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Stochastic multicriteria acceptability analysis as a forest management 
priority mapping approach based on airborne laser scanning and field 
inventory data 
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H I G H L I G H T S  

• First spatially explicit Stochastic Multicriteria Acceptability Analysis (SMAA). 
• Potential management alternatives quantified by ALS-based pixel proxies. 
• A nearest neighbor approach enabled pixel-level SMAA. 
• SMAA estimated the most acceptable management and the strength of this decision. 
• Decisions differing from the preferences can identify hotspots for forest structure.  
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A B S T R A C T   

The mapping of ecosystem service (ES) provisioning often lacks decision-makers’ preferences on the ESs pro-
vided. Analyzing the related uncertainties can be computationally demanding for a landscape tessellated to a 
large number of spatial units such as pixels. We propose stochastic multicriteria acceptability analyses to 
incorporate (unknown or only partially known) decision-makers’ preferences into the spatial forest management 
prioritization in a Scandinavian boreal forest landscape. The potential of the landscape for the management 
alternatives was quantified by airborne laser scanning based proxies. A nearest-neighbor imputation method was 
applied to provide each pixel with stochastic acceptabilities on the alternatives based on decision-makers’ 
preferences sampled from a probability distribution. We showed that this workflow could be used to derive two 
types of maps for forest use prioritization: one showing the alternative that a decision-maker with given pref-
erences should choose and another showing areas where the suitability of the forest structure suggested different 
alternative than the preferences. We discuss the potential of the latter approach for mapping management 
hotspots. The stochastic approach allows estimating the strength of the decision with respect to the uncertainty in 
both the proxy values and preferences. The nearest neighbor imputation of stochastic acceptabilities is a 
computationally feasible way to improve decisions based on ES proxy maps by accounting for uncertainties, 
although the need for such detailed information at the pixel level should be separately assessed.   

1. Introduction 

The Ecosystem Service (ES) concept is widely used to communicate 
the connection of providing these services for human wellbeing and it 
has become subject to governance policies and practices to support 
sustainable provision of ESs (Mann et al., 2022). Many established 

decision support tools enable an understanding of the impacts of man-
agement and land-use changes on ESs in particular in terrestrial land-use 
policy sectors such as agriculture and forestry (Grêt-Regamey et al., 
2017). Nevertheless, considering ESs in forest management planning is 
not trivial (see, e.g., Knoke et al., 2021). Generally speaking, it is 
possible to focus on (1) data on the current provision of ESs, (2) models 
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expressing the change from current levels, or (3) preferences or prior-
ities for ES management (Nemec and Raudsepp-Hearne, 2013). We 
propose Stochastic Multi-Criteria Acceptability Analysis (SMAA; Lah-
delma et al., 1998; Lahdelma and Salminen, 2001) as an approach to 
consider the preferences in spatially-explicit management prioritiza-
tions of a Scandinavian forested landscape. In this context, ES-related 
proxy values are derived by data and models of earlier studies (Vauh-
konen and Ruotsalainen, 2017; Vauhkonen, 2018) and used as indirect 
measures of achieving management objectives, as explained below. We 
do not analyze the spatial balance between supply and demand of the 
ESs. 

Planning a forest landscape involves allocating management prac-
tices or silvicultural treatments optimally with respect to the specified 
management objectives. These choices determine the provision of ESs 
(Pukkala, 2016), as intensive orientation on timber extraction may 
result to negative impacts on non-timber ESs and biodiversity (Pohjan-
mies, 2018; Pohjanmies et al., 2021). Nevertheless, optimized man-
agement can balance between these objectives and produce feasible 
solutions (Pukkala, 2016), especially if large enough areas are consid-
ered (Pohjanmies, 2018). In any scale, the production possibilities of a 
forest are more efficiently used when making forest management de-
cisions at the level of individual map units such as pixels instead of 
predefined management units such as forest stands (Heinonen et al., 
2007). On these grounds, Vauhkonen and Ruotsalainen (2017) proposed 
prioritizing the landscape tessellated to pixels for ESs based on man-
agement. For example, managing areas prioritized to recreation by 
means of selective cuttings can both improve recreation and other values 
and produce limited amounts of timber (Silvennoinen et al., 2002; Miina 
et al., 2016) but, due to the management choice, provide all ESs 
differently than areas prioritized for timber production or set aside. 
Overall, it is acknowledged that same areas provide more than just one 
ES, but the planned management segregates the main ESs that can be 
provided in the near future in intensively (timber > other ESs) or 
extensively managed (timber < recreation and other ESs) or set aside 
areas (no timber production, but higher levels of ESs conflicting with 
timber production). 

The management prioritization depends on how forest owners 
evaluate ESs provided by their forests. If stakeholder preferences and 
production possibilities of the planning area are known, generic multi-
criteria decision analysis (MCDA) or optimization methods can be 
applied to determine optimal management based on discrete or 
continuous problem setting, respectively, as reviewed by Pukkala 
(2008) and Uhde et al. (2015) in forest planning contexts, and Lange-
meyer et al. (2016) regarding ESs more generally in land-use planning. 
In Northern Europe, >70 % of the forest area is privately owned (Weiss 
and Zivojinovic, 2020), and hundreds of thousands of forest owners 
make management choices independently. The owners’ management 
objectives related to ESs have been found challenging to elicitate, and 
overall require more research (Weiss et al., 2019; Juutinen et al. 2021; 
Nieminen et al., 2021). Even if exact preferences were unknown, at least 
relevant criteria or (complete or incomplete) rank order of the criteria 
can often be assumed (Kangas et al., 2015). Some MCDA tools can be 
applied with such uncertain, incomplete, or even inaccurate informa-
tion. For example, Stochastic Multicriteria Acceptability Analysis 
(SMAA; Lahdelma et al., 1998; Lahdelma and Salminen, 2001) allowed 
computing the probability of a certain alternative obtaining a given 
rank, therefore supporting the selection of the most recommendable 
forest management plan for unknown or partially known preferences 
(Kangas et al., 2003; but see Kangas, 2006). 

In spatial MCDA or optimization integrated to a Geographic Infor-
mation System (GIS) framework, land-use decisions are based on 
ranking the set of decision alternatives in the considered location(s) and 
choosing the best according to the decision makers’ preferences (Malc-
zewski and Rinner, 2015). Maps indicating the provisioning of forest ESs 
have been produced from remotely sensed forest inventory, structure, 
and habitat layers (e.g., Vauhkonen, 2018). Such maps may enable to 

spatially identify most important areas with respect to ESs (termed 
’hotspots’ as in Egoh et al., 2008; Schröter and Remme, 2016; Kangas 
et al., 2018), thus providing information for forest (Vauhkonen and 
Ruotsalainen, 2017) or other land-use prioritization (Koschke et al., 
2012; Verhagen et al., 2017; Honeck et al., 2020) and subsequent de-
cision analyses (Caglayan et al., 2021; Forsius et al., 2021). However, 
applications of the ES maps often lack aspects applied routinely in multi- 
attribute forest planning with conventional field inventory data (cf., 
Pasalodos-Tato et al., 2013; Uhde et al., 2015). First, the applications 
have mainly related to mapping the present state and not resulting in 
instructions of forest management that enhance the provisioning of the 
ESs preferred by the decision-makers. Second, even the inventory ap-
plications are highly focused; most recently, carbon-related ESs and 
biodiversity, while cultural services like recreation received less atten-
tion (Knoke et al., 2021; see also Grêt-Regamey et al., 2017, for similar 
notes on more general environmental decision making). Third, various 
uncertainties should be better addressed, particularly in spatially 
explicit analyses of ES maps aimed at decision making (Boerema et al., 
2017; Englund et al., 2017; Barton et al., 2018; Kangas et al., 2018). 

Taken together, the mapping of ES provisioning often lacks analyzing 
decision makers’ preferences on the ESs provided, although it can affect 
or even dictate the allocation of the ESs over the landscape. Many MCDA 
methods require preferences as numerical weights, reflecting acceptable 
trade-offs between decision criteria, but for many applications it is 
infeasible to assume that these values were strictly known. A number of 
generic methodological possibilities also exist for integrating related 
uncertainties into MCDA to improve the decision proposals (Kangas 
et al., 2015; Malczewski and Rinner, 2015). For instance, fuzzy and 
varying preferences have been taken into account attempting to find 
alternatives that outperform or dominate (e.g., Yatsalo et al., 2015). ES 
assessments incorporating uncertainty have used such outranking 
methods or deterministic MCDA methods augmented by sensitivity an-
alyses (Bryant et al., 2018). It is also possible to map locations of robust 
and more sensitive parameters (Ligmann-Zielinska and Jankowski, 
2014). 

To concretize the problem setting, consider a utility function U =
∑

wi × ui(ci), where w is the weight for criterion i and ui(ci) a (sub-utility) 
function that transforms the criterion values ci to utility-scale, which can 
be used to analytically evaluate and compare qualitative, quantitative 
and, e.g., spatial criteria (Kangas, 1993; Pukkala and Kangas, 1993; 
Store and Kangas, 2001), also for other than forest-related ESs (Musta-
joki et al., 2020; Marttunen et al., 2021). Both wi and ui(ci) can be 
assumed to be stochastic, and that way used to account for uncertainties 
(Alho and Kangas, 1997; Kangas et al., 2000). If probability distributions 
for the uncertain data can be obtained, a preferable approach is to 
include those in the analyses (Kangas et al., 2007; Convertino et al., 
2013). Another way to deal with this uncertainty is to vary weights wi to 
find out the distribution of decisions and determine the most acceptable 
alternative under different preferences (Lahdelma and Salminen, 2001). 
This SMAA methodology is reasoned oppositely to methods ranking 
alternatives with known wi: It explores the feasible weight space by 
repeated random sampling of wi to analyze the ranks of alternatives or 
derive weights that make an alternative the most preferred one. The 
underlying rank acceptability indices can be used to infer, not only the 
best (or worst) alternative, but also the strength of this prescription in 
terms of the volume of the affected weight space. 

Few earlier studies that developed methods to account for un-
certainties in expert maps have considered wi stochastically at the level 
of pixels for the mapping of robustness and sensitivity of the weights. 
Ligmann-Zielinska and Jankowski (2014) employed Monte Carlo simu-
lation to sample from distributions of criteria weights to produce maps 
showing both the averages and standard deviations of uncertain criteria. 
Areas with a high average value and either low or high deviation could 
then be prioritized with consensus or reservation, respectively; latter 
also as complementary areas for further analyses as in García Márquez 
et al. (2017). Vauhkonen (2018) suggested a possibility to consider the 

P. Rana and J. Vauhkonen                                                                                                                                                                                                                   



Landscape and Urban Planning 230 (2023) 104637

3

predictive distributions of ES-related proxies instead of just expected 
values to produce maps suited for decision-makers with different risk 
preferences. While possibly enhancing the information content of the 
maps, depending on implementation, the method may require sampling 
distributions for each pixel, which can be computationally demanding 
for large areas. The technique proposed by Ligmann-Zielinska and 
Jankowski (2014) also involved computations in order of 109 for the 
whole study site composed of 73,170 pixels. To be operational, the pixel- 
level uncertainty quantifications seem to need either spatial aggregation 
or numerical approximation approach to circumvent the need for 
supercomputing. 

We propose a new approach for forest management prioritization 
based on uncertain ES-related proxies at the pixel level over a landscape. 
The novelty is to make the detailed uncertainty quantification using 
SMAA for a set of sample plots and impute the results to the map pixels 
to make the analysis computationally feasible. The decision-makers’ 
management preferences were totally or partially unknown and sampled 
from a probability distribution. We focused on 1) estimating the strength 
of the decisions on forest use prioritization with respect to the uncer-
tainty in the preferences and 2) identifying areas where the suitability of 
the forest structure suggested different decisions than the preferences. 

2. Methods 

2.1. Study area and experimental data 

Our study area is located in Evo, southern Finland (61.19◦N, 
25.11◦E), which belongs to the southern boreal forest zone. The area 
encompasses managed to semi-natural and natural forests regarding 
their silvicultural history. Coniferous trees (Scots pine Pinus sylvestris 
and Norway spruce Picea abies) contribute > 80 % of the total growing 
stock in the study area, with the remaining contribution from deciduous 
trees (aspen Populus tremula, alders Alnus spp., birches Betula spp., 
rowan Sorbus aucuparia and willows Salix spp). The state-owned forest is 
managed with multiple objectives, including timber production, biodi-
versity conservation, recreation, and carbon sequestration. 

Airborne laser scanning (ALS) and field sample plot data were 
gathered from previous studies in the same area (see, Vauhkonen, 
2018). The ALS data were acquired on May 7, 2012, using a Leica ALS50 
scanner. The ALS flight was operated at an altitude of 2,200 m above 
ground level, which yielded a nominal ALS pulse density of 0.8 m− 2. 
These data were pre-processed and ground-classified to an open data 
product made available by the National Land Survey of Finland (2015). 
The data were downloaded as tiles of 3 × 3 km2, which were further 
quartered to facilitate the metric extraction. We demonstrate our 
empirical results with data retained for those quarter-tiles that con-
tained the field plots (see below). We removed data from within 20 m of 
all non-forest areas such as lakes, buildings, and roads using the same 
mask as Vauhkonen and Imponen (2016) based on an existing forest 
management planning map. As a result, our study area consisted of 
altogether 1,750 ha of forest land. 

The field sampling locations were determined by k-means clustering 
the area in terms of the Euclidean distance of five ALS metrics and 
selecting representative areas from each cluster, which was found to 
efficiently stratify the area according to the forest structural variation 
(Vauhkonen and Imponen 2016). A total of 102 circular field plots (9 m 
radius) also studied by Vauhkonen (2018) were considered as the field 
reference data. In an inventory campaign that took place from June to 
August 2014, the diameter-at-breast height (DBH) and species were 
observed for each tree with DBH ≥ 5 cm. The median tree of each plot 
was additionally measured for height. These observations were used in 
standard inventory equations and methods to derive a set of plot-level 
attributes as described by Vauhkonen (2018). The plot data are sum-
marized in Table 1. 

We used the derived plot-level attributes as inputs to expert models 
that predicted numeric scores for the management prioritization as a 

function of the forest mensurational attributes of the plots. We consid-
ered the following six indicators or proxies, which are the same as used 
by Vauhkonen (2018) and explained in more detail in that publication:  

1. Potential of the forest site for picking bilberry and cowberry, 
2. obtained as a unitless index-value using the expert models of Iha-

lainen et al. (2002).  
3. Visual amenity as a unitless index-value based on the expert model of 

Pukkala et al. (1988).  
4. Biodiversity as a unitless index-value, computed as basal area- 

weighted mean diameter × growing stock volume, scaled using 
dominant species-specific sigmoidal transformation functions and 
multiplied by the site fertility specific weights. The expert function of 
Lehtomäki et al. (2015) was applied as in Vauhkonen (2018).  

5. Carbon storage, in which the total stem volume was transformed to 
carbon (t/ha) using species-specific conversion factors of Karjalainen 
and Kellomäki (1996).  

6. Timber production potential as the soil expectation value (SEV, 
€/ha) predicted by the models of Pukkala (2005). The SEV is the 
discounted sum of the projected costs and profits from even-aged 
forest rotations, starting from bare land and continued in perpetu-
ity. The model of Pukkala (2005) uses descriptive statistics of the 
growing stock (mean diameter, basal area, number of stems, and age) 
and operational environment (price, interest rate, and temperature) 
to predict an average SEV of a high number of rotations. We used 
1300◦days as the temperature sum and computed our SEV as an 
average of applying interest rates of 1–4 % and the same saw-wood/ 
pulpwood price combinations as in the model fitting (Pukkala, 
2005). 

Many other models for the proxy values above could have been 
considered (cf., Miina et al., 2020). Nevertheless, the models for berry 
yields, visual amenity and carbon mentioned above were evaluated 
against other models by Turtiainen (2015), Silvennoinen (2017), and 
Lehtonen et al. (2004), respectively, and these studies do not suggest 
that alternative models would include other predictors or otherwise 
better account for the modeled phenomena. For biological diversity, 
proxy values based on forest mensurational data are required in the 
absence of detailed plant mapping data and we are not aware of alter-
native functions to Lehtomäki et al. (2015) compatible to our data. 
Finally, the SEV model of Pukkala (2005) is used in many studies to 
approximate the net present value from even-aged rotations repeated to 
infinity. 

Using the expert models above produced a different value range for 
every proxy that was normalized for joint priority ranking. We trans-
formed each indicator to vary between 0 and 1 similar to Vauhkonen 
(2018): we first applied a Box-Cox-transformation to force the indicators 
to comply with normally distributed values as close as possible, and then 
scaled the range of the values between 0 and 1 using the well-known 
min–max scaling. 

We extracted the ALS points for the 102 field reference plots and 
452,727 pixels of 16 × 16 m2 overlaid to the area as a regular grid with a 
cell size selected to comply with the size of the field plot. Using the point 
data from each of these computation units and different threshold values 

Table 1 
Characteristics of 102 field plots used in the analysis. STD − Standard deviation.  

Attributes Mean ± STD Range 

Total volume, m3/ha 200 ± 109 38–673 
− Pine 107 ± 90 0–359 
− Spruce 61 ± 93 0–464 
− Deciduous 31 ± 44 0–228 
Total carbon, ton/ha 67 ± 39 12–245 
Age, years 66 ± 37 11–186 
Diameter, cm 23 ± 7 9–43 
Dominant height, m 21 ± 5 12–36  
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for height to distinguish ground, shrub, and canopy layers, we calculated 
a total of 142 features describing the distributions of first, last, first of 
many, last of many, and only echoes of the ALS pulses (Table 2). 

2.2. Stochastic multicriteria acceptability analysis (SMAA) 

Our problem was to select the prioritized management for every 
forest plot. Each plot had n = 6 alternatives, represented for the i:th plot 
by a row vector of the proxy values xi = [uj(xi1), …, uj(xin)], where uj(.) 
are the Box-Cox-transformation functions described above to map the 
proxies j = 1, …, n into the range [0,1]. The priority rank of the l:th 
alternative was determined as an integer from the best (1) to the worst 
(6) rank as 

rank(l, xi, w) = 1 +
∑n

j=1ρ
(
wj × xij > wl × xil

)
,where the weight 

vector w represented the decision maker’s preferences on the alterna-
tives and ρ(true) = 1 and ρ(false) = 0. 

The SMAA method (Lahdelma et al., 1998; Lahdelma and Salminen, 
2001) explores the feasible weight space W to discover preferences that 
would give the specific alternative a certain rank. Realizations of w are 
sampled among the set of feasible weights such that 

w ∈ W =
{
w ∈ Rn

⃒
⃒wj ≥ 0 and 

∑n
j=1wj = 1

}
. 

In addition, the preferences can be assumed to be unknown or 
partially known. If the preferences are totally unknown, the weight 
vectors w are sampled from a uniform distribution. A complete or 
partially known importance order is modeled by omitting the weights 
that do not meet inequality constraints such as wj

1 > wj
2 ? wj

3 ? …? wj
n, 

where wj
1 is the weight for the most preferred alternative and ? denotes 

undetermined importance order among the other alternatives (Kangas 
et al., 2015). 

In SMAA, rank acceptability is then defined as the expected volume 
of feasible weights that result in rank r for an alternative proportional to 
the total volume of the weight space. In practice, this score can be 

computed by recording the ranks of the alternatives resulting from N =
10,000 draws of the weights from the random distribution (Section 2.3) 
and dividing the number of times the ranks were obtained by the total 
number of draws. The obtained values range from 0 to 1 and indicate the 
proportion of draws the alternative obtained the given rank. 

2.3. Nearest neighbor imputation of the SMAA-based rank acceptabilities 
to the map 

As motivated in the Introduction, stochastic analyses as described 
above would become unfeasible if computed at the level of each pixel in 
big pixel data. Our solution to make the analyses computationally 
feasible was to run the SMAA at the level of the reference field plots to 
produce the rank acceptability of the prioritized management (Fig. 1b). 
We searched for nearest neighbor plots for each pixel and used the 
nearest neighbor imputation (Fig. 1a) to populate each pixel with the 
SMAA result. 

The set of 10,000 random weights to be used in the SMAA of each 
reference plot was generated as follows. Given the set of n alternatives to 
be compared, simulate n-1 uniformly distributed random numbers that 
fell within the range [0,1]. Arrange the random numbers u(1), …, u(n-1) 
in a descending order, preceded by 1 and succeeded by 0, i.e., u(0) = 1 
and u(n) = 0. Compute the weight vector w by concatenating wj = u(j) – 
u(j + 1), j = 1, …, n. This way, it was possible to obtain weights ranging 
from low to high for any alternative (Kangas et al., 2015). 

We stored the plot-specific SMAA result to matrices of n × n, where 
the matrix elements indicated the number each alternative resulted to 
the given rank among the random weights. We produced these results 
assuming either neutral decision-makers’ preferences or that there was 
one most preferred alternative, but no other information about the 
importance order. These situations corresponded to sampling weights 
for the unknown vs complete or partially known importance orders, as 
described in Section 2.2., and resulted to different types of prioritiza-
tions of the map locations as shown in the Results. 

Using the yaImpute package of the R statistical environment 
(Crookston and Finley, 2008), we searched for nearest neighbors be-
tween the reference plots and grid cells in terms of the Euclidean dis-
tance of the 142 ALS features. First, we imputed the SMAA matrix to 
each of the grid cells from a single nearest neighbor plot. Second, we 
tested the possibility to employ matrices from more than one neighbor 
and demonstrated our results with three neighbors. In the latter case, the 
matrices were obtained as inverse distance weighted, i.e. each element 
of the SMAA matrix of the m:th nearest neighbor plot for a grid cell was 
multiplied by the term 

vm =

(
1

dm

)

/
∑

(
1
d

)

where d is the vector of distances to the k nearest neighbors, before 
summing up the k matrices for the grid cell. 

As indicated by Fig. 1(c-d), there are many alternative ways to 
interpret the rank acceptabilities (see also Kangas et al., 2015). We only 
used the first-rank acceptability values to select the alternative with the 
highest acceptability and determine the strength of this decision, but we 
discussed other possibilities. We visualized the results as maps and 
numerically compared the distributions in the reference and imputed 
data. 

3. Results 

3.1. Plot-level prioritization 

When the decision-makers’ preferences were assumed neutral, 39 % 
of the reference field plots were prioritized for cowberry, followed by 
timber (19 %), bilberry (18 %), biodiversity (16), carbon (8 %), and 
scenic beauty (1 %) (Table 3). When the decision-makers were assumed 

Table 2 
ALS features computed. Amount-column gives the total number of features in 
each predictor category as (number of features resulting from the described 
computation) × (number of ALS echo categories to which the computation was 
applied). The reader is referred to Vauhkonen (2018) for more details of the 
features.  

Abbreviation Description Amount 

Hmax Maximum height of echoes above 0.5 m. 1 × 5 
Hmean Mean height of echoes above 0.5 m. 1 × 5 
Hstd Standard deviation of echoes heights above 0.5 m. 1 × 5 
H5–95 Height of the echoes at the 5 %, 20 %, 30 % … 95 % 

percentile above 0.5 m. 
11 × 5 

D5–95 Proportional density of the echoes at the 5 %, 20 %, 
30 % … 95 % percentile above 0.5 m. 

11 × 5 

VegRat The proportion of all ALS echoes above 0.5 m used to 
describe vegetation cover as in Korhonen et al. 
(2008). 

1 × 5 

VegRatshrub The proportion of first echoes above 5 m and the 
proportion of all echoes above 0.5 m but below 5 m, 
used to describe the shrub layer (Vauhkonen and 
Imponen, 2016). 

2 

VegRatunderstory The proportion of all ALS echoes returned above 0.5 m 
but below the height of the 60th percentile and its 
standard deviation used to describe intermediate to 
understory vegetation (Vauhkonen and Imponen, 
2016). 

2 

DIFFx-y The absolute difference between mean heights of the 
two echo categories as Diffx–y where x–y denotes the 
height difference of two echo categories, computed 
without a height threshold and used to discriminate 
coniferous or deciduous dominated forests (Liang 
et al., 2007). 

4 

PROPx/y The ratio of the number of echoes in different 
categories used to describe differences in species and 
size properties as in Ørka et al. (2012) and Vauhkonen 
et al. (2014). 

4  
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to prefer a specific alternative, 88 to 97 % of the plots were prioritized 
for that alternative. For example, when the decision-maker preferred 
timber production more than others, 97 % of plots were prioritized 
accordingly. Scenic beauty had the lowest (88 %) priority rate, which 
means that 12 % of the plots were prioritized for other alternatives, even 
if the decision-maker’s preferences were highest for scenic beauty. 

In the plots where the prioritization did not follow the preferences, 
the forest structure (evaluated by the ES proxy) was stronger in favor of 
another alternative than the preference. Example ALS transects of these 
plots are visualized in Fig. 2. Forests prioritized most closely according 
to the preference value are shown on the upper-left to the lower-right 
diagonal of the matrix (Fig. 2). The remaining cells of Fig. 2 represent 
example forests that were prioritized for other alternatives even if the 
decision-maker preferred this alternative. For instance, for a decision- 
maker preferring carbon storage, an “ideal” forest for this preference 
in terms of the CARB proxy is found from the diagonal (CARB-CARB 
intersection in Fig. 2). Other plots shown on that row were prioritized 
for the alternatives indicated in the columns because of their forest 

structure as implied by the specific proxy. Correspondingly, the other 
plots shown on the CARB column were prioritized for this alternative 
due to their forest structure regardless that their decision-makers 
preferred more the other alternatives shown as the row index. 

3.2. Landscape-level prioritization using k-NN (k = 1 or k = 3) 

The imputation of the SMAA results from the reference plots pro-
duced a map of the first rank acceptability index (Fig. 3), which showed 
the preferred alternative and the strength by which it was preferred at a 
given location. According to the plot-level results presented above, 
analyzing those alternatives that were selected for a plot, regardless of 
the preferences, could produce a way to map locations where the forests 
should be managed differently from the decision-makers’ general pref-
erences due to more favorable forest structure for another alternative. 
Such hotspot map was produced as the digest of the six alternative maps 
showing the locations selected for another alternative that was preferred 
(k = 1) (Fig. 4). The individual maps, from which Fig. 4 was digested, are 

Fig. 1. A schematic overview of the SMAA approach to analyze landscape composed of pixels. The k-NN search was used to find (here, k = 3) nearest neighbor plots 
for every pixel (a), to impute the matrix showing how many per cent of the N = 10,000 randomly sampled criteria weights supported the decision alternatives in the 
reference plots (b). This matrix is typically interpreted by visualizing the rank acceptability indices (c) or sorting them cumulatively (d). Refer to Tables 3–5 for the 
abbreviations of the ESs considered. 

Table 3 
The proportion of reference plots prioritized for the six alternatives based on the first rank acceptability index when decision-makers were assumed neutral or had the 
highest preference on the indicated alternative. The numbers give the percentage prioritized for the alternatives based on joint analysis of the preferences and proxies. 
Bolded values indicate the alternative preferred by the decision-maker.  

ESs Most preferred alternative and % of plots prioritized for an alternative under these preferences  

Neutral BILB COWB AMEN BIOD CARB TIMB 

1. Suitability for bilberry picking (BILB)  17.6 92.2 0 0 3.9 2.9 1.0 
2. Suitability for cowberry picking (COWB)  39.2 3.9 93.1 2.0 1.0 2.0 1.0 
3. Scenic beauty (AMEN)  1.0 0 0 88.2 0 0 1.0 
4. Biodiversity conservation (BIOD)  15.7 2.9 5.9 2.0 92.2 0 0 
5. Carbon storage (CARB)  7.8 1.0 1.0 2.9 0 95.1 0 
6. Timber production (TIMB)  18.6 0 0 4.9 2.0 0 97.1  

P. Rana and J. Vauhkonen                                                                                                                                                                                                                   



Landscape and Urban Planning 230 (2023) 104637

6

shown in the Supplementary material (Appendix A). In addition, 
Appendices B–D show the results corresponding to Figs. 3, 4, and Ap-
pendix A, with k = 3. 

Similar statistics as for the reference field plots were produced to 
analyze the maps numerically. When the decision-makers were assumed 
neutral, the k-NN imputation with k = 1 prioritized 41 % of the land-
scape for cowberry, followed by bilberry (17 %), timber (17 %), biodi-
versity (15 %), carbon (8 %), and scenic beauty (3 %) (Table 4). When 
the decision-maker had a specific preference, the prioritized area varied 
from 84 to 97 % and, as above, the remainder represents the area 
prioritized for another alternative based on their favorable proxy values. 
For example, when the decision-maker preferred cowberry more than 
others, 97 % of the area was prioritized for that alternative. Scenic 
beauty had the lowest (84 %) prioritized area compared to when 
decision-makers had other preferences. 

When increasing the considered numbers of neighboring plots to a k- 
NN (k = 3) analysis, with neutral decision-makers’ preferences, 37 % of 
the landscape was prioritized for cowberry, followed by timber (18 %), 
carbon (16 %), bilberry (15 %), biodiversity (13 %), and scenic beauty 

(1 %) (Table 5). The area prioritized for the most preferred alternative 
varied from 94 to 100 %. For example, when the decision-maker prefers 
cowberry more than others, 100 % of plots were prioritized for that 
alternative. 

A comparison of the imputation results based on increasing the 
number of nearest neighbors from k = 1 to k = 3 suggests changes in the 
proportion of the area prioritized for the different alternatives (Tables 4 
and 5). A map comparison (Fig. 5) indicated a higher degree of aggre-
gation of the neighboring pixels with the same alternative occurred in 
the map produced by k = 3 as compared to k = 1. Especially, the pro-
portion of carbon storage increased in the k = 3 imputed map compared 
to the k = 1 imputation (Fig. 5). There were two big areas where the 
prioritized management changed completely, which is explored in the 
Discussion. 

4. Discussion 

Our study is a continuation of Vauhkonen (2018) and Vauhkonen 
and Ruotsalainen (2017) to use proxy maps for prioritizing forest 

Fig. 2. Examples of prioritization decisions based on the preferences vs proxy values. The row indices indicate the most preferred alternative assumed in the SMAA 
analysis. The plots located on the upper-left to the lower-right diagonal represent an “ideal” forest for each alternative as that receiving the highest first rank 
acceptability value. The remaining cells show forests that were prioritized for the alternatives indicated by the row indices even if the decision-maker preferred the 
alternative of the column index. The cross (×) symbol depicts that no plots were prioritized according to the row index when the decision-maker had the preference 
indicated in the column index. 

P. Rana and J. Vauhkonen                                                                                                                                                                                                                   



Landscape and Urban Planning 230 (2023) 104637

7

Fig. 3. The prioritized alternative for a neutral decision-maker and the first rank acceptability index on which the prioritization was based (k = 1). The scale of each 
color ramp ranges from 0 (low) to 1 (high). 
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management so that their provisioning can be enhanced. Similar to 
those studies, we considered timber, carbon storage, biological di-
versity, and recreational values (composed of visual amenity and suit-
ability for berry picking), for which the management was prioritized. As 
explained in Section 1, this division was reasoned from the perspective 
of segregating management and not aiming to strictly follow an ES 
classification system. Similar to Englund et al. (2017), citing Costanza 
(2008), we find motivated that “there are many useful ways to classify 

ecosystem goods and services, and that the goal should not be to have a 
single, consistent system, but rather a pluralism of typologies that can be 
useful for different purposes”. It is acknowledged that a different set of 
forest ESs could have been considered in the analyses, especially if it was 
known that the area in question was under integrated management for 
the provisioning of ESs typical to rural or urban areas (cf., Tammi et al., 
2017). Also, alternative indicators for forest ESs, such as different 
models for berry yields (Miina et al., 2020) or habitat suitability of 

Fig. 4. Hotspot map, i.e., the digest of 6 maps showing the locations selected for another alternative regardless of the assumed highest priority (k = 1).  
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specific species, could be used (cf., Pukkala, 2016). In all, our example 
should be sufficiently illustrative on applying a SMAA-based prioriti-
zation for multiple objectives, where the exact set of ESs and their in-
dicators can be changed depending on the MCDA task at hand. 

The novelty of the present study was to account for the decision- 
makers’ preferences as stochastic distributions in the pixel-level ana-
lyses. Even the real-world decision-makers are often unaware or may not 
know exactly how much they value or prefer alternative ESs. Our pro-
posed approach utilized the SMAA (Lahdelma et al., 1998; Lahdelma 
and Salminen, 2001) approach to sample from unknown or partially 
known weight space. Somewhat resembling approaches based on the 
fuzzy logic (Biber et al., 2021) and SMAA (Pukkala, 2021) were recently 
presented for other ES evaluations. While the SMAA approach itself has 
been used in more than a hundred articles published between 1998 and 
2017 (Pelissari et al., 2020), this is, to our best knowledge, the first 
spatial SMAA approach. 

The examples by Ligmann-Zielinska and Jankowski (2014), García 
Márquez et al. (2017) and Vauhkonen (2018) suggested benefits from 
including uncertainties in the map analyses of the above ESs and pos-
sibilities to do this by means of Monte Carlo simulations and similar 
techniques. These approaches bear a considerable computational 
burden in processing big data formed by the map units. We circum-
vented this problem by imputing the SMAA matrices from the plots to 
the pixels. We demonstrated two types of maps based on operating the 
SMAA in the reference plots: (1) prioritization maps (Fig. 3) showing the 
alternative that a decision-maker with given preferences should choose, 
and the strength of this decision as the degree of the first rank accept-
ability in a pixel (Fig. 3); and (2) a hotspot map that was formed as a 
digest of maps showing alternatives that should have been selected 
because their specific proxies surpassed the preferences (Fig. 4). The 
former type of map can be used similar to those derived by Ligmann- 
Zielinska and Jankowski (2014) to determine areas with a high value 
and either low or high deviation to be prioritized with consensus or 
reservation, respectively. The latter map can be useful in identifying 
areas where the forest structure favored another alternatives than the 
preferences and could be therefore checked for potential as hotspots for 
diversifying the management of the landscape. The stochastic approach 
allowed estimating the strength of the decision with respect to the un-
certainty in both the proxy values and preferences. Producing the maps 
by means of the nearest neighbor imputation does not suffer from 

similar computational burden as compared to Ligmann-Zielinska and 
Jankowski (2014). 

We emphasize that this is the first study applying SMAA for the above 
purpose so that the studied setup likely includes alleviations that should 
be re-examined in later studies. The performance of the k-NN method 
depends on the parameterization of the method with respect to the 
available reference data. We note that a very similar distribution of al-
ternatives was produced by imputing the rank priorities of the neutral 
decision-maker from field plots using k = 1 (cf., Tables 3 and 4 of plot- 
level and landscape-level priorities, respectively). This was expected as 
Vauhkonen and Imponen (2016) had determined the field sample plot 
locations by selecting evenly according to the Euclidean distance, which 
we also used instead of many alternative distance metrics (cf., Crookston 
and Finley, 2008). Producing a similar landscape from the plots origi-
nally selected from that landscape, although using different ALS metrics 
and approach was, therefore, a sanity check of the method. However, 
there may be several reasons to weight observations in terms of the 
distances, for example. We propose that the optimal k-NN parameteri-
zation for imputing SMAA matrices is studied in data selected differently 
and using methods applied for diameter distribution studies (Maltamo 
et al., 2009; Räty et al., 2018), which require multicriteria consider-
ations on the performance of the method and therefore conceptually 
resemble our analyses. 

Although the number of our field reference plots (102) can be 
considered sufficient in the light of findings by Maltamo et al. (2009), for 
example, the k-NN method cannot extrapolate and evaluating the 
mapping accuracy of our method is only relevant in broader reference 
data. Fig. 5 indicates peculiarities that originate from the lack of fully 
representative reference data for the entire area. Fig. 5 shows two big 
areas, where the prioritized management changed completely as a result 
of imputing with k = 3 instead of k = 1. When these areas were evalu-
ated against publicly available aerial photographs of the area, both of 
them were found to be treeless areas: one due to a clear-felling and 
another was a poorly productive mire forest next to a peatland pond. No 
close-to-treeless areas were present in the reference data (cf., Table 1), 
which explains the change and suggests that results for these areas may 
be artifacts that originate from the lack of representative reference data. 
Nevertheless, in a mapping exercise, the imputation had to be done to 
the entire area with the nearest neighbors available in the reference 
data. In our data, the increased proportion of carbon storage in 

Table 4 
The proportion of land prioritized for the alternatives based on the nearest neighbor imputation (k = 1) of the first rank acceptabilities when decision-makers are 
neutral or prefer specific alternative. Bolded values indicate the alternative preferred by the decision-maker.  

Ecosystem services Most preferred alternative and % of pixels prioritized for an alternative under these preferences  

Neutral BILB COWB AMEN BIOD CARB TIMB 

1. Suitability for bilberry picking (BILB)  17.1  88.9 0  0.0  2.0  1.2  0.5 
2. Suitability for cowberry picking (COWB)  40.6  6.9 96.5  7.8  0.2  10.1  10.0 
3. Scenic beauty (AMEN)  2.5  0.0 0.0  84.4  0.0  0.0  0.3 
4. Biodiversity conservation (BIOD)  14.9  2.1 3.3  1.3  95.7  0.0  0.0 
5. Carbon storage (CARB)  7.8  2.1 0.2  4.0  0.0  88.6  0.0 
6. Timber production (TIMB)  17.0  0.0 0.0  2.6  2.2  0.0  89.3  

Table 5 
The proportion of land prioritized for the alternatives based on the nearest neighbor imputation (k = 3) of the first rank acceptabilities when decision-makers are 
neutral or prefer specific alternative. Bolded values indicate the alternative preferred by the decision-maker.  

Ecosystem services 0Most preferred alternative and % of pixels prioritized for an alternative under these preferences  

Neutral BILB COWB AMEN BIOD CARB TIMB 

1. Suitability for bilberry picking (BILB)  15.2  96.9  0.0  0.0  1.1  0.0  0.0 
2. Suitability for cowberry picking (COWB)  37.4  1.3  99.6  1.7  0.4  0.9  1.1 
3. Scenic beauty (AMEN)  0.9  0.0  0.0  93.8  0.0  0.0  0.0 
4. Biodiversity conservation (BIOD)  13.4  0.5  0.5  0.0  98.1  0.0  0.0 
5. Carbon storage (CARB)  15.5  0.6  0.0  0.4  0.0  99.1  0.0 
6. Timber production (TIMB)  17.6  0.7  0.0  4.1  0.4  0.0  98.9  
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Fig. 5. A map comparison of the effect of neighborhood in the k-NN 
imputation for producing the landscape-level results. Two areas, delin-
eated by red and blue rectangles from the whole landscape shown in the 
middle, are highlighted in the top and bottom, respectively. The sub-
figures a vs b on the top row and c vs d on the bottom row show results 
for k = 1 vs k = 3, respectively. The scale of each color ramp ranges 
from 0 (low) to 1 (high). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this 
article.)   
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imputations with k = 3 (cf., the neutral column of Tables 4 and 5) can be 
judged as exaggeration, reasoned by the discussion above. It reinforces 
the indication by Kangas et al. (2018) on how harmful the non-random 
errors in the data can be for trade-off analyses between different ESs. 

We mapped the first-rank acceptability but note that SMAA produces 
many alternative ways to interpret the results (Fig. 1c-d). In particular, 
acceptability analyses consider the weights that support a certain 
alternative rather than discovering which alternative is preferred using 
certain weights (Kangas et al., 2015). We did not analyze the weights 
resulting to the first-rank acceptabilities but note that spatial optimi-
zation approaches (e.g., Heinonen et al., 2007), which require prefer-
ence information already for determining the optimization task, could 
benefit from the feasible weights produced by SMAA. Overall, many 
additional quantifications could be produced assuming stochastic dis-
tributions even for individual pixels (Ligmann-Zielinska and Jankowski, 
2014) that enables considering risk preferences (risk aversion) of a 
decision-maker (Vauhkonen, 2018). These analyses, carried out at a sub- 
stand-level, may allow more efficiently using the production possibil-
ities of the forest (Heinonen et al., 2007). However, the added benefit of 
these quantifications should obviously be studied as there is a risk of 
“too big data”, meaning an increased computational cost but a low 
utility of these quantifications. 

5. Conclusions 

We described incorporating decision-makers’ preferences, quantified 
as stochastic distributions, into a management prioritization of a Scan-
dinavian boreal forest in a realistic, computationally feasible, and 
spatially explicit manner. The nearest-neighbor imputation was used to 
derive landscape-level maps from plot-level reference data, where the 
decision-makers’ preferences were assumed totally or partially un-
known and sampled from a probability distribution. We showed the 
potential to derive two types of maps based on first-rank acceptability 
indices for the forest use prioritization: one showing the preferred 
alternative and strength for a decision-maker with neutral preferences 
and another showing identified areas where the suitability of the forest 
structure suggested different alternatives than the preferences. When 
field reference data are available, applying the proposed approach can 
be done based on publicly available ALS data, which is helpful for the 
management planning of that landscape. 
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Caglayan, İ., Yeşil, A., Kabak, Ö., & Bettinger, P. (2021). A decision making approach for 
assignment of ecosystem services to forest management units: A case study in 
northwest Turkey. Ecological Indicators, 121. https://doi.org/10.1016/j. 
ecolind.2020.107056 

Convertino, M., Baker, K. M., Vogel, J. T., Lu, C., Suedel, B., & Linkov, I. (2013). Multi- 
criteria decision analysis to select metrics for design and monitoring of sustainable 
ecosystem restorations. Ecological Indicators, 26, 76–86. https://doi.org/10.1016/j. 
ecolind.2012.10.005 

Costanza, R. (2008). Ecosystem services: Multiple classification systems are needed. 
Biological Conservation, 141, 350–352. https://doi.org/10.1016/j. 
biocon.2007.12.020 

Crookston, N. L., & Finley, A. O. (2008). yaImpute: An R Package for kNN Imputation. 
Journal of Statistical Software, 23, 1–16. https://doi.org/10.18637/jss.v023.i10. 

Egoh, B., Reyers, B., Rouget, M., Richardson, D. M., Le Maitre, D. C., & van 
Jaarsveld, A. S. (2008). Mapping ecosystem services for planning and management. 
Agriculture, Ecosystems and Environment, 127, 135–140. https://doi.org/10.1016/j. 
agee.2008.03.013 

Englund, O., Berndes, G., & Cederberg, C. (2017). How to analyse ecosystem services in 
landscapes—A systematic review. Ecological Indicators, 73, 492–504. https://doi. 
org/10.1016/j.ecolind.2016.10.009 

Forsius, M., Kujala, H., Minunno, F., Holmberg, M., Leikola, N., Mikkonen, N., … 
Heikkinen, R. K. (2021). Developing a spatially explicit modelling and evaluation 
framework for integrated carbon sequestration and biodiversity conservation: 
Application in southern Finland. Science of the Total Environment, 775. https://doi. 
org/10.1016/j.scitotenv.2021.145847 
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for “The recreational use of nature in 2010”). Working Papers of the Finnish Forest 

P. Rana and J. Vauhkonen                                                                                                                                                                                                                   

https://doi.org/10.1016/S0378-1127(99)00221-2
https://doi.org/10.1016/S0378-1127(99)00221-2
https://doi.org/10.1007/BF00625615
https://doi.org/10.1007/s40725-021-00138-7
https://doi.org/10.1093/forestry/cpn018
https://doi.org/10.1016/j.ecolind.2011.12.010
https://doi.org/10.1016/j.ecolind.2011.12.010
https://www.jstor.org/stable/3088639
https://www.jstor.org/stable/3088639
https://doi.org/10.1016/S0377-2217(97)00163-X
https://doi.org/10.1016/j.envsci.2016.02.013
https://doi.org/10.1371/journal.pone.0135926
https://doi.org/10.1371/journal.pone.0135926
https://doi.org/10.1016/j.foreco.2003.07.008
https://doi.org/10.1016/j.foreco.2003.07.008
https://doi.org/10.1016/j.envsoft.2014.03.007
https://doi.org/10.1016/j.envsoft.2014.03.007
http://refhub.elsevier.com/S0169-2046(22)00286-9/h0185
http://refhub.elsevier.com/S0169-2046(22)00286-9/h0185
https://doi.org/10.1080/02827580903362497
https://doi.org/10.1080/02827580903362497
https://doi.org/10.1016/j.envsci.2022.02.032
https://doi.org/10.1007/s00267-021-01501-x
https://doi.org/10.1007/s00267-021-01501-x
https://doi.org/10.1007/s10342-016-0972-9
https://doi.org/10.1007/s40725-020-00130-7
https://doi.org/10.1016/j.ecoser.2019.101049
https://doi.org/10.1016/j.ecoser.2019.101049
http://2015
https://doi.org/10.1007/s10531-012-0406-z
https://doi.org/10.1007/s13280-021-01530-0
https://doi.org/10.1007/s13280-021-01530-0
https://doi.org/10.5589/m12-021
https://doi.org/10.5589/m12-021
https://doi.org/10.5424/fs/2013222-03063
https://doi.org/10.5424/fs/2013222-03063
https://doi.org/10.1007/s10479-019-03151-z
https://doi.org/10.1007/s10479-019-03151-z
http://refhub.elsevier.com/S0169-2046(22)00286-9/h0250
http://refhub.elsevier.com/S0169-2046(22)00286-9/h0250
http://refhub.elsevier.com/S0169-2046(22)00286-9/h0250
https://doi.org/10.1007/s10342-020-01348-7
https://doi.org/10.14214/ma.5778
https://doi.org/10.1007/978-1-4020-6759-4_6
https://doi.org/10.1007/978-1-4020-6759-4_6
https://doi.org/10.1186/s40663-016-0068-5
https://doi.org/10.1007/s11676-021-01321-z
https://doi.org/10.1080/02827589309382802
https://doi.org/10.1080/02827589309382802
https://doi.org/10.1080/02827588809382538
https://doi.org/10.1080/02827588809382538
https://doi.org/10.1007/s13595-018-0711-0
https://doi.org/10.1007/s10980-015-0258-5
https://doi.org/10.14214/df.242
https://doi.org/10.14214/df.242
https://doi.org/10.1080/028275802753742936
https://doi.org/10.1080/028275802753742936
https://doi.org/10.1016/S0169-2046(01)00120-7
https://doi.org/10.1016/j.ecoser.2016.11.008
https://doi.org/10.14214/df.185
https://doi.org/10.1007/s00267-015-0503-3
https://doi.org/10.1007/s00267-015-0503-3
https://doi.org/10.1186/s40663-018-0143-1
https://doi.org/10.1093/forestry/cpw011
https://doi.org/10.1016/j.foreco.2016.12.005
https://doi.org/10.1080/02827581.2013.813063
https://doi.org/10.1080/02827581.2013.813063
https://doi.org/10.1111/cobi.12872
https://doi.org/10.1016/j.forpol.2018.10.006
https://doi.org/10.1080/18756891.2015.1023586


Landscape and Urban Planning 230 (2023) 104637

13

Research Institute 212, http://www.metla.fi/julkaisut/workingpapers/2011/ 
mwp212.htm. 

P. Rana and J. Vauhkonen                                                                                                                                                                                                                   


