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Abstract—Air pollution is known to be harmful to human
health and the environment. Official air quality monitoring
stations have been established across many smart cities
around the world. Unfortunately, these monitoring stations
are sparsely located and consequently do not provide high-
resolution spatio-temporal air quality information. This article
demonstrates how a dense sensor network deployment offers
significant advantages in providing better and more detailed
air quality information. We use data from a dense sensor
network consisting of 126 low-cost sensors (LCSs) deployed
in a highly populated district in Nanjing, China. Using data
obtained from 13 existing reference stations installed in the
same district, we propose three LCS validation methods to
evaluate the performance of LCSs in the network. The meth-
ods assess the reliability, accuracy of tests, and failure and
anomaly detection performance. We also demonstrate how
the reliable data generated from the sensor network provides
deep insights into air pollution information at a higher spatio-
temporal resolution. We further discuss potential improve-
ments and applications derived from the dense deployment
of LCSs in cities.

Index Terms— Air quality, anomaly detection, low-cost sensors (LCSs), reference stations, sensor network, sensor
validation.

I. INTRODUCTION

ACCORDING to World Health Organization (WHO), air
pollution causes approximately 7 million deaths each

year. Of this, an estimated 4.2 million deaths are due to
outdoor exposure [1]. Air pollution is one of the leading
causes of adverse human health effects such as cardiovascular
and respiratory illnesses. Exposure to air pollution also has
other negative effects, for example, it has been shown to
degrade well-being and productivity [2] and it is believed to
be linked with an increased risk of COVID-19 infection [3].
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Beyond societal effects, air pollution has immense economic
consequences as it is associated with increased expenditure
in healthcare, including costs of treatment, diagnosis, and
medical insurance [4].

Mitigating the adverse effects of pollution requires a
detailed understanding of the sources, causes, and conse-
quences of pollutants, which in turn requires comprehen-
sive information about the concentration, distribution, and
characteristics of air pollutants. Conventionally, official air
quality monitoring stations are installed in cities to study
the characteristics of pollutants in urban environments [5].
Unfortunately, due to the high costs of the instruments, their
operations, and maintenance, the number of installed official
air quality monitoring stations in cities is limited. Thanks
to advances in communication and networking technologies,
and the Internet-of-Things (IoT) low-cost sensors (LCSs)
have emerged as an alternative that can be deployed on a
massive scale in cities. This deployment facilitates obtaining
hyperlocal air pollution information that can vary by more
than eight times within 200 m [6] and offers high resolution
of spatio-temporal air quality information [7]. In a massive
deployment approach, LCSs can be installed in strategic
locations in urban areas or the air quality data can be gath-
ered through crowd-sourced-based sensing [8]. Currently, the
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benefits massive-scale LCSs deployments can provide are not
sufficiently understood. Indeed, while the benefits of LCSs
have been demonstrated in several studies, the existing works
have mostly used a limited number of sensors and extrapolated
the findings for larger sensor network deployments [9]. The
better understand the practical benefits and the usefulness of
massive-scale LCS deployments, there thus is a need to study
denser deployments, analyzing their practicality and benefits,
and the details they can provide. In massive deployments,
while sensors operate, they may encounter various challenging
issues. For example, sensors may malfunction, degrade over
time, and output inaccurate readings [10].

Analyzing the performance of large-scale deployments,
however, also poses its own challenges. In practice, LCSs
are not placed side by side with the reference instruments,
and therefore direct validation of LCSs against the reference
instruments is not feasible. The validation methods should
evaluate various states of sensor functions, such as sensors’
reliability in a sensor network, and individual sensor val-
idations, including sensing accuracy, sensors’ failures, and
sensors’ anomalies. Sensor reliability indicates the general
performance of the sensors deployed in a network in providing
reliable air quality information on a larger scale (e.g., city
district). Accuracy indicates how well are the measurements
of an LCS in agreement with the measurement of a reference
instrument. Failure indicates to the LCSs when they stop
transmitting the data to the edge servers, whereas anomaly
refers to the LCSs which generate anomalous data patterns
in comparison to the measurements of reference instruments
(i.e., drift).

This article demonstrates the benefits of dense LCS deploy-
ments by performing a comprehensive sensors validation and
data analysis for a dense air quality sensor network. We collect
extensive air quality measurement datasets generated from
13 reference stations and 126 units of LCSs which are
deployed in Nanjing, China. Ours is among the densest deploy-
ments ever to be analyzed. To account for the challenges in
validating the benefits of deployments, we propose three meth-
ods of sensor validations including: 1) reliability investigation
(by means of statistical properties and correlation coefficients)
to evaluate all LCSs to observe if they provide reliable mea-
surements as a whole; 2) accuracy tests on few of LCSs which
are nearest to the reference stations; and 3) failure and anomaly
detection on individual LCSs to evaluate if they generate
reliable air quality data. The validation results demonstrate that
the sensor network is reliable as a whole and the accuracy tests
for pollutant variables PM10, PM2.5, and O3 explain that the
measurements of LCSs are reliable. We further highlight the
advantages of having such a dense sensor network in cities and
discuss the potential improvements and applications offered by
real massive sensor deployments. Among others, our results
show that dense deployments can facilitate detecting localized
pollution sources or hotspots and capture diurnal variations in
pollutant concentrations at different locations within the city.

II. MATERIALS AND METHODS

This section describes the materials and methods used
in this study. The materials provide information about the

Fig. 1. Sensors network map (left) and an LCS installed on the roof of a
building (right), in Gulou, Nanjing. R1–R13 indicates the 13 reference
stations.

measurement site, air quality sensors, and air pollution data.
The methods describe sensor clustering, air pollution models,
and the metrics used to evaluate the performance of sensors.

A. Measurement Site and Air Quality Monitoring
The measurement site where the sensors (i.e., reference

stations and LCSs) are deployed is located at the coordinates
of 32◦3�50��N 118◦45�5��E in Gulou, Nanjing, China (as shown
in Fig. 1). The district size is 54.18 km2 with the population
estimated at 1 109 600 in 2018. Given the population density,
obtaining reliable and high-resolution air quality information
would be beneficial for health exposure analysis as well as air
pollution risk and mitigation.

We use air quality data from two types of sensors including:
1) reference stations and 2) a dense LCS network. Fig. 1
depicts the sensor deployment, where the big colored bubbles
shown by R present the reference stations, and the small blue
bubbles present the LCSs deployed in the network. This dense
network consists of 13 reference stations (R) and 126 units
of LCSs. The picture on the right side of the figure also
shows an example of an LCS that is installed on the roof
of a building. The reference stations and LCSs are installed at
different strategic locations in Gulou, Nanjing. These locations
cover six different types of environments where we label them
with letters A–F, as presented in Table I.

The technology of LCSs is based on YSRDAQ-07 sensors
(Insights Value Technology Company Ltd.) [11]. The LCSs
are capable of measuring particulate matter (PM) including
PM10 (PM with an aerodynamic diameter of 10 μm or less)
and PM2.5 (PM with an aerodynamic diameter of 2.5 μm or
less), ozone (O3), nitrogen dioxide (NO2), carbon monoxide
(CO), and sulfur dioxide (SO2). In addition, the reference
stations (labeled by R) are operated by the Chinese national
and standard monitoring stations. These stations measure the
concentrations of air pollutants such as PM10, PM2.5, CO,
NO2, O3, and SO2 [12]. The air quality data from these
reference stations were downloaded from the website of the
Chinese Environmental Protection Bureau.1 For our analysis

1http://www.cnemc.cn/
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TABLE I
ENVIRONMENTAL TYPES WHERE LCSS ARE INSTALLED

in this article, we gather hourly air quality datasets from the
sensor’s measurements from March 1 to July 31, 2021.

In addition, we use this data to derive air quality index
(AQI) data which quantifies overall air quality based on all
ambient air pollutants in the monitored area. The two main
objectives of AQI are: 1) to inform and alert the public about
the risk of exposure to air pollution levels and 2) to enforce
required regulatory measures to mitigate the impacts [13].
Indeed, AQI is defined as the maximum of the indexes for
six criterion pollutants, including PM10, PM2.5, CO, NO2, O3,
and SO2 [14] which can be formulated as

AQI = max{IAQI1, IAQI2, IAQI3, . . . , IAQIn} (1)

where IAQI stands for an individual AQI and n is the number
of ambient air pollutants.

B. Sensor Clustering
In order to perform LCS validation, the LCS measurement

data should be compared to the ground-truth data generated
from the nearest reference stations. In our study, there are
13 reference stations (R) and 126 LCSs deployed in Gulou,
Nanjing, China. Since there are a considerable number of Rs
in a densely deployed LCSs network, we use this opportunity
to form sensor clusters and validate LCSs against their respec-
tive reference stations. Therefore, we form the sensor clusters
based on the nearest distances between LCSs and the reference
stations. To do this, we use the Haversine equation [15] that
calculates the shortest distance between two points over the
Earth’s surface. The Haversine equation is given by

Dist = 2 RE arctan (
√

a,
�

(1 − a)) (2)

where a is calculated by

a = sin2(�φ/2) + cos φ1 cos φ2 sin2(�λ/2) (3)

where RE is the Earth’s radius (i.e., mean radius = 6 371 km),
and φ and λ are the latitude and the longitude, respectively.
Applying the Haversine equation on the coordinates of the
reference stations and LCSs, the distances between each LCS
(L) to every R can be calculated. As the R coordinates are
considered cluster centers, thus, each L can then be assigned
to the nearest cluster center.

Table II presents 13 clusters (shown by R1–R13) and their
respective LCSs Ls in those clusters. In the table, the labels
(i.e., numbering) of LCSs L are sorted in ascending order

TABLE II
LCSS (L) GROUPED WITHIN CLUSTERS R1 –R13

TABLE III
AIC EVALUATED ON FOUR PROBABILITY DISTRIBUTIONS FOR

MODELING DIFFERENT AIR POLLUTANTS

based on their distances to their respective R. Note that the
clustering based on the Haversine equation does not list any
LCSs (L) in the cluster R9. The reason is the long distances
between the LCSs to R9 compared to R5s. This is clearly
shown in Fig. 1, by R9 and R5, presented with colors yellow
and magenta, respectively.

C. Air Pollutant Model: Weilbull Distribution
Once the clusters have been formed, LCS anomaly detection

can be applied by evaluating the LCSs measurements if they
lie at the outliers’ regime of pollutants’ distributions at the
respective reference stations. The current scientific understand-
ing suggests that air pollutant concentrations follow a right-
skewed distribution, and we consider the most commonly
considered families of distributions: Gamma, Log-normal,
Rayleigh, and Weibull distributions [16], [17], [18]. We deter-
mine the best fitting distribution using the Akaike information
criterion (AIC) that is a widely used method for evaluating the
fit of different distributions [19], including for air pollutant
concentrations [20], [21], [22]. The smaller the AIC value,
the better the fit of the distribution. Table III presents the AIC
values of the four probability distributions when fit on the
data of PM10, PM2.5, and O3 gathered from the 13 reference
stations. The best fit in all cases is the Weibull distribution
and hence we use the Weibull distribution for modeling air
pollutant concentrations at the reference stations (R).

The Weibull probability density function is mathematically
defined as

f (X; λ, k) =

⎧⎪⎨
⎪⎩

k

λ

�
X

λ

�k−1

exp−(X/λ)k
, X ≥ 0

0, X < 0
(4)

where X represents the air pollutants measurement data. The
parameter k > 0 is the shape parameter and the parameter
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λ > 0 is the scale parameter of the distribution. These
parameters can be estimated using the maximum likelihood
method. In addition, the quantile (inverse cumulative distrib-
ution) function for the Weibull distribution is

Q(p; λ, k) = λ(− ln(1 − p))1/k (5)

for 0 ≤ p > 1.

D. Sensor Performance Metrics
We use three metrics to evaluate the sensor perfor-

mances including biweight midcorrelation, mean absolute
error (MAE), and Spearman correlation. While the first two
metrics are used to determine accuracy tests (Section III-B),
the third metric is used to evaluate the correlation between
pollutant variables for reliability investigation (Section III-A).
For two vectors of measurement data, X and X �, where X =
{x1, x2, . . . , xN } and X � = {x �

1, x �
2, . . . , x �

N }, the performance
metrics can be calculated as follows.

1) Biweight Midcorrelation (Rb): This is a similarity metric
that is an alternative to Pearson correlation because it is more
robust to outliers. The biweight midcorrelation between X and
X �, that is, Rb(X, X �) can be computed by

Rb(X, X �)

=
	N

i=1 (xi − med(x))w
(x)
i



x �

i − med(x �)
�
w

(x �)
i�	N

i=1


(xi −med(x))w

(x)
i

�2	N
i=1


(x �

i −med(x �))w(x �)
i

�2

(6)

where weights w
(x)
i and w

(x �)
i are defined as

w
(x)
i = 


1 − u2
i

�2
I (1 − |ui |) (7)

w
(x �)
i = 


1 − v2
i

�2
I (1 − |vi |) (8)

where the notation I is the identity function, defined as

I (x) =
�

1, if x > 0

0, otherwise
(9)

and the notations ui and vi are defined as

ui = xi − med(x)

9 mad(x)
(10)

vi = x �
i − med(x �)
9 mad(x �)

. (11)

The notation med(x) is the median of a vector x , whereas
the notation mad(x) is the median absolute deviation (MAD).

2) Mean Absolute Error: This metric is a measure of errors
between paired observations expressing the same measure-
ments. MAE can be calculated by

MAE = 1

N

N�
i=1

|x̂i − xi |. (12)

The notations x and x̂ are the data points obtained from the
reference instruments and the LCSs, respectively.

3) Spearman’s Rank Correlation Coefficient Analysis (Rs ):
This metric evaluates how well the relationship between two
measured variables can be described using a monotonic func-
tion. The formula is given by

Rs = 1 − 6
	

d2
i

N(N2 − 1)
(13)

where N is the number of measurement data points and di =
rank(X) − rank(X �) is the difference between two ranks of
each data (i.e., X and X �).

III. SENSOR VALIDATIONS

In practice, LCSs that are deployed in the field undergo
a laboratory calibration and some might even undergo field
calibration while they operate. However, while the LCSs
operate in the field, they may malfunction, witness drift,
or degrade over time. Thus, it is important to validate their
sensing accuracy while they are deployed and operating in the
field [23], [24]. We next present sensor validation methods
applied to LCSs when they operate as part of a network.
First, we perform a reliability investigation to evaluate all
of the LCSs in a network to observe if they provide reliable
measurements as a whole compared to the measurements of all
of the reference stations. Second, we perform accuracy tests on
a few of the LCSs which are nearest to the reference stations.
These accuracy tests are then generalized to the remaining
LCSs in the sensor network as the LCSs are based on the same
sensing technology. Third, we perform failure and anomaly
detection on the individual sensors to evaluate which sensor
functions properly and generates reliable air quality data.

A. Reliability Investigation
The first step for validating sensors is to study the reliability

of their measurements. Hence, we compare the overall mea-
surements of LCSs and the reference stations by means of their
statistical properties and their correlation analysis between
pollutants.

1) Statistical Properties of Pollutant Variables: We first sum-
marize key characteristics of the measurement data gener-
ated at the reference stations (R) and the LCSs (L). The
median values of R and L are closely aligned, and also
the MAD values—a common measure of precision in air
quality data [25]—are consistent, suggesting that the two types
of sensors produce very similar measurements. In contrast,
when we compare the mean and standard deviation of the
measurements, more variation is observed. This suggests that
the measurements also contain some outliers or abnormal
events, even if on a whole the measurements are similar.
The existence of outliers is also supported by the skewness
of the data, which shows the distributions to be consistently
right-skewed but that the LCSs tend to have higher tails—
a common indicator of outliers. As can be expected, the
consistency of the high-quality instruments (R) is higher than
that of the LCSs (L) which can be observed from the lower
standard deviation.

We also analyze the uncertainty of the measurements by
considering the standard error of the mean (CI in the table).
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TABLE IV
STATISTICAL PROPERTIES OF POLLUTANT VARIABLES

As can be expected, the uncertainty of the LCSs L is higher
than with the reference stations R. There are two reasons for
this. First, naturally, a part of the differences is explained by
the reference stations using components with higher precision.
By comparing the MAD in Table IV, we can see that this
effect is relatively small overall and explains only partially
the higher spread of the measurements. The most important
factor stems from the lower-cost sensors covering a broader
geographic area. Air quality measurements tend to have sig-
nificant variation even within a small geographic distance and
the higher number of LCSs results in a larger spread in the
measurements. For example, as seen in Fig. 1, the west part of
the Gulou has a sparse concentration of reference stations R,
whereas the number of LCSs is abundant. Thus, the low-cost
measurements contain pollutant concentrations from areas that
are not covered by the reference stations which results in
higher variation and uncertainty in the overall data.

In terms of individual pollutants, the largest variation occurs
for CO and SO2. As with the other variables, the precision
(i.e., MAD) for these pollutants is consistent and thus the main
reason for the differences is the variation in spatial coverage.
The best indication of consistency, however, is the AQI col-
umn. The AQI combines all six pollutants into a single value
and is sensitive to fluctuations in any single pollutant. As the
values of the AQI are consistent—as indicated by the similar
mean, median, MAD, and skewness—this indicates that both
R and L generate similar readings for all pollutants. The
uncertainty in the low-cost measurements L is higher, which
again mostly reflects the difference in geographic coverage of
the sensor instruments. Taken together, the results suggest that
the deployed LCS network provides reliable data that is similar
to the measurements provided by the reference stations and
complements the air quality information that can be acquired
from the city of Nanjing.

2) Correlation Analysis Between Pollutant Variables: The cor-
relation analysis between pollutant variables demonstrates the
relationship between the pollutant variables measured at R
and L. Fig. 2 shows the heatmap (matrix plot) of absolute
number of Spearman correlation coefficients (Rs) for different
pollutants measured by R and L. The cells on the right
side of the diagonal (i.e., yellow cells) show the correlation
coefficients between pollutants measured at R. The cells on
the left side of the diagonal show the correlation coefficients
between pollutants measured at L. It can be seen that both
sides of the diagonal present almost similar coefficient values.
For example, the correlation between AQI and PM10 present
a high value (shown by dark blue) in R (Rs ≈ 0.94) and

Fig. 2. Correlation coefficients of air pollutants measured via R (upper
triangle) and L (lower triangle).

in L (Rs ≈ 0.75). Likewise, the correlation between PM2.5
and PM10 are also high (dark blue) in R (Rs ≈ 0.84) and in
L (Rs ≈ 0.79). Another example is the variable NO2 which
is correlated well with the PM2.5 by presenting Rs ≈ 0.41
(shown by light blue) for R and Rs ≈ 0.49 for L. Indeed,
the comparison between correlation coefficients is not always
similar between R and L as some sensors might contain
missing data. Nevertheless, the relationship similarity (i.e.,
correlation coefficients) between the majority of the pollutant
variables measured by R and L are similar indicating the
reliability of the sensor network.

B. Accuracy Tests
After the field deployment of the LCSs (L) and while

they operate, they usually are not placed side by side at
reference stations (R). Therefore, one method to evaluate the
performance accuracy of L is by performing accuracy tests
on some nearest sensors to R. Note that even this approach is
approximate as in practice it is difficult to ensure that the air
intake of the LCS is perfectly aligned with that of the reference
station. Hence, comparing individual measurements is not
meaningful, and instead aggregates calculated over a longer
time interval should be used instead. In this article, accuracy
tests provide an indication of how similar the measurements
of L and R [26] are. Since the LCSs (L) used in our study
are identical (i.e., they have the same hardware and software),
the accuracy results largely transfer to the other sensors.

Table V presents the summary of accuracy tests for L (e.g.,
L3 and L21) which have the nearest distances (Dist in km) to
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TABLE V
SUMMARY OF ACCURACY TESTS FOR THE NEAREST LCSS (L) TO THE REFERENCE STATIONS (R)

R (i.e., R1 − R13). The table also shows the environment
(Env) that refers to the different strategic locations [e.g.,
roadsides (A) and construction sites (C)] in Gulou, Nanjing.
As described in Section II-D, we use performance metrics
of biweight midcorrelation (Rb) and MAE for evaluating the
nearest LCSs L and their respective R for the pollutant
variables (e.g., AQI, PM10, and others.)

In Table V, all Rs present closest distances with some Ls
(e.g., R1 has the nearest distance to L3), except R9 as there
are no L installed nearby this reference station. In addition,
if there is a nearest L to R but it does not generate enough
data, in this case, we perform accuracy tests on the next nearest
L to R. For measurements of PM10, the values of Rb range
between 0.7 and 0.86. These results explain that PM10 sensors
function well without drifts. Similarly, the results by the metric
MAE approve the measurement performance of PM10 sensors
by presenting values in the range between 5 and 16 μg/m3,
except for L18. The sensor L18 might measure high pollutant
concentrations emitted from dust particles, which are often
found in the evaluation points (i.e., Env B). In addition, L118
located near to R4 do not present any Rb values because
data in L118 are missing for PM10 measurements, indicating
this sensor is being faulty. The mean of the MAE values for
PM10 is 15.21 μg/m3 which is within the precision (MAD) of
the sensor, as shown in Table IV and indicates a reasonable
accuracy. As PM10 particles are larger in size, they tend to fall
to the ground faster and thus the pollutant concentrations are
more heavily localized than for other particles. The main bulk
of PM10 results from street dust and traffic. LCSs capture this
more effectively than reference stations as they sample the air
directly within the streets and other urban structures instead
of requiring specialized instruments that are located close to
the pollution source.

In all LCSs (L) for the measurements of PM2.5, the values
of Rb range between 0.55 and 0.82, while MAE values range
between 6 and 11 μg/m3. The mean of MAE values for
PM2.5 is 9.43 μg/m3 which again is within the precision of
the PM2.5 measurements (column MAD in Table IV). These
results confirm that PM2.5 measurements for all L provide
similar readings to R, indicating that PM2.5 sensors are
accurate. However, PM2.5 sensors for L33 and L64 do not

exhibit any values indicating that they might be in a failure
state as no data is transmitted.

In addition, there are no values for Rb and MAE for the gas
sensors of CO and SO2, as there are no sufficient data collected
by the LCSs (L) listed in the table. In contrast, O3 sensors
(for those L that provide data) demonstrate promising per-
formance with Rb values range between 0.58 and 0.88, and
MAE values range between 17 and 23 ppb. For the LCSs
(L) that provide NO2 data, the results for Rb values range
between 0.5 and 0.61, except for the sensor near R5 with
Rb ≈ 0.35 (L16). Their MAE values also range between
6.13 and 11.48 ppb. These results show good performance by
metrics Rb and MAE, except L16 that might measure different
NO2 concentration as the distance to R5 is about 0.67 km.
In NO2 measurements, however, there are more than half of
LCSs (L) that do not exhibit any values for Rb and MAE,
indicating that those L might be in a faulty state that does
not generate NO2 data. As with the other pollutants, the mean
of MAE values for both O3 and NO2 sensors is within the
precision of the sensors.

In our study, in order to further analyze the results presented
in Table V, we perform visualization of scatter plot between
L18 and R10. We select these two sensing units as they have
the shortest distance (i.e., 0.21 km) to each other among all
of the sensor units in the network. These scatter plots for
pollutant variables PM10, PM2.5, and O3 are depicted in Fig. 3.
In the plots, the x-axis is the LCS measurements, whereas the
y-axis presents the measurements at reference stations. The
red line is the reference line. The results in the figure confirm
that L18 has accurate measurement because the majority of
data points from LCS measurements for the three pollutant
variables lie around the reference line.

The discrepancies between LCSs and reference instruments
in the scatter plots (as shown in Fig. 3) result from a combined
effect of multiple factors. These include meteorological fac-
tors, such as wind speed and direction, anthropogenic factors,
such as vehicles’ emissions, and spatial factors related to
the deployment locations. The meteorological effects also are
observable from dispersion, for example, when wind speed is
low, the air pollutants remain close to the emission source.
In contrast, when the wind speed is high, the air pollutants



ZAIDAN et al.: DENSE AIR QUALITY SENSOR NETWORKS: VALIDATION, ANALYSIS, AND BENEFITS 23513

Fig. 3. Scatter plots between the reference station 10 (R10) to the nearest LCS (L18). (a) PM10. (b) PM2.5. (c) O3.

disperse into the environment [27]. The measurement differ-
ences between LCSs against the reference instruments also
depend on wind direction [28]. As an example, from Fig. 3,
we see that when the wind is in the direction of R10 and L18,
the pollutant concentrations tend to be closer than when the
wind direction is reversed. Similarly, sensor locations affect
the measurements, especially when combined with meteoro-
logical factors. For example, exhausts for vehicles in close
proximity to an LCS are observable by the LCS but are not
necessarily observable at the reference instrument, particularly
if the wind direction is away from the reference station.
Reference stations often also sample the air at a higher altitude
than the LCS and this also factors into the overall dispersion.
Isolating these effects in a real-world deployment, such as
ours, is difficult, and thus there necessarily is more variation
in the measurements as a result of such factors. The main
motivation for deploying LCS is to capture this variation at a
finer resolution and to help explain and understand it. Note that
wind speed does not impact the quality of the measurements
as both the reference instrument and the LCSs regulate the
air volume that is used for measurements [29] and hence the
only effects resulting from wind speed and wind direction
are due to differences in the pollutant concentrations and
dispersion patterns. We will further discuss this concern later
in Section IV-A.

In conclusion, our accuracy tests confirm that the nearest
LCSs which provide data of PM10, PM2.5, and O3 are cor-
related with their respective reference stations. These correla-
tions state that those LCSs function properly without drifts
and provide accurate measurements. This type of accuracy
testing is considered to be effective as the LCSs (L) are
identical, and as they are deployed in one city district which
presents a unique air quality profile. Therefore, other deployed
LCSs within the same city district which are located far from
reference stations R can also be considered to be accurate.

C. Sensor Failure and Anomaly Detections
In addition to the reliability investigation and accuracy tests,

in our study, we perform sensor failure and anomaly detections
for all LCSs (L) in the sensor network.

1) Sensor Failure: Sensor failure can be detected when the
sensors stop transmitting the data to the server (i.e., a computer
edge server or a cloud server, where all sensor data are
collected, processed, and analyzed). Sensor failure usually
occurs due to major faults in the power unit, sensing, and com-
munication modules [30], [31]. In practice, identifying sensor

failure is a relatively simple task. Continuous inspections and
maintenance can be performed indeed whenever a server stops
receiving the sensor data. In our study, we assume sensor
failure happens when a sensor consecutively stops transmitting
data for T1 hours. We then exclude the sensor from the analysis
(i.e., failure) when the ratio of available data of sensor number
l of pollutant variable pv (N pv

l ) to total period of analysis (N)
is less than or equal to a threshold P%: (N pv

l /N) × 100% ≤
P%. It is worth noting that the missing data at the server is
not always because of sensor failure; instead, it might occur
due to the maintenance activities in a sensor network. Due to
this reason, in our analysis, we exclude the sensors’ data that
had: 1) more than five days of consecutive missing data (i.e.,
T1 = 120 h) and 2) the ratio of available data is not sufficient
(P ≤ 50%).

We analyze the reliability of the sensor network using
the mean time between failures (MTBFs). The MTBF is a
common measure for describing the expected time between
two failures of a repairable system, such as a sensor [32].
We use MTBF to analyze how likely a sensor is to fail
within a certain time period, and how often a certain type
of sensor failure may occur. We measure the failure time of
each sensor and we then estimate the MTBF for each sensor
type. The MTBF for the three pollutants PM10, PM2.5, and
O3 are 4984.57, 2801.67, and 2661.76 h, respectively. Thus,
the reliability ranges from 3 to 5 months and can be used
to determine sensor maintenance schedules. These values are
generally in line with expectations as the performance of air
quality sensors degrades over time through the accumulation of
dirt at the air inlet which degrades the sensor performance [29].
Note that this corresponds to the failure of the sensing unit and
does not incorporate temporary errors resulting in anomalous
sensor readings. We discuss this next.

2) Sensor Anomaly Detection: Sensor anomaly detection is
used to identify sensors that drift and generate anomalous
data patterns in comparison to the measurements of reference
instruments. However, a sensor that drifts still can transmit
data to a computer server but the data might be inaccurate or
poor quality [33]. To evaluate the sensor’s drift, we propose
an anomaly detection method based on outlier analysis. The
method comprises two steps. First, we model each pollutant
variable pv at every reference station R using a Weibull
distribution f pv

R (X; λ, k) as stated in (4). Second, we evaluate
the measurements for each pv at each LCS l (numbered
in Table II) that belongs to a cluster R on the Weibull
distribution f pv

R (X; λ, k). Thus, we use the notation Lpv

{R,l}
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Fig. 4. Anomaly detection for LCS measurements.

Algorithm 1 Sensor Analysis: Failure and Anomaly Detection

1: Select Lpv
{R,l}

2: Define T1, T2 and P
3: Define probability range p for Q pv

R (p; λ, k)

4: Estimate λ and k for f pv
R (X; λ, k)

5: Compute Q pv
R (p; λ, k)

6: while Lpv
{R,l} operates do

7: Count C1
8: Count C2
9: if C1 ≥ T1 then

10: Lpv
{R,l}: failure mode

11: else if C1 < T1 then
12: Lpv

{R,l}: function and anomaly detection is activated
13: if C2 ≥ T2 then
14: Lpv

{R,l} is considered to be anomalous
15: else
16: Lpv

{R,l} functions properly
17: end if
18: end if
19: end while
20: if

N pv
l
N × 100% < P% then

21: Lpv
{R,l} is excluded from analysis

22: else
23: Lpv

{R,l} is included for analysis
24: end if

when referring to the measurements of a pv . For instance, the
LCS number 103 of pollutant variable O3, which belong to the
cluster R10 (see Table II), where can then use the notation
LO3
R10,103. If measurements of Lpv

{R,l} crosses the outlier line
consecutively for more than a threshold time T2 (in hours),
the sensor Lpv

{R,l} is assumed to be anomalous. In our study,
the outlier line refers to the quantile 0.99 (q99) of the Weibull
distribution Q pv

R (p; λ, k), as stated in (5).
For example, Fig. 4 illustrates the proposed anomaly detec-

tion applied for LO3
R10,103. In this figure, the Weibull distri-

bution is modeled at the reference station R10, labeled as
f O3
10 (X; λ, k) (left subfigure). In this example, the LO3

R10,103
measurement crosses the outlier line Q and continues for more
than the threshold time 3 h (i.e., T2 > 3, as shown on the
right subfigure). This situation is considered to be a sensor
anomaly. Note that in our analysis, we have chosen T2 to be
3 h as the threshold time. The selection of T2 is a user choice
and needs further field engineering and research work to agree
on a specific threshold.

Algorithm 1 presents our proposed method for identifying
a sensor failure and detecting an anomaly. In line 1, we select
Lpv

{R,l}, that is, a pollutant variable pv from an LCS l that
belongs to a cluster R. In line 2, we define T1, T2, and P .

Fig. 5. Individual analysis: sensor failure and anomaly.

In this line, the parameter T1 indicates sensor failure and
explains the maximum accepted hours for an LCS that does
not transmit data. T2 refers to the maximum accepted hours
for measurement Lpv

{R,l} crossing Q pv

R . The parameter P in
% refers to the maximum accepted percentage of missing
data from the total measurements. In line 3, we define p that
is the probability range for quantile function Q pv

R (p; λ, k).
In line 4, the algorithm uses maximum likelihood to estimates
parameters λ and k of Weibull distribution, f pv

R (X; λ, k) [see
(4)]. Line 5 uses the parameters of p, λ, and k (obtained
from the previous steps) and computes the quantile function
Q pv

R (p; λ, k).
From lines 6 to 19, Lpv

{R,l} operates. In line 7, the parameter
C1 counts the occurrence of consecutive missing data. In line 8,
the parameter C2 counts the occurrence number of Lpv

{R,l} mea-
surement (x pv

l ) crosses the Q line, that is, x pv

l > Q pv

R (p; λ, k).
The notation x pv

l is the measurement data point of pollutant
variable pv in a sensor l. In line 9, if C1, that is, the occurrence
of consecutive missing data is bigger of equal to the threshold
T1, then in line 10, Lpv

{R,l} is considered to be in a failure mode.
If C1 is smaller than T1 (line 11), then the Lpv

{R,l} functions
and anomaly detection method is activated (line 12). In lines
13 and 14, C2 is bigger or equal to T2, then Lpv

{R,l} is considered
to be anomalous. Otherwise, in lines 15 and 16, Lpv

{R,l} is
considered to function well. We exclude the sensor data from
analysis, if the ratio of the available Lpv

{R,l} data (N pv
l /N) is

less than the accepted percentage of missing data from the total
period of analysis ((N pv

l /N) × 100% < P) as stated in lines
20–24. Note that some sensor data are not missing because the
measurements of some pollutant variables are not available
in the LCSs. For example, some LCSs have been equipped
with the sensing units of PM10, PM2.5, and O3, but sensing
units for measuring other pollutants, such as CO and SO2 are
not attached in the LCS unit. Therefore, Algorithm 1 also
functions in providing information about which sensor data
are available adequately for then being used in data analytics.

The results generated from Algorithm 1 for all LCS failures
and anomalies are depicted in Fig. 5. The x-axis shows the
pollutant sensor type and the y-axis shows the number of
LCSs. The color cream indicates that the sensors function well.
The black color indicates that the sensors are in failure or in
anomaly modes, where Algorithm 1 detects and filters them
out. The sensors which are in anomaly or failure modes are
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Fig. 6. Time-series plots for PM10 (top plot) and PM2.5 (bottom plot) for
the three nearest LCSs to R10. (a) PM10. (b) PM2.5.

therefore recommended to be inspected manually. In addition,
Fig. 5 shows that almost all sensors for CO and SO2 are in
anomaly or failure modes (presented with black color), and
also more than half of sensors measuring NO2 have similar
situations. Due to this reason, in our work, we do not perform
deep analysis for these pollutant variables in Section IV.

IV. ADVANTAGES OF DENSE SENSOR DEPLOYMENT

This section explains the advantages of deploying dense air
quality sensors in city districts. The advantages include local
pollution monitoring, hotspots, and environmental analyses
explained in Sections IV-A–IV-C.

A. Local Pollution Monitoring
One of the key motivations for deploying dense LCSs in a

city district is to provide local pollution monitoring in high
resolution. For example, Fig. 6 depicts time-series plots for
the measurements of PM10 (top subfigure) and PM2.5 (bottom
subfigure) from the three nearest LCSs L to R10, between
March 1 and April 1, 2021. As shown in the figure, the nearest
two LCSs which are L18 (blue) and L72 (orange) follow the
PM10 and PM2.5 readings measured at R10 (red). Indeed, due
to the close distances of L18 (0.21 km) and L72 (0.39 km),
their PM10 and PM2.5 measurements are similar with the PM
concentrations measured at R10.

However, the measurements of the third nearest LCS L26
(green) which is located about 0.84 km from R10 do not follow
the PM readings measured at R10. This is particularly evident
from the period between March 1 and 13. During this period,
the measurements of both sensing units are different after
March 13, the readings of L26 start to follow the measurements
of R10 again. This is due to the fact that between March
1 and 13, the PM concentrations’ discrepancy between L26
and R10 occurs due to local emissions emitted next to L26.

Fig. 7. Median diurnal cycles for PM10 (top plot) and PM2.5 (bottom
plot) for the three nearest LCSs to R10. (a) PM10. (b) PM2.5.

As measurements are similar at both sensing units after March
13, we can safely conclude that the measurements of L26
between March 1 and 13 are not a sensor drift. Note that a
sensor drift takes place when the readings of an LCS contin-
uously generates data that does not follow the measurement
patterns of a reference station R.

Fig. 7 demonstrates the median diurnal cycles of PM10 (top
subfigure) and PM2.5 (bottom subfigure) for measurements
at R10 and its three nearest LCSs, that is, L18, L26, and
L72. These subfigures show that the median diurnal cycles
of PM10 and PM2.5 at R10 differ from the three LCSs. While
the median diurnal cycles of L18 (blue) and L26 (green) are
similar, the median diurnal cycle of L72 (orange) shows a
different pattern, that is, the lowest for PM10 and the highest
for PM2.5.

Considering that the LCSs (L) are accurate as presented in
the validation in Section III, the results show that the diurnal
cycles’ discrepancies between R10 and its three nearest L
may occur due to the existence of local pollution sources,
for example, from nearby vehicles emissions. The reason is
because R10 and the LCSs (L) around it are located in the
evaluation point environment (B) which monitor air quality
for each street in the Gulou. As described in Section II-A,
there are different environments where the LCSs are deployed
and each environment has its own air pollution profile, such
as environment (B) which presents variations in pollution
concentration caused by traffic. The results of time-series
and diurnal cycles (shown in Figs. 6 and 7) emphasize the
significance of dense sensors deployment as they are capable
of measuring local pollutant concentrations at high resolutions.

B. Pollution Patterns and Environmental Analysis
A dense air quality sensor deployment provides signifi-

cant data and enables the analysis of pollution patterns at
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Fig. 8. Median of diurnal cycles for sensing units deployed in the
evaluation environment (B). (a) PM10. (b) PM2.5. (c) O3.

local levels in city districts. For example, Fig. 8 illustrates
the median diurnal cycles for pollutants PM10, PM2.5, and
O3 for the evaluation environment (B). Note that the different
environments where the LCSs are deployed are explained in
Section II-A.

In Fig. 8, the lines (shown with different colors) represent
the median diurnal cycles of the measurements obtained from
R and different LCSs (L) deployed in environment (B). While
the red line (LCSs shown in all subfigures) shows the median
of diurnal cycles, the shaded area presents the 25%–75%
percentile of diurnal cycles for all LCSs (L) in the environment
(B). In the measurements in Fig. 8, however, the patterns
of median diurnal cycles are almost similar for the majority
of LCSs (L) and reference stations R, the median diurnal
cycle discrepancies still exist. The discrepancies would provide
valuable information by performing a proper investigation that
helps understand the air pollution sources and causes.

Fig. 8(a) shows that the median diurnal cycles of LCSs
(L) and R lie within the shaded area. Their concentrations
and patterns are also similar, in the range between 40 and
60 μg/m3. In this figure, the highest diurnal cycle of PM10
concentration is obtained from L5 (black), especially before
14:00. The reason would be the location of the sensor device

where it is installed with a high construction works in its sur-
roundings. In contrast, L7 (purple) shows that the lowest level
of the median diurnal cycle of PM10 presents the pollution
level of the location and environment where it is installed.

Fig. 8(b) and (c) shows that the median diurnal cycles
obtained from all LCSs L and R are almost similar and lie on
the shaded area, except for L118 (blue). These figures show that
the PM2.5 and O3 concentrations are very low at L118 because
this sensor device is located at a school and surrounded by
trees. Based on these results, the authorities who are in charge
of maintaining the deployed sensors can investigate and learn
from the location where L118 is installed, the reasons why the
pollution level (i.e., PM2.5 and O3 concentration) is low there
in this case.

In conclusion, having a dense air quality sensor network in
urban areas helps authorities: 1) to understand the pollutants’
variations in each area where the sensor is installed and
2) to influence policymakers and designers to improve the
environments in cities by learning from the least and highest
polluted environments.

C. Pollution Hotspot Analysis
An air pollution hotspot refers to an area where the pollu-

tion concentration level crosses a threshold level (defined by
authorities) for consecutive days [24]. One way to detect air
pollution hotspots in cities is to deploy dense air pollution sen-
sors. For example, Fig. 9 illustrates the hotspots of aggregated
air pollutants obtained from LCSs (L) and reference stations
R deployed in Gulou, Nanjing, China. Fig. 9(a) shows the
pollution hotspots for AQI, and Fig. 9(b) and (c) illustrates
hotspots for PM10 and PM2.5, respectively. The colored circles
in the subfigures in Fig. 9 indicate to different environmental
types as explained in Section II-A. The sizes of colored circles
also represent the pollution concentration levels.

Fig. 9(a) shows that majority of worst AQI hotspots are
presented by blue and red circles, while the highest hotspot
is shown by the blue-colored circle (in the middle of the
map). The color blue represents the areas with construction
work (C) and the color red refers to the evaluation points
(B) (i.e. the area where the sensors monitor air quality for
each street in the district). Fig. 9(b) illustrates the hotspots for
PM10 concentrations, where the highest PM10 concentrations
are dominated by construction sites (blue). These results are
expected because PM10 coarse particles are mainly sourced
from dust particles emitted through construction activities [34].
Fig. 9(c) depicts the hotspots for PM2.5 concentrations. It can
be seen that high PM2.5 concentrations mainly take place
at evaluation (red) and parallel (yellow) points. The parallel
points represent air pollution concentrations around the Shanxi
Road National Control Station. These results are also expected
because the environments presented by these colors are the
main roads in Gulou. Generally, the concentrations of PM2.5
fine particles are high on the roads, which are mainly sourced
from gasoline or diesel combustion emitted by motor vehicle
emissions [34].

For the pollution hotspots in the other types of environments
in Gulou, the results show that interestingly the sensors
which area placed on roadsides (green) do not capture high
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Fig. 9. Different hotspot levels of AQI, PM2.5, and PM10 measured via sensors network. The different colored circles represent different environments:
roadside (A- ), evaluation (B- ), construction (C- ), transport (D- ), parallel (E- ), quality control (F- ), reference station (R- ). (a) AQI. (b) PM10.
(c) PM2.5.

pollutant concentrations. Another conclusion would be that
most vehicles that move in the evaluation (red) and parallel
(yellow) points might experience traffic jams. In addition, the
vehicles which move on the city’s main roads (red) might
move smoothly which may result in less emission genera-
tion. Indeed, these results show that air pollution hotspots
analysis based on mapping the pollution concentration to the
environment types enables identifying pollution sources. The
information achieved from the results would also allow the
authorities to take proper actions to minimize the impact of
air pollution in those environments [35].

V. DISCUSSION

This section discusses potential improvements and some
applications obtained from the deployment of dense air quality
sensors network.

A. Potential Improvements
1) In-Field Sensor Calibrations: In-field sensor calibrations

are important procedures to ensure LCSs perform accurate and
reliable measurements. Even though LCSs undergo laboratory
calibration before deploying in the field, the fluctuations
in meteorological conditions and changes in anthropogenic
sources would lead to drifts in the calibrated sensors. Thanks
to ground-truth data obtained from reference air quality mon-
itoring stations that can be used to develop sensor calibration
models to improve the measurements of LCSs in a sensor
network [36].

2) Virtual Sensors: Virtual sensors enable the estimation of
air pollutant concentrations that are not measured by physical
sensors. For example, black carbon (BC) is known to be a
vital variable in air quality assessments. Unfortunately, the
instruments needed for measuring these pollutants are expen-
sive (e.g., a proper BC measurement setup is on the order of
approximately $50 000) [37]. Using machine-learning models
indeed enables the developing BC virtual sensors by training
the models on ground-truth data obtained from reference
instruments. Then, using the inputs from the measurements
of LCSs in a sensor network, the BC virtual sensors can be
activated and scaled up.

3) Sensors Network Faults Detection and Identification:
Sensors network faults detection and identification become
an important procedure to ensure sensors’ continuous oper-
ation. As described in Section III-C, we propose failure and
anomaly detection methods. However, our methods have not
been verified yet by evaluating them against the ground-truth
data. To achieve this, controlled experiments can be done by
installing LCSs and reference instruments side by side. The
experiments are important to collect more ground-truth sensor
data that can be used to develop fault detection and identifi-
cation methods [10]. Implementing these methods ensures the
continuous operation of LCSs in a network.

4) Data Fusion Methods: Data fusion methods based on
geostatistics can be used to merge air quality measurements
in a sensor network with spatial information obtained from
an urban-scale air quality model. The missing air quality
information (i.e., the spatial data gaps) usually occurs due to
sensor failure and uneven sensor deployment in a network.
Data fusion methods enable data integration between sensor
network data and modeling data obtained from urban-scale
air quality models, such as the Episode dispersion model [38]
and Enfuser model [39], which helps filling the air quality data
gaps in both space and time.

5) Data Communication and Computing Technologies: Data
communication and computing technologies are important
concerns in the deployment of LCSs in a network. Thanks to
the advancements in wireless and communication technologies
such as 5G networks which support the massive deploy-
ment of sensors and provide rapid computation through their
edge computers [40]. Indeed, using 5G for a sensor network
deployed in city areas enables data collection and process-
ing of sensors’ continuous measurements [41]. For example,
developed sensor calibration and virtual sensor models can
be deployed at large scales at the edge computing platforms
offered by 5G.

B. Current and Future Applications
In Section IV, we present several advantages in deploying

a dense air quality sensor network including local pollution
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monitoring, understanding pollution patterns and environmen-
tal analysis, and analyzing pollution hotspots. In addition to
these applications, here we discuss other potential applications
that can be derived from a dense air quality sensor network
deployment. One potential application of such a dense sensor
network is to develop green-path route maps using fine-grained
air quality information. These maps, for example, can be used
by pedestrians and cyclists to plan their journeys with the
cleanest air [42]. Sensor network also benefits the public with
additional information on particle pollution levels (PM2.5) in
the air, particularly during wildfires [43]. Furthermore, air
quality sensor network has been used as alert systems to
detect ambient odor concentrations within ports due to illegal
release from the degasification of liquid-carrying vessels or
unintended leaks [44].

It is expected that in the near future, air quality sensor
network deployment would generate profits and revenues
for the investors of air quality infrastructures and service
providers. The information obtained from such a sensor net-
work is expected to move toward sophisticated business mod-
els, as described in [6]. The total size of the global air quality
monitoring market which includes both reference stations,
LCS hardware, and services is estimated to reach $6.4 billion
in the next three years [45]. Therefore, any application that
is developed based on data obtained from a dense air quality
sensor network would offer benefits for the authorities and
organizations operating and managing the network.

VI. CONCLUSION

In this article, we present sensor validation methods and
data analysis for a dense air quality sensor network. We show
solutions to challenges in a large-scale sensor network deploy-
ment. We use data from a dense air quality sensor network
deployment, located in Nanjing downtown, China, that com-
prises 126 LCSs and 13 reference stations. Since the majority
of sensors deployed in the network are based on LCSs, they
are prone to have low-quality data.

Therefore, we propose three methods of sensor validation.
First, we perform a reliability investigation to evaluate all
LCSs in the network to observe if they provide reliable
measurements as a whole in comparison to the measurements
of all reference stations. Thus, we compare the measurements
between all LCSs and the reference stations by means of statis-
tical properties and correlation coefficients between pollutant
variables measured at both sensing units. Second, we perform
accuracy tests on a few of the LCSs which are nearest to
the reference stations. The accuracy tests are generalized to
the remaining LCSs in the sensor network as the LCSs are
based on the same sensing technology, as they are identical
units. Third, we perform failure and anomaly detection on
individual LCSs to evaluate which sensor functions properly
and generates reliable air quality data. From the validation
results, we conclude that the sensor network is reliable as
a whole and the accuracy tests indicate that the sensors for
PM10, PM2.5, and O3 are accurate to be used in the analysis.

Due to sensor failure and anomaly, we propose an algorithm
to filter sensor data for our data analysis. Based on data analy-
sis, we demonstrate that the dense air quality sensor network

generates high-resolution air quality data which benefit: 1 local
air pollution monitoring; 2) pollution patterns and environ-
mental analysis; and 3) pollution hotspot analysis. Finally,
we discuss potential approaches for improving the dense
sensor network in terms of technologies and applications.
We also discuss how the dense sensor network can generate
profits for investors of a dense sensor network. Naturally, there
is room for further improvements. For example, the effects of
meteorological factors, and especially those that affect dis-
persion such as wind speed and direction, and anthropogenic
factors, such as emissions from vehicles or heavy industry,
need further study and evaluation to better understand the
benefits and limitations in LCSs in a wide range of situations.
Nevertheless, our work has demonstrated that data captured
by LCS is generally accurate, precise, and consistent, closely
aligning with reference stations the vast majority of the time.
Our results pave the way toward broader adoption of LCS
networks to increase the coverage of air quality information
and to support new types of hybrid deployments for collecting
air quality data.
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