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Abstract—Dangers associated with poor air quality are driving
deployments of air quality monitoring technology worldwide.
Having a comprehensive understanding of the health effects
of pollutants requires understanding both the distribution and
dispersion of pollutants in the environments, but currently
this information is highly difficult to capture. This article
presents a vision for city-scale air pollution monitoring that
uses unmanned aerial vehicles (UAVs) to complement current
ground and infrastructure-based measurements with a vertical
profile of pollutants. We highlight the key requirements and
research challenges, demonstrate the benefits UAVs bring through
measurements from an industrial and a residential location, and
establish a research roadmap for the path forward.
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I. INTRODUCTION

Reducing air pollution is one of the grand challenges of
our time as poor air quality has significant economic impacts,
is linked with a wide range of diseases, and affects millions
of people worldwide. Mitigating air pollution and the prob-
lems associated with it requires detailed information about
pollutant concentrations and their dispersion within the urban
environment. Current solutions, such as professional-grade
measurement stations [1] and low-cost sensors [2], capture
only the pollution distribution close to ground level without
being able to capture the vertical distribution of pollutants
or to explain the dispersion of pollutants in the environment.
For example, exhausts from industrial sites form a vertical
column of pollutants which wind and weather disperse around
the urban environment [3], and urban canyons resulting from
buildings can magnify or reduce the dispersion of pollutants
depending on wind direction [4]. Having a comprehensive
understanding of the health risks and other effects of pollu-
tants thus requires capturing also the vertical distribution of
pollutants as accurately as possible.

This article contributes a vision of UAV-assisted city-scale
air quality monitoring where UAVs are used to support other
measurements by providing information about the vertical

distribution and potential dispersion mechanisms of pollutants.
In the vision, shown in Figure 1, UAVs carrying air quality
sensors work in coordination to collect pollution measure-
ments and connect this information with measurements col-
lected by ground and infrastructure-based sensors. UAVs have
significant potential to support air quality monitoring as they
can cover large areas rapidly and capture information that is
complementary to those captured by existing solutions. UAVs
also offer new opportunities for atmospheric studies, e.g., on
understanding urban dispersion mechanisms, that can increase
the collective understanding of pollutants [5].

Existing works on the use of UAVs for air quality mon-
itoring have demonstrated the technical feasibility of the
monitoring [6], [7] or developed solutions for dedicated do-
mains such as forest fires [8] without establishing UAVs as a
mechanism that can support city-scale monitoring and work
together with existing monitoring solutions. Indeed, existing
solutions collect measurements offline without being able to
provide real-time information of the changes in pollutant
concentrations within the city. Having access to detailed real-
time information is essential for understanding the overall
pollution situation, for mitigating long-term health effects, and
for reacting to sudden changes in pollutant concentrations,
e.g., as a result of weather or industrial leaks. Realizing the
vision of city-scale monitoring requires addressing several
technological and methodological challenges. For example,
ensuring the information is useful for city-scale modeling
requires support for coordinating the data collection efforts.
There are system design challenges in ensuring UAVs can
capture high quality air quality information, and there are
methodological challenges in ensuring the UAVs can capture
information that meets scientific criteria and that is useful
for deriving actionable insights. Besides presenting the vision,
the paper highlights key research challenges, reflects on the
current state-of-the-art, and establishes a research roadmap.

The practical benefits of the vision are demonstrated through
benchmark measurements collected from two locations (resi-
dential and industrial) using a commercial off-the-shelf UAV
and a commercial portable air quality sensing solution. The
results highlight the importance of vertical modeling, demon-
strating how pollutant distributions differ both vertically and
across locations, and how there are significant differences
from a background profile provided by a professional-grade
measurement station. Capturing these differences is essential
for accurate modeling and estimation of dispersion effects and



Fig. 1. Vision for air pollution sensing using UAVs at different verticals.

for providing actionable and accurate air quality information.

II. REQUIREMENTS

Realising the vision of UAV supported city-scale air pollu-
tion monitoring requires advances in sensors, algorithms, and
hardware to overcome limitations of current technology. The
key requirements for realizing this vision are reflected below.
Pollution Detection, Identification and Localization: Having
a comprehensive view of the air quality of a city requires
information about different types of pollutants. Air quality
sensors typically focus on particulate matter and gaseous
pollutants (e.g., CO, NO, NO2, O3, SO2), but also other types
of pollutants need to be captured to ensure health hazards are
reliably monitored. For example, fugitive emissions compris-
ing of undetected and often unintended leaks or chemical or
organic compounds are a major health hazard and monitoring
their presence is vital. Visualization of these measurements
(e.g., 3D maps) is also required to understand the pollutant
situation and to derive actionable insights. Visualizations are
also helpful for remote operators to coordinate where to
sample measurements. The UAVs should also support sealing
leaks. At a minimum, this requires coordinating response, e.g.,
by calling in dedicated personnel to handle the leakage, though
optimally the UAVs should be able to localize the origins of the
emissions. Emerging 5G and 6G communications are essential
for this task as they provide accurate localization with minimal
energy consumption [9], [10].
Coordinated Sampling: Capturing air pollution at city-scale
requires collecting information at multiple different locations –
even if a single area of the city can be covered by a single UAV.
Optimally UAVs should supplement measurements produced
by (near) ground-level solutions, and hence the sampling loca-
tions should depend on where other measurement devices are
available. In the near future, air quality sensors are expected to
be deployed pervasively into city infrastructure and the citizens
may carry sensors with them [1]. This results in a dynamically
changing coverage throughout the day. The sampling locations
for UAVs should optimally complement the measurements
provided by citizens and urban monitoring stations, and hence
there is a need for real-time connectivity to adapt and to coor-
dinate the sampling plans of the individual UAVs. Real-time
coordination is also essential for reacting to adverse events,
e.g., gas leaks from industrial sites or pollutants dispersed by
winds. Maximizing data quality may also require the UAVs

to switch between horizontal and vertical sampling strategies
depending on the (dynamic) availability of other sensors.

Lightweight Sensor and Hardware Designs: Ensuring UAVs
can increase the coverage of air quality information requires
that they can travel and monitor over a sufficiently large area.
Flying and maneuvering UAVs results in high energy drain
and thus there is a need for lightweight sensor and hardware
designs that have minimal impact on the UAV’s operational
time. In parallel, the sensor placement needs to be optimized
to ensure air flows resulting from the flight operations do not
impact the pollution measurements. Existing air quality sensor
designs for UAVs, such as the one used in our experiments
(see Figure 2), are mostly designed for visualizing emissions
or supporting offline analysis of measurements whereas the
vision presented in this paper aims at real-time monitoring and
sharing of pollutant information which requires additionally
integration of computing units that can process the measure-
ments, coordinate flight plans, and support other operations.

III. CHALLENGES AND ENABLERS

Realising the vision of UAV assisted city-scale air pollution
sensing is currently difficult due to limitations of existing
technology. This section reflects on the state-of-art of exist-
ing technologies and highlights key research challenges in
enabling the proposed research vision. The challenges and
existing solutions are summarized in Table I.

Sensor Accuracy: Traditionally air quality is monitored using
professional-grade measurement stations that are accurate but
bulky and expensive. This limits the density at which they
can be deployed [1]. In contrast, city-scale UAV monitoring
requires inexpensive and lightweight sensors so that many
UAVs can be used to maximize coverage of measurements
and the sensors’ impact on the UAV’s other operations can
be minimized. Inexpensive air quality sensors are becoming
increasingly available but they tend to suffer from drift and
high variability in measurements [2]. Noise can be mitigated
by calibrating the sensors in a controlled laboratory environ-
ment prior to collecting measurements. This approach does
not scale well to city-scale operations and thus there is a need
for alternative solutions, e.g., to use opportunistic machine
learning-based sensor calibration [1]. Enabling such strategies
in practice requires algorithms that can detect model drift, and
mechanisms that can coordinate flight schedules to include
periods where the sensors are proximate to professional-grade
stations to capture reference measurements for calibration.
These periods need to be chosen so that differing pollutant
and weather conditions are covered to ensure robustness of the
calibration models [2]. Weather conditions can also affect the
accuracy of the air quality sensors on the UAV. In practice,
sampling should be restricted to periods where the UAV is
stationary and weather conditions are stable. On-board weather
and motion sensors (e.g., accelerometers and gyroscopes) can
be used to detect optimal sampling conditions and to validate
the quality of collected measurements.

Localization: Maximizing the usefulness of collected infor-
mation requires following stringent protocols that determine
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TABLE I
CURRENT STATE-OF-ART, KEY CHALLENGES AND EMERGING RESEARCH TOPICS FOR CITY-SCALE MONITORING.

State-of-the-Art Key Research Challenges Emerging Challenges

Sensor accuracy
Accurate but costly static stations
and miniaturized low accuracy
sensors

Improve accuracy for low accu-
racy sensors through sensor cali-
bration

Opportunistic calibration that
combines high quality sampling
and miniaturized sensors

Localization
Traditional localization technolo-
gies, such as GPS, and experi-
mental LPWAN localization tech-
niques e.g., LoRA

Accurate and robust 3D localiza-
tion

Localization using emerging
technologies, such as mmWave
and Terahertz

Coordination
Coordinating movements of mul-
tiple drones, e.g, swarm algo-
rithms

Hybrid planning that considers
external information sources too

Advanced coordination to change
between vertical and horizontal
navigation.

Situational
Awareness

Context-aware models for naviga-
tion and operational control

Models to analyze reactions of air
pollutants in diverse contexts

Advanced models to sample air
quality measurements

Power and Oper-
ational Time

Battery charging stations and
return-to-home protocols

Novel energy management solu-
tions and sampling optimization

Collaborative processing and
computing augmentation.

Communications Short and medium range tech-
nologies

Ultra low-latency data transfer,
and precise localization

Approaches to integrate UAVs
with edge and 5G infrastructure

where to collect measurements as this ensures the measure-
ments can be used for modeling purposes, e.g., for understand-
ing dispersion patterns and how they are affected by weather,
buildings, green areas and other factors [11]. This requires
precise horizontal and vertical localization. While the accuracy
of existing localization solutions, such as GPS, and exper-
imental LPWAN localization techniques, e.g., LoRA [12],
is largely sufficient for city-scale purposes, emerging 5G
(and particularly 6G) technologies are essential for improving
energy-efficiency. Emerging terahertz and mmWave technolo-
gies can also further enhance localization accuracy by reaching
centimeter level accuracy [9].

Coordination: Rapid changes in air pollutant concentrations
at different locations and altitudes combined with obstacles
in the environment (e.g., buildings and trees) pose challenges
on the UAV coordination and call for real-time navigation
and path planning capability. Common UAV coordination
mechanisms have been designed for optimizing the movements
of multiple UAVs without considering the information other
sensors in the city provide [5]. Maximizing the usefulness of
air quality data requires hybrid planning solutions that can
take into account information captured by existing (ground
or near ground level sensors) air quality sensing infrastructure
and adapt to changes in the availability of the information [13].
For example, rush hours produce dense measurements around
congested junctions but understanding dispersion patterns re-
quires sampling vertically in the downstream wind direction of
these junctions. The exact form of the movement depends on
the requirements of models integrating the information, but
generally they are based on spatial sampling strategies and
use static or dynamic transects that are divided according to a
pre-defined spatial resolution [14].

Situational Awareness: Autonomous UAV operations require
high degree of situational-awareness from the participating

UAVs. Firstly, UAVs need to be able to avoid collisions with
urban infrastructure or other UAVs. Existing mechanisms for
collision avoidance, e.g., computer vision or sound-based, are
mostly designed for horizontal movements without accounting
for potential obstacles in vertical directions. Another challenge
for situational awareness results from navigating in dense
urban environments as the urban structures may result in
blind spots that prevent UAVs of having a line of vision with
nearby obstacles. Situational awareness is also challenged by
weather conditions. Even if UAVs are capable of navigating in
challenging conditions, including in rain and in the presence of
strong wind gusts, the weather has an effect on pollutants and
causes problems in ensuring accurate pollutant measurements.
For example, reactive gaseous compounds such as SO2 and H2
react with water, making it difficult to collect measurements in
rainy or highly humid conditions. Similarly, PM2.5 may absorb
water which causes the particles to become heavier and fall to
the ground. This requires UAVs to integrate models that can
account for the current weather conditions and adapt sampling
patterns to maximize quality of collected information.

Power and Operational Time: Power is a bottleneck as
consumer-grade UAVs tend to have short operational time,
only supporting flying times between half an hour to one
hour. City-scale operations would require flying times of
several hours – or a mechanism that transports the UAVs to
different locations while also charging them. For example, we
could envision UAVs to be transported by public transport
infrastructure or cars (e.g., taxis or delivery trucks) and only fly
briefly at the destination location while charging their batteries
during the transit periods. Overcoming the energy bottleneck
thus requires both novel energy management solutions, e.g.,
energy harvesting or wireless charging techniques that can
support charging the UAVs during transit, and novel data
collection models that can maximize the benefits of UAVs

3



while reducing their use outside of measurement collection.
These measures can also help compliance with regulations.
For example, many countries restrict operations that go beyond
line-of-sight. Limiting the UAV operations to vertical column
sampling or spot samples from horizontal locations that have
partial coverage helps to ensure the UAVs remain close to
the entity that is coordinating their operations. Note that
operating air quality sensors and processing the data tends
to have a low power consumption and can be supported by
a separate power source that is integrated directly with the
sensor carried as payload. For example, the sensor considered
in our experiments is powered by 1− 4 rechargeable batteries
that are integrated directly onto the sensor.

Communications: Efficient and robust communications pro-
vide the foundation for city-scale operations. UAVs sampling
air quality data at different locations within the city need
to connect to different networks that may support different
technologies and have different characteristics, e.g., how far
the stations are. Delay-tolerant networking is needed to ensure
UAVs can cope with the heterogeneity of the networking
infrastructure and operate robustly against disruptions caused
by connectivity black spots or interference. City-scale mon-
itoring is also foreseen to benefit from emerging 5G and
6G communications infrastructure as emerging communication
standards integrate localization support which allows UAVs to
couple localization with connectivity [9], [10]. This reduces
energy drain from localization and helps to increase both flight
times and the coverage of information. Indeed, existing UAV
solutions for air quality have highlighted energy drain as a ma-
jor factor in limiting data availability [5]. As noted, operating
the drone and coordinating the operations of multiple drones
across the entire city are the main sources of power drain,
not the sampling or processing of measurements. Offloading
computations to edge nodes can reduce the power draw of
these operations, thus improving the operational time of the
UAVs [15] without increasing the latency of the operations.
Another benefit from emerging communication standards is
that they target low-latency and high bandwidth communica-
tions. Low-latency is essential for coordination, ensuring the
sampling strategies of the UAVs can adapt to changes in the
availability of sensors throughout the city and react to adverse
events such as leaks, whereas high bandwidth is essential for
supporting collecting data from additional sensor modalities,
such as hyperspectral imaging.

IV. EXPERIMENTS

Professional-grade measurement stations and sensors de-
ployed in the urban infrastructure are likely to be the main
source of information and the main benefits from UAVs come
from providing information about the vertical distribution of
pollutants and covering locations that have poor sensor cover-
age. This section demonstrates these benefits using benchmark
experiments that consider measurements collected at different
altitudes (every 10 meters from 0 to 100 meter altitude) from
two locations: an industrial site and a residential urban area.
The measurements were collected using a commercial off-the-
shelf UAV and a commercial emission measuring device.

Apparatus: Measurements were collected using an UAV
model X4S (see Figure 2). The weight of the UAV frame is
2 kg and the maximum take-off weight (MTOW) is 6.4 kg. The
size of the UAV is 58 cm×58 cm×37 cm without propellers.
The X4S-UAV was equipped with a battery with an output
of 22.2V and capacity of 16Ah, allowing for a maximum
flight time of 74minutes. During the experiments the UAV
was controlled manually using the UAV’s command and
control radio while having line-of-sight with the UAV as this
permits better control over the vertical sampling. The UAV
was stabilized before taking measurements, and it was kept
stationary during the sampling to minimize potential effects of
turbulence. Measurements were taken for a continuous period
(up to 5 minutes), after which the drone was moved to the
next altitude and the process was repeated. All measurements
were taken outside the drone downwash using a 80 cm rigid
probe that pointed forward (see Figure 2).

Sensors: Emissions were measured using an Aeromon BH-
12 sensor (see the right-hand side of Figure 2) which is
a portable piece of equipment to detect, measure and map
airborne gaseous compounds and particulate matter (PM). The
PM sensors in the current module are based on light-scattering
particle sensor (LSP) technology, which uses a laser beam
on air passing through an inlet to estimate the concentration
and size of particles [2]. Note that modern sensors regulate
the airflow through the inlet to ensure a stable and consistent
flow rate, thus making the measurements robust to varying
wind and other flow conditions. The PM sensor can detect
concentrations from 0.01 µg/m3 to 1500mg/m3. The PM
sensors are factory calibrated by the manufacturer, whereas
the gas sensors are field calibrated in actual measurement
conditions with certified gases to ensure maximal accuracy and
traceability. The sensors have been validated against reference
sensors that fulfill requirements of air quality monitoring
standards (ISO 21501-04, EN481, and US EPA guidelines for
PM monitoring) and the sensors have been validated as part of
a prior study [4]. These comparisons have shown the sensors
to have high internal consistency and good correspondence
with reference sensors that are co-located. The frame of the
device is also equipped with a CPU, GPS, four rechargeable
batteries supporting up to 8 hours of measurements, a modem,
a sample pump, and environmental sensors measuring the
relative humidity (RH%), temperature (T) and pressure (P).

Experiment Sites: The measurements were carried out in the
city of Kotka in Southern Finland. The industries in the site
of Kotka are mostly pulp and paper, and consumer board
industries where bio-materials from wood are manufactured.
These industrial processes produce a large amount of steam
and aerosols formed from steam. The urban area of Kotka
generally has good air quality index, resulting in small con-
centrations of gaseous pollutants and hence the experiments
focus exclusive on measuring the three main particle sizes:
PM1.0, PM2.5, PM10, referring to particles whose diameter is
at most 1.0 µm, 2.5 µm and 10.0 µm, respectively.

Environmental Conditions: The measurements at the indus-
trial area were collected in November, 2020. The environmen-
tal conditions were: air temperature 6 ◦C, wind speed 2m/s
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Fig. 2. UAV and the emission measuring device used in the experiments.

TABLE II
MEAN AND RANGE OF POLLUTANT CONCENTRATIONS FOR THE

RESIDENTIAL (RES) AND INDUSTRIAL (IND) DISTRICTS.

Pollutant Mean Range (min - max)

R
E

S PM1.0 2.04± 1.59 µg/m3 0.71 µg/m3 - 6.25 µg/m3

PM2.5 2.07± 1.66 µg/m3 0.72 µg/m3 - 6.42 µg/m3

PM10 2.13± 1.63 µg/m3 0.72 µg/m3 - 6.42 µg/m3

IN
D PM1.0 31.45± 22.83 µg/m3 2.50 µg/m3 - 71.19 µg/m3

PM2.5 1136.77± 1404.99 µg/m3 2.55 µg/m3 - 3798.15 µg/m3

PM10 20633.55± 28378.82 µg/m3 2.55 µg/m3 - 75 391.60 µg/m3

and wind direction from 5° to 48° north-east. Samples at
residential area were taken in February 2021 in the following
conditions: air temperature −9 ◦C, wind speed 5m/s and wind
direction from 5° to 10° north.
Procedure: We use X4S-UAV and BH-12 sensor to collect
air pollutant samples at 11 different heights, every 10 meters,
starting from ground level, i.e., 0 meters to 100 meters height.
Due to small concentrations of other pollutants, we focus
exclusively on particular matter measurements in our analysis.

V. RESULTS AND ANALYSIS

Vertical Distribution: The vertical distributions of particulate
matter for the two measurement locations and for the three
different particle sizes are shown in Figure 3, and the mean
concentrations and the range of values for the two districts are
summarized in Table II. For the residential environment, the
higher concentrations are (as expected) at the ground level,
though significant concentrations can be observed even at
70 meter height. Note that the overall concentrations in the
residential area are very small, indicating clean overall air.
Particle counter technology, including the sensor used in the
experiments, has limited resolution in capturing small particle
counts. Thus the vertical column at 1.0 µg/m3 in the figure
is mostly indicative of negligible concentrations and only the
higher concentrations are meaningful.

Significantly higher concentrations can be observed for the
industrial location. On the ground level, the concentrations
are largely similar to those in the residential environment,
whereas at higher altitudes the plume from the industrial
processes increases particle concentrations significantly. The
variations in the particle distribution depend on the particle
size and altitude with the largest particles having the highest
concentration at the highest altitudes. This is explained by
hygroscopic growth as the pollution mostly consists of water

vapor which absorbs smaller particles and increases their
particle size. Note that while water vapour is the main source
of high particle concentrations, it also captures and binds other
pollutants. At higher altitudes, the pollutants either fall to the
ground or are dispersed in the environment, depending on
whether the pollutants are released below or above the so-
called inversion layer. The altitude at which inversion occurs
varies as a function of temperature, shape of the landscape,
and other factors [16]. Thus, monitoring the vertical column
and capturing pollutants at different altitudes is essential for
capturing the dispersion patterns of pollutants and understand-
ing the factors that affect it. Indeed, monitoring the vertical
column also increases the coverage of pollutant information
and enables a detailed view of the pollutant distribution and the
mechanisms governing its dispersion in an urban environment.

Correlation and Significance Testing: For the residential site,
Spearman’s ρ between PM concentration and altitude shows
a strong negative and statistically significant correlation for
all three particle sizes: PM1.0, ρ = −0.7, p < .05; PM2.5,
ρ = −0.6, p < .05; and PM10, ρ = −0.7, p < .05. For the
industrial site the direction of the correlations is reversed as the
ρ values are positive and statistically highly significant: PM1.0,
ρ = 0.8, p < .01; PM2.5, ρ = 0.9, p < .01; PM10, ρ = 0.9, p
< .01. These results thus further demonstrate the differences
in vertical distribution are both significant and dependent on
the sampling location. Understanding the full extent of health
risks and the processes that govern the dispersion of pollutants
requires capturing these variations.

Combined Effect of Altitude and Location: The full poten-
tial of UAVs comes their use to capture the three dimensional
distribution of pollutants. Next, we assess the joint effect that
location and altitude have on the measurements by considering
each 10 meter increase in altitude as a separate interval and
simultaneously comparing the differences in pollution distri-
butions across the two locations and the different intervals. In
line with earlier analysis, a repeated measures ANOVA shows
significant main effects for location and altitude interval, but
no interaction effect (location: F = 10.048, p < .01, η2 =
0.167; altitude interval: F = 10.059, p < .01, η2 = 0.167;
interaction: F = 1.788, p = 0.094, η2 = 0.243). Here F refers
to the F-statistic of the ANOVA and η2 is the proportion of
variance that is explained). Post-hoc comparisons (Bonferroni
correction) indicate statistically significant differences from 70
meters onward. Differences in emissions can thus be at highly
different altitudes and monitoring both horizontal and vertical
dimensions is required to capture the full extent of pollutants.

Comparison to Reference Station Baseline: The final part
of the experiments contrasts the UAV measurements with
those provided by reference stations. The reference sensors are
particle matter measurements provided by the Environmental
Services Unit of the City of Kotka. The city has three
measurement stations and we matched our measurements with
those of the closest station. The reference stations are located
close to ground level, but the altitude of the sensing units
varies from approximately 4 meters to 8 meters depending on
the reference station. The comparison uses the altitude of the
corresponding station and is limited to PM2.5 as other particle
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Fig. 3. Concentration of particulate matters (PMs) at different air column altitude within different environmental profiles.

sizes were only intermittently available from the ground truth
stations during the days that the samples were collected.

The mean PM2.5 values, as given by the reference stations,
are 5.58± 2.25 µg/m3 for the residential site and 6.34± 1.26
µg/m3 for the industrial site. The differences between the
reference stations mostly result from differences in the de-
ployment location, with the reference station closest to the
industrial site being located in a more densely populated
area than the reference station closest to the residential area.
In both cases the mean values are small and correspond to
normal levels of background pollution. For the residential
location, the reference lines in Figure 3 show that the reference
measurements closely match the values in the experiments. In
contrast, the measurements from the industrial site deviate and
contain higher concentrations than those from the reference
station. The higher concentrations are in line with the higher
degree of pollutants, as also shown by the statistics of the
pollutant concentrations. The difference to reference values
indicates that the high pollutant concentrations are heavily
localized, and the pollutants get dispersed over a larger area,
thus resulting in only a small increase within a single location.

The results highlight both that UAV measurements are
sufficiently accurate for pollution monitoring and that they
offer additional information that environmental stations or
other existing solutions are likely to miss. First, the results
for the residential area where pollution levels generally are
small, indicate that the UAV measurements are largely in line
with those obtained from the fixed environmental stations.
The accuracy of the sensors has been separately verified in
laboratory conditions and thus the result merely confirms
that the measurements produce meaningful insights also when
deployed in the wild. Second, the emissions from the industrial
site were not observable in the reference station measurements
due to the reference station being distant from the site and
the wind-patterns prevailing at the time (low wind speed and
in the opposite direction as the reference station). Reference
stations are likely to capture only parts of the emissions when
the wind and weather conditions align with the dispersion
direction. City-scale UAV monitoring increases the scale of
monitoring and fills in the gaps in the measurements to help
understand dispersion and potential health effects associated

with it regardless of the weather conditions.

VI. DISCUSSION

Benefits to Stakeholders and Applications: Municipal au-
thorities and public transportation providers can assess the dis-
persion and distribution of pollutants in detail, offering insights
into the health effects of pollutants and a way to monitor the
effectiveness of clean air initiatives. Industry can use vertical
air pollution profiles to assess their own pollution levels, e.g.,
compliance with environmental regulations or the potential
of emission offsetting operations. Similarly, vertical profiles
captured at ports or airports help to understand how pollutants
resulting from passenger and freight transport are dispersed
within the city. Finally, city-scale 3D pollution monitoring
supports scientific studies and innovative applications, e.g.,
UAVs are useful in modeling pollutant dispersion caused by
wildfires and other events.
City-Scale UAV Deployment: Ensuring adequate coverage
of pollutant information requires multiple UAVs to operate
simultaneously at different parts of the city. UAV intercom-
munication using short range communications can improve
cooperation and better localization can reduce collisions,
whereas state-of-the-art mission planning solutions can be
extended to consider the vertical column of air quality when
sampling data. However, massive city-scale deployments also
require connectivity to centralized stations where operators can
interpret and schedule simultaneous explorations. Emerging
5G/6G networks provide the backbone to achieve the vision.
Regulations and Other Challenges: UAV operations have
potential to be disruptive and cause damage to transport and
other urban functions. This is resulting in UAV operations
becoming increasingly regulated. For example, in Finland
most UAV operations need to be registered, the UAVs must
always remain within the line of sight of the operator, and the
maximum flight altitude is 150m unless special permission
is obtained. Many countries also restrict UAV operations in
specific areas, such as residential areas or near ports, airports
or other strategically important locations. This implies that any
large-scale operations need to be carried out in cooperation
with local and national authorities, and that the flying distance
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of the UAVs needs to be restricted. Potential solutions would
be to carry the UAVs on top of vehicles – such as public
transit vehicles or even autonomous cars – and to sample the
air column at predetermined locations only, or to crowdsource
the measurements by taking advantage of existing flight oper-
ations, e.g., using commercial aircrafts or taking advantage of
emerging UAV package delivery services.

VII. SUMMARY AND CONCLUSION

We developed a vision of city-scale air pollution monitor-
ing where UAVs collaborate with existing city infrastructure.
UAVs capture the vertical distribution of pollutants and in-
crease the spatial coverage of other sensor technology, helping
to scale up air quality information and to model and understand
pollution dispersion patterns. By contrasting the vision against
current solutions, key requirements and research challenges
were identified. These include improvements in sensor designs,
hybrid positioning mechanisms, low latency energy-efficient
communications, situational awareness, and novel mechanisms
for improving energy-efficiency, including models of how to
operate together with other infrastructure. Finally, benchmark
experiments were presented to highlight how both location and
altitude are essential for capturing the extent of pollutants and
understanding their dispersion into the environment.
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