the zeros of Pn were in equilibrium (that is,
their counting measure was critical) in the external field (4.14). From (4.15), (5.24)
and (8.3), and taking into account that in this case A1 = A2 = A, we have that Rn ≡ 0.
Moreover, the zeros of Sn,1 are obviously not simple, and in such a case we cannot
say anything about electrostatics for its zeros.

Obviously, what fails in this case is (8.1), which implies that the index n = (N −
[−α], [−α]) is not normal.

8.2 Multiple Hermite Polynomials

Multiple Hermite polynomials Hn, n = (n1, n2), are type II MOP of degree ≤ N =
n1 + n2, defined by

∫ ∞

−∞
xkHn(x)e−x2+c1x dx = 0, k = 0, 1, . . . , n1 − 1,

∫ ∞

−∞
xkHn(x)e−x2+c2x dx = 0, k = 0, 1, . . . , n2 − 1.

If c1 �= c2 then the weights wi (x) = e−x2+ci x form an AT-system, see [21], [52,
Sect. 23.5] and [100, Sect. 3.4]. These MOP can be obtained using the Rodrigues
formula

e−x2Hn(x) = (−1)N2−N

⎛

⎝
2∏

j=1

e−c j x dn j

dxn j
ec j x

⎞

⎠ e−x2 ,
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which yields the explicit expression

Hn(x) = (−1)|
n|2−|
n|
n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
cn1−k1
1 cn2−k2

2 (−1)k1+k2 Hk1+k2(x),

where Hn(x) = 2n xn + . . . is the standard Hermite polynomial (1.1), see [52,
Sect. 23.5] or [102].

In our notation,

A1(x) = A2(x) ≡ 1, Bi (x) = −2x + ci , σi = 0, i = 1, 2,

with �1 = �2 = R. The differential equation (7.2) takes the form

Rny′′′ + [
(B1 + B2)Rn − R′

n
]

y′′ + Eny′ + Fny = 0.

Formula (5.26) shows that in this case Rn is a constant, so that the equation boils down
to

y′′′ + (B1 + B2)y′′ + Eny′ + Fny = 0,

where by Theorem 7.1, En and Fn have degree at most 2 and 1, respectively. These
polynomials can be obtained explicitly by taking into account the behavior of the
solutions of the equation at the singular points. Indeed, if we write

En(x) = e0 + e1x + e2x2 , Fn(x) = f0 + f1x ,

and replace the asymptotic behavior of qn,1(x) as x → ∞ (for instance, along the
imaginary axis),

qn,1(x) = const × ex2−c1x x−n1−1(1 + O(1/x)),

into the differential equation, we get consecutively

e2 = 4, e1 = −2c1 − 2c2, e0 = −2 + c1c2 − f1
2

,

f0 = 2c2n1 − 2c1n1 − c1 f1
2

.

An analogous procedure for qn,2, together with the previous identities, yields

f1 = −4n1 − 4n2 .

As a consequence, we get explicit expressions for polynomials En and Fn, which can
be expressed as follows:

En = B1B2 + 2(n1 + n2 − 1) , Fn = 2n2B1 + 2n1B2.
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Thus, Hn and the corresponding functions of the second kind qn,1 and qn,2 are inde-
pendent solutions of the equation

y′′′ + (B1 + B2)y′′ + (B1B2 + 2(n1 + n2 − 1))y′ + (2n2B1 + 2n1B2)y = 0,

which coincides with the one obtained previously in [43, Sect. 5.1].
By Theorem 5.10, the discrete vector measure 
ν1 := (ν(Hn), ν(Sn,1)) is a critical

vector measure for the energy functional E 
ϕ,a , with a = −1/2 and


ϕ(z) = 1

2

(
x2 − c1x, (c1 − c2)x

)
, z = x + iy.

Direct computation shows that

m±
k :=

∫ ∞

−∞
xke−x2±x dx = √

π 4
√

e

(±1

2i

)k

Hk

(
i

2

)
, k = 0, 1, . . . ,

and that

∫ ∞

−∞
xke−x2+cx dx = e(c2−1)/4

k∑

j=0

(
k

j

)(
c − 1

2

)k− j

m+
j , c �= 1, k = 0, 1, . . . .

These formulas allow us to obtain (at least, using symbolic computation) the moments
ofwi , and in consequence, the asymptotic expansion ofCwi [Hn] at infinity. This yields
Sn,i by formula (5.12).

In the following examples we will consider the symmetric case n1 = n2 and
c1 = −c2 = c, for which clearly Sn,1(−x) and Sn,2(x) coincide up to a multiplicative
constant. In this case, explicit formulas forH(n,n) and Sn,1 are easily obtained with the
help of a computer algebra system, at least for low n’s. For instance, for n = (5, 5)
and c = 1 we have that

H(5,5)(x) = x10 − 95x8

4
+ 1405x6

8
− 14855x4

32
+ 94325x2

256
− 39971

1024
,

and up to normalization,

Sn,1(x) = Sn,2(−x) = 32x5 + 560x4 + 4240x3 + 17560x2 + 39970x + 39971.

All zeros of H(5,5) are real and simple, while Sn,1 has one real zero (smaller than the
zeros of H(5,5)) and two pairs of complex conjugate simple zeros.

Asymptotics of sequences of (rescaled) multiple Hermite polynomials

p(n,n)(t) = H(n,n)

(√
n t

)
,

with c1 = −c2 = c proportional to
√

n, has been studied by Aptekarev, Bleher and
Kuijlaars in a series of papers [6, 20, 22] in the context of the random matrix theory.
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Fig. 1 Zeros of the multiple Hermite polynomialHn (indicated by empty circles, all on the real axis) and of
Sn,1 (filled circles) for n = (35, 35), c1 = −c2, for different values of c: c = 1 (top left), c = 4 (top right),
c = 8 (bottom left) and c = 16 (bottom right). The zeros of Sn,1 that are on the left semi-axis apparently
interlace with the zeros of Hn

In particular, they found that the support of the limit of the zero-counting measures
ν(p(n,n)) is a single interval, roughly speaking, for 0 ≤ c � 2

√
n, and is comprised of

two symmetric intervals for c � 2
√

n. It is interesting to compare these conclusions
with results of the numerical experiments presented in Fig. 1. There, n = (35, 35)
and c1 = −c2 = c > 0, with the phase transition happening around c ≈ 12. Notice
that for c = 1, the zeros of Sn,1 are visibly distributed along a curve on the complex
plane. As c increases, more and more zeros of Sn,1 migrate to the negative semi-axis,
interlacing with the zeros of H(n,n), until we get a two-cut situation. In this case, the
configuration resembles the relative position of the zeros of H(n,n) and Sn,1 for the
Angelesco system, described in Sect. 5.2.1, which explains why the description of the
asymptotic limit of ν(Hn) in this case is given in [20] in terms of the Angelesco vector
equilibrium problem, see Sect. 6.3.

A generalization of multiple Hermite polynomials to the case of polynomials Pn,
n = (n, n), satisfying the varying orthogonality conditions

∫ ∞

−∞
xk Pn(x)e−n(V (x)±cx) dx = 0, k = 0, 1, . . . , n − 1,

where V is a polynomial of even degree and positive leading coefficient, has been
carried out in [19], again associated to random matrix models with external source.
The limit zero distribution of Pn’s was described there in terms of a constrained 2-
component vector equilibrium problem, with one of the components on the imaginary
axis. The two-cut situation in the asymptotics of multiple Hermite polynomials, and
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thus the reduction to the Angelesco equilibrium, is in this case equivalent to the
constraint on the imaginary axis to be not achieved (not “saturated”). The study in
[19] has been extended in [75] (see also [11] for the quartic case) to a non-symmetric
situation, showing that it can be alternatively characterized in terms of a 3-component
critical vector measure with the interaction matrix from Corollary 6.3. The curves
outlined by the zeros of Pn and Sn,1 in Fig. 1 are consistent with the support of the
three components described in [75, Theorem C].

8.3 Multiple Laguerre Polynomials of the First Kind

These polynomials are defined by the orthogonality conditions

∫ ∞

0
xkLn(x)xα1e−x dx = 0, k = 0, 1, . . . , n1 − 1,

∫ ∞

0
xkLn(x)xα2e−x dx = 0, k = 0, 1, . . . , n2 − 1,

degLn ≤ N = n1 + n2,

where α1, α2 > 0 and α1 − α2 /∈ Z, under which condition the weights form an
AT-system; see [7], [52, Sect. 23.4.1], and [100, Sect. 3.2]. Not only that, since xβ ,
for β < 0 and x > 0, can be written as the Cauchy integral of a positive weight
on (−∞, 0), coinciding up to a multiplicative constant with |x |β , we conclude that
this pair of weight forms a Nikishin system with �1 = �2 = [0,+∞) and [c, d] =
[−∞, 0], see Sect. 5.2.2.

Polynomials Ln can be obtained by using the Rodrigues formula,

(−1)N e−xLn(x) =
2∏

j=1

(
x−α j

dn j

dxn j
xn j +α j

)
e−x , N = n1 + n2,

from which one can find the explicit expression

(−1)N e−xLn(x) = (α1 + 1)n1 (α2 + 1)n2 2F2

(
α1 + n1 + 1, α2 + n2 + 1

α1 + 1, α2 + 1

∣∣∣∣ − x

)
.

In our notation,

A1(x) = A2(x) = x, Bi (x) = αi − x, σi = 0, i = 1, 2,

with �1 = �2 = [0,+∞). These polynomials satisfy the differential equation (7.2),
which takes the form

x2Rn(x)y′′′(x) +
[
(B1(x) + B2(x) + 4)x Rn(x) − x2R′

n(x)
]

y′′(x)

+En(x)y′(x) + Fn(x)y(x) = 0. (8.5)
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It follows from formula (5.26) that Rn(x)/x is a constant. Thus, the equation reduces
to

x3y′′′ + x2 [B1(x) + B2(x) + 3] y′′ + Eny′ + Fny = 0,

where En and Fn are of degrees at most 3 and 2, respectively. As in Sect. 8.2, the
asymptotics of the corresponding functions of second kind qn,1 and qn,2 at ∞ yields
some constraints on the coefficients of En and Fn, which unfortunately are not suf-
ficient to determine the polynomials in this case. We need to make use also of the
predicted behavior of the solutions at the origin.

Notice that 0 is a regular singular point (a Fuchsian singularity) of (8.5). The fact
that the weights constitute an AT-system on [0,+∞) implies also that Ln1,n2(0) �= 0.
In consequence, En(0) = 0 and Fn(0) = 0. Expanding the solutions at the origin
we conclude that the indicial polynomial must vanish at 0, −α1 and −α2. All this
additional information allows us to determine En and Fn:

En = x(x2 + (n1 + n2 − α1 − α2 − 3)x + (1 + α1)(1 + α2) ,

Fn = x(−(n1 + n2)x + n1 + n2 + n1n2 + α1n2 + α2n1) .

Canceling the common factor x in the four coefficients of (8.5) yields the equation
that appeared already in [7, Sect. 4.3],

x2y′′′(x) +
(
−2x2 + (α1 + α2 − 3) x

)
y′′(x) +

(
x2 − x (α1 + α2 − n1 − n2 + 3)

+ (α1 + 1) (α2 + 1)) y′(x)

− (x(n1 + n2) − (n1 + n2 + n1n2 + α1n2 + α2n1)) y(x) = 0.

From the conclusions of Sect. 5.2.2 it follows that the zeros of Ln are all positive,
and those of Sn,1 are negative. By Theorem 5.10, the discrete vector measure 
ν1 :=
(ν(Ln), ν(Sn,1)) is a critical vector measure for the energy functional E 
ϕ,a , with a =
−1/2 and


ϕ(x) = 1

2
(x − (α1 + 1) log(x), (α1 − α2 − 1) log |x |) .

Direct computations show that

∫ ∞

0
xk+α j e−x dx =

{√
π 2−k−1(2k + 1)!!, j = 1,

(k + 1)!, j = 2,
k = 0, 1, . . . ,

which allows to find the moments of wi , the asymptotic expansion of Cwi [Ln] at
infinity, and in consequence, Sn,i (using formula (5.12)).
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Let us consider the particular case of n1 = n2 = n, with α1 = 1/2, α2 = 1. Then,
for n = (5, 5),

L(5,5)(x) = x10 − 165x9

2
+ 5445x8

2
− 186615x7

4
+ 7224525x6

16

− 80613225x5

32
+ 127182825x4

16

− 107120475x3

8
+ 10758825x2 − 13253625x

4
+ 467775

2
,

and up to normalization,

Sn,1(x) = 8x5 + 2720x4 + 107500x3 + 1945020x2 + 46682295x + 1425581520,

Sn,2(x) = 32x5 + 2960x4 + 67424x3 + 1313480x2 + 37066290x + 1173966885.

All zeros of L(5,5) are positive and simple, while each Sn, j has one negative and two
pairs of complex conjugate simple zeros, all of them simple.

Asymptotics of sequences of (rescaled) multiple Laguerre polynomials of the first
kind

p(n,n)(t) = L(n,n) (2nt)

was obtained in [31] and [77]. It was shown that the support of the weak-* limit
of the zero-counting measures ν(p(n,n)) is the interval [0, 27/8], with the density
presenting the usual square root vanishing at the rightmost endpoint of the support.
The expression of the density was derived from the recurrence relation satisfied by
polynomials L(n1,n2) and no equilibrium problem associated to that distribution was
given.

Again, it is interesting to compare these conclusions with results of the numerical
experiments presented in Fig. 2, where we take n = (35, 35), with α1 = 1/2, and
α2 = 1. The largest zero of L(35,35) is 217.597, which is consistent with the expected
value of

27

8
× 70 = 236.25.

8.4 Multiple Laguerre Polynomials of the Second Kind

These polynomials are defined by the orthogonality conditions

∫ ∞

0
xkLn(x)xαe−c1x dx = 0, k = 0, 1, . . . , n1 − 1,

∫ ∞

0
xkLn(x)xαe−c2x dx = 0, k = 0, 1, . . . , n2 − 1,
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Fig. 2 Zeros of the multiple Laguerre polynomial of the first kind Ln (indicated by empty circles, all on the
positive semiaxis) and of Sn,1 (filled circles, all on the negative semiaxis) for n = (35, 35) and α1 = 1/2,
α2 = 1. Nine real zeros of Sn,1 (ranging from −74,000 to −201.53, are not represented

where we assume that α > 0 and c1, c2 > 0 with c1 �= c2, under which condition the
weights form an AT-system; see e.g. [21], [63], or [100, Sect. 3.3].

An explicit expression can be found in [7, Sect. 3] or [52, Sect. 23.4]:

Ln(x) =
n1∑

k1=0

n2∑

k2=0

(−1)k1+k2 (k1 + k2)!
ck1
1 ck2

2

(
n1

k1

)(
n2

k2

)(
N + α

k1 + k2

)
x N−k1−k2 .

In our notation,

A1(x) = A2(x) = x, Bi (x) = α − ci x, σi = 0, i = 1, 2,

with �1 = �2 = [0,+∞). These polynomials also satisfy the differential equation
(8.5), that is,

x2Rn(x)y′′′(x) +
[
(−(c1 + c2)x2 + 2(α + 2)x)Rn(x) − x2R′

n(x)
]

y′′

+En(x)y′(x) + Fn(x)y(x) = 0.

Formula (5.26) shows that now Rn(x)/x is a polynomial of degree 1. Furthermore, by
(5.21) and since B1 − B2 vanishes at 0, RnLn has a double root at 0. Again, the fact
that the weights constitute an AT-system on [0,+∞) implies also that Ln(0) �= 0.
Hence, Rn(x)/x2 is a constant, and the third order differential equation is

x4y′′′ − x3((c1 + c2)x − α − 2)y′′ + Eny′ + Fny = 0.

Arguments as described in Sects. 8.2 and 8.3, using the asymptotics of the functions
of second kind both at 0 and at ∞ and the fact that the indicial polynomial vanishes
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at 0 and −α, yield the expressions for polynomials En and Fn:

En = c1c2x4 − [(c1 + c2)(α + 1) − n1c1 − n2c2]x3 + α(α + 1)x2,

Fn = −c1c2(n1 + n2)x3 + α(c1n1 + c2n2)x2.

Canceling the common factor x2 in the differential equation yields

x2y′′′(x) −
(

x2 (c1 + c2) − 2x(α + 1)
)

y′′(x)

+
(

x2c1c2 − x [(c1 + c2) (α + 1) − n1c1 − n2c2]

+ α(α + 1))y′(x) − (xc1c2(n1 + n2) − α (n1c1 + n2c2)) y(x) = 0,

which matches the equation found in [7, Sect. 4.3] and [43, Sect. 5.2].
By Theorem 5.10, the discrete vector measure 
ν1 := (

ν(Ln), ν(Sn,1)
)
is a critical

vector measure for the energy functional E 
ϕ,a , with a = −1/2 and


ϕ(x) = 1

2
(c1x − (α + 1) log x, (c2 − c1)x) , z = x + iy.

Since for c > 0 and α > −1,

∫ ∞

0
xαe−cx dx = c−α−1�(α + 1),

we can easily calculate the moments of wi , the asymptotic expansion of Cwi [Ln] at
infinity, and in consequence, Sn,i (using formula (5.12)).

Let us consider the particular case of n1 = n2 = n, with α = 1, c1 = 1, and c2 = 2.
Then, for n = (5, 5),

L(5,5)(x) = x10 − 165x9

2
+ 2750x8 − 96525x7

2

+ 487575x6 − 5831595x5

2
+ 10239075x4

− 20270250x3 + 20790000x2 − 9355500x + 1247400,

and up to normalization,

Sn,1(x) = 2x5 + 25x4 + 605x3 + 16580x2 + 506065x + 16197810,

Sn,2(x) = 4x5 − 320x4 + 9975x3 − 151645x2 + 1115560x − 2967600.

All zeros of L(5,5) are positive and simple, Sn,1 has one negative and two pairs of
complex conjugate simple zeros, while Sn,2, has one positive and two pairs of complex
conjugate roots, all of them simple.
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Fig. 3 Zeros of the multiple Laguerre polynomial of the second kind Ln (indicated by empty circles, all
on the positive semiaxis) and of Sn,1 (filled circles) for n = (35, 35), and (c1, c2) = (35, 70) (top left),
(c1, c2) = (35, 140) (top right), and (c1, c2) = (35, 525) (bottom left). Bottom right: zoom of the interval
(0, 0.25) for (c1, c2) = (35, 525)

Asymptotics of sequences of (rescaled) multiple Laguerre polynomials of the sec-
ond kind,

p(n,n)(t) = L(n,n) (nt) ,

with varying 0 < c1 < c2 proportional to n, has been studied by Lysov andWielonsky
in [63] using the Riemann-Hilbert technique and the analysis of the Riemann surface
derived from the differential equation. In particular, they found that there is a critical
value κ ≈ 12.11 . . . such that for 0 < c2/c1 < κ , the support of the limit of the
zero-counting measures ν(p(n,n)) is a single interval of the form [0, d], d > 0, while
for c2/c1 > κ , it is comprised of two real intervals [0, a]∪[b, d], with 0 < a < b < d.
The expression of the density was also derived, but no equilibrium problem associated
to that distribution was given. It is interesting to compare these conclusions with
results of the numerical experiments presented in Fig. 3, where we take n = (35, 35).
We observe that for small values of c2/c1 the zeros of Sn,1 sit on a curve on the
complex plane. However, for large ratios c2/c1, zeros of L(n,n) split into two groups,
and the zeros of Sn,1, all real, approximately interlace with the zeros of L(n,n) on the
leftmost subinterval. This allows us to conjecture that in this case, the asymptotic zero
distribution can be described again in terms of the Angelesco-type vector equilibrium,
see Sect. 6.3.
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8.5 Jacobi–Piñeiro Polynomials

The Jacobi–Piñeiro polynomials are multiple orthogonal polynomials associated with
an AT system consisting of Jacobi weights on [0, 1] with different powers at 0 and the
same behavior at 1. They are defined by the orthogonality conditions

∫ 1

0
xk Pn(x)xβ1(1 − x)α dx = 0, k = 0, 1, . . . , n1 − 1,

∫ 1

0
xk Pn(x)xβ2(1 − x)α dx = 0, k = 0, 1, . . . , n2 − 1.

In our notation, �1 = �2 = [0, 1] and w j (x) = xβ j (1 − x)α , j = 1, 2, with
α, β1, β2 > −1 and β1 − β2 /∈ Z. We have

A1(x) = A2(x) = x(x − 1), Bi (x) = (βi + α)x − βi , σi = 0, i = 1, 2.

For the same reason mentioned at the beginning of Sect. 8.3, this pair of weight forms
a Nikishin system with �1 = �2 = [0, 1] and [c, d] = [−∞, 0], see Sect. 5.2.2.

These polynomials were first studied by Piñeiro [83] when α = 0. The general case
appears in [81, p. 162]. There is a Rodrigues formula for Jacobi–Piñeiro polynomials
Pn, n = (n1, n2), see [52, Sect. 23.3.2]: with N = n1+n2, and up to a constant factor,

Pn(x) = (1 − x)−α
2∏

j=1

(
x−β j

dn j

dxn j
xn j +β j

)
(1 − x)α+N .

There is even an explicit expression [100, Sect. 3.1]: again, up to a multiplicative
constant,

Pn(x) =
n1∑

k=0

(
β1 + n1

k

)(
α + N

n1 − k

) n2∑

j=0

(
β2 + N − k

j

)(
α + k + n2

n2 − j

)
x N−k− j (x − 1)k+ j .

Proposition 5.5 assures that polynomial Rn has degree at most 3. By (5.21), RnPn
has a double root at 1 (observe that B1 − B2 also vanish at 1) and a simple one at
0. Since the weights form an AT-system, Pn(0) �= 0 and Pn(1) �= 0, so that, up to a
multiplicative constant, Rn(z) = z(z − 1)2 .

By Theorem 5.10, and taking into account the expression for Rn, we conclude that
the discrete vector measure 
ν1 := (ν(Ln), ν(Sn,1)) is a critical vector measure for the
energy functional E 
ϕ,a , with a = −1/2 and


ϕ =
(

β1 + 1

2
log

1

|x | + α + 1

2
log

1

|x − 1| ,
(

β1 − β2 + 1

2

)
log

1

|z|
)

, z = x + iy.

The third order differential equation can be also obtained following the arguments
used in Sects. 8.2–8.4, and making use of the asymptotics at ∞, 0, and 1, and of the
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known roots of the indicial polynomials at both finite points. For instance, in the case
α = 0 (studied by Piñeiro in [83]), polynomials En and Fn (coefficients of y′ and y,
respectively) are

En = −x(x − 1)3((1 + β1)(1 + β2) + x(n2
1 + n2

2 + n1n2 + n1(1 + β1)

+ n2(1 + β2) − (2 + β1)(2 + β2))),

Fn = −x(x − 1)3(n1 + n2)(1 + n1 + β1)(1 + n2 + β2).

Canceling the common factor x(x − 1)3 we obtain the differential equation

x2(x − 1)y′′′ + x(x(5 + β1 + β2) − 3 − β1 − β2)y′′

− (x(n2
1 + n2

2 + n1n2 + n1(1 + β1) + n2(1 + β2)

− (2 + β1)(2 + β2)) − (1 + β1)(1 + β2))y′

− (n1 + n2)(1 + n1 + β1)(1 + n2 + β2)y = 0.

This is the particular case (after canceling the common factor x − 1) of the equation
derived in [7, Sect. 4.3].

As for the electrostatic partners, let us consider the example when α = β1 = 0 and
β2 = −1/2. Direct computation shows that the moments of wi are

∫ 1

0
xkw j (x)dx =

{
(k + 1)−1, j = 1,

2/(2 j + 1), j = 2,
k = 0, 1, . . . ,

which allows to find the asymptotic expansion of Cwi [Pn] at infinity, and in conse-
quence, Sn,i (using formula (5.12)) by means of symbolic computation. For instance,
in the case n = (5, 5) we obtain that

L(5,5)(x) =x10 − 380x9

87
+ 1615x8

203
− 20672x7

2639
+ 9044x6

2001
− 5168x5

3335
+ 204x4

667

− 64x3

2001
+ x2

667
− 4x

182091
+ 1

30045015
,

and up to normalization,

Sn,1(x) = 882230895x5 + 4709406975x4 + 5720142090x3 + 8795888965x2

+ 11696347475x + 11645469674,

Sn,2(x) = 5192762585x5 + 313459871725x4 + 662076961780x3 + 782465377400x2

+ 1267133219685x + 1386883054197.

All zeros of P(5,5) are positive and simple, both Sn, j have one negative and two pairs
of complex conjugate simple zeros, all of them simple.

Zero asymptotics for sequences of Jacobi–Piñeiro polynomials P(n,n) as n → ∞
and α, β j ’s fixed, was obtained in [31] and [77]. Again, the expression of the density,
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Fig. 4 Left: zeros of the Jacobi–Piñeiro polynomial Pn (all on [0, 1]) and of Sn,1 (filled circles, all negative)
for n = (75, 75), with β1 = 0, β2 = −1/2, and α = 0; approximately 19 real zeros of Sn,1 (ranging from
−771 to −1.74), are not represented. Right: the histogram of the zeros of Pn and the plot of the asymptotic
density, predicted in [31]

this time on [0, 1], was derived from the recurrence relation satisfied by polynomials
L(n1,n2) and no equilibrium problem associated to that distribution was given. For
comparison, results of the numerical experiments are presented in Fig. 4, where we
take n = (75, 75), withβ1 = 0,β2 = −1/2, andα = 0.According to our discussion in
Sect. 5.2.2, the zeros of Sn,1 are real and negative, and the asymptotic zero distribution
can be described in terms of the Nikishin-type vector equilibrium, see Sect. 6.4.

8.6 Angelesco–Jacobi Polynomials

These polynomials, known also as Jacobi–Jacobi polynomials (see [12]) are Hermite–
Padé polynomials Pn, n = (n1, n2), satisfying orthogonality relations

∫ 0

a
xk Pn(x)(x − a)α|x |β(1 − x)γ dx = 0, k = 0, 1, 2, . . . , n1 − 1,

∫ 1

0
xk Pn(x)(x − a)αxβ(1 − x)γ xk dx = 0, k = 0, 1, 2, . . . , n2 − 1,

with a < 0. In our notation,

A(x) = x(x − a)(x − 1), B(x) = αx(x − 1) + β(x − a)(x − 1) + γ x(x − a),

and

w1(x) = w2(x) = w(x) = (x − a)α|x |β(1 − x)γ ,

v1(x) = v2(x) = v(x) = (x − a)α+1|x |β+1(1 − x)γ+1,

with α, β, γ > −1 and

�1 = [a, 0], �2 = [0, 1]

(cf. Example 3.2).
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This is an Angelesco system of semiclassical weights of class σ = 1, see (3.4). As
it follows from [12, Theorem 2.1], for n1 = n2 = n, n = (n, n), n ∈ N, Pn can be
expressed using a Rodrigues formula,

Pn(x) = 1

w(x)

(
d

dx

)n [
An(x)w(x)

]
,

or explicitly, see [100, Sect. 3.5]: up to a constant factor,

Pn(x) =
n∑

k=0

n−k∑

j=0

(−n)k+ j (−α − n) j (−γ − n)k

(β + 1)k+ j k! j ! (x − a)n−k(x − 1)k+ j xn− j .

Kaliaguin [54] studied the case of a = −1, with the particular sub-case of B ≡ 0
or w(x) ≡ 1 going back to the work of Appell [3]. The case of −1 < a < 0 was
addressed in [56], but see [12] for further historical details.

If B ≡ 0 (that is, α = β = γ = 0), definition (3.13) reduces to

Sn,1 = A × Wrons
[
Pn,Cw1 [Pn]

]
, Cw1 [Pn](x) =

∫ 0

a

Pn(t)

t − x
dt .

Notice that in particular, x = 1 is one of the n + 1 zeros of Sn,1, n − 1 of which
interlace with the zeros of Pn on [0, 1).

In Appell’s case, w ≡ 1 and a = −1,

Pn(x) =
(

d

dx

)n [
x(x2 − 1)

]n
,

and

Sn,1(x) = (−1)n+1Sn,2(−x), deg Sn,1 = n + 1.

These explicit formulas allow to use symbolic computation (e.g. Mathematica) to find
explicit expressions for small values of n. For instance, for n = (6, 6), and up to
normalization,

Pn(x) = x12 − 44x10

17
+ 165x8

68
− 220x6

221
+ 75x4

442
− 2x2

221
+ 1

18564
,

Sn,1(x) = (x − 1)
(
12288x6 − 38763x5 + 47253x4 − 27822x3 + 8018x2 − 991x + 33

)
,

and their graphs are plotted in Fig. 5. We can clearly observe the interlacing predicted
by Proposition 5.11, which in the limit n → ∞ gives the description in therms of the
Angelesco equilibrium problem, as described in Sect. 6.3.

However, according to Remark 5.3, the critical configuration for the zeros of Pn
in this case is not unique: we can use for the second component the zeros of any
linear combination of Sn,1 and Sn,2. In Fig. 6 we illustrate the behavior of zeros of
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Fig. 5 Appell’s polynomials (α = β = γ = 0). Left: graph of Pn (dashed line) and Sn,1 (thick line) on
[0, 1] for n = (6, 6) in the case. Right: zeros of Pn (empty circles, all on [−1, 1]) and of Sn,1 (filled circles,
all on [0, 1]) for n = (15, 15)

Fig. 6 Appell’s polynomials (α = β = γ = 0) and n = (35, 35): zeros of Pn (indicated by empty circles,
all on (−1, 1)) and of Sn,1 + t Sn,2 (filled circles) for t = 10−10 (top left), t = 10−5 (top right), t = 1
(bottom left), and t = 105 (bottom right)

Sn,1 + t Sn,2, for different values of 0 < t ≤ 1 (notice that the representation of the
zeros of Sn,1 in Fig. 5, right, corresponds to t = 0).

8.7 Multiple Orthogonal Polynomials for the CubicWeight

Althoughwehave not discussed the purely complexweights,wefinish our presentation
with the illustrative example of polynomials Pn, n = (n1, n2), satisfying orthogonality
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Fig. 7 Zeros of the multiple orthogonal polynomial Pn with respect to the cubic weight (indicated by
empty circles, part of them on the positive semiaxis, forming a symmetric star) and of Sn,1 (filled circles)
for n = (25, 25). For comparison, zeros of type I MOP Bn (filled squares) are also represented

relations ∫

�1

zk Pn(z)e
−z3dz = 0, k = 0, 1, 2, . . . , n1 − 1,

∫

�2

zk Pn(z)e
−z3dz = 0, k = 0, 1, 2, . . . , n2 − 1,

where�1 and�2 are contours on the complex plane, extending to∞ on their two ends
along the directions determined by the angles −2π/3 and 0, and −2π/3 and 2π/3,
respectively. They were introduced in [101] and studied in full generality in [74].

In our notation,

A1(x) = A2(x) = A(x) = 1, B1(x) = B2(x) = B(x) = −3x2.

Detailed explanation of the algorithm of computation of the zeros of Pn was given
in [74, Sect. 9]. Since the moments of the weight were given explicitly, we use the
expansion of Dw[Pn] at infinity to calculate the expressions for Sn,1 and Sn,2, see
Fig. 7.
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It is interesting to compare the location of the zeros of Sn,1 with those of type I
multiple orthogonal polynomials An and Bn, defined by the following conditions:

degAn ≤ n − 1, degBn ≤ m − 1,

and
∫

�1

zkAn(z)e
−z3dz +

∫

�2

zkBn(z)e
−z3dz = 0, k = 0, . . . , N − 2,

∫

�1

zkAn(z)e
−z3dz +

∫

�2

zkBn(z)e
−z3dz = 1, k = N − 1,

(8.6)

where N = n + m. According to Fig. 7, the zeros of Bn “interlace” with the zeros
of Sn,1, which brings up a natural question of a possible connection of these two
polynomials.

Acknowledgements The first author was partially supported by Simons Foundation Collaboration Grants
for Mathematicians (grant 710499). He also acknowledges the support of the Spanish Government and the
EuropeanRegional Development Fund (ERDF) through grant PID2021-124472NB-I00, Junta deAndalucía
(research group FQM-229 and Instituto Interuniversitario Carlos I de Física Teórica y Computacional),
and by the University of Almería (Campus de Excelencia Internacional del Mar CEIMAR) in the early
stages of this project. The second and third authors were partially supported by Spanish Ministerio de
Ciencia, Innovación y Universidades, under grant MTM2015-71352-P. The third author was addition-
ally supported by Junta de Andalucía (research group FQM-384), the University of Granada (Research
Project ERDF-UGR A-FQM-246-UGR20), and by the IMAG-Maria de Maeztu grant CEX2020-001105-
M/AEI/10.13039/501100011033. The authors also grateful to Alexandre Eremenko, who suggested the idea
of the proof of Lemma A.2, and to the anonymous referees, whose outstanding work helped to considerably
improve this manuscript.

Funding Funding for open access publishing: Universidad de Granada/CBUA

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Properties of the Electrostatic Partner

Proposition A.1 If P is a polynomial of degree N ∈ N, q the function of the second
kind (3.9), and S is the electrostatic partner of P defined in (3.21) then:

(a) If z0 ∈ C is a zero of P of multiplicity k ≥ 1 then S also has a root at z0 with
multiplicity at least k − 1. If in addition A(z0) = 0 then the multiplicity of z0 in
S is at least k.

(b) If z0 ∈ C\� is a zero of Cw[P] of multiplicity k ≥ 1 then S also has a root at z0
with multiplicity at least k − 1. If in addition A(z0) = 0 then the multiplicity of
z0 in S is at least k.
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(c) Let  be a simply-connected domain such that A(z) �= 0 for z ∈ , Cw[P]
holomorphic in  and let w be a holomorphic branch of this function in . If z0
is a boundary point of , then

lim
z→z0

(z − z0)Ak(z)w(z)
dk

dzk
q(z) = 0, k = 0, 1, . . . , (A.1)

where we take non-tangential limit with z ∈ .

Proof Assume z0 /∈ �. If z0 ∈ C is a zero of p of multiplicity k ≥ 1 then the assertion
in a) follows directly from the definition (3.13). Same argument works to prove a) if
we assume that z0 ∈ C is a zero of Cw[P] of multiplicity k ≥ 1.

On the other hand, from the assumption (3.2) it follows that for z0 ∈ �,

lim
z→z0

(z − z0)Cw[P](z) = 0, (A.2)

which proves b) also in this case.
We turn now to c). If A(z0) �= 0 then both w−1 and q are bounded at z0 and the

assertion is obvious. Hence, let A(z0) = 0.
Denote

hk(z) := (z − z0)Ak(z)w(z)
dk

dzk
q(z), k = 0, 1, 2, . . .

Obviously, h0(z) = (z − z0) p̂(z), and (A.1) for k = 0 is consequence of (A.2).
Using the induction in k, assume that (A.1) is establised for a certain k ≥ 0, i.e.

lim
z→z0

hk(z) = 0,

where we always take non-tangential limit from . By Lemma A.2 below,

lim
z→z0

(z − z0)h
′
k(z) = 0. (A.3)

Thus, using (3.3),

0 = lim
z→z0

(z − z0)h
′
k(z) = lim

z→z0
A(z)h′

k(z)

= lim
z→z0

[
hk(z)

(
A(z)

z − z0
+ k A′(z) + A(z)

w′(z)
w(z)

)
+ hk+1(z)

]

= lim
z→z0

[
hk(z)

(
A(z)

z − z0
+ k A′(z) + B(z)

)
+ hk+1(z)

]
= lim

z→z0
hk+1(z),

which proves (A.1). ��
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Lemma A.2 Let  be a domain, z0 ∈ ∂ a boundary point satisfying the following
property: there exists a sector � := {z ∈ C : | arg(z − z0) − θ0| < δ}, with certain
θ0 ∈ [0, 2π), δ > 0, such that for a sufficiently small r > 0, � ∩ {z ∈ C : |z − z0| <

r} ⊂ . If function f is holomorphic in  and

lim
z→z0, z∈�

f (z)

z − z0
= 0,

then

lim
z→z0, z∈�

f ′(z) = 0.

Proof Without loss of generality we can assume that z0 = 0 and θ0 = 0.
Each 0 < q < 1 defines a sub-sector �q of � given by

�q := {z ∈ � : |tan (δ − arg(z))| ≥ q}.

Notice that as q → 0, �q exhausts �.
Fix a 0 < q < 1 and an arbitrarily small ε > 0. By assumptions, there exists

0 < r ′ = r ′(ε) < r such that

t ∈ �, |t | < r ′ ⇒ | f (t)| ≤ ε|t |.

Let z ∈ �q ; by construction, the circle Cz := {t ∈ C : |t − z| = q|z|} ⊂ �. We
assume |z| small enough so that |t | < r ′ for all t ∈ Cz . Then

f ′(z) = 1

2π i

∮

Cz

f (t)

(t − z)2
dt,

and

| f ′(z)| ≤ 1

q|z| max
t∈Cz

| f (t)| ≤ ε

q|z| max
t∈Cz

|t | = ε

q

|z| + q|z|
|z| = ε(1 + q)

q
,

which proves the assertion. ��

Appendix B: Electrostatic Partner in the Real Case

The construction in Sect. 3 is carried out in a very general setup. In this Appendix, we
prove a technical result valid in the real case, when A and B have real coefficients,

� ⊂ R and w(x) ≥ 0 on �. (B.1)

We assume that P �≡ 0 is a polynomial with real coefficients, and as before, denote
S = Dw[P].
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Lemma B.1 Let ζ1 < ζ2 be two consecutive real zeros of P, such that (ζ1, ζ2)∩� = ∅,
S(ζ j ) �= 0 for j = 1, 2, and A preserves sign on (ζ1, ζ2). Then S Cw[P] does change
sign in (ζ1, ζ2).

Analogously, if y1 < y2 are two consecutive real zeros ofCw[P], such that (y1, y2)∩
� = ∅, (AS)(y j ) �= 0 for j = 1, 2, and A preserves sign on (y1, y2), then S P changes
sign in (y1, y2).

Proof Since S(ζ j ) �= 0, j = 1, 2, it follows from b) in Proposition A.1 that these are
simple zeros of P , A(ζ j ) �= 0, j = 1, 2, and thus, P ′(ζ1)P ′(ζ2) < 0. Evaluating in
the definition (3.13), we get

S(ζ j ) = Dw[P](ζ j ) = −A(ζ j )Cw[P](ζ j )P ′(ζ j ), j = 1, 2,

so that

(S Cw[P]) (ζ j ) = −
(

A(Cw[P])2P ′) (ζ j ), j = 1, 2.

Since A preserves sign on [ζ1, ζ2], we get that

(SCw[P]) (ζ1) (SCw[P]) (ζ2) < 0.

This proves the first assertion.
Similarly from (3.13),

S(y j ) = (
A (Cw[P])′ P

)
(y j ), j = 1, 2,

so that

(S P)(y j ) =
(

A (Cw[P])′ P2
)

(y j ), j = 1, 2.

If y1 < y2 do not coincide with the zeros of AS, then as (3.22) shows, these are simple
zeros of p̂, so that

(Cw[P])′ (y1) (Cw[P])′ (y2) < 0,

and we conclude that

(S P) (y1) (S P) (y2) < 0.

��
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