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Evolutionary prediction and control are increasingly interesting research
topics that are expanding to new areas of application. Unravelling and antici-
pating successful adaptations to different selection pressures becomes crucial
when steering rapidly evolving cancer or microbial populations towards a
chosen target. Here we introduce and apply a rich theoretical framework
of optimal control to understand adaptive use of traits, which in turn
allows eco-evolutionarily informed population control. Using adaptive
metabolism and microbial experimental evolution as a case study, we
show how demographic stochasticity alone can lead to lag time evolution,
which appears as an emergent property in our model. We further show
that the cycle length used in serial transfer experiments has practical impor-
tance as it may cause unintentional selection for specific growth strategies
and lag times. Finally, we show how frequency-dependent selection can be
incorporated to the state-dependent optimal control framework allowing
the modelling of complex eco-evolutionary dynamics. Our study demon-
strates the utility of optimal control theory in elucidating organismal
adaptations and the intrinsic decision making of cellular communities
with high adaptive potential.

1. Introduction

Microbial experimental evolution is used for detailed investigation of evolution
in laboratory conditions [1]. Following the lead of the long-term evolution
experiment of Escherichia coli project, spanning more than 70000 generations,
the field has blossomed during the last decade [2]. A typical experimental
design assigns selection over a microbial population (or a community), and
the population will then evolve under the chosen selection pressure. Clonal
microbial populations are inoculated into medium and by a serial transfer pro-
tocol at the end of each culture cycle, a fixed proportion is transferred into fresh
medium. This procedure continues over a selected number of cycles and the
results are contrasted with the wild-type (ancestral) population or control popu-
lations propagated under identical laboratory conditions except for lacking the
selection pressure of interest.

A trait that increases relative fitness will increase in frequency. However, in
general, this can happen together with other traits that might be just incidental
or compensatory (or only reveal themselves in different conditions). Traits are
often connected with each other through genetic mechanisms, and adaptations
cannot, therefore, necessarily occur independently, which is typically optimal.
Such evolutionary constraints can slow down or prevent the occurrence of
further adaptations [3]. Accepting that the traits themselves evolve under
(possibly strong) constraints, we can still ask how these traits could be best used.

Optimal control theory [4] gives us the possibility to test how to optimally
use traits, that evolution has already found, in a given environmental context.
We can investigate, for example, the benefits of an adaptive use of lower and
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higher metabolic rates. Microbes can sense population
density via specific signalling molecules (quorum sensing)
[5,6] or more general environmental cues (e.g. oxidative
stress, single-stranded DNA from damaged cells, pH
changes and accumulation of metabolic by-products at
toxic levels), and react to nutrient deprivation by lowering
their metabolic level [7] and entering to stasis [8]. As soon
as a target is selected, for example, maximizing population
size and environmental conditions are set (e.g. carrying
capacity), we can derive the optimal strategy to use a set of
given traits. By comparing such optimal solutions to wet lab-
oratory evolution experiments and biological literature, we
can assess how close populations are to using the optimal
solution, and thus learn about growth strategies and their
constraints.

Here, we will use optimal control theory to better under-
stand growth strategies and their evolutionary consequences.
We choose to use the traditional Bellman equations and dis-
crete approach instead of commonly used ODE approaches,
because we have to capture also small population size
dynamics correctly.

Applying optimal control in the context of evolution is a
re-emerging field [9], with current focus of optimal control on
optimal therapies, directed trait evolution and host-pathogen
systems [10-14]. By contrast, our setting here is from the per-
spective of the intrinsic optimal decision making within a
population (see also [15]) in a context typical for laboratory
evolution studies. Earlier applications can be found from
the field of behavioural ecology, including studies to solve
optimal age- and size-dependent life-history strategies [16—
18]. Control theory has also been used to study how evolving
populations use information and possible modes of transmit-
ting genetic material [19,20], and there is a rising interest on
the systems biology side as well [21,22].

We use the already mentioned metabolism example as a
case study. We will compute and analyse an optimal solution
for a microbe that is able to use two metabolic modes: lower
and higher. The aim is to learn how to use these two modes
to maximize the population size (yield) under a stochastic
logistic growth model. The optimal solution can be seen as
the expected outcome of an evolved microbial phenotype
that has gone through a serial transfer experiment. Therefore,
the phenotype will be adapted to the cycle length used [23]
and maximizes population size at the end of a cycle. This
type of selection can be introduced in laboratory conditions
by establishing k parallel single cell populations each
having their own compartment. At the end of the cycle, all
populations are mixed, and the populations with higher
growth become enriched when transferred into fresh media
of the next k parallel populations [24]. Hence, we hypothesize
that this kind of enrichment process can lead to cycle length
adaptation. The length of lag phase and change in a popu-
lation growth rate can make this adaptation process
possible [25-27]. Additionally we assume that, for example,
limited space, restricted nutrition or metabolic by-products
can create a carrying capacity limitation in bacterial popu-
lations or communities.

We then change the context from monoculture to head-to-
head competitions between different growth strategies.
Adaptive phenotypes compete against other non-adaptive
phenotypes having only a single metabolic mode. We
hypothesize that adaptive phenotypes are the most competi-
tive in these experiments.

2. Results

2.1. Optimal growth strategy in a monoculture

2.1.1. Monoculture growth model
Life-history strategies in cell populations can be characterized
by each strategy’s birth and death rates. Assume that a cell
has two alternative metabolic modes, the defensive and the
aggressive mode, with intrinsic birth and death rates (Bger,
Sdef) aNd (Bager Oager), respectively. When using the defensive
mode, the cell increases its survival at the expense of prolifer-
ation whereas in the aggressive mode the cell invests more of
its resources to rapid proliferation, constituting a fundamen-
tal life-history trade-off between survival and proliferation.
Hence we assume that the intrinsic birth and death rates
satisfy the following basic properties:

(i) 0 < 8gef < Baggr 1)
(ll) 0< ﬁdef - 6clef < ﬁaggr - 6aggf~ .

The first assumption guarantees that the defensive mode has
longer expected lifetime, whereas the second assumption
guarantees that the aggressive strategy has a higher intrinsic
per capita growth rate.

Finite resources necessarily imply the existence of some
environmental feedback mechanism which regulates popu-
lation density. Indeed, let us denote the total population
size by N and let K be the population size at which the per
capita growth rate becomes zero (the carrying capacity). We
model the population growth by a discrete stochastic logistic
model, where we assume that the carrying capacity realizes
solely by increasing the death rate while allowing the birth
rate to remain constant. The effective birth and death rates
for different growth strategies are then

B(Ni, t) = ﬁm(N,,t)

N N (22)
and  8(Ni, t) = St + (Bugvyy — Smivip) &
where m : [0, KI] x [0, T] — {def, aggr} is the mode which the
cell uses at time t €[0, T] if the population is at size N, € [0,
KI]. The parameter | > 1 gives the range in which the strategy
is determined above the carrying capacity, which is important
to handle the stochastic fluctuations. KI has to be larger than
any typically reached population size (K + fluctuations), and
allows us to make the system computable. Otherwise the
state space would extend to arbitrarily large populations
with probability of finding a population from the large
sizes extremely small.

We discretize the continuous-time stochastic system by
drawing the number of births and deaths from the corre-
sponding Poisson distributions at each time step. Each
simulation starts from initial population size Niniia1 and is
updated at the next time step according to the rule

Nii1 = Ny + births(t) — deaths(t),
births(f) ~ Poisson(N;B(N, £)) (2.3)
and deaths(t) ~ Poisson(NtE(Nt, t)
and the simulation proceeds until the chosen end-time T is
reached. A population goes extinct, if N¢.q <0 (an absorbing

boundary condition). The problem discussed here is to deter-
mine the optimal growth strategy m,p:(Ny, t) for each t and N
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which maximizes the expected final population size Nr
(yield).

A strategy is called pure, if the same mode is used at all
conceivable times and population sizes. If different modes
are used at different times, we say that the strategy is adaptive.
If the adaptive strategy is such that at each time point it
chooses the mode which maximizes its current per capita
growth rate, we say that the adaptive strategy is greedy. If
instead the adaptive strategy restrains to maximize the
instantaneous growth at some earlier time points in order
to maximize the end population size (the cumulative per
capita growth rate), we say that the adaptive strategy is antici-
pative. Next we present an optimal control framework which
can be used to determine the optimal growth strategies and
elucidate the situations where adaptive and anticipative
strategies may evolve and replace pure strategies.

2.1.2. Forward propagation of probabilities

In order to compare different growth strategies, we need
summary statistics from the process defined in equations
(2.2) and (2.3). One approach is to estimate them from
averages over individual simulation runs. Alternatively, we
can propagate directly the probability distributions of popu-
lation sizes over time. The change in population size is
distributed as

AN(#) ~ Skellam(births(t) — deaths(t); py, pp)  (2.4)

where pu, = Ntf%(N[, t) and u, = Nts(Nt, t). Skellam distri-
butions can be easily computed using convolution of two
Poisson distributions. The transition probability from state
N; to state N,; using strategy m(N,, t) can then be written as

W(Ni11|Np; m(Ny, t)) = P(N; + AN(t)|[Ny; m(Ny, t)),  (2.5)

and therefore forward propagation of probabilities can be
computed as

P(Ninitia1) =1

and  P(Nit) = S P(NOW(Nut NG m(N;, 1), ( (20)
N;

The Skellam distribution is defined also on the negative side
(more deaths than births). Since negative population sizes are
biologically unfeasible, we use an absorbing boundary con-
dition at N;=0.

2.1.3. Stochastic optimal control solution

We assume that a cell can switch between aggressive and
defensive modes without costs, choosing whichever mode
is deemed to be more beneficial at that time. Further, only
the final population size at the end of the finite time horizon
(t=T) is considered to be important. Such requirement arises
naturally during the serial transfer experiments, where the
populations are diluted based on their final frequency, but
also more generally in biotechnology, where the yield of ben-
eficial bacteria or their metabolites is maximized within a
given time-frame (see e.g. [28]). The optimal growth strategy
leading to the largest population sizes, can be solved effi-
ciently using the Bellman optimality equation [4].

Formally, we define the expected gain J(N}, t) describing
how large population sizes we can reach in the future if we
are in the population size N; at time t and follow the optimal
strategy until the end-time is reached. We compare the gains
of aggressive and defensive modes at each time point and

always select the one that leads to larger population sizes at n

the end. We can solve the optimal strategy mqpe(Ny, t) itera-
tively starting from the end by using a backward-recurrence
over all reachable population sizes

J(Ni, t) = max > " J(N', t+ 1)W(N'|Ny; m(Ny, 1))
m(Ny,t) N

and  mop(Ny, £) = a;%?ix J(N, 1),
2.7)

where T>t>1 and with a boundary condition J(N, T)=N
defining our optimization target of maximizing the popu-
lation size at the end T. Hence, this dynamic programming
problem can be solved using equations (2.2)-(2.5) and (2.7),
together with the boundary condition. Equation (2.7) can
also be augmented with other terms that keep track of path
rewards or costs at intermediate times and a cost term for
use of control (here mode switching). Although including
these could be interesting, e.g. to account for resource con-
sumption of the dividing cells, we here focus on the
minimal version where only the end population size is
important and no cost is assigned to switch of growth mode.

The optimal strategy m,p; assigns the optimal growth
mode for all conceivable states, hence achieving a complete
control rule for every possible trajectory. We call this strategy
a control map.

2.1.4. Control maps for monoculture

First, we investigated the basic behaviour of different growth
strategies in a non-competitive setting to form a better under-
standing of their dynamics. We computed the control maps
using the following intrinsic birth and death rates for the
defensive and aggressive modes:

birth rate ()  death rate (5)  growth rate
ggresve mode 0125 005 005
defe_n_sive mode‘_ 0.025 _ 0.005 , ‘0.02

The pure aggressive strategy leads to much faster growth
than the pure defensive strategy, but has also much shorter
life expectancy (1/0.075~13.33 time units compared with
1/0.005 =200 time units at initial growth phase). Combined,
the average lifetime reproductive success is much higher in
the defensive mode than in the aggressive mode (0.025/
0.005=5 compared with 0.125/0.075~1.667). Clearly, the
chosen parameter values are to a degree arbitrary, but never-
theless the control maps remain qualitatively similar for all
parameters satisfying the basic assumptions, which yield
the growth-survival trade-off. Interestingly, we find that it is
the cycle length T (the growth time before dilution), which
changes the control maps qualitatively. For very short cycle
lengths, the optimal growth strategy is to minimize the lag
phase and grow as aggressively as possible when below the
carrying capacity (figure 1a). For longer cycle lengths, when
the population has enough time to reach the carrying
capacity, the optimal strategy starts to use the defensive
strategy both at low densities and above carrying capacity
(figure 1b,c). Applying the correct mode becomes increas-
ingly important closer to the time horizon, especially when
the system is far from the target. The relative importance of
applying the correct mode can be quantified by comparing
the expected gains at each point.
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Figure 1. Control maps change qualitatively with respect to the end-time T: (a) For very short cycle lengths, the optimal growth strategy minimizes the lag and
uses the aggressive mode (red shading) even when facing stochastic extinction risk (7= 150). (b) For longer cycle lengths another defensive mode region appears,
where the optimal strategy uses the defensive mode (blue shading at a tiny population region). This creates a distinct lag phase which decreases the stochastic
extinction risk (T=300). (c) For very long cycle lengths the lag phase becomes even longer up to a point (T = 750). Carrying capacity (K = 500) is shown with a
dashed black line. The intensity of the shading reflects the expected gain of using the optimal mode compared with the alternative.

2.1.5. Boundaries between two control modes

A boundary (contours separating blue and red regions in
figure 1) between the two modes creates a directional flow
from the aggressive side (red region) to the defensive side
(blue region). The reason for the directional flow is that popu-
lation size fluctuations are smaller in the defensive mode than
in the aggressive mode. Therefore, a big jump from the
aggressive side to the defensive side is more likely to occur
compared with a reverse jump. Hence we call a boundary
minimizing if larger population sizes above the threshold
boundary use the aggressive mode, as such boundaries
create a force that opposes population growth. By contrast,
a boundary is maximizing if larger population sizes use the
defensive mode, in which case the boundary creates a
positive force towards larger population sizes.

Let us look at the two boundaries more carefully
(figure 2). The minimizing boundary prolongs the apparent
lag phase, slowing down the growth before initiating the
exponential growth phase (figure 2b). The maximizing
boundary on the other hand benefits from population size
fluctuations that exceed carrying capacity (figure 2a). This
boundary essentially tries to trap the population size above
the carrying capacity by using the defensive mode whenever
the boundary is exceeded (in effect saving resources by using
the defensive mode).

The boundaries between the control modes change in time
and the anticipative growth strategy (as given by the control
map) leverages this time-dependence to maximize the
expected yield. The final time slice of the control map (t=
T —1) corresponds to the greedy strategy, where the maximiz-
ing boundary always lies precisely at the carrying capacity.
Thus, the length of the time interval becomes irrelevant and
the greedy strategy stays constant over time. This corresponds
to a simple adaptive strategy predicted by the classical r/K
selection theory, where the aggressive mode is favoured at
low densities and the defensive mode at high densities [29].

2.1.6. Cycle length induces selective pressure for lag time

evolution
Next we compare the pure aggressive and defensive strat-
egies with the greedy and the anticipatory growth strategy
by propagating the corresponding probability distributions
of the population sizes forward in time (figure 3). When

the cycle length is sufficiently long, both the aggressive and
defensive strategies reach the carrying capacity and produce
Gaussian-shaped densities around the carrying capacity.
However, since the aggressive strategy has higher growth
rate, there is more variance in the final population sizes.
Adaptive phenotypes on the other hand can slightly exceed
the carrying capacity on average via the efficient switching
of the two modes. This is evident by observing the median
population sizes (figure 3) and the probability distributions
over the final population sizes. The optimal anticipative strat-
egy gains higher yields than the greedy strategy in the
monoculture due to its time-dependent control boundaries,
which reduce stochastic extinctions and spur aggressive
growth also slightly above the carrying capacity.

By defining the apparent lag time as the median time
when the optimal strategy switches from the defensive
mode to the aggressive mode, we can determine the optimal
lag time from the propagated probability distributions as a
function of the cycle length. Although the lag time is conven-
tionally defined as the time until the first cell division, in
practice the lag time is often determined by fitting slopes to
a measured growth curve. Thus, we argue that our definition
of lag cannot be distinguished from the observed lag times
and that the lag time is an evolvable trait rather than a
static or stochastic property [30].

The embedded panel in figure 3 shows the optimal lag
time as a function of the cycle length. We note that for very
short cycle lengths there is selection to minimize the lag.
Then as the cycle length increases, we see that the optimal
lag also increases linearly until finally plateauing at very
long cycle lengths. This result shows how the used cycle
length can generate selective pressure for specific growth
strategies with fine-tuned lag times and hence give rise to
the optimal, anticipative growth strategy.

2.2. Competition under a serial transfer protocol

2.2.1. Biculture competition model

We next investigated the different growth strategies under
pairwise (head-to-head) competitions between the anticipat-
ive phenotype (monoculture optimal) and the other
strategies. We assume that both of the adaptive phenotypes,
greedy and anticipative, are able to sense their own, N7,
and the competitor’s population sizes, Ny, and therefore the
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(a) maximizing boundary (b) minimizing boundary

200 300 400 500 600 700 0 100 200 300 400 500
population size population size

Figure 2. The propagated probability distributions of the optimal strategy (grey bins) compared with the aggressive strategy (dash-dotted line). The maximizing
boundary traps the population above the carrying capacity, whereas the minimizing boundary traps the population below the boundary while reducing extinctions.
The boundary itself is the reason for the emergence of the lag phase. (a) Distribution of the population sizes after t = 200 time steps starting from initial population
size Nipiiat = 500. (b) Distribution of the population sizes after ¢ =85 time steps starting from initial population size Niya = 10.
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Figure 3. Median population sizes as a function of time for the aggressive, defensive, greedy and optimal (in monoculture) strategies. We note that the adaptive
strategies reach higher final population sizes, the optimal marginally beating the greedy strategy. The pure aggressive and defensive strategies have the same
median final population size, but the aggressive strategy displays higher variance. The lag time can be defined as the median time when the optimal strategy
switches from the defensive to the aggressive strategy (see the dashed circle in the main panel). The embedded panel shows lag times as the function of cycle
lengths (the dashed circle matches the cycle length of the main panel). For very short cycles, there is selection to eliminate the lag. For cycles longer than T > 300,
there appears a distinct lag phase which increases linearly until around 7= 1000 after which the lag time plateaus.

community density N; = Ny + Nf. However, they either do with the m(N;, t) strategy being either pure (defensive or
not have access to any other information regarding the com- aggressive) or under greedy control, the mode is defensive
petitor’s behaviour or lack the computational capabilities to if N;>K or aggressive if N,<K. Similarly the anticipative
use such information systematically to their advantage. strategy has the following death and birth rates:

The competitor thus has the following death and birth
rates:

Ba (N? , N tc ’ t) = ﬁm(Ng,N;,t)

B (N;, t) = Bunip ~ N,

N (2.8) and & (Nf, Nf, t) = Sunenes) + (Bmnene.t) — Om(nenen) fl,
v t

and  &(NJ, ) = Sty + (Buev) = Smnvn) 1o (2.9)
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Figure 4. Biculture competition between phenotypes over multiple serial transfers. (a) Two phenotypes interact with each other via population densities. The
observed carrying capacity by the optimal phenotype changes according to the population size of the competing phenotype. Therefore, the control map is a
stack of slices (a control tensor), where the population size of the competing phenotype is fixed for each slice (see text). (b) The greedy strategy is an intersecting
slice over the last control time point. () Competition between the anticipative and aggressive phenotypes takes place via mutual carrying capacity. Visible cycles
emerge, because at the end of each cycle only a fraction of population (here 20%) is transferred into a fresh media. (d) The second cycle is enlarged to show the
mode switches of the anticipative phenotype. The aggressive and defensive modes are visualized with red and blue backgrounds. (e) A simulation matrix shows 40
runs over time (the example run in (c) is emphasized). In most cases only one of the phenotypes survives through all seven cycles (a saturated orange colour
denotes a large population size of the anticipative phenotype and the pure white colour its extinction).

with the adaptive strategy m(Nj, Nj,t) calculated using
equation (2.7) as before but now for each Ny value separately.
Thus, in our competitive setting, the control map becomes a
three-dimensional control tensor (figure 4a). At time t, the
optimal monoculture phenotype uses the control map with
a current population size of Nf. Therefore, the adaptive strat-
egy can accurately sense the instantaneous carrying capacity
Ni/K =Nj/K+ Nf/K and anticipate its own dynamics in
approaching it. But it is not able to factor in the dynamics
of the competitor. When competitor’'s population size (NY)
goes to zero, we recover the monoculture results. Similarly,
if the competitor dynamics are slow compared with the
time horizon T, population size Nj is approximately a

constant, and the anticipative strategy is optimal. However,
for intermediate cases with fast competitor dynamics the
inability for the anticipative strategy to take into account
the dynamics of Nj leads to interesting results.

The growth strategy for the greedy phenotype is achieved via a
straightforward expansion of the monoculture case. We take a slice
over fixed time t =T —1 (the last controlled time point) from the
control tensor (figure 4a,b). Instead of a vector (with respect to
the monoculture case), we have a control map that does not
depend on time but only the population sizes of two phenotypes.
The control map for the greedy phenotype is in our model sym-
metrical, changing its strategy from aggressive to defensive
whenever the community density exceeds the carrying capacity.

VhL07207 ‘07 ey 205 oy 7 ysy/eumolbiobunsiandiposiesor g



(@) (b)

I defensive versus [] anticipative [ aggressive versus [[] anticipative

win fraction
T

* I

(© @

I greedy versus [7] anticipative W greedy versus [l optimal

LT

MR AR nﬂ“||I||||||||||

By

100 200 300 400 500

100 200 300 400 500

100 200 300 400 500 100 200 300 400 500

cycle length

Figure 5. Influence of cycle lengths on pairwise competitions: (a—c) the results of pairwise competitions (with six cycles) between the anticipative phenotype and
the other phenotypes; (d) a pairwise competition between the greedy and the biculture optimal phenotype (10 cycles). A grey colour indicates mutual existence of
both phenotypes. Dashed horizontal lines denote the 50% win fraction. () The anticipative phenotype overruns the competition between the defensive and the
anticipative phenotype. However, with very short cycles, the defensive populations can mostly persist over a whole run. (b) The aggressive phenotype wins a small
proportion of competitions against the anticipative, even with long cycles, as it grows faster than the anticipative phenotype in the beginning. Overall, the antici-
pative phenotype is stronger as it can adapt to changing observed carrying capacity. (c) The greedy phenotype combines faster growth and adaptivity. Therefore, it is
a stronger competitor than the anticipative phenotype, which is optimized without the knowledge of competitor dynamics. (d) The optimal biculture phenotype
with the knowledge of competitor dynamics performs just slightly better than the greedy phenotype. The length of competitions (10 cycles) is longer to show the
difference between almost equally strong competitors. The panels were computed using K =500 and 20 000 simulations per cycle length. Each new cycle was

initiated using a fixed 0.1 K transfer proportion (50 individuals).

To demonstrate the setting, we first competed the antici-
pative (monoculture optimal) and aggressive phenotypes in
an in silico experimental evolution simulation over several
cycles, as shown in figure 4c. The anticipative phenotype
takes advantage of the two different growth modes to out-
grow its competitor (figure 4d). In the beginning of each
cycle, the community size is diluted to a fixed fraction from
where the community starts its new growth (figure 4c). In a
wet laboratory, this corresponds to taking a sample from a
microbial community and transferring it to fresh medium.
After several cycles, the stronger competitor is eventually
likely to conquer the whole community. Figure 4e shows
40 simulation runs with a fixed cycle length, where the
aggressive phenotype competes against the anticipative phe-
notype. Initial population sizes for both phenotypes were set
equal. After seven consecutive cycles the anticipative pheno-
type wins over 26 out of 40 competitions, loses four and in
the rest of the simulations both phenotypes coexist. We
note that also an inferior phenotype can sometimes win
competitions due to random fluctuations.

2.2.2. Cycle length modifies the competitive fitness between the

growth strategies
We next demonstrate that the anticipative (monoculture opti-
mal) phenotype makes suboptimal decisions by assuming
that the effective, at that time perceived, carrying capacity
stays the same.

The cycle length has a large impact on the relative fitnesses
of different phenotypes (figure 5). If the cycle length is too
short, populations do not have time to grow and the whole
community can end up extinct due to dilutions at the end of
cycles. Even if a community survives, all phenotypes using
the aggressive growth at low densities—aggressive, greedy
and anticipative—are equally fit on average.

Adaptive phenotypes benefit from their two modes only
when the cycle length is long enough for communities to

reach carrying capacity. Within these intermediate cycle
lengths, the adaptive phenotypes start to gain the competitive
advantage over non-adaptive phenotypes. The longer the
cycle length, the greater the advantage.

The maximizing boundary of the greedy strategy (located
at carrying capacity) seems to be more optimal in competition
as the anticipative strategy slightly loses to it. The reason is
that the community size, which matches carrying capacity
is more often reached than community sizes even greater.
Therefore, switching later (at larger population sizes)
becomes a weaker strategy.

Smaller transfer ratios increase randomness and thereby
weaken the relevance of mode switching for survival. In
the beginning of each cycle, random fluctuations in popu-
lation sizes become more important than success in the
previous round.

2.2.3. Optimal biculture competitor

Finally, we computed the optimal strategy for the biculture
scenario by straightforward extension of equation (2.7) to
factor in the full dynamics of the competitor (see electronic
supplementary material, S1-53). The optimal strategy com-
puted this way outperforms the greedy strategy playing
competitor as shown in figure 5d. Interestingly, when
approaching the joint carrying capacity the optimal anticipat-
ive strategy pre-emptively switches to using the defensive
mode slightly before the carrying capacity is reached (see
electronic supplementary material, figure S1). Therefore, the
actual change between monoculture and biculture optimal
strategies could be approximated by changing the location
of the maximizing boundary to be somewhat below the car-
rying capacity in biculture. This simplicity leaves room for a
genetically hard-coded rule to implement a winning control
map with only sensing of the carrying capacity necessary
and not requiring sophisticated computation as given by
electronic supplementary material, equations S1-S3.
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3. Discussion

In this study, we showed how optimal control theory pro-
vides a powerful methodology to assess optimal growth
(life history) strategies in different settings and how they
could be realized via evolution. We demonstrated in our
adaptive metabolism case study how the ability to switch
between aggressive and defensive growth modes can help
monocultures reach higher yields and drive non-adaptive
strains extinct. The adaptive phenotypes won competitions
simply by exploiting the interplay of demographic stochasti-
city and the carrying capacity. Furthermore, we noted how
the used cycle length of the serial transfer experiments has
practical importance, as it may cause unintentional selection
and lag time evolution. The experiments are likely to enrich
strains fine-tuned for the specific time horizon.

These examples show how the study of rapid short-term
evolution, often driven by human intervention, requires
handling of stochastic population dynamics and an explicit
notion of time (e.g. time-dependent interventions in drug
therapies) to understand how populations can and will
respond. However, it has also been argued that evolutionary
processes are not always—and in every turn—optimizing the
fitness [31]. Despite the fact that responses to selection can be
seen as one type of optimization, this must be kept in mind.

In laboratory evolution experiments, microbial popu-
lations have been exposed, for example, to starvation and
other harsh environments, predation, competition, environ-
mental and temporal fluctuations and time pressure [32-36].
After an experiment, an evolved population will be investi-
gated to reveal the genetic and phenotypic changes that have
accumulated under the chosen selection regime. We can test
in a shared environment how well the evolved microbes fare
in a community consisting of wild-type microbes or other
evolved phenotypes. These other phenotypes can introduce
additional selective factors, which make the monoculture-
evolved phenotype maladapted to the community [37-39].
This may cause the evolved microbes to be lost from the com-
munity [40], which is why we included the competition aspect
into this paper.

The calculated control maps illuminate the optimal use of
traits, giving rise to adaptive life-history strategies. They
show how the optimal anticipative strategy with time-depen-
dent control boundaries converges to the greedy strategy at
the end of the time horizon. The greedy strategy itself can
be (in the simple model considered) viewed as the optimal
adaptive strategy at the deterministic limit. Hence, the control
maps elegantly show the value of anticipation in any given
model. Here we showed how anticipating demographic sto-
chasticity and the limits of growth (carrying capacity) can
prove to be useful, but certainly the rewards of anticipation
can be much higher. For example, the adaptive immune
system can be seen to effectively anticipate reinfection by
the already seen pathogen [12].

Adaptive strategies require constant monitoring of
environmental cues (such as quorum sensing in bacteria)
and hence at least some sort of sensory system, which con-
sumes energy (incurring a fitness cost). Anticipative
strategies require even more sophisticated information pro-
cessing. Hence, adaptive and anticipative strategies must
have a substantial advantage over pure strategies to compen-
sate the necessary investments in maintaining such systems
[41,42]. Alternatively, the corresponding control maps must

be simple enough to be approximately executed by some n

rule which is hard-coded genetically [12]. Or accessible by a
heterogeneous population executing a mixed strategy based
on the coexistence of pure strategies in a population as a
form of bet-hedging. Interestingly, a recent study focusing
on cellular decision making under volatile stochastic environ-
ments used methods from mathematical finance, as well as
optimal control, to analyse how volatility affects the success
of persister phenotypes [15].

We hypothesize that the intrinsic lag phase observed in
bacterial growth may be an example of such a hard-coded
rule, which can efficiently reduce the risk of stochastic extinc-
tions. While the lag phase may serve also many other
important functions which enable future proliferation, it is
nevertheless worthwhile to note how the tendency for con-
siderable lag phase arises in our model purely from
demographic stochasticity alone. Given the observed variation
in microbial lag times and the widespread potential for lag
time evolution [30,43,44], our minimal model provides a
simple explanation for why we observe distinct lag phases
during microbial growth in the first place. Indeed, playing
the defensive mode first rather than jumping directly to the
aggressive mode may be highly advantageous for the estab-
lishment of new mutants and in the context of dispersal to
new environments. Thus, the lag phase could be optimized
in conjunction with selection of other beneficial traits, which
may, therefore, either promote or constrain its evolvability [45].

One particularly interesting direction for future research
would be to further investigate the extent of anticipative strat-
egies in biology: are biological algorithms predominantly
greedy and when can we expect anticipative behaviour to
evolve? As our case study suggests, seemingly anticipative be-
haviour may emerge simply by the process of natural selection
and adaptation to the prevailing environment. However, as our
biculture competition model suggests, such optimal monocul-
tures may be easily invaded by a greedy strategy (which may
decrease the resource efficiency of the community).

Incorporating more complex and general environmental
feedback and resource dynamics to our modelling framework
will certainly allow for important insights. In these cases, it
may be necessary to adopt other mathematical tools than the
Bellman equations [21], if computational burden becomes
otherwise too large. Therapies against cancer cell, microbial,
pest and parasite populations can all be seen via the lens of
systematic growth manipulation. Our setting here could be
useful in that context in better understanding the optimal
response of the target population to these interventions.
Going beyond our case study, we also envision how the control
theoretic approach could be highly useful also more generally
to test various evolutionary hypotheses, elucidate organismal
adaptations, predict likely evolutionary trajectories and steer
evolution to a desired direction by manipulating the evolution-
ary drivers of the traits in question.

Data accessibility. All code used in this study are available via GitHub:
https:/ / github.com /RipariaRiparia/optimalgrowth/.  Additional

information is provided in the electronic supplementary material
[46].

Authors” contributions. T.M.: conceptualization, formal analysis, investi-
gation, methodology, software, visualization, writing—original
draft; T.K.: conceptualization, formal analysis, investigation, method-
ology, software, writing—original draft; J.C.: investigation, writing—
review and editing; V.M.: conceptualization, formal analysis, funding
acquisition, investigation, methodology, supervision, visualization,
writing—original draft.

YrL02207 20T 0ua1u] 20S Y f ;gSJ/|eumo[/ﬁjo'ﬁugqs!|qnd/(1a!)o§|21(01



All authors gave final approval for publication and agreed to be

held accountable for the work performed therein.

References

10.

n

12.

13.

4.

15.

McDonald MJ. 2019 Microbial experimental
evolution—a proving ground for evolutionary
theory and a tool for discovery. EMBO Rep. 20,
€46992. (doi:10.15252/embr.201846992)

Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK,
Schneider D, Lenski RE, Kim JF. 2009 Genome
evolution and adaptation in a long-term experiment
with Escherichia coli. Nature 461, 1243-1247.
(doi:10.1038/nature08480)

Futuyma DJ. 2010 Evolutionary constraint and
ecological consequences. Evolution 64, 1865—1884.
(doi:10.1111/j.1558-5646.2010.00960.x)

Todorov E. 2007 Optimal control theory (chapter
12). In Bayesian brain: probabilistic approaches to
neural coding (eds K Doya, S Ishii, A Pouget, RPN
Rao). Cambridge, MA: The MIT Press.

Darch SE, West SA, Winzer K, Diggle SP. 2012
Density-dependent fitness benefits in quorum-
sensing bacterial populations. Proc. Nat! Acad. Sd.
USA 109, 8259-8263. (doi:10.1073/pnas.
1118131109)

An JH, Goo E, Kim H, Seo Y-S, Hwang I. 2014
Bacterial quorum sensing and metabolic slowing in a
cooperative population. Proc. Natl Acad. Sci. USA 111,
14912-14917. (doi:10.1073/pnas.1412431111)
Boutte CC, Crosson S. 2013 Bacterial lifestyle shapes
stringent response activation. Trends Microbiol. 21,
174-180. (doi:10.1016/}.tim.2013.01.002)

Nystrom T. 2003 Conditional senescence in bacteria:
death of the immortals. Mol. Biol. 48, 17-23.
Schaffer WM. 1983 The application of optimal
control theory to the general life history problem.
Am. Nat. 121, 418-431. (doi:10.1086/284070)
Fischer A, Vazquez-Garcia |, Mustonen V. 2015 The
value of monitoring to control evolving populations.
Proc. Natl Acad. Sci. USA 112, 1007-1012. (doi:10.
1073/pnas.1409403112)

Ldssig M, Mustonen V, Walczak AM. 2017 Predicting
evolution. Nat. Ecol. Evol. 1, 1-9. (d0i:10.1038/
5s41559-017-0077)

Ldssig M, Mustonen V. 2020 Eco-evolutionary
control of pathogens. Proc. Natl Acad. Sci. USA 117,
19 694-19 704. (doi:10.1073/pnas.1920263117)
Kuosmanen T, Cairns J, Noble R, Beerenwinkel N,
Mononen T, Mustonen V. 2021 Drug-induced
resistance evolution necessitates less aggressive
treatment. PLoS Comput. Biol. 17, €1009418.
(doi:10.1371/journal.pchi.1009418)
Nourmohammad A, Eksin C. 2021 Optimal
evolutionary control for artificial selection on
molecular phenotypes. Phys. Rev. X 11, 011044.
Browning AP, Sharp JA, Mapder T, Baker (M,
Burrage K, Simpson MJ. 2021 Persistence as an
optimal hedging strategy. Biophys. J. 120,
133-142. (doi:10.1016/.bpj.2020.11.2260)

16.

20.

21.

22

2.

24,

25.

26.

2].

28.

29.

Conflict of interest declaration. We declare we have no competing interests.

Funding. In part funded by the Academy of Finland (grant no. 339496).

Sibly R, Calow P, Nichols N. 1985 Are patterns of
growth adaptive? J. Theor. Biol. 112, 553-574.
(doi:10.1016/50022-5193(85)80022-9)

Houston Al, McNamara JM. 1999 Models of adaptive
behaviour: an approach based on state. Cambridge,
UK: Cambridge University Press.

Mangel M, Clark CW. 2019 Dynamic modeling in
behavioral ecology. Princeton, NJ: Princeton
University Press.

Rivoire O, Leibler S. 2011 The value of information
for populations in varying environments. J. Stat.
Phys. 142, 1124-1166. (d0i:10.1007/510955-011-
0166-2)

Rivoire 0, Leibler S. 2014 A model for the
generation and transmission of variations in
evolution. Proc. Natl Acad. Sci. USA 111,
E1940-E1949. (doi:10.1073/pnas.1323901111)
Sharp JA, Burrage K, Simpson MJ. 2021
Implementation and acceleration of optimal control
for systems biology. J. R. Soc. Interface 18,
20210241. (doi:10.1098/rsif.2021.0241)

Tsiantis N, Banga JR. 2020 Using optimal control to
understand complex metabolic pathways. BMC Bioinf.
21, 472. (doi:10.1186/512859-020-03808-8)

Li Y, Petrov DA, Sherlock G. 2019 Single nucleotide
mapping of trait space reveals pareto fronts that
constrain adaptation. Nat. Ecol. Evol. 3, 1539-1551.
(doi:10.1038/541559-019-0993-0)

Bachmann H, Fischlechner M, Rabbers |, Barfa N,
Branco dos Santos F, Molenaar D, Teusink B. 2013
Availability of public goods shapes the evolution of
competing metabolic strategies. Proc. Natl Acad. Sdi.
USA 110, 14 302-14 307. (doi:10.1073/pnas.
1308523110)

Oxman E, Alon U, Dekel E. 2008 Defined order of
evolutionary adaptations: experimental evidence.
Evol. Int. J. Org. Evol. 62, 1547-1554. (d0i:10.1111/
€v0.2008.62.issue-7)

Augustin J-C, Brouillaud-Delattre A, Rosso L, Carlier
V. 2000 Significance of inoculum size in the lag
time of listeria monocytogenes. Appl. Environ.
Microbiol. 66, 1706—1710. (doi:10.1128/AEM.66.4.
1706-1710.2000)

Levy S, Kafri M, Carmi M, Barkai N. 2011 The
competitive advantage of a dual-transporter system.
Science 334, 1408-1412. (doi:10.1126/science.
1207154)

St. John PC, Crowley MF, Bomble YJ. 2017 Efficient
estimation of the maximum metabolic productivity
of batch systems. Biotechnol. Biofuels 10, 28.
(doi:10.1186/513068-017-0709-0)

Reznick D, Bryant MJ, Bashey F. 2002 r- and k-selection
revisited: the role of population regulation in life-
history evolution. Ecology 83, 1509—1520. (doi:10.
1890/0012-9658(2002)083[1509:RAKSRT]2.0.€0;2)

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

A1.

42.

4.

Bertrand RL. 2019 Lag phase is a dynamic,
organized, adaptive, and evolvable period that
prepares bacteria for cell division. J. Bacteriol. 201,
€00697-18. (doi:10.1128/JB.00697-18)

Gould SJ, Lewontin RC. 1979 The spandrels of san
marco and the panglossian paradigm: a critique of
the adaptationist programme. Proc. R. Soc. B 205,
581-598.

Dragosits M, Mattanovich D. 2013 Adaptive
laboratory evolution—principles and applications
for biotechnology. Microb. Cell Fact. 12, 1-17.
(doi:10.1186/1475-2859-12-64)

Nair RR, Vasse M, Wielgoss S, Sun L, Yu YTN, Velicer
GJ, 2019 Bacterial predator-prey coevolution
accelerates genome evolution and selects on
virulence-associated prey defences. Nat. Commun.
10, 4301. (doi:10.1038/541467-019-12140-6)

Kim W, Racimo F, Schluter J, Levy SB, Foster KR.
2014 Importance of positioning for microbial
evolution. Proc. Natl Acad. Sci. USA 111,
E1639-E1647. (doi:10.1073/pnas.1323632111)
Karve SM, Daniel S, Chavhan YD, Anand A, Kharola SS,
Dey S. 2015 Escherichia coli populations in
unpredictably fluctuating environments evolve to face
novel stresses through enhanced efflux activity.

J. Evol. Biol. 28, 1131-1143. (doi:10.1111/jeb.12640)
Travisano M, Maeda M, Fuji F, Kudo T. 2018 Rapid
adaptation to near extinction in microbial
experimental evolution. J. Bioecon. 20, 141-152.
(doiz10.1007/510818-017-9257-8)

Goodnight CJ. 1990 Experimental studies of
community evolution II: the ecological basis of the
response to community selection. Evolution 44,
1625-1636.

Xie L, Yuan AE, Shou W. 2019 Simulations reveal
challenges to artificial community selection and
possible strategies for success. PLoS Biol. 17,
€3000295. (doi:10.1371/journal.phio.3000295)

De Meester L et al. 2018 Analysing eco-
evolutionary dynamics—the challenging
complexity of the real world. Funct. Ecol. 33,
43-59. (doi:10.1111/fec.2019.33.issue-1)

Manhart M, Shakhnovich El. 2018 Growth tradeoffs
produce complex microbial communities on a single
limiting resource. Nat. Commun. 9, 3214. (doi:10.
1038/541467-018-05703-6)

Acerenza L. 2016 Constraints, trade-offs and the
currency of fitness. J. Mol. Evol. 82, 117-127.
(doi:10.1007/500239-016-9730-3)

Ruparell A. et al. 2016 The fitness burden imposed
by synthesising quorum sensing signals. Sci. Rep. 6,
33101. (doi:10.1038/srep33101)

Moreno-Gamez S, Kiviet DJ, Vulin C, Schlegel S,
Schlegel K, van Doorn GS, Ackermann M. 2020 Wide
lag time distributions break a trade-off between

YrL02207 20T 0ua1u] 20S Y f ;gSJ/|eumo[/ﬁjo'ﬁugqsl|qnd/(1a!)o§|91(01



reproduction and survival in bacteria. Proc. Nat/
Acad. Sci. USA 117, 18 729-18 736. (d0i:10.1073/
pnas.2003331117)

Blount ZD, Borland (Z, Lenski RE. 2008

Historical contingency and the evolution

of a key innovation in an experimental

population of Escherichia coli. Proc. Nat/
Acad. Sdi. USA 105, 7899-7906. (doi:10.1073/
pnas.0803151105)

. Adkar BV, Manhart M, Bhattacharyya S, Tian J,

Musharbash M, Shakhnovich El. 2017 Optimization
of lag phase shapes the evolution of a bacterial

46.

enzyme. Nat. Ecol. Evol. 1, 1-6. (doi:10.1038/
$41559-017-0149)

Mononen T, Kuosmanen T, Cairns J, Mustonen V.
2023 Understanding cellular growth strategies via
optimal control. Figshare. (doi:10.6084/m9.figshare.
€6350197)

-
(=]

fVLOZZOZ 102 ESIIET ')05‘ yr ;gSJ/|eumo[/610'6ugq§!|<jnd)(1a!305|e/(01



