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Abstract

Remote sensing is a study that provides information on targets of interest without
direct interaction with them. Generally, the term is used for measurement tech-
niques that detect electro-magnetic radiation emitted or reflected from the targets.

Commonly used wavelength ranges include visible, infra-red, microwaves, and
thermal bands. This information can be exploited to determine the structural and
spectral properties of targets. Remote sensing techniques are typically utilized in
mapping solutions, environment monitoring, target recognition, change detection,
and in creation of physical models.

In Finland, remote sensing research is of specific importance in forest sciences and
industry as they need precise information on tree quantity and quality over large
forest ranges. Tree species information on individual tree level is an important
parameter to achieve this goal.

The aim of this thesis is to study how individual tree species information can be
extracted with multiple source remote sensing data. The aim is achieved by com-
bining spatial and spectral remote sensing data. Structural properties of individ-
ual trees are determined from three dimensional point clouds collected with laser
scanners. Spectral properties of trees are collected with cameras or spectrometers.

The thesis consists of four separate studies. The first study examined how shad-
ing information of trees canopies could be exploited to improve tree species clas-
sification in data collected with airborne sensors. The second study examined
the classification performance of a low-cost, multi-sensor, mobile mapping sys-
tem. The third study investigated the classification performance and accuracy of
a novel, active hyperspectral laser scanner. Finally, the fourth study evaluated the
suitability of artificial surfaces as on-site intensity calibration targets.

The results of the three classification studies showed that the use of combined
point cloud and spectral information yielded the best classification results in all
study cases when compared against classification results obtained with only struc-
tural or spectral information. Moreover, the studies showed that the improved
results could be achieved with a low total number of mixed structural and spec-
tral classification parameters. The fourth study showed that the artificial surfaces
work as calibration surfaces only in limited cases.

The main outcome of the thesis was that the active remote sensing systems mea-



suring multiple wavelengths simultaneously should be promoted. They have a
significant potential to improve tree species classification performance even with
a few application-specific wavelengths.

Keywords: Remote Sensing, Laser Scanning, Spectral Imaging, Tree Species Clas-
sification, Data Fusion
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Abstrakti

Kaukokartoitus on tutkimusala, jossa tutkittavia kohteita havainnoidaan ilman suo-
raa vuorovaikutusta. Yleisimmin kaukokartoituksella tarkoitetaan mittausteknii-
koita, joilla havaitaan kohteiden ldhettdmad tai heijastamaa elektromagneettista
sateilya.

Havainnointi tapahtuu tavallisesti nidkyvén valon, infrapunan, mikroaaltojen ja
lampdosateilyn aallonpituusalueilla. Havaittua séteilyd voidaan hyddyntdd kohtei-
den rakenteellisten ja spektraalisten ominaisuuksien maérittdmisessd. Kaukokar-
toitusmenetelmid kéytetddn tyypillisesti kartoitussovelluksissa, ympéristonseuran-
nassa, kohde- ja muutostulkinnassa seké fysikaalisten ilmididen mallinnuksessa.

Kaukokartoitustutkimuksella on tirked osa suomalaisessa metséntutkimuksessa ja
-teollisuudessa. Molemmat tarvitsevat tarkkaa tietoa puuston méaérésté ja laadusta
suurilta metsdalueilta. Yksittdisten puiden lajitulkinta on tarked parametri tavoit-
teen saavuttamisessa.

Viitoskirjatutkimuksen tarkoituksena on selvittdd, kuinka yksittdisten puiden la-
jitieto voidaan mdadrittdd eri mittauslaitteilla kerdtystd kaukokartoitusaineistosta
kayttamélla samanaikaisesti puustoa kuvaavia muotopiirteitd ja spektrivastetta.
Muotopiirteiden kerdys tehddédn laserkeilaimilla. Spektrivasteet kerdtddn kame-
roilla tai spektrometreilla.

Viitoskirjan sisdltd koostuu neljasta erillisestd tutkimuksesta. Ensimmaéisessa tut-
kimuksessa selvitetddn, kuinka ilmasta keréttyé tietoa puiden latvustojen varjostu-
misesta voidaan hyodyntdd puulajitulkinnassa. Toisessa tutkimuksessa arvioidaan
puulajitulkinnan toteutettavuutta aineistosta, joka on kerdtty edullisista kompo-
nenteista kootulla litkkuvalla kaukokartoituslaitteistolla. Kolmas tutkimus tarkas-
telee uuden, aktiivisesti mittaavan hyperspektrilaserin suorituskykya ja tarkkuutta
puulajitulkinnassa. Neljdnnessd tutkimuksessa selvitetddn voidaanko rakennettuja
pintoja hyodyntid intensiteetin maastokalibrointikohteina.

Kaikki kolme luokittelututkimusta osoittivat yhdistetyn pistepilvi- ja spektriai-
neiston suoriutuvan parhaimmin lajitulkinnasta, kun tuloksia verrataan pelkésti
rakenne- tai spektrisestd aineistosta laskettuihin tuloksiin. Liséksi parantuneet tu-
lokset saavuttiin yhdistdmélld vain muutamaa rakenne- ja spektri-luokittelupara-
metria kerrallaan. Neljdnnen tutkimuksen tulokset osoittivat, ettd rakennetut pin-
nat soveltuvat kalibraatiokohteiksi vain rajatuissa tapauksissa.
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Viitoskirjan tirkein johtopédétds on, ettd aktiivisten, useaa aallonpituutta saman-
aikaisesti mittaavien kaukokartoituslaitteistojen kehitystéd tulisi edistdd. Tallaiset
laitteistot voisivat parantaa puuston lajitulkintaa huomattavasti jo muutamaa so-
vellukseen sopivinta aallonpituutta kéyttamalla.

Avainsanat: Kaukokartoitus, Laserkeilaus, Spektrikuvantaminen, Puulajitulkinta,

Datafuusio
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Chapter 1

Introduction

1.1 Foreword about Remote Sensing

1.1.1 Remote sensing

Remote sensing can be defined as ’the acquisition of information about an ob-
ject or phenomenon, without making physical contact with the object’ [1]. This
definition covers a wide range of scientific methods and techniques. However,
the concept of remote sensing has also a very palpable meaning as several hu-
man senses utilize it to give us information about our surroundings: our eyes
detect electromagnetic radiation at wavelengths different from those which form
the image of the surroundings, our skin senses infrared waves, and our ears detect
changes in pressure. While the term remote sensing can be used in a very broad
context, in general it means the detection of electromagnetic radiation being emit-
ted or scattered from objects observed on our planet. Also, acoustic and seismic
waves have been exploited for a long time in various applications in maritime and
earth sciences.

Remote sensing studies, in the modern sense of the term, began with the in-
vention of the camera (camera obscura) in the 19th century. Cameras were at-
tached soon in balloons and airplanes to provide information on the features at
the ground level as seen from above. But it took until the beginning of the 20th
century before large scale use of remote sensing data began. Remote sensing data
were especially needed for intelligence gathering during World War 1. Overall,
the development of remote sensing techniques has been closely linked to mili-
tary applications as most of the new methods and equipment were first applied
for intelligence purposes and then became gradually more and more usable for
the scientific community and commercial enterprises. Techniques such as SOnic
Navigation And Ranging (SONAR), RAdio Detection And Ranging (RADAR),
and various satellite systems were all first used in military surveillance. The lat-

1



2 1 INTRODUCTION

est remote sensing technique, LiDAR (Light Detection And Ranging), was also
introduced first in military applications such as artillery ranging tasks.

1.1.2 Remote sensing data, data collection, and domains

The data collection methods used with remote sensing measurement systems may
be divided into two main categories, passive and active. Passive remote sens-
ing systems measure target areas and objects that are either self-emitting (e.g.
hot objects in long wavelength infra-red) or are illuminated by an external light
source. This introduces severe limitations to their usability because additional
efforts are needed to monitor and correct possible changes in the incoming illumi-
nation. However, when good measurement conditions and proper calibration are
provided, passive remote sensing systems are capable of collecting large amounts
of data with a high degree of accuracy. Moreover, passive remote sensing systems
collect data with a high degree of detail.

Active remote sensing systems both send and receive signals. This makes
them independent of external conditions. In addition, data calibration in an active
measurement is significantly more straightforward than in passive measurements
because both the transmitter and the measurement calibrations can be carried out
independently without mixed response. Furthermore, the travel time of a trans-
mitted signal can be detected with a high degree of accuracy thus enabling precise
ranging. At present, the most common applications of active measurement sys-
tems are related to ranging and mapping of objects and areas of interest. One
of the main limitations of active remote sensing systems is that they are usually
limited to operating on narrow transmitter bands. In optical remote sensing sys-
tems, this means using only one or a few separate wavelengths at a time. This
limitation is due to the technical challenges that make it difficult to produce an
actively measuring optical system that would be capable of producing both stable
and coherent signals on several different wavelengths for radiometric measure-
ments [2]. Another limitation with the present active optical systems is that the
signal-to-noise ratios needed for precise radiometric measurements require total
transmitting power exceeding the imposed safety regulations when several wave-
lengths or wavelength bands are applied.

Remote sensing data yields information about the target object’s shape, re-
flectance spectrum, or both, depending on the data collection technique used.
Thus, remote sensing data are suitable for creating accurate target models. The
creation of a complete target model requires that the collected remote sensing
data are required to fulfill both the model-specific resolution and coverage re-
quirements. These requirements depend on the complexity of the modelled sys-
tem. Natural object modeling is an especially complicated task as these objects
are complex in structure. The remote sensing data obtained from living objects
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of the same species usually show significant variance in size, in their spectral and
radiometric responses, and they change over time. The achievable object model
accuracy depends on the type of available remote sensing data, data resolution,
and data coverage.

Both data resolution and coverage have multiple meanings in remote sensing
as remote sensing data collection is performed in several different domains, i.e.
spatial, spectral, radiometric, and temporal. The data resolution and coverage in
each of the domains are sensor-specific. Typically, one sensor is built to be capa-
ble of high performance in one or two domains at time. Thus, it is often necessary
to fuse data from different remote sensing sensors to form the complete object
model. The spatial characteristics of targets, such as their shape and geometry, can
be derived either from LiDAR point cloud data, from imagery with photogram-
metric methods, or from Synthetic Aperture Radar (SAR) data. Targets can be
also separated from their surroundings for further processing using their spectral
responses. All objects reflect, absorb, and transmit electromagnetic waves in an
intrisic manner depending, to some extent, on their material and structure. The
components of reflected waves are observed as a target-specific spectrum. The
detected spectrum is not only dependent on the target properties; it also depends
on the spectral shape of the incident illumination or of the signal hitting the target
and on the measurement geometry. Target spectra are collected using cameras
or spectrometers. More recently, innovative laser systems enable the concurrent
transmission and collection of data over several wavelengths.

The spatial accuracy of remote sensing data is described in terms of resolu-
tion; this indicates the size of the smallest detectable object in the data. With
LiDAR data, spatial accuracy is often reported either as the smallest detectable
distance between two points or as the average point spacing in the data. Average
point spacing is used because point cloud resolution depends significantly on the
scanning geometry. This leads to distinct variation in individual point spacing.
In imagery, the spatial resolution is usually reported as the ground sampling dis-
tance (GSD), which indicates the projected size of a single pixel at ground level.
With a single detector, where the sensor records returning signals consecutively,
the spatial resolution can be given as the spot size on the ground or on a target.
The spatial resolution of a sensor system can be also reported as the divergence
angle of the sensor field of vision (FOV), and the spot size can be derived from
this when the distance to the scatterer is known. Figure 1.1 illustrates the concepts
of spatial resolution and coverage.

Spectral accuracy is dependent on several sensor properties. The first property
is the spectral resolution which determines how narrow individual wavelength
components of the spectrum can be and still be distinguishable. At the sensor
level, distinguishability means the smallest detectable wavelength difference be-
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Figure 1.1: The concepts of spatial resolution and coverage illustrated using
checkerboards. The horizontal direction represents the difference in spatial reso-
lution. Checkerboards with small squares have a higher resolution than the boards
with large squares. The vertical direction represents the difference in spatial cov-
erage. The small checkerboards in the upper row cover less area than the large
checkerboards in the lower row.

tween two sensor channels. The spectral resolution of a sensor is usually reported
as the full-width-at-half-maximum (FWHM) which can be compared against the
channel number and spacing of the sensor to see whether or not neighboring
sensor channels overlap. Spectral information is mainly collected using spec-
trometers whose spectral channels are very narrow, ranging from one to a few
nanometers whereas the spectral channel of a pan-chromatic camera can be sev-
eral hundred nanometers wide, and with imaging systems, such as cameras, whose
spectral channels can be hundreds of nanometers wide. The second important sen-
sor property in spectral measurements is its radiometric resolution. Radiometric
resolution determines, in physical terms, how sensitive a sensor is to incoming ra-
diance. In practice, radiometric resolution indicates how small an intensity level
changes a sensor can detect from a recorded signal. In imaging, the viewer sees
high radiometric resolution as an overall smoothness of color changes and shades,
or the ’color depth’, in the image. Figure 1.2 illustrates the concepts of spectral
resolution and range.

Temporal resolution tells the shortest time interval after which data collection
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Figure 1.2: The concepts of spectral resolution and range where (x,y) plane de-
scribes the spatial domain i.e. image area, and A describes the spectral domain
i.e the covered wavelength range. The subfigures show the general differences
between the various types of spectral data. Each layer in the spectral domain
represents a single spectral channel or band. The thickness of the spectral lay-
ers represents the resolution of the detected channels and bands. The thin layers
represent high spectral resolution and wide layers represent low spectral resolu-
tion. The total height of the spectral channels and bands represents the wavelength
range covered by the sensor.

from the target of interest can be repeated. For example, camera systems are able
to record several images images per second whereas satellite platforms may need
to circle the Earth for weeks or months before passing over the same target area
again. However, defining the temporal resolution of measurement is not always
straightforward: the fastest LIDAR scanners can record hundreds of thousands
of laser points per second, but the collecting of a complete point cloud around a
scanner may take several minutes.

The second important characteristic that describes remote sensing data is data
coverage. It tells how extensively the data is collected in each of the four domains.
In the spatial domain, the coverage is the total area of the collected data. It can
extend from some square meters to hundreds of square kilometers depending on
the platform used. In the spectral domain, the coverage tells the total width of
the recorded spectrum, be it collected in parts or as a whole. In the radiometric
domain, the coverage defines the width between the lowest and the highest distin-
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guishable reflectance levels. An incoming signal having a reflectance below the
lower threshold remains undetected and a signal with reflectance above the higher
threshold saturates the sensor. In the time domain, the coverage defines how long
or how many times the target of interest is monitored over time.

In summary, information from the four separate domains, each having their
own resolution and coverage, need to be considered when deciding how remote
sensing data should be measured and processed for producing a complete object
model. The maximization of resolution and coverage in all of the domains is not
a practical, nor is it a feasible, solution, as it would mean that the measurement
system’s cost becomes unaffordable. Also, the amount of data processing and
storaging would likely become unmanageable in such a situation.

1.1.3 Forestry research and forest inventory using remote sensing

In scientific research, accurate information from all of the previously introduced
domains is needed in environmental monitoring, carbon sequestration, biomass
estimation, and natural habitat mapping, to name a few fields of research. Also,
information about on-going changes in growth conditions can be obtained. Non-
scientific applications requiring accurate forest information include both industrial
and non-industrial uses.

Forest industry needs remote sensing data for operational forest managing and
planning of harvest operations. Globally, forest inventories were evaluated to be
worth USD 2 billion in 2005. These inventories are being increasingly conducted
using laser scanning instead of traditional standwise-field-inventory (SWFI) meth-
ods. As an example of this, approximately 5.5 million hectares of forests in Fin-
land were scanned by different operators by the end of 2011. Area-based ap-
proach (ABA) is the most widely spread remote sensing inventory technique at
the present. It was introduced at the end of the 1990’s. ABA was first used in
estimating mean heights and volumes of trees at the forest stand level.

Improvements in remote sensing techniques have enabled data collection fo-
cusing on individual trees. Individual tree detection (ITD) requires higher point
densities than ABA, but it is estimated to bring timber assortment differentiation
to a level where accurate stem distribution can be extracted directly from the data.
In ABA, stem distributions need to be predicted, and this leads to increased in-
accuracy in estimation. Moreover, ITD provides higher level of automation than
ABA does, and thus it requires less field-based measurements. Moreover, ITD
offers improved means of detecting suppressed trees in data.

Stem distribution data are important as they characterize the number and sizes
of trees in the study area. However, these data alone are not enough for determin-
ing the tree species. If the tree species data were available, it would be possible
to use the data with stem distribution data for high precision evaluations. Evalu-
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ations are essential for enabling improved modeling. Tree species classifications
have been done using both laser scanning data and aerial imagery data, but both
of these have their limitations. Laser scanning data are limited to very narrow
wavelength band(s), and thus allow only minor additional classification capability
in cases where the tree species cannot be discerned based on their shape. Imagery
data contain information from a wider spectral coverage, but passive collection
techniques mean that they are susceptible to changes in surrounding lighting con-
ditions, the direction of lighting, and shadowing. It is possible to combine laser
scanning and spectral imagery data, and then use fused datasets to determine tree
species. The setback associated with using separate datasets is that data com-
bination is computationally heavy and still retain some of the limitations of the
individual methods.

All in all, the most optimal remote sensing data for individual tree species
classification and stem size determination can be assumed to contain a spatial
point cloud where each point carries its own, directionally corrected, spectral
data. A promising way to produce these type of data could be innovative laser
scanner systems that are capable of transmitting and detecting several different
wavelengths, or perhaps even a continuous waveband, simultaneously. However,
such systems are not available at present for operative use. This makes active,
multi-wavelength, laser scanning a highly interesting research subject.

1.2 The Focus of the Present Dissertation

The scope of the present dissertation is to study how new data collection and
combination techniques can be utilized in the classification of tree species. The
tree species classification problem is approached from the viewpoint of individual
trees. This imposes certain requirements on data resolution and data processing.
The first data requirement is that the data need to have a spatial resolution that
is high enough for determining the geometry of an individual tree. The second
requirement is that the available spatial and spectral data, when combined, should
provide enough information for differentiating tree species even within the same
tree genus.

The requirements imposed on data processing are, to begin with, that the level
of automatization should be as high as possible while retaining classification ac-
curacy. Data processing should also be capable of distinguishing the most rele-
vant features from the combined data. With efficient feature screening, the total
processing costs are significantly reduced without a loss in overall classification
accuracy. Furthermore, the data processing methods should be developed so that
they would be usable regardless of the applied data collection methodology and
timing.
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The data collection method is an important aspect as scanner systems are de-
veloping rapidly and they can be installed on an increasing number of different
platforms. This is addressed clearly in the thesis as the spatial data used in the
studies were measured by means of aerial, mobile, or terrestrial small-footprint
laser scanners. Furthermore, the spectral data were collected with an airborne
camera in one study, and with different hyperspectral sensors attached to terres-
trial or mobile platforms in the three other experiments.

1.3 The Dissertation’s Objectives

The main objective of the present dissertation is to depict the study and develop-
ment of methods needed for individual tree species classification. This classifica-
tion objective is divided into four subobjectives and each of them is investigated
in separate studies. The results obtained from the four studies are then discussed
to provide an insight for recommended practices on how to plan classification ex-
periments that use combined remote sensing data collected with airborne, mobile,
or terrestrial sensor systems. In the discussion I also proceed to outline the feature
selection and classification practices that were found to perform the best with the
studied data. Moreover, the development of future sensor systems is discussed
based on the obtained results with the aim of further improving tree species clas-
sification accuracy and data processing efficiency.

The first subobjective was to determine the possibility to use directional light-
ing and light detection data to improve tree species classification accuracy when
applying the airborne approach. The study was performed by dividing individual
tree crowns shown on airborne false-colour imagery into illuminated and shaded
parts. The data thus obtained were then used in the classification stage. The di-
vision of tree crowns was determined from a digital surface model (DSM). The
raster DSM was calculated from LiDAR data.

The subobjective in the second study was to concentrate on carrying out in-
dividual tree species classification in an outdoor setting. The study was among
the first of its kind in world at the time of its publication. It demonstrated suc-
cessfully how combination of mobile, close-to-ground, laser scanning data with
passive hyperspectral data were able to classify tree species on individual tree
level. The spectral dataset and a point cloud were collected simultaneously and
merged. Then, the classification performance of the merged dataset was studied.
Both datasets were collected with sensors attached onto a fixed platform. The
platform was mounted on an automobile. The spectral data were collected using a
passive line spectrometer and the point cloud was collected using a low-resolution
laser scanner.

The third subobjective was to simulate the use of actively scanned hyperspec-
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tral data and their performance in individual tree species classification. The study
was also one of the first utilizing this type of data fusion in individual tree species
classificaiton. The data simulation was carried out by fusing hyperspectral data
measured by means of a novel active hyperspectral laser scanner and a point cloud
collected using a terrestrial laser scanner. The experiment was carried out in labo-
ratory conditions, which allowed the minimization of external effects and precise
radiometric calibration.

The fourth subobjective was to determine whether artificial surfaces are appli-
cable as gray-scale references for remote sensing studies. It is possible to collect
spectral data with no rigorous radiometric calibration and still get relatively ac-
curate tree species classification results within one dataset measured over a short
time interval. However, it is highly unlikely that one can reach similar classi-
fication results when tree species are classified from data consisting of two or
more datasets that have been collected at different times and in different places.
This is due to significantly different directional and temporal lighting conditions
present in each case. Thus, rigorous radiometric calibration is essential if data
from two or more separately measured sites and times are to be compared together.
The radiometric calibration can be performed with transferable calibration targets
that are placed in the measurement area, but this technique is time-consuming
and it becomes inpractical with increasingly bigger measurement areas. The di-
rectional radiometric measurements used in the study were collected using the
Finnish Geodetic Institute’s Field Goniospectrometer (FIGIFIGO).

1.4 The Structure of the Thesis

The present dissertation is divided as follows: Chapter 1 presents the research
hypothesis and the objectives of the dissertation. Chapter 2 presents the most
important and the most recent literature and results related to the field of the dis-
sertation. Chapter 3 presents a summary of the data and methodology used in the
studies conducted. Chapter 4 summarizes the results obtained in Studies I-1V.
Chapter 5 discusses the findings and the importance of the results presented in
Studies I-1V. Chapter 6 consists of the summary of the dissertation and an out-
look regarding future research topics of interest.
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Chapter 2

Review

2.1 Remote Sensing Techniques Used in Forest Classifi-
cation Studies

The successful classification of different forest types and individual trees requires
that their characteristics can be mapped with sufficient accuracy. The character-
izing features can be extracted from one or several different domains that include
the spatial domain, the spectral domain, the radiometric domain, and the temporal
domain. The effectiveness of classification of a feature set depends on the number
and the separability of the selected features. Depending on the measurement setup
and the sensors, usable classification features can be generally separated from one
or two different domains at a time.

If the initially selected features fail to provide the required classification per-
formance, then one can try using additional features to achieve improvements in
results. However, if the classification task is complex, it may happen that the
classification cannot be carried out with the desired accuracy in one or two data
domains. In such cases, additional data from other domains are needed and they
need to be collected using different sensor systems. The use of data from different
domains significantly enhances feature separability. This simplifies the classifica-
tion task. However, simultaneously collected multi-sensor data are rarely avail-
able. Moreover, data combination processes are seldom straightforward, and they
require several intermediate steps before feature extraction from combined data is
possible.

In forest remote sensing, tree geometry and its other spatial features are usu-
ally extracted from point clouds. The point clouds are collected using laser scan-
ners as they provide the form of objects in three dimensions. The best way to
collect spectral features is to use multi- and hyperspectral sensors. Both spatial
and spectral features can be extracted simultaneously from traditional imagery,

11
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but the number of detectable features they can provide is limited in both domains.

The following paragraphs provide an overview of classification of forest types
and tree species, and of the data collection techniques applied in forestry research.
The presentation considers only the remote sensing techniques that were utilized
in the studies included in the thesis. Therefore, mid-to-long wavelength infrared
and microwave (RADAR) remote sensing are excluded from the technical review.
The same applies for the methodology review in section 2.2. The technique de-
scriptions are treated on a basic level as there is a lot of variability with sensor
systems. However, the working principles of the sensors are similar. The data
collection techniques used in Studies I - IV are described in more detail in each
respective study.

2.1.1 Laser scanning

Measurement systems that send coherent laser light towards a target system and
then detect the backscattered radiation to analyze target properties are called Light
Detection and Ranging scanners (LiDARSs). The first LIDAR systems were intro-
duced in the 1960’s, but their use had a relatively slow start due to lack of support-
ing instrumentation. However, a variety of laser systems is now in use in several
and diverse fields of research. In the atmospheric sciences they are applied in the
detection of aerosol size and composition, wind monitoring, gas detection, and
chemical reactions studies [3]. In topographic studies, LiDARs are used in terrain
profiling, scanning, and modeling [4]. LiDARs have also been found useful in
many specific research fields such as archaeology, agriculture, urbanization, and
fluvial studies [5—8].

The basic working principles of LiDAR systems are similar regardless of the
application. The main parts of a LiIDAR system are a transmitter for generating
the laser beam, and a detector for collecting the reflected radiance. Both the trans-
mitted beam and the reflected beam are usually enhanced by means of optics.
In most cases, both beams are directed along the same optical path to simplify
the detection geometry. The back-scattered radiation is collected by means of an
electronic detector into the system that handles data storage and possible prepro-
cessing steps.

In addition to the laser ranging unit, a LiDAR system needs also a scanning
mechanism for collecting the data from a wide area. The scanning pattern de-
pends on the design of the scanning mechanism and it can be performed by means
of several different methods. Common scanning patterns include parallel, ellipti-
cal, sinusoidal, and zig-zag [9]. As a single dataset may contain tens of millions
of points, it is of importance that the point collection is performed in an efficient
manner. Figure 2.1 illustrates the basic parts of a laser scanning system. The
illustrated system is an active hyperspectral laser scanner prototype developed
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and constructed at the Finnish Geodetic Institute (FGI) [10]. Commercial scan-
ner systems embody similar principles, but with structure and casing being more
integrated and more compact in size.

Modern LiDAR systems include also separate application-dependent instru-
mentations. For example, accurate positioning and attitude data are needed in to-
pographic studies and in mapping. These are obtained by means of GPS (Global
Positoning System) and IMU (Inertial Measurement Unit) sensors, which are es-
sential for geo-referencing.

LiDARs collect data by means of two main methods: either by sending indi-
vidual laser pulses or by sending a continuous laser beam that is phase-modulated
to allow precise ranging (Figure 2.2). With pulsed measurement, the range of the
scatterer from the scanner is calculated from the laser pulse travel time as follows:

R= %w @.1)
where R is the object distance, v is the known speed of electromagnetic radiation,
and ¢ is the total travel time of the laser pulse.

Continuously measuring laser devices determine object distances by modulat-
ing the transmitted laser beam with a signal that has a known frequency. Here, an
amplitude-modulated (AM) version is presented. When the reflected beam returns
to the detector, the distance can be calculated from the phase difference between
the transmitted and the detected laser beams:

R— %(Ml +AR) 2.2)

where A is the modulation signal wavelength (A = vT’ with 7 being the time of
a modulation period), M is the integer number of full modulation signal wave-
lengths, and A is the fractional part of the modulation signal wavelength. The
form of the A is %, where ¢ is the phase difference between the transmitted
and the returning beams. State-of-the-art scanner systems perform the laser beam
modulation with several modulation frequencies to increase their range detection
accuracy.

2.1.2 Spectral imaging

Geometric properties offer an efficient way for recognizing different object classes.
In addition to laser scanning data, geometric data can be also collected from im-
agery. This field of study is known as photogrammetry [11]. Another way to rec-
ognize objects is to extract their spectral and radiometric information contained in
images. This technique is called spectral imaging. However, the differentiation of
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Figure 2.1: The basic structure of a (hyperspectral) LiDAR system. A A 2D
scanner made up off two rotating mirrors; B A light collecting, parabolic off-
axis mirror; C A transmitted laser beam, brought along the optical fiber from a
laser source (not shown in the figure); D A laser beam splitter used to produce
trigger pulses; E A spectrograph that separates different wavelengths (not needed
in ordinary LiDAR); F Receiver electronics that record and convert incoming laser
pulses into digital form. Photo by Teemu Hakala.
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Figure 2.2: Laser scanner based range detection principles in a pulsed and in a
continuously measuring system. The upper figure represents a pulsed laser sys-
tem that detects the range to an object based on the travel time of a laser pulse.
The lower figure represents a continuously measuring laser system that determines
the range to an object from the phase difference between the transmitted and the
incoming laser beams. R is the object’s distance from the scanner, A is the wave-
length of the modulating signal, and ¢ is the phase difference between the two
laser beams.
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the spectral components from an analog film image is a difficult task. Thus, sys-
tematic and quantitative use of spectral and radiometric data in object recognition
has become more common since digital imaging systems came available.

The naming convention of spectral imagery is related to the number of de-
tectable wavelength channels, their widths, and sensitivities [2]. Monochromatic
images contain spectral information from a single narrow wavelength region. Pan-
chromatic imagery have also spectral data recorded in a single channel, but they
cover a wide wavelength area and their spectral response may not be uniform in
all parts of the spectrum. Multispectral imagery consists of several separate chan-
nels, where each channel covers a sensor-specific wavelength band. The number
of bands, their widths, and sensitivities are system-specific. Also, the wavelength
bands can be located close to each other or they can be in different parts of the
spectrum. Some overlap is also possible between multispectral channels. Hyper-
spectral imagery can detect at least some tens or more separate wavelength chan-
nels. The hyperspectral channels are usually narrow and they are located next to
each other in the spectrum with very little, if any, overlap. Also, the hyperspec-
tral channels have equal widths. Figure 1.2 illustrates the differences between the
various types of spectral imagery.

The large-scale use of spectral imagery began when the first multispectral
data-collecting satellite, LandSAT-1, was launched in 1972. It took images cov-
ering an area of 185 kilometers by 185 kilometers with a GSD of about 80 me-
ters by 80 meters [1]. Each image pixel had four spectral channels. To date,
the Landsat program has launched a total of seven satellites, and of these two
are still operating. The goal of the Landsat program is to observe and provide
data on the Earth. The Landsat data have been used in several fields of research
over the past four decades. Other satellites carrying multi- and hyperspectral sen-
sors and monitoring the Earth are the French SPOT series (Systéme Probatoire
d’Observation de la Terre), European Space Agency’s (ESA) MEdium Resolution
Imaging Spectrometer (MERIS), NASA’s Moderate-resolution Imaging Spectro-
radiometer (MODIS), Lockheed Martin’s commercial IKONOS satellite, and the
Japanese Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), to name some of them [12-16].

There are also several airborne systems that carry hyperspectral sensors. NASA
has built an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [17]. Com-
mercial hyperspectral mapping systems, such as HyMap (Integrated Spectronics
Pty Ltd., Australia) and Compact Airborne Spectrographic Imager (CASI) (Itres
Instruments, Calgary, Canada), provide data for monitoring environmental pol-
lution, agriculture and forestry, soil mapping, vegetation assessment, and water
quality [18-20]. Another commercial hyperspectral system is the Finnish AISA
(Spectral Imaging Ltd., Oulu, Finland) that has been utilized in bathymetry, water
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Figure 2.3: Directional lighting effects in practice. A patch of grass photographed
with the same camera settings and a one minute interval from three different view-
ing angles. The arrows point towards the sun. These photographs were taken on
a football field in July 2007. The lighting conditions did not change while the
photographs were taken. Photos by Juha Suomalainen.

quality studies, archaeological research, and in forestry [21,22]).

The improved instrumentation has also made portable spectroradiometers avail-
able for ground measurements. The first such commercial device was Analytical
Spectral Device’s (Boulder, Colorado, USA) Personal Spectrometer 2 that was
introduced in 1990. Since then, portable spectroradiometers have been applied
successfully in numerous field studies, e.g. in providing accurate spectral infor-
mation for air- and spaceborne system reference in the field, for validating radia-
tive transfer models, and for environmental monitoring in general [23-26].

2.1.3 Radiometric calibration
Spectral imagery

One of the main challenges in spectral imagery is the measurements’ dependency
on external lighting sources and changes in them. The causes of variance might
be environment related, such as shading, or directionality related, especially in
cases where viewing geometry is close-to horizontal. Figure 2.3 demonstrates
the variance in the detected incoming radiance, when a flat target is viewed from
different sides over a short period of time. Thus, the dependency on external
lighting sources imposes considerable limitations on data collection and requires
an extra effort in calibration. Radiometric calibration methods in spectral imagery
depend on the sensor platform: spaceborne systems can be calibrated with on-
board calibration references [27] or by using atmospheric correction, different
radiative transfer models, and field measured references [28]. Spectral imagery
collected by means of airborne systems is often calibrated using methodology
similar to that used with spaceborne collected data. However, as airborne data
usually have significantly better spatial resolution than the data collected by means



18 2 REVIEW

of spaceborne systems, it is also possible to use relatively small portable reference
targets with known reflectance responses [29,30].

There is also growing interest being shown towards building permanent test
sites that include carefully selected calibration targets for performing simulta-
neous geometric, spatial, and radiometric calibration. Honkavaara et al. have
tested the benefits of test field calibration and their results have shown that the
use of a specially-built test field is an important part of the system calibration
chain [31]. However, they emphasize that a comprehensive sensor-calibration
procedure should include laboratory calibration, test field calibration, and prod-
uct level validation [32]. Their recommendation is that at least all quantitatively
collected parameters should have test field calibration.

Reference measurements for both spaceborne and airborne radiometric cali-
bration include reference target measurements in the field. The reference data are
collected by means of portable spectrometers and spectrogoniometers [33-35].
Radiometric reference data are also collected from large natural surfaces that have
relatively good spatial uniformity and are temporally stable. Such target areas in-
clude salt flats, glacial ice, and deserts [36]. At ground level, both in the field
and in laboratory measurements, radiometric calibration is often performed using
specially made diffuse reference targets, such as Spectralon(® (Labsphere Inc,
New Hampshire, USA), that are very close to Lambertian scatterers over a wide
spectral range.

Another issue adding to the complexity of radiometric calibration is that it
needs to be repeated frequently. The reason is that lighting condition changes are
likely during measurement. Thus, novel ways to reduce the effects of lighting con-
dition changes are being studied and presented: new active spectral imaging sen-
sors have been developed. These sensor systems are able to produce a continuous
spectrum with a laser source and non-linear optics [37,38]. The reflected spectrum
can then be detected either as separate wavelengths or as a whole spectrum. Ac-
tive imaging setup offers several advantages over the conventional measurement
setup: as the transmitted spectrum and its intensity are stable and known, repeated
calibrations are not needed during measurements. Also, the transmission and the
detection geometry of an active system are similar, which simplifies the correc-
tion of directional lighting effects (see Figure 3.1). Moreover, there is hardly any
shadowing in the detection scene of active spectral imaging.

Laser scanning

The first laser scanners were built for ranging purposes. Thus, it was imperative
that the travel time of a laser pulse, or the phase change of a continuous laser
beam, could be determined as accurately as possible. However, the intensity of
backscattered laser beams varies significantly depending on the target type that
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the beams hit. This adds to the uncertainty of ranging as excessively intense re-
turns may saturate the receiver and create so-called "ghost’ points. On the other
hand, a very weak laser return does not trigger the receiver at all and such a return
signal is missed completely. To prevent errors related to laser return intensity,
most commercial LiDAR systems have built-in feedback loops that monitor laser
return intensity and adjust transmitter power accordingly to regulate laser inten-
sity within the detection limits. However, automatic intensity adjustments prevent
direct usage of radiometric data in situations where intensity correction has been
applied. This is because autocorrection algorithms are scanner-dependent and
manufacturers do not make them available [39]. Thus, range-dependent and di-
rectional intensity corrections on laser data have to be performed by conducting
separate empirical studies.

The utilization of laser scanner intensity information is important. This could
provide additional knowledge for forestry, glaciology, and urban research [40—42].
In addition, intensity correction provides valuable help for temporal laser scan-
ning studies and for local geometric matching between different scanlines [39].
Laser scanner intensity calibration has attracted increasing interest in recent years.
Several studies about laser scanner intensity calibration have been published in
laboratory and in field conditions using both airborne and terrestrial scanners
(e.g. [39,43-47]). Also, new calibration methods should be readily transferable
to multiwavelength laser systems when the new systems become more available.

2.2 Remote Sensing Research in Forestry

2.2.1 Airborne imagery

Forests have been analysed from photographs already since the 1940°’s using pho-
togrammetric methods. The aims of earlier forest research were mainly the same
as at present. The studies were conducted to provide information on forest mon-
itoring and management, forest modeling, and assessment of damage caused by
insects, fires, winds, and snow. Also, single tree properties have been studied ex-
tensively. Such properties have included, among others, tree height, crown mea-
sures, and diameter at breast height (dbh) [48]. The colour information provided
by aerial photographs has been also used in discriminating coniferous and decid-
uous trees and in tree species classification. The main disadvantage in the use
of aerial photographs is that trained professionals are needed for the work and
that visual interpretation is time-consuming and expensive [48]. Moreover, it is
common for different tree species to have similar features, either in the spectral or
spatial domain. Furthermore, there is a trade-off between the spectral and spatial
performance depending on the camera used. Thus, the most beneficial approach
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for classification purposes has often been to combine image information with data
from other sources.

Multiple channel and hyperspectral imaging have been utilized in forestry
since they became available [49, 50]. The earliest studies concentrated on land
cover analysis and change detection. Tree species classification has always been
an important research topic making significant use of the spectral data collected
over a wide spectral range [S1-55]. For example, Meyer ef al. achieved an aver-
age classification accuracy of 80% in a study where healthy and damaged spruce,
pine, fir and beech trees were classified semi-automatically using CIR images.
The imagery had resolution of 0.5 meters [54].

Spectral imagery are also used widely in research looking into vegetation
and forest canopy reflectance, and their modelling [56-58]. Spectral informa-
tion makes it also possible to map and determine both biochemical and biophys-
ical components of forests and their canopies [59, 60]. Forest fuel research re-
quires accurate spectral data to distinguish and assess the amounts of different
fuel components present in studied areas [61]. Furthermore, spectral imagery
have been utilized to in the study of large-scale forest succession [62], regrowth
rate changes [63], and phenology changes in a forest after selective cuttings [64].

2.2.2 Airborne laser scanning

The first reported forestry studies applying laser data date back to the late 1970’s
and early 1980’s. At first, the laser data were collected by means of aircraft-
mounted profilometers to create height profiles of forest stands, but the studies
were soon extended to estimation of tree heights, stem volumes, and biomass
(e.g. [65-69]). However, it took until the late 1990’s before the integration of
airborne instrumentation (ranging frequency, scanning techniques, and GPS and
IMU sensors with the required recording capabilities) had developed to a level
where small-footprint laser scanning studies became possible. *Small-footprint’
refers to laser spots that are between 0.2 — 2.0 meters in diameter [70]. Moreover,
the collection of high-quality laser scanning data requires that the intrinsic prop-
erties of the measurement system are known thoroughly. Properties such as laser
beam divergence, receiver sensitivity, laser scanner power, and total backscatter-
ing energy all affect the quality of a point cloud [65,71,72]. Also, flight altitudes
and scanning angles have to be taken into account when planning measurement
processes [73,74]. Furthermore, the type and density of scanned vegetation also
affect the ratio of recorded first and last laser returns [75]. A laser beam interacts
in several different ways when it passes within or through a tree canopy. This re-
sults in multiple returning signals or a continuous waveform for each transmitted
signal. This additional information can be utilized to improve forest parameter
extraction at both tree and stand level. The point cloud densification by utilizing
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multiple return and full-waveform data has gathered increasing interest in forestry
research. In recent years, Wagner et al. have carried out several studies to deter-
mine the most crucial factors needed in multiple return and full-waveform laser
echo detection [76-78].

At present, state-of-the-art airborne systems have point repetition frequencies
of over hundred thousand points per second at low altitudes [79]. The data are
typically processed by creating first a digital terrain model (DTM) for estimating
ground surfaces, and a digital surface model (DSM) for estimating the shapes
of above-ground objects. The surface model can be normalized by taking the
difference between DSM and DSM to form a normalized DSM (nDSM). The
nDSM is also referred as the canopy height model (CHM) when all above-ground
data come from the vegetation. The models can be calculated using either an
original point cloud or by making a height raster map [79]. With a ground model,
it is possible to derive the desired characteristics and features only from above-
ground points and use them in area-based or individual tree analysis.

Small-footprint laser data have been applied in a wide variety of forestry ap-
plications including terrain detection in forests [80,81], stand-wise and individual
tree height detection [82], tree number and volume estimations [83—85], and for-
est change detection [86, 87]. Additionally, voxelized LiDAR data have been ex-
ploited in the estimation of crown base heights of both deciduous and coniferous
trees [88].

The overall performance of ALS data has made the data a viable option for
commercial and operative forest inventories when dealing with only a few dom-
inant and commercially significant tree species. Hyyppd & Hyyppé showed that
laser scanner accuracy was higher in stand attribute retrieval than was the case
with the other tested optical remote sensing data sources [89]. In addition, both
Naesset et al. and Maltamo ef al. have found ALS data sufficient for operative
use in forestry; their summaries focused on studies performed in Nordic countries
during the 1990’s and 2000’s [72,90].

ALS has been also applied extensively in tree-species classification [40, 91—
95]. LiDAR intensity data have been exploited for this purpose because they are
free of shadowing [92,94]. Donoghue ef al. [92] used range-corrected intensity
measures to compute different height quantiles in forest stands. The quantiles
were used to quantify the volume of spruce in even-aged, mixed stands of spruce
and pine. @rka et al. [94] used structural features together with range-corrected,
first-return pulse intensity data. They achieved an overall classification accuracy
of 88% for spruce and birch. Kim ez al. [93] used temporal LiDAR intensity data
to classify tree species in both leaf-off and leaf-on conditions within the same
forest site. The test site was located in the Washington Park Arboretum, Seat-
tle, Washington, USA. Eight deciduous and seven coniferous tree species were
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included in the study. The resulting classification accuracies between deciduous
and coniferous trees were 73.1% for the leaf-on dataset, 83.4% for the leaf-off
dataset, and 90.6%, when all datasets were used.

2.2.3 Terrestrial laser scanners

Large-scale forest and ecology studies are usually performed with airborne laser
scanners. The validation of the large-scale results is done by conducting ground
measurements. The researchers collect data on the parameters describing the
health and characteristics of trees from selected test plots [96-98]. The collection
of the validation data is mainly manual work and its speed and accuracy depend
largely on the experience and skills of the people doing the work.

Terrestrial laser scanning (TLS) has, over the past decade, been shown to be
a practical technique for forest parameter retrieval. TLS provides high accuracy
spatial data that scales from a single tree to plot level. Moreover, TLS data col-
lection is more effective in terms of cost and labour than when using conventional
methods. Thus, TLS provides an effective way to measure and analyze important
forest parameters. TLS data have found use in several applications over recent
years. These applications include parameter collection for tree and stem locat-
ing, measurement of tree height and diameter, canopy structure modeling, and
estimation of the canopy gap fraction [99-108].

TLS data collection can be performed by means of a single scan or multiple
scans. These data are usually collected at plot level. Single-scan data collection
is fast both to collect and to process [100,102—104]. Furthermore, the single-scan
data processing can be readily automated. However, single-scan measurement se-
tups are highly sensitive to any occlusions present in the measurement area. This
is a clear downside as there is always some degree of occlusions in forest condi-
tions, even in sparse forests. Multiple-scan measurements provide a higher level
of detail than do single-scan measurements. They also provide a better coverage
of the scanned area. Additionally, multiple-scan measurements are less sensitive
to occlusions. The downside of multiple-scan data collection is that the collec-
tion times are significantly longer. Also, automatic data processing and analyses
are not feasible before the data from all scans have been co-registered and com-
bined [100].

2.2.4 Forestry studies with combined methodology

The simultaneous use of laser scanning data in combination with multi- or hyper-
spectral imagery has been a topic of large interest for several years. Especially,
combined airborne data have been collected for the purpose of forest assessment
and ecological studies [109—122].
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New methods have been developed in the Nordic countries to utilize com-
bined airborne data in the classification of single tree species [116, 123]. These
methods include the use of range-corrected ALS intensity, and data fusion with
aerial imagery. The methods have proved to be successful in the classification of
dominant tree species.

Korpela et al. integrated LiDAR data with aerial images and used them to
classify seedling trees in a raster cell setup with an approximate resolution of
0.5 m [116]. Conifers, deciduous broad-leaved trees, other low vegetation, and
abiotic surfaces were used as reference classes. The achieved classification accu-
racy varied among the study stands with a minimum of 61.1% and a maximum of
77.8%. The corresponding minimum and maximum accuracies changed to 61.6%
and 78.9%, when the used sample trees were limited to those in direct sunlight.
They also noted that the LiDAR intensity data were not sufficient to separate the
three main species of forest trees in Finland.

Persson et al. carried out a study where they integrated aerial color-infrared
(CIR) imagery and LiDAR data to classify trees into three classes: spruce, pine,
and deciduous [123]. The tree segmentation was done using LiDAR data. Then,
the tree segments were mapped onto the corresponding aerial image. The tree
species classification was done using 10% of the brightest pixels of each tree
crown. Each chosen pixel was represented by two angle values, which were cal-
culated from the green, red, and infrared components of the pixel. A sample tree
was represented by the mean of the pixel angle values within the tree segment.
Spectral-band ratio filtering was suggested as a means of reducing the shadowing
effects. They reported an overall classification accuracy of 90% for the training
set. A spectral rationing algorithm and the formation of a hybrid color composite
image has been also used in other studies to reduce shadow effects, e.g. Bork and
Su[l11].

The number of dominant tree species is small in the Nordic countries. Also,
there is not as much variation in the canopy structure as there is in more temper-
ate regions. The task of classifying dominant tree species and vegetation types
becomes increasingly difficult when both the species number and tree density in-
crease. However, an approach that first separates tree canopies from the LiDAR
data and then classifies them based on spectral information has been shown to
work in more temperate regions. Waser et al. used this approach to classify
five tree species from aerial images taken with ADS40 and RS30 digital cam-
eras [122]. Their training set consisted of color-infrared (CIR) images. Their
approach resulted in an overall classification accuracy of 86%.

Heinzel et al. also delineated trees from a LiDAR-derived digital surface
model (DSM) [124]. Then, they made a color-space transformation to the histo-
gram-linearized CIR true orthophotos. The original CIR color channels were
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transformed into hue (H), saturation (S), and intensity (1) channels. Then, a poly-
gon of a delineated tree was fitted to the spectral data. Shaded areas with very low
intensity values were removed. The classification was carried out in two steps:
firstly using the hue channel histogram and secondly using the NIR band. The
overall classification accuracy for the tree classes of mixed oaks and hornbeams,
beeches, and coniferous trees was 84%.

Dalponte et al. tested combined hyperspectral imagery and multiple-return
ALS data to classify 23 land classes [112]. They obtained class-wise accuracies
of over 85% for the dominant classes.

There is an increasing need to automatically obtain tree data on trees and
forests in urban areas. ALS methods have been already developed for this pur-
pose [125,126]. An alternative way to collect tree data in urban environments is
to use Mobile Laser Scanner (MLS) systems, whose number has started signifi-
cantly to increase during the past few years. MLS systems usually include one
or more cameras and/or spectrometers in addition to one or more laser scanners.
This allows simultaneous collection of both high-density spatial and spectral data.
Combined MLS data are already being used in creating photorealistic models of
urban and suburban areas of cities [127, 128]. Moreover, the first MLS studies fo-
cusing on forestry studies in urban environments have been published [129, 130].
However, the spectral data collected using MLS systems have not yet been fully
utilized in analytic classification of tree species. One limiting factor is that of
horizontal viewing angles, which change often and rapidly when an MLS system
moves in an urban environment. This presents a significant challenge for proper
radiometry calibration as the platform’s lighting status changes constantly.

All in all, several different approaches exist in the endeavor to extract impor-
tant forestry parameters with a high level of accuracy. However, these approaches
are usually associated with specifically collected datasets. Therefore, methods
characterized by high performance do not succeed with the same high level of
accuracy when they are applied to other data. This has been clearly presented in a
EuroSDR tree extraction project, where different extraction methods were tested
on freely available datasets [131]. The project took place in 2008 and twelve dif-
ferent research groups participated in it. Tree species were classified by only two
participants. Their tree species classification results were 78% correct when using
airborne photographs (57% of the trees were classified) and 54% correct when
using laser data (64% of the trees were classified). These results are of interest
because the classification percentages demostrated significant variation between
the obtained results and earlier results. Articles presenting classification methods
had shown classification accuracies of over 80%. Kaartinen et al. assumed that
the earlier results indicating high performance had been obtained through hav-
ing controlled conditions. The EuroSDR study showed that the tree classification
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accuracies published in the joint test did not match the results obtained earlier.
The conclusions of the EuroSDR study were that a) there is a need to develop
new methods that would work in non-optimal forest conditions and that b) more
method comparison studies should be carried out.
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Chapter 3

Materials and Methods

The chapter is divided in three sections. The first section gives an overview of
the data collected and analysed in studies I - IV. The second section outlines
the concept of reflectance and its physical background, which were needed in the
analysis of study IV. The final section gives an overview of the working principles
of the two classification methods used in tree species classification in Studies I
- III. The final section also describes shortly the type of classification features
utilized in the studies.

3.1 Data Used in Different Studies

The data collected in Studies 1, 11, and 111 resemble each other in that they were
collected for the purpose of tree species classification. The data contain both
spatial laser point data and multi- or hyperspectral intensity data. Laser scanning
data and intensity data were combined in all three studies to form merged datasets
for the purpose of classification. Apart from these, the measurement techniques
used in collecting the data were different.

In Study L, airborne data were collected using an Optech 3100 ATLM airborne
laser scanner system (Optech Inc, Vaughan, Canada) and InterGraph’s Digital
Mapping Camera (Intergraph Corporation, Huntsville, USA). The dataset con-
sisted of 295 tree specimens that represented three tree species. The tree speci-
mens were manually delineated from data.

In Study 11, the measurements were perfomed using an FGI-built mobile map-
ping system, Sensei [132]. The Sensei system carries an Ibeo Lux laser scanner
(Ibeo Automotive Systems Gmbh, Germany) and a Specim V10H line spectrom-
eter (Spectral Imaging Ltd, Finland). The combined dataset consisted of the total
of 168 individual tree specimens representing over 20 different species.

In Study III, laser scanning data were collected using an FARO Photon”" 80
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Table 3.1: The laser scanners used in the Studies I-111 to produce and collect laser
point clouds of the studied objects.

| Study | Sensor | Type | Point density (n/m?) | Date |
1 ALTM 3100 ALS 9-12 July 2005
II | FARO Photon™ 80 | TLS 103 Aug 2009
0] Ibeo Lux MLS 10°-10° Sep 2010

terrestrial laser scanner (FARO, Lake Mary, USA). Hyperspectral laser scanning
data were collected with a FGI-built measurement system [133]. The system used
a Koheras SuperK laser source (NKT Photonics, Birkerad, Denmark) to produce
a hyperspectral laser beam which was detected using an Avantes AvaTech-3648
spectrometer (Avantes Inc, Broomfield, USA). The combined dataset consisted of
24 tree specimens of three tree species.

The data used in Study IV contained only hyperspectral information and they
were measured using a Fieldspec Pro spectrometer (Analytical System Devices,
Boulder, USA). The dataset consisted of nine asphalt targets and two control tar-
gets, beach sand and a concrete slab.

The details of the laser data used in Studies I—I1I are given in Table 3.1, and
the details of the reflectance and intensity data used in all of the studies are given
in Table 3.2.

Data processing was carried out in all four studies with different versions of
the Matlab computational program (Mathworks, Natick, USA).

3.2 Reflectance

The anisotropic reflection properties of diffusely reflecting surfaces can be given
using the Bidirectional Reflectance Distribution Function (BRDF), which is de-
fined as the ratio of the reflected radiance L(6y, ¢y, 0, @) to the incident unidirec-
tional irradiance E(6y, @) as [134-136]

dL(6y,¢0,0,¢)
dEo(60, o)

where the angles are defined in Figure 3.1. The BRDF is normally a function of
four angular parameters, but the azimuth dependency can be reduced to only one
angle (¢) if the target is assumed to be symmetrical with respect to the principal
plane. In that case, it is enough to measure only the difference between the az-
imuths. This assumption holds well for flat and almost isotropic surfaces, such
as asphalts. A related quantity, the bidirectional reflection factor (BRF) can be

1(6,60,9,90) = (3.1
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Table 3.2: The spectrometers used in all of the studies to collect the spectral in-
fromation. The spectral resolution is reported as FWHM in nanometers. * The
wavelength range marks the range used in the studies, not the full range of the
spectrometers. ** The DMC is an airborne camera system and, contrary to the
other spectrometers, its channel-wise spectral resolution cannot be reported.

Study Sensor Light Wavelength Spectral Date
source | range® (nm) resolution
| DMC Sun 400 - 850 ok Sep 2005
11 AvaSpec-3648 | Koheras | 500 -900 5 Aug 2009
SuperK
11 Specim V10H Sun 397 -1086 8.5 Sep 2010
5(<985nm) | May, Jul 2005
v Fieldspec Pro Sun 400-2300 | 10(>985nm) | Jun-Jul 2006
May, Aug 2007

defined as the ratio of the reflected light to that reflected from an ideal Lambertian
surface, for a unidirectional illumination source. BRF differs from BRDF by a
factor of 1/x.

For most practical purposes, sunlight can be considered unidirectional, but
there is also scattered radiation coming from clouds, the environment and the blue
sky. Thus, one cannot normally measure BRF directly in sunlight, but must extract
it instead from the Hemispherical-Directional Reflectance Factor (HDRF). HDRF
can be expressed conveniently as a superposition of a direct light source (Sun)
and a diffuse component (sky irradiance). This assumption allows us to express
HDRF as

RHPRF (g ) — L(6, (P)’ (3.2)
Lref
where L and L, are the radiances of light that has been scattered from the target
surface and from the Lambertian reference surface. The reflected radiance can be
given by

21 /2
L(6,0) /0 ; R(6,60,9,90){Laig(600,P0)

+  Lo(60, o)} cos 6y dBod o (3.3)
Laigr + RBRDF Ey
RHDRF(O, (p) Lref,

where Ly and L are diffuse and direct parts of incident radiance.
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Light source 1

Sensor

Figure 3.1: Measurement geometry of BRF where ¢ and ¢ are the azimuth angles
of incoming and reflected light, and 6 and 6 are the respective zenith angles.

HDREF is both dependent on the scattering properties of the surface and the dis-
tribution of the illumination. HDRF can be reverted back into BRF if the diffuse
light source contribution can be eliminated using a suitable atmospheric correc-
tion [137, 138].

The following equation can be used to retrieve the HDRFs of measured targets
for a single measurement point:

prove _ L= Lray p (3.4)
Lref - Lref,diff

where L7 is the radiance reflected from measured target. The term L7 4y corre-
sponds to the radiance measured from a shadowed target. It is used to eliminate
the diffuse background. Terms with subindices ref or refdiff are radiances measured
for the white reference panel used. R, is the table reflectance factor of the ref-
erence panel in a similar measurement geometry. All terms, excluding Lz, are
interpolated to a given measurement time.

3.3 Classification Methods Used in Data Analysis

The performance of the data selection and featuring methods presented in Stud-
ies I, I, and III were tested by classifying a varying number of individual tree
specimens. Two different types of classification were used: Linear Discrimant
Analysis (LDA) and Support Vector Machine (SVM). These two types of clas-
sifiers were selected as their theory and performance are well-known and they
both have a large set of tools readily available for tackling different classification
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problems on several platforms. This facilitates the comparison of different feature
extraction methods. Figure 3.2 illustrates qualitatively the working principles of
the two classifiers.

The classifcation features applied in tree species analysis represented either
structural or spectral properties of trees. The structural features were calculated
from point cloud height statistics. Common structural features included height
quantiles from the tree base and point fractions within a specific height interval.
The spectral features were normalized spectral mean values taken over a whole
tree (Studies I-III) or ratios calculated from or between different spectral values
measured over tree canopies (Study I). Detailed classification feature descriptions
are given in each study.

3.3.1 Linear Discriminant Analysis

Linear Discriminant Analysis aims at reducing the dimensionality of the studied
feature space while retaining the class discriminating information [139]. Class
discrimination is achieved by finding a feature-space matrix W that causes maxi-
mum separation of the classes in the feature space. The optimal class-separating
feature-space vector is defined by maximizing the criterion function

wis,w
J (W) i ’

WS, W
where S, 1s a between-class scatter matrix and S,, i1s a so-called within-class scat-

ter matrix. The between-class scatter matrix, Sp, describes the variance of class
means as

3.5)

Sp= 2 (wj— ) (w;— )", (3.6)

where u is the mean of all classes, u; is the mean of the class j, and c is the
number of classes. Term 7" describes the vector transpose. The another scatter
matrix, S,, describes the squared sum of the differences of class-wise means in the
transformed feature space and it is defined as

c N;

= > > —w) (X — )T, (3.7)

j=li=1

<

where X; is the ith sample of class j and and N; is the number of samples in class
Jj. Other variables are the same as in (3.6).

It can be shown that the maximum classwise separation is achieved when the
solution to (3.5) is W = S, ! Sp. In the solution, each column of ; corresponds to
an eigenvector of S, ' Sp.
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3.3.2 Support Vector Machines

Support Vector Machines are distribution-free classifiers, which were originally
developed for dealing with binary classification problems [140, 141]. The binary
limitation has since been circumvented, thus allowing multiclass problem han-
dling. SVMs endeavor to separate two different classes from each other by fitting
a hyperplane between them in a feature space that has a higher dimension than the
original data. The class membership of a sample can be calculated from the sign
of a discrimination function, whose form in a nonlinear case is

S(x) =Y, 0iyiK(x;,%) + b, (3.8)
=
where f(x) is the discrimination function depicting the hyperplane, ¢; are non-
zero Lagrange multipliers used in cost function minimization, y; are target values,
x; is the d-dimensional feature space, b is the bias, and the K(x;,x) is a chosen
high dimensional kernel.
The optimal hyperplane is found by minimizing a cost function that maxi-
mizes the margin between the different classes with minimal fitting error. These
criteria can be written as

N N N
.. 1
maximize: Z o= Z Z o0y K (Xi,X;)
i=1 i=1j=1 (3‘9)

N
subject to: 2 ayi=0and 0 < oy < C,i1=1,2,....N,
i=1

where C is the regulation parameter assigned for error control.

The classification procedure was chosen to follow the one suggested in the
LIBSVM documentation [142]: All features were first scaled between —1 and
1 to avoid possible numerical problems and to set features on equal level with
others. The kernel was a Radial Basis Function (RBF):

Krar (x;,x) = Ce "% XI 1y 0, (3.10)

where C is the previously mentioned regulation parameter and the y describes the
width of the kernel. The kernel parameters were optimized for the dataset before
doing the actual classification. The parameter optimization was performed by
doing several cross-validations for the data while changing the parameter values
by several orders of magnitude.
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Figure 3.2: A qualitative figure representing the basic principle of the two classifi-
cation techniques implemented in the present dissertation. 7op A synthetic dataset
consisting of objects that belong to two separate classes and are presented in a
two-dimensional feature space. Lower left An LDA classifier endeavors to find a
feature-space vector that maximizes the sample discrimination within the dataset
when the samples are projected on the vector. Lower right An SVM classifier
endeavors to fit an optimal separating hyperplane between the two classes. This
is achieved by minimizing the cost function, whose size depends on the margin
width (dashed lines) and the total error.
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Chapter 4

Results

4.1 Study I: The use of pixel-wise illumination status in
tree species classification from aerial imagery and laser
scanning data.

The goal in Study I was to classify individual tree species representing three com-
mon Nordic tree genera, namely, Scots pine (Pinus sylvestris), Silver birch (Be-
tula pendula), and Norway spruce (Picea abies). The tree species classification
was done based on aerial imagery. The lighting status of individual tree pixels
was first determined from a LiDAR-derived DSM. A new set of spectral features
were derived from the pixel-wise lighting status to improve individual tree species
classification. The LiDAR data and imagery were collected during two separate
flights in the summer of 2005.

The reasoning behind using the pixel-wise lighting status was based on the
idea that usually a significant amount of spectral data needs to be filtered out.
Filtering is needed because of unstable illumination conditions and because there
is always internal and external shading in canopies when the data are collected
using passive sensors. Also, light penetration in the canopy structures of different
tree species is known to have species-specific characteristics [143]. Thus, the
use of the pixel-wise lighting status was assumed to provide additional means of
distinguishing the tree species from one another.

The tree species classification was carried out by first delineating individual
trees from a rasterized DSM. The delineation was performed manually. Then,
both the visibility and the illumination statuses of each selected DSM raster cell
were inspected. The visibility inspection was carried out by drawing a line from
a raster cell towards the airplane location to check the visibility of the cell to the
camera. If the line of visibility to the height raster cell was blocked, then the
height raster cell closest to the camera along the line was selected instead and a
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corresponding height value was used for it. The illumination statuses of the se-
lected raster cells were determined similarly after a visibility check. This time
the line of visibility was drawn towards the sun and if another height raster cell
was blocking the line then the inspected raster cell was labeled to be in the shade.
Next, the color values of the selected raster cells were determined from aerial
imagery using collinearity equations. Finally, the classification feature sets were
formed by averaging over the different color channels while taking the illumina-
tion status into consideration. Figure 4.1 illustrates the height raster visibility and
the shading status tests.

The species of 295 individual trees representing three genera and three species
were classified using discriminant analysis. Both linear and quadratic cases were
tested for the best results. The classifications were carried out using three different
classification feature sets. The first classification feature set was formed from the
unfiltered color pixels of each tree. The second classification feature set had been
introduced by Persson et al. [123]. It was formed of heavily filtered color pixels
by calculating color space feature vectors. The third classification feature set was
formed using the described shading status determination. Illuminated and shaded
pixels of the tree canopies were separated before using their color channel values
and color channel intensity ratios in the classification.

The results showed that the new classification feature set recognized both
pines and spruces with the best accuracy. The accuracies were 78.8% for pine
and 55.6% for spruce. The proposed classification feature set also had the highest
overall classification accuracy of 70.8%. The reference classification feature set
recognized birches with the best classification accuracy of 81.5%, but it did not
perform with same accuracy for the conifers, pine and spruce (45.5% and 48.9%,
respectively). The low conifer recognition rate dropped the overall classification
accuracy of the reference parameter set down to 64.4% for the used data. Species-
wise tree recognition with unfiltered aerial image data yielded results similar to
the proposed new classification feature set, but it performed with all-round lower
accuracy.

The species-wise discrimination performance varied between the different
classification feature sets. This knowledge was used to further improve the overall
classification accuracy within the entire dataset. The combined tree species classi-
cation was performed by first classifying all birches with the refence classification
features. Conifers were classified with the new classification features. Individual
tree species was determined based on the posterior probabilities of the two clas-
sifications. The combined classification scheme provided a clear improvement in
the overall classification accuracy and it rose to 74.5%.

The study showed one possibility to use spatial information derived from Li-
DAR data in enhancing classification results based on otherwise pure multispec-
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Figure 4.1: Visibility and illumination status inspections of a color pixel. Leff)
The visibility of a height raster cell (x¢) is tested by drawing a line from the cell
to the scanner. If the line of visibility is blocked by higher raster cells, then the
cell location was moved along the line to the closest visible cell (x,,). Right)
Illumination status inspection. A line of visibility is drawn towards the sun to
determine the lighting status of a visible cell. If the line is blocked, the cell is
considered to be shaded.

tral data. The study also raised a new question: How to make further use of Li-
DAR point data instead of using them only for creating a rasterized height model
of the study area? If the point cloud information could be used directly, then one
intermediate processing step could be omitted. Furthermore, this would remove
one source of processing-related errors from the whole process.

4.2 Study II: Tree classification with fused mobile laser
scanning and hyperspectral data

The main objective of Study II was to test the tree species classification accuracy
of a low-cost mobile mapping system. Simultaneously measured hyperspectral
line spectrometer data and laser scanning data were co-registered and merged.
Then, the performance of the co-registered data was tested in tree species classi-
fication. Study II was among the first of its kind reported in the field of vehicle-
based mobile laser scanning. The number of classification features was limited.
Also, the classification performance of two different kinds of classifiers, a linear
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Figure 4.2: The data fusion process for a single tree specimen in an MLS study.
Left) A single tree specimen in the original laser point cloud. Middle) The manu-
ally determined point cloud of the specimen. Right) The specimen after the data
fusion process. The spectral channel values have been mapped at each individ-
ual laser point so that they each contain an individual spectrum with 123 channel
values.

discriminant analyser (LDA) and a support vector machine (SVM), were tested to
determine the effects of data and classifier selection on the classification results.
Furthermore, different classification feature selection methods were tested to find
out their effect on the results.

The study took place in an experimental garden which contains more than 200
tree and shrub specimens comprising over 20 different species. The data were
collected in September 2010 using the Finnish Geodetic Institute’s Sensei system
[132]. The Sensei system carries a laser scanner and a line spectrometer that
are programmed to take measurements simultaneously for data integration. The
dataset consisted of five million laser points and close to 10,000 line spectra that
covered a wavelength range of 397 nm to 1085 nm. A dataset of 168 individual
tree and shrub specimens were manually determined from the data. The number
of laser points for a single specimen varied from several hundreds to over ten
thousand. The laser point data of the determined trees were matched with the
hyperspectral data to form a fused dataset. This data matching was based on the
IMU information saved during the measurement. An illustration of the data fusion
process is given in Figure 4.2.

All of the determined tree and shrub specimens were used to separate conif-
erous and deciduous trees. Also, a subset of 133 trees and shrubs representing 10
different species were formed for species classification. The tree species classi-
fication subset was selected so that there were at least five specimens of each of
the selected species. The specimens were classified with different classification
feature setups: firstly, with single and paired spatial parameters derived from the
determined laser point clouds; secondly, with spectral features averaged over the
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color data of each determined specimen; and thirdly, with the both types of data
combined into feature quadruples.

A total of 34 structural features were calculated from the point clouds of each
specimen. Also, the spectra measured from each specimen were divided into 123
averaged reflectance values that were used as hyperspectral classification features
in the classification. The maximum number of the classification features in one
classification was limited to four in the study. This limitation was imposed in or-
der to reduce the processing complexity that increases with increasing number of
classification features and their possible combinations. The classifications were
carried out as leave-one-out cross validations in which each tested sample spec-
imen was classified based on the teaching results acquired from the rest of the
data.

The best classification results were obtained with the tested feature quadruples
consisting of two spatial and two spectral features. The classification accuracies
were 83.5% for tree species classification and 95.8% for coniferous and decidu-
ous tree separation. The corresponding results for paired structural features were
65.4% and 90.5%, and for hyperspectral value pairs 62.4% and 90.5%. The wave-
lengths in the paired case were located on both sides of the vegetation infrared
brightening located around 700 nm being located at 489 nm and 781 nm. The best
single wavelength was located clearly in the infrared part of the spectrum, at 954
nm. Wavelengths from the same spectral area (930 nm - 1000 nm) performed also
the best in discriminating coniferous and deciduous trees. The best-performing
spatial features described the lower parts of the scanned trees. They represented
the relative point number of over 40% of the normalized tree height, the relative
point number of below 33% of the normalized tree height, and of the 20% height
quantile.

The best overall classification results were obtained with the SVM classifier.
An LDA classifier was also tested as a comparison. The tests between the SVM
and the LDA classifier showed that the SVM performed systematically better than
the LDA classifier. However, the difference between the two classifiers was lim-
ited to a few percentage points when both structural and spectral features were
used together. The difference in overall classification accuracy between the classi-
fiers grew significantly when only structural or spectral features were used. Thus,
the comparison result implied that the use of the combined feature set would pro-
vide better prediction power over features derived using a single sensor regardless
of the type of classifier used.

Furthermore, the effect of classification feature selection method was tested.
The results were obtained by testing systematically all single features and all
paired feature combinations. Then approximately 10% of the best-performing
feature pairs were selected to form feature quadruples. Systematic feature testing
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finds the best available feature combination, but this is computationally demand-
ing and the number of tested combinations grows in a factorial fashion. Thus, the
computationally less intensive feature screening was tested in addition to find out
if results of comparable accuracy could be obtained. The screening method was
feature forward-selection and it was used to create feature quadruples with vary-
ing selection orders. The best overall classification result obtained with forward-
selected feature quadruples was 79.7% which was a few percentage points less
than the best overall classification result. Therefore, the result implied that it
could be computationally more cost-efficient to screen the classification features
with a (modified) forward-selection step in future studies.

The conclusion drawn from this study was that combined spatial and spectral
data had significantly higher classification accuracies than single-sensor data. In
addition, it was shown that the combined data could be collected with a low-cost
scanner system and that the total number of classification features could be limited
to only a few. However, further improvement of results and their explanatory
power require additional study where the focus should be on data collection and
processing, and on calibration of directional illumination effects.

4.3 Study III: Tree species classification from fused ac-
tive hyperspectral reflectance and LiDAR measure-
ments

Study 111 tested the possibility of using combined single-wavelength and actively-
scanned hyperspectral data in combination in tree species classification. The study
had two objectives: firstly, to show that a combination of laser scanning data and
actively-measured hyperspectral data can produce an accurate overall tree species
classification; and secondly, to show that good results could be achievable with a
small number of classification features. The hyperspectral data were collected us-
ing a prototype system constructed at the Finnish Geodetic Institute. The system
is capable of sending a hyperspectral laser pulses within the wavelength range
of 500 nm and 2400 nm [133]. The wavelength range used in the experiment
was limited to 500 nm and 900 nm because of the detector efficiency. A com-
mercial LiDAR scanner, FARO Photon’*, was used to measure the point cloud
data as the hyperspectral laser system had no ranging capability. The data were
collected from the same spot with both scanners and combined to form a fused
hyperspectral point cloud dataset. Hyperspectral point clouds of the total of 24
tree specimens were measured for the purpose of classification. The test trees
were young individuals of three common Nordic tree genera and species, namely
Silver birch (Betula pendula), Scots pine (Pinus sylvestris), and Norway spruce
(Picea abies). Figure 4.3 illustrates individuals of each species.



4.4 Study 1V: The possibility to use asphalt surfaces as calibration targets in
reflectance measurements 41

The tree species classification was performed using a support vector machine
(SVM) as a classifier. The classificaions were carried out as leave-one-out classi-
fications in which each test specimen is classified based on the teaching result ob-
tained from the rest of the data. The point cloud shape of each tree specimen was
used to derive 40 different shape-based classification features. The hyperspectral
classification features were calculated as averages of 401 wavelength channels
that had first been filtered to remove the contributions of dark background and the
bright reference target. The tree species classification was performed three times:
first with the single and paired shape-based features, then with the single and
paired reflectance values, and finally with feature quadruples consisting of two
shape features and two reflectance values. All single features and feature pairs
were tested systematically during the classification. The feature sets with feature
quadruples were formed by pairing shape-derived and hyperspectral feature pairs
with over 85% classification accuracies. A screening was performed to reduce the
total number of the feature quadruples tests.

The results of the experiment were as follows: the best species-wise classifica-
tion results with shape-based features were 83.3% for a single feature and 95.8%
for the best feature pairs. The corresponding results for the reflectance values and
their pairs were over 80% for the best single reflectance value and over 90% for
the best reflectance value pairs. The best combined feature quadruples were ca-
pable of classifying all tree specimens. Also, 67.3% of all tested 32,760 feature
quadruples classified the tree specimens with an accuracy of over 90%. In gen-
eral, the best-performing shape-based features were found to describe the top and
the middle sections of a tree specimen. The best reflectance values were usually
located in the wavelength bands between 530 nm and 620 nm, and between 660
nm and 720 nm.

Study 111 showed that active hyperspectral laser data combined with TLS data
can be utilized in enabling accurate object classification. Moreover, then the clas-
sification could be carried out with only a few classification features. This means
that the measurement equipment can be developed to detect only specific spatial
characteristics and wavelengths to make data collection and processing efficient.
The data were collected in the study with two different sensors. Thus, the next
step in development would be to develop an integrated system that is capable of
collecting multispectral range data [10].

4.4 Study IV: The possibility to use asphalt surfaces as
calibration targets in reflectance measurements

The objective in Study IV was to examine if asphalt surfaces of different ages and
wear levels could be considered as gray scale calibration targets in aerial imaging.



42 4 RESULTS

The possibility to use asphalt surfaces as gray scale calibration targets supports the
radiometric calibration process by making it more straightforward. There would
be no need to bring external calibration targets into the target area.

For an asphalt surface to be suitable for aerial calibration requires that its
directional reflectance properties should be close to isotropic. This suitability
was tested by measuring the bidirectional reflectance factor (BRF) of nine asphalt
samples. The asphalt samples were selected so that their ages and wear levels
varied from recently laid surfaces to ones that were several years old and had
lost most their binding material. Two control targets, a concrete slab and a sandy
surface sample, were measured for comparison.

The measurements were carried out using Finnish Geodetic Institute’s Field
Goniospectrometer (FIGIFIGO) [35]. FIGIFIGO is capable of measuring the BRF
covering a wavelength range of 350 nm to 2500 nm from the hemisphere sur-
rounding a target of interest.

The measurements showed that the aging and wearing of asphalt surfaces
causes their directional reflectance to brighten up as the angle of the observation
increases. Especially the direct backscatter direction was significantly brightened
up. On the other hand, freshly-laid asphalt surfaces were observed to scatter light
efficiently in the front direction while reflections to their sides and back remained
negligible. Overall, the conclusion drawn from the results was that the reflective
properties of the asphalt surfaces were not stable enough to be used directly as
quantitative gray scale calibration targets for aerial images.

However, the results also showed that if the observation angle to the surface
was below 20 degrees, then the reflectance value changes stayed within a few per-
centage points of the measured nadir reflectance. This minor change would allow
using asphalt surfaces in tentative calibrations or in applications where greater
radiometric tolerances are acceptable.

The most pronounced directional reflectance effects were observed either in
the direct back and front directions in all of the studied cases. This result can be
used when planning new airborne campaigns as selecting the flight lines parallel
to the principal plane of illumination would minimize the reflectance brightening
sideways.
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Birch Pine Spruce

Hyper-
spectral

Figure 4.3: Upper row) LiDAR intensity of the examined tree species. Lower row)
Actively scanned hyperspectral images of the examined tree species. The white
dots and the large rectangle are the reference targets used in data registration and
calibration.
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Chapter 5

Discussion

5.1 The Main Goal of the Dissertation and the Results

The main goal of this dissertation was to study and develop new methods for in-
dividual tree species classification. The research and analysis efforts focused on
using combined spectral and point cloud data. The data collection was performed
using different measurement systems and with different collection geometries.
Spectral data were collected using both active and passive sensors. In two of the
studies, namely in Study II and in Study III, data were collected with measure-
ment systems that are pioneering ones in the field of forestry.

This dissertation focuses on two main results.

The first result is that the use of actively-collected multi- and hyperspectral
laser data has a significant potential for improving the outcomes of tree species
classification studies at the individual tree level. A combination of spectral and
spatial data yielded the best classification results in all three classification experi-
ments. From the technical point of view, active spectral scanning eliminates most
of the dependencies on the external lighting conditions. Thus, radiometric cali-
bration becomes more realizable. Another equally important aspect in a system
that integrates the collection of spectral and spatial data is that there is no need to
combine datasets from separate sensors. Data combination is a process that often
requires considerable amount of time and resources.

Moreover, data combination processes have their limitations, which further
limit their usability. An EuroSDR registration quality report presents a compre-
hensive review of the performance of different registration methods between Li-
DAR data and imagery [144]. The registration performances of fourteen different
registration methods were tested in the report. The data were collected in a built-
up environment. The report showed that methods utilising 2D- or 3D-feature
extraction from imagery resulted in planimetric errors. The errors were of similar
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size to those obtained from a registered 3D point cloud. The report also states
that the level of automation had no significant effect on registration quality, which
depended more on the selected implementation method and tie-point types.

The second result is that overall tree species classification accuracies of over
80% can be achieved. Moreover, relatively few classification features are required
when the features are selected from both spectral and spatial domains. Similar re-
sults were obtained in two experiments where the data were collected either fully
(Study II) or partly (Study III) using experimental equipment. This implies that it
is possible to classify tree species with over 80% overall classification percentage
even when the available data resolution is not at the level of specialized state-
of-the-art sensors. Thus, the result further promotes the usability aspect of an
integrated, multiple-channel, active scanner system. However, the results have
their limitations due to new study concepts and instrumentation. The dataset sizes
were limited from the statistical point of view in both studies. Also, the classifica-
tion approach, one-against-all, is computationally demanding and susceptible to
overfitting. Therefore, the results and their limitations need to be studied further
before making any far-reaching conclusions about general study cases or opera-
tional use.

In addition to the above two main results, the experiments yielded the follow-
ing findings:

The effect of classification feature selection on the obtained classification re-
sults was tested extensively in Study II. The best results were obtained by testing
the feature quadruples formed from the best-performing feature pairs of 123 spec-
tral features and of 34 spatial features. However, the straight-forward selection of
the classification features were reported to produce the close-to-best classification
accuracy. The result adds to the applicability of combined data as it implies that
sufficient classification accuracy can be obtained efficiently when using large fea-
ture sets. Alternatively, it should also be possible to build measurement systems
for specific operational purposes when a suitable feature set is already known.
However, proper validation routines need to be planned and tested before an op-
erative level can be reached.

Spatial classification features were found to give better classification perfor-
mance than spectral classification features when the classification features were
selected from one domain. The main reason for this was in the passive collec-
tion of spectral data in outdoor studies. Passive data collection added significant
variance in the data as directional lighting effects and shading from surroundings
could not be fully corrected with radiometric calibration. However, in Study I1I,
which was conducted in laboratory conditions, the classification performance of
actively-collected spectral features was almost on par with the spatial features.
The result shows effectively how external conditions have a major impact on pas-
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sively collected data and why vicarious radiometric calibration is of such great
importance. But in practice, performance of proper calibration has its difficulties
as Studies II and IV show: close-to-ground measurements with a large horizontal
viewing component are prone to the effects of directional lighting and shading if
the measurement system does not carry an active light source of its own.

5.2 Comparison with Other Studies Using Combined Laser
Scanning and Spectral Image Data in Forestry

Combined spectral and spatial data for remote sensing and forestry research have
been studied extensively over the past two decades. Comprehensive reviews of
more recent studies have been written by Koch and by Wang et al. [145, 146].
Most of the earlier studies were performed using airborne equipment mounted on
airplanes or on helicopters. Contrary to this, three out of the four studies presented
in this dissertation were carried out at ground level, which meant using completely
different, horizontal, data collection geometry. Moreover, the classification data
in two of the studies were collected using novel sensor systems. These aspects
make direct result comparisons between different studies difficult.

Difficulties in direct result comparisons between different classification meth-
ods are a more general issue. Results are usually reported for specific data, whose
collection technique, time of collection, density, and resolution all differ from
each other. Moreover, the number and types of classified targets are also differ-
ent and classifications are performed with various algorithms. In addition, there
are very few comparison studies where the same data have been analyzed using
different methods.

An EuroSDR forestry study for common forestry parameter extraction by
Kaartinen and Hyyppa was one of the comparison studies [131]. The study showed
that there was significant variance in the performance of twelve tested extraction
algorithms. One of the main conclusions of the study was that the previous perfor-
mance of a forest parameter extraction algorithm in its development environment
cannot be taken directly as a reference when the algorithm is applied to a different
dataset.

With the previous reasoning in mind, it is not feasible to make a quantitative
comparison of study results obtained in Studies I - 111 with other classification
studies. However, the results can be assessed on a qualitative level. Study I,
whose data were collected with airborne sensors, utilized LiDAR-derived DSM
to separate illuminated and shaded tree crown parts and to use the spectra of the
separate sides for tree species classification. The best overall classification accu-
racy was obtained with combined data and it was 74.5% for 295 individual trees
representing three Nordic tree genera and species. The result is in line with the
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results of other studies using aerial imagery and/or LiDAR data. Korpela et al. re-
ported classification accuracies of 61.1% to 78.9% at stand-level in data collected
from Nordic forests [116]. They classified four forest classes using at maximum
of eight features at a time. They used combined aerial imagery and LiDAR data
in the classification. In their other study [147], they applied anisotropic properties
of tree canopies and were able to classify three tree species with a classification
accuracy as high as 80% for data collected from the height of 3 km to 4 km. On
the other hand, Persson et al. classified the same three tree species with over 90%
accuracy when they used high resolution aerial imagery and LiDAR data [123].
However, their method did not perform with the same efficiency with lower reso-
lution data when the method was used as a reference in Study 1. In more temperate
regions, classification accuracies of 84% for four tree classes have been reported
by Heinzel et al. [124]. Additionally, Waser et al. have reported of an overall
classification result of 86% for five tree species [122].

In land class studies, Bork and Su have obtained classification accuracies of
91.0% and 80.3% for three and eight vegetation classes consisting of trees and
low vegetation [111]. Their classification was done unsing integrated airborne
LiDAR and multispectral imagery data. Koukoulas and Blackburn detected 80%
of the trees of a semi-natural study forest using a height model created from ALS
data and multispectral imagery [117]. Dalponte e al. reported classification ac-
curacies of over 85% for dominant land classes in a study applying hyperspectral
and ALS data [112]. Asner et al. used combined airborne imaging spectroscopy
and LiDAR to detect the fractional abundance of three invasive species in Hawai-
ian rainforests [110]. They reported error rates of less than 6.8% and 18.6% with
minimum canopy cover thresholds of about 7 m? and 2 m?.

The results of Study 11 show that the fusion of MLS and hyperspectral spec-
trometer data has the similar level of classification performance as has been re-
ported in the literature. The results can be considered to be good. Lighting condi-
tions during the data collection were challenging, only a few classification features
were used in classification, and ten different species were classified. Moreover,
the data were collected using a prototype system.

Study III produced even better results, but the data collection was performed
in laboratory conditions. Thus, the results of Study IIT should be considered as
a close-to-best case scenario of obtainable classification accuracies that could be
achieved when most external factors are negated in the data. However, the results
of Study III could gain additional improvement from the utilization of directional
lighting information.
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5.3 Future Research

Three different study cases about the classification of individual tree species with
combined spectral and spatial data have been presented in this dissertation. In
addition, one study focused on radiometric calibration from man-made surfaces.
Based on the results of all these four studies, it is possible to draw the following
conclusions about data collection and processing in individual tree species classi-
fication.

Photogrammetric methods and laser scanning are two well-established data
collection techniques and they are used extensively in forestry research. Pho-
togrammetric methods have been applied successfully for close to a century to
provide accurate data over large areas. Laser scanning emerged two decades
ago, and it has developed into a well-established technique that can be utilized
to extract accurate forestry data. However, both techniques have their limitations.
These limitations can be compensated for many cases by using data collected us-
ing the other technique. Thus, the next logical step is to further improve data
collection. Improvement can be achieved by increasing the level of integration
between the two techniques. The dissertation’s results clearly suggest that de-
velopment of new laser scanner systems capable of active ranging in multiple
wavelength channels or spectral bands should be encouraged. The classification
accuracy of combined data outperformed single-sensor data in all of the three clas-
sification studies by a significant margin. In addition to improved classification
accuracy, active multiple-channel scanners enable efficient and time-independent
data collection from different viewing geometries. Active scanner systems are
resilient to external lighting conditions and their changes. The possibility for
time-independent measurements has especially great potential as it allows diurnal
change monitoring of trees and other vegetation. However, proper radiometric cal-
ibration processes need still to be developed to guarantee compatibility between
different measurements.

The dissertation results also give some implications on how actively scanned
multiple-channel data should be processed. First of all, both Studies II and II1
reported that the spatial features derived originally for area-based ALS studies
could be transferred almost directly to horizontal viewing geometry. Moreover,
the classification performance of the spatial features was better than that of the
spectral features. Another important finding was that the total number of classifi-
cation features needed could be kept low when using combined data. The low total
number of combined classification features implies that the tested feature collec-
tion and matching techniques could be applied at the operative level in areas with
a few dominant species once instrumentation is developed enough. In temperate
regions, the number of significant species is over ten or more and additional fea-
tures will be needed to enable accurate species discrimination. The number of
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possible classification feature combinations grows as a factor of the number of
classification features. Therefore, efficient feature screening methods have to be
used to determine close-to optimal feature sets for each application if no a priori
information is available. Also, data collection for operative purposes requires that
the methods can be transferred back to the airborne configuration, which is the
most cost-efficient way at present for collecting combined data over large areas.
Optimally, future forestry inventories will be conducted so that reference data are
collected using terrestrial and mobile platforms. The reference data are then used
in training classifiers for tree parameter discrimination from airborne data.

Thus, a possible approach regarding further development of the first active
multi-wavelength scanner systems is first to emphasize their spatial data collec-
tion properties, i.e. resolution and scanning speed. The number of detected wave-
lengths could be limited only to those specifically needed in an application. Such
a solution should offer a relatively fast way for the development of new systems
that possess the required performance for operative use. The lack of raw per-
formance has been seen as the main concern regarding the operational use of
multi-wavelength laser scanners [2].

High resolution spatial data with a few wavelengths have also another benefit
in addition to their fast applicability. A few narrow wavelength bands enable better
control over the operational transmitter powers than when using a wide spectral
range. This is important from the safety perspective. It is of high importance that
the transmitter powers of new multi-wavelength scanner systems are kept below
the national safety regulation limits. The limits have to be passed so that a scanner
system can be deployed for field work. A few specifically selected wavelengths
or bands also offer one other advantage. Instrumentation with high sampling rates
is easier to obtain with a few receiver channels than with a full spectrum because
then less processing is required.

New multi-wavelength scanner systems can be expected to emerge in the next
few years. While they will provide increasingly accurate information on their sur-
roundings, this also means that the size of the collected datasets will significantly
increase. The data increase introduces an additional burden on data processing.
Thus, data processing should be given more consideration already during devel-
opment of new measurement systems. This would enable early implementation
of possible filter schema already in the preprocessing phase. Similar issues are
already present to some extent in TLS studies. For example, a single-scan TLS
study can contain tens of millions of individual single-wavelength laser points.
The point number in itself presents a challenge when data from several scans are
co-registered together [148]. Furthermore, a large proportion of data collected
in close-to-ground measurements comes from ground hits in the vicinity of the
scanner. This leads to high level of redundancy in the ground hits. One possible
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solution to reducing data has been presented in a terrestrial laser scanning case:
Litkey et al. have suggested performing distance-based selective sampling on col-
lected point clouds to retain hits coming from distance and to significantly reduce
the number of close hits [149].

This dissertation’s results have also given a rise to new research questions
in addition to the improvement suggestions considering instrumentation and data
processing. The new research topics include methods for further improving tree
species classification, comparison studies with earlier classification experiments,
and measurement and development of completely new forestry parameters. New
forest parameters should utilize fully simultaneously collected spatial and spectral
information. These new parameters could provide more accurate information at
tree and at sub-tree level. Improved information could be obtained, for example,
about trees’ branch distribution and biomass [145, 150, 151].
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Chapter 6

Summary

Remote sensing is an efficient means of collecting forest data. The data thus
collected can be used to calculate estimates for other important parameters of in-
terest, e.g. biomass, stem number, and carbon exchange. Tree species information
can be used to further improve these estimates. Thus, tree species determination,
especially at the level of individual trees, is of high interest for a wide variety of
both scientific and commercial applications. Therefore, novel methods are needed
to achieve improved tree species classification performance with a high level of
automatization.

One approach towards improving the tree species classification performance
is to further develop already existing remote sensing techniques, namely laser
scanning and spectral imagery. These techniques have provided a solid basis for
current operative forest inventories. However, both laser scanning and spectral im-
agery have their inherent limitations. Laser scanning data is limited to a very nar-
row spectral region and its radiometric properties are often obscured. On the other
hand, while range information collection from spectral imagery is possible, it re-
quires highly specialized processing techniques and dense coverage. Moreover,
spectral imagery are collected with passive techniques, which makes them suscep-
tible to the effects of environmental lighting. These limitations can be adressed
to some extent through improved instrumentation and data processing methods,
but this approach becomes increasingly difficult in terms of cost efficiency over
extended periods of time.

As laser scanner data and spectral imagery complement one another’s lim-
itations, data fusion between them has been shown to yield accurate results in
forestry studies. However, data fusion presents new challenges that need to be
accounted for before data fusion can be fully utilized. The new challenge comes
from data registration between the two data types. Registration can be particu-
larly difficult if the data are collected during separate measurements. Data fusion
also results in large datasets that present yet another challenge. Their efficient
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processing is demanding unless the amount of data can be limited.

The focus in this dissertation is on studying how data from these two sources
of data can be collected, combined, and analyzed effectively in order to improve
tree species classification. Four separate studies were carried out to achieve this
goal. Each study concentrated on different properties of data fusion when deal-
ing with remote sensing data. Three of the studies used classification features
extracted from the data to classify different tree species. The three studies were
carried out using different sensor systems that included a novel actively-scanning
hyperspectral laser scanner and a novel mobile platform capable of covering vast
road-side areas. The fourth study experimented with the subject of whether the
directional lighting effects in passively collected spectral data could be calibrated
using man-made surfaces as references.

The results of the studies showed that actively-collected hyperspectral data
have a significant potential in tree species classification. The classification results
were best results when the classification features were selected from both spatial
and spectral data. One study also implied that mixed classification feature selec-
tion can yield relatively high results even when the fused data are collected using
an experimental instrument, whose absolute resolution is lower than that of the
commercial state-of-the-art sensors. Furthermore, two studies also showed that it
is possible to transfer spatial feature extraction methods, originally developed for
airborne remote sensing data, into horizontal scanning geometry.

The results are promising considering future research as they imply that already-
established data processing methods can be exploited in horizontal viewing geom-
etry. However, even though similar data analysis methods seem to work also in
horizontal viewing geometry, one should not make direct comparison between the
results from airborne and terrestrial point cloud data as more in-depth comparison
experiments have to be carried out. Further investigation is also required in or-
der to determine new classification features describing object shape and spectrum
simultaneously. The new features can be collected by using active hyperspectral
measurements.

The dissertation addresses the possibilities of using combined remote sensing
data that contain both spatial and spectral information for a particular forestry ap-
plication, i.e. tree species classification. However, there should be no limitations
to apply similar types of data and data analysis techniques in other remote sensing
applications, be they of environmental or urban nature. Different applications con-
centrate on different characteristic features, but most of them are likely to benefit
from simultaneously collected, high resolution, spatial and spectral data.

All in all, a potential breakthrough in remote sensing is very likely to happen
within the next ten years. New active multi- and hyperspectral laser scanning tech-
niques have been presented in recent years in increasing numbers. The potential
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of these techniques is significant as they offer convenient means of simultaneously
collecting combined spatial and spectral data. Thus, they would remove several
intermediate data processing steps and diminish the effect of diffuse lighting. The
new techniques could enable high signal-to-noise ratios with low contributions
from external factors.

Another notable development in remote sensing instrumentation is going on in
mobile and terrestrial laser scanning. New laser scanning systems are more light-
weight and compact than previous models and they can be mounted on a wide
variety of platforms. Laser scanner systems mounted on small aerial, marine,
and land-based vehicles offer agile and responsive means of collecting accurate
spatial data from areas of interest within narrow time windows. Eventually, after
new laser scanning techniques have evolved enough, they can gradually replace
manual data collection in several fields of study.

Considering all the ongoing development and changes in data collection tech-
niques, one should bear in mind that new data processing techniques are also
needed for transferring the essential, application-specific, information to end-
users. It is a matter of importance to prevent method fragmentation into platform-
restricted solutions and thereby enable the adaptation of new techniques as soon
as possible for a wide range of applications.

Nonetheless, the next several years will witness interesting developments in
the field of close-range remote sensing.
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