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Intelligent Air Pollution Sensors Calibration for
Extreme Events and Drifts Monitoring
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Abedalaziz S. Khalaf , Yutaka Matsumi , Aijun Ding , Sasu Tarkoma , Senior Member, IEEE,

Tuukka Petäjä , Markku Kulmala , and Tareq Hussein

Abstract—Air quality low-cost sensors (LCSs) are
affordable and can be deployed in massive scale in
order to enable high-resolution spatio-temporal air
pollution information. However, they often suffer from
sensing accuracy, in particular, when they are used for
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capturing extreme events. We propose an intelligent
sensors calibration method that facilitates correcting LCSs
measurements accurately and detecting the calibrators’
drift. The proposed calibration method uses Bayesian
framework to establish white-box and black-box calibrators.
We evaluate the method in a controlled experiment under
different types of smoking events. The calibration results
show that the method accurately estimates the aerosol
mass concentration during the smoking events. We show
that black-box calibrators are more accurate than white-box
calibrators. However, black-box calibrators may drift easily
when a new smoking event occurs, while white-box cali-
brators remain robust. Therefore, we implement both of the
calibrators in parallel to extract both calibrators’ strengths
and also enable drifting monitoring for calibration models.
We also discuss that our method is implementable for
other types of LCSs suffered from sensing accuracy.

Index Terms—Air quality, Bayesian calibrator, drift
monitoring, extreme event, indoor low-cost sensor (LCS).

I. INTRODUCTION

INDOOR air quality has a direct impact on overall human
health and significantly affects human work productivity.

Based on the United States Environmental Protection Agency
(EPA),1 humans spend about 80%–90% of their time indoors.
The levels of indoor air pollution are also often two to five times
higher than outdoor levels. In some cases, the pollution levels
might exceed 100 times than outdoor levels for the same pollu-
tants. Indeed, excessive levels of indoor air pollutants would lead
to immediate harmful effects. For example, incidental propane
leaks in industrial plants [1] or excessive carbon monoxide (CO)
in vehicles [2] would cause sudden death.

According to World Health Organization (WHO),2 partic-
ulate matter (PM) is a common indicator for air pollution,
which is more harmful in affecting human health than any
other pollutants. PM indoors can be originated from outdoor
origins or generated through human activities, such as cooking,
burning candles, using kerosene heaters and smoking. There-
fore, accurate indoor air quality measurement enables estimat-
ing health and safety risks in work and living environments.

1[Online]. Available: https://www.epa.gov/report-environment/indoor-air-
quality/

2[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/
ambient-(outdoor)-air-quality-and-health
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However, air quality in different rooms and spaces of a building
varies from one to another. This may require installing multiple
sensors indoors within different rooms. Fortunately, low-cost
sensors (LCSs) can be utilized for such purposes [3]. LCS can
then alert when excessive pollutants have reached a particular
health threshold. Indeed, LCSs are affordable and relatively
easy to install that can then be massively deployed in build-
ings [4].

Although LCSs are usually laboratory calibrated, they often
suffer from low accuracy and low robustness when they are
deployed in fields [5]. These issues usually occur due to sensor
designs [6], sensor drifts, changes in environmental conditions,
background changes, and fabrication variances [7]. For example,
LCSs generally do not include a heater or dryer at their inlets,
so the changes in temperature and relative humidity have a
significant impact on the performance of low-cost PM sen-
sors [8]. As a result, LCSs often are vulnerable to accurately
measure air pollutants at very low and very high concentration
levels [9], [10]. Fortunately, to overcome the challenges of LCSs
measurement accuracy and robustness, many studies propose
various solutions in terms of sensor deployment and sensor
calibrations as presented in review studies in [5] and [11].
However, thanks to the advancement of computing technologies,
data-driven, and machine-learning (ML) based approaches have
recently emerged as a potential solution for these challenges [5],
[12].

The state-of-the-art of indoor LCSs was reviewed compre-
hensively in [13] and [14]. Based on these studies, there is an
immense need for performing research on indoor LCS-based
measurements and calibrations. These studies highlight that
most research activities for the indoor environments have been
focused only on the sensors’ data analytics (e.g., more than
60% from their reviewed papers), neglecting the evaluation of
sensors’ performance indoors through developing calibration
methods. Another concern when deploying LCSs relates to
the sensor drifts and calibrator drifts (also known as concept
drift). While sensor drift indicates the aging of the sensors
hardware overtime [15], that makes the reading of the sensor to
deviate from the actual readings [16]. The calibrator drift refers
to the situation where the performance of calibration models
reduce due to the changes in environmental conditions [17].
To the best of our knowledge, none of the papers reviewed in
the aforementioned articles propose a method that combines
sensors calibration and drift detection together, especially for
indoor environments, where reference instruments are usually
not accessible nor remote sensing can penetrate indoors for
sensors validation.

In this article, we contribute by proposing a novel sensor
calibration method and a calibrators’ drift detection method,
which are evaluated in an indoor environment. The novelties
of our study include: 1) performing controlled experiments
to define scenarios for indoor extreme events (presented in
Sections II and III), 2) deploying white-box and black-box
calibrators in parallel for correcting LCSs measurements and
detecting calibrators’ drift (explained in Sections IV and V), and
3) discussing potential industrial applications extended from the
proposed methods (discussed in Section VI-C).

Fig. 1. Intelligent air pollution sensors calibration process.

II. EXPERIMENT: INDOOR POLLUTANT MEASUREMENTS

In the experiments, we use two types of reference instruments
(R) and two generations of LCSs also labeled as L, where
R refers to any high precision sensing instruments such as
DustTrak and SidePak (as shown in Fig. 1). The measurements
of R can be used as ground truth data for sensors calibration
and validation purposes. In addition, LCSs are known to be
affordable devices (i.e., the cost less than $2500 per unit [18]),
which have evolved as efficient solutions for sensing indoor and
outdoor air pollution monitoring [3]. In this study, the LCSs
generation indicates the improvements on the LCSs’ hardware
and software (i.e., different LCS version). Both R and LCSs
used in this study are shown in Fig. 1, part ❶, with labels R1,
R2, L1, and L2.

A. Reference Instruments

DustTrak DRX 8534 (TSI Inc.), labeled as R1, is capable of
simultaneously measuring size-segregated mass fraction aerosol
concentrations in the range from 0.001 to 150 mg/m3, corre-
sponding to PM 1, PM2.5, PM4 (Respirable), PM10, and total
PM size fractions. Therefore, the instrument can measure con-
taminants such as dusts, smoke, fumes, and mists. The sens-
ing technology of the instrument is based on light-scattering
laser photometers. The instrument is battery operated, where
data-logging can be done between −20 ◦C and 60 ◦C with an
operational humidity between 0% and 95%.

SidePakTM Personal Aerosol Monitor AM520 (TSI Inc.),
labeled as R2, is capable of measuring aerosol mass concen-
trations in the range from 0.001 to 100 mg/m3, corresponding
to PM 1, PM2.5, PM4 (Respirable), PM5 (China Respirable),
PM10, and 0.8 μm diesel particulate matter (DPM). Thus, the
instrument provides real-time aerosol mass concentration read-
ings of dusts, fumes, mists, smoke, and fog. The instrument is
portable and battery operated. The sensing technology of the
instrument is based on light-scattering laser photometers. It can
also operate between −20 ◦C and 60 ◦C with an operational
humidity between 0 and 95%.
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Fig. 2. Time-series data of PM2.5 concentration obtained in the
experiment.

B. Low-Cost Sensors (LCSs)

In Fig. 1, the LCS units refer to sensor generation I (labeled
as L1) and sensor generation II (labeled as L2). The devices
measure the mass concentration of PM with diameter smaller
than 2.5 μm (PM2.5). The thermal resistor in the sensor stimu-
lates flow induced by temperature gradient. The sensor devices
have an air inlet, a light sensor, and an infrared light source.
They start measuring when air enters the sensor’s air inlet, then
the light source concentrates on sensing point. These sensor
devices utilize light-scattering particle (LSP) sensing utilities
for monitoring PM2.5. LSP sensors are well-known low-cost
solutions for particle concentrations measurements and mon-
itoring. These portable sensor devices are utilized to perform
real-time and spatial PM2.5 measurements and monitoring [19].
In addition to the features of L1, sensor generation II (i.e., L2)
is equipped with a case to reduce the effect of air turbulence in
the inlet. Sensor L2 is also equipped with meteorological sensor
utilities, including relative humidity (RH), temperature (Temp),
and pressure (P). Moreover, an algorithm is embedded in L2

to filter the raw measured data such that it removes the spikes
before data recording and monitoring.

C. Experiment

We carried out the experiments in two different time intervals.
The first measurement was performed continuously between 6
and 8 Feb 2020, and the second measurement was performed
between 14 and 22 Feb 2020. During the measurements, R1

and R2 were placed side by side with the LCSs, i.e., one unit
of L1 and two units of L2 (L2a and L2b), in a confined space,
i.e., a room where the ventilation system was sealed off. The
experimental setup is illustrated in Fig. 1, part ❶. The inlets of
all instruments were placed exactly next to each other to ensure
they extract the same amount of aerosol mass concentrations.
Four types of smokes were generated using tobacco, electric
cigarette, incense, and shisha, in which the measurements are
depicted in Fig. 2. There were in total 12 experimental events for
smoke measurements. Tobacco were smoked at events numbers
1, 2, 3, 6, 7, and 11; electric cigarette were smoked at events
numbers 4 and 5; incense was lighted at events numbers 8,
9, and 10; and shisha was blown at event number 12. The
experimental events were held by blowing the smoke next to
the inlets of the experimental setup. During the experiment, we
continuously recorded the measurements of PM2.5 concentration

TABLE I
LCS METEOROLOGICAL SENSORS: CONSISTENCY PERFORMANCE

and meteorological data, including Temp, RH, and P from all
instruments.

D. The Data

1) Data Preprocessing: The collected data from instruments
and LCSs have different time resolution by default, thus, the
data needs to be synchronized. The time resolution of L1 varies
between 40 s and 1 min interval, whereas L2 has a fixed time-
resolution at 1 min interval. Both R1 and R2 have a consistent
measurement interval of 1 min. Hence, for our data analysis, we
aggregate the data to be in 1 min resolution. Note that there is
an experimental gap between 8 and 14 Feb 2020 (about a week)
.

2) Smoking Events Characteristics: In this article, the whole
experiment comprises the smoke and normal events. The median
of PM2.5 concentration for the whole experiment is 27.2 μg/m3.
The normal event is usually assumed if the PM2.5 concentration
is below this median level. However, as shown in Fig. 2, the
experiment shows that the smoke does not dissipate quickly,
since the ventilation system is OFF. In addition, before the PM2.5

concentrations reach the median level, again another smoking
event takes place. Therefore, we assume that the smoking event
happens when the PM2.5 concentrations crosses the 75% quan-
tiles that is at 144.76 μg/m3. Indeed, as shown in Fig. 2, the
experiment highlights the gap between the measurements of R
and LCSs, indicating that LCSs suffer from measurement accu-
racy that is the main concern in this article. Hence, to validate
the measurements of LCSs, we use data collected from DustTrak
(R1) as the ground truth data. The instrument performance has
been approved in many scientific experiments [20].

3) Performance Metrics: We use performance metrics of
Pearson correlation coefficient (R), mean absolute error (MAE),
and mean absolute percentage error (MAPE), and root mean
squared error (RMSE) for sensors and methods validation. The
metrics are described in Appendix A.

III. SENSORS PERFORMANCE

In this section, we perform sensors validation using consis-
tency and accuracy tests to evaluate the performance of sensors
(as shown in Fig. 1, part ❶), whereas the term consistency refers
to similarity in measurements of two LCS, the term accuracy
indicates how similar are the measurement of LCS units with
the measurement of a reference instrument.

A. Meteorological Variables: Consistency Test

The L2 is already equipped with meteorological sensors mea-
suring variables Temp, RH, and P. To show the performance of
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Fig. 3. Heatmap plot between reference instruments and LCSs.

LCSs and how consistent the measurements of meteorological
variables are, we perform consistency test between L2a and
L2b using the metrics of R, MAPE, MAE, and RMSE. The
consistency test results are shown in Table I.

These results show that the meteorological measurements are
almost identical and demonstrate consistent performance when
they are compared between each other. In Table I, from the
measurements column, the range and mean values indicate that
the sensor readings are reliable. The Temp measurement ranges
between 20 and 30 ◦C, with the mean value of 25.22 °C; RH
ranges between 20% and 40%, with the mean value of 29.25%;
and P ranges between 900 and 910 mbar with the mean value of
around 902.27 mbar. These values show typical room conditions,
where slight variations take place due to human activities. The
performance of LCSs is clearly shown in validation metrics
column with values of R, with all values approximately equal to
0.99 for all variables. Likewise, MAPE values are very low that is
below 3.5% for all sensors. For example, in case of Temp, 3.24%
MAPE for the mean Temp value of 25.22 °C can be considered
to be relatively small. Similarly, all MAE and RMSE values for
all meteorological variables are below 1, indicating that errors
between two LCSs are so small that can be considered negligible.

B. Aerosol Sensors: Consistency and Accuracy Tests

We validate aerosol LCS measurements using the reference
instruments. This validation is known as accuracy test, whereas
the comparisons between the same type of devices are known
as consistency test. Fig. 3 shows sensors validation heatmap
matrix plot between reference instruments (R1 and R2) and
LCSs (L1,L2a, andL2b). The figure consists of two performance
metrics: the lower part illustrates MAPE, whereas the upper part
shows Pearson correlation coefficient (R). The colors represent
the level of R and MAPE values. When the color is closer to
dark red, R between two devices is strong and MAPE is low.
Inversely, when the color is closer to dark blue, R between two
devices is low and MAPE is high.

The consistency tests between reference instruments show
high correlation (i.e., high R value and small MAPE value).
This explains that both reference instruments provide similar
performance, and hence either of them can be used as ground
truth. In addition, since the performance of R1 has been ap-
proved in many scientific experiments [20], thus, we select R1

Fig. 4. PM2.5 scatter plots between R1 and L1 (left) and L2a (right).

as the ground truth sensing instrument for validating sensors
and developing calibrators. Likewise, the consistency tests be-
tween both second generations of LCSs demonstrate high R
correlation and very low MAPE value. This indicates that they
are identical in terms of electronics and consistent in terms of
performance. However, L1 and L2 have a minor performance
difference (i.e., negligible) in terms of R and MAPE, allowing
us to apply the same types of calibrators for the two generations
of LCSs. The accuracy test between LCSs and the reference
instruments shows that the correlation coefficients (R) are low at
approximately about 0.6 (i.e., yellow color indicator), while their
MAPE values are around 0.4 (light blue). These facts translate
that LCSs do not meet the performance of reference instruments.

Fig. 4 shows scatter plots of PM2.5 between R1 and L1 and
L2a. The scatter plot ofL2b is not shown in the figure, as it would
demonstrate similar pattern. In the figure, the normal event is
illustrated by blue color, whereas the smoking events are shown
by other colors. Each color shows a different deviation path
that interestingly forms a cluster for each type of smoke. It can
be seen that the relationship between R1 and LCSs is correlated
nonlinearly for the concentration distribution within each smoke
type (cluster). The figure also presents the values of R and
MAE for whole, normal, and smoking event scenarios. During
normal event, R values for both LCSs are still high (≈ 0.8) and
MAE values are low (< 23 μg/m3). These results explain that
the performance of LCSs is similar to the reference instrument
in normal conditions. However, during smoking events, the
measurement error between the reference instrument and LCSs
become larger as PM2.5 concentration increases (such that R <
0.5 and MAE > 900 μg/m3).

In practice, since LCSs are incapable of measuring high levels
of PM2.5 concentrations and extreme events; thus, relying on
their measurements for these smoking events would be harmful.
As a result, to improve LCSs’ PM2.5 measurement, they need to
be calibrated. In next section, we explain our proposed sensors
calibration method.

IV. SENSORS CALIBRATION

A. Calibration Process

In Fig. 1 (part ❷), we illustrate the development of sensor
calibrators, where it consists of two calibrator models, called
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white-box (W) and black-box (V) calibrators. In general, there
are two approaches for developing W. The first approach relies
on physics-based models, and the second approach uses statis-
tical models, where the relationship between the inputs and the
outputs are visible and transparent [20]. Therefore, white-box
calibrator (W) is usually suitable for modeling a calibrator if
the measurements of LCSs and reference instruments exhibit
regular patterns. For example, in our case as illustrated in Fig. 4,
the relationship between reference instrument and LCSs presents
exponential shapes. The black-box calibrator V provides little
explanatory insight into the relative influence of the independent
variables (e.g., inputs variables) in the prediction process (e.g.,
outputs), but they are often effective in dealing with air quality
and environmental data, which are nonlinear [21]. For example,
neural-networks are known as a general approximator that can
relatively well deal with most nonlinear problems, such as
sensors calibration and virtual sensors [9].

Both calibrators (W and V) are then trained independently
using the datasets obtained from the experiments (Fig. 1, part
❶). Even though, our sensors calibration process (see Fig. 1)
allows flexibility in terms of models choice for V and W.
In our study, we select a Bayesian linear model (BLM) as
W2 and a Bayesian neural-network (BNN) as V2. We select
Bayesian framework, because, first, Bayesian models are robust
from overfitting due to the presence of regularization. Second,
Bayesian inference leads to probability distributions in their
model coefficients and predictive distribution, which enables
analyzing them statistically [20]. For comparison of W2 and
V2, we also redevelop the most popular calibration methods as
mentioned in [5]. These calibration methods include multivariate
linear regression (MLR) and artificial neural-network (ANN)
representing white-box (W1) and black-box (V1) models,
respectively.

Next, we deploy both trained calibrators (W2 and V2) in
parallel to ensure that they complement the strengths and weak-
nesses of each others (see Fig. 1, part ❸). We further compute
the residual [see (3): R] between V2 and W2 to monitor the
calibrators drift (see Fig. 1, part ❹). Finally, the outputs from the
calibrators provide accurate PM2.5 concentration information
for users (see Fig. 1, part ❺). In addition, as described in
Section VI-C various industrial applications can benefit from
the calibrated PM2.5 measurements.

B. Calibration Models

In the calibrator development phase (see Fig. 1, part ❷), the
W and V calibrators can be expressed mathematically as

y1 = W(X,β) + ε1 (1)

y2 = V(X,ω) + ε2 (2)

where W and V are white-box and black-box calibration func-
tions, respectively; and y1 and y2 are the outputs of calibrators
W and V, respectively. It is worth noting that y1 and y2 are
the calibration outputs during the training process. The sym-
bol β represents the model coefficients of W and the symbol
ω embodies the weights of V . In both calibrators, ε refers
to errors that follow a Gaussian distribution with zero mean

and σ2 noise variance, given by ε ∼ N (0, σ2). The inputs X
for both calibrators are obtained from the LCS measurements,
including PM2.5 concentration and meteorological variables. As
described in Section IV-A, the calibrator functions of W2 and
V2 are selected to be a BLM and a BNN, respectively. There-
fore, the optimization of models’ coefficients is then performed
using Bayesian inference. In the calibrator deployment phase
(see Fig. 1, part ❸), y∗

1 and y∗
2 are the calibrators’ outputs

during the testing process, which are in the form of Gaus-
sian predictive distribution symbolized by p(y∗

1|X∗,X,y1) and
p(y∗

2|X∗,X,y2), for W2 and V2, respectively. In both calibra-
tors, symbols X∗ are the test data obtained from LCS measure-
ments. The derivation of both calibrators is described in [20] and
also briefly presented in Appendices B and C.

C. Drift Monitoring Methods

In real deployment, due to various hardware and environmen-
tal reasons, the calibration models would become less effective
throughout the time. In this article, we call this phenomenon as
calibrator drift and we propose two methods for monitoring the
calibrators drift (see Fig. 1, part ❹) including: 1) monitoring
the outputs of calibrators’ residual between W and V, and
2) monitoring one of the key variables, which may affect the
calibrators’ effectiveness.

The first method computes the predictive distribution of cal-
ibrator residual (R) between two deployed calibrators (W and
V), shown as the red dashed lines in Fig. 1. In our case, since
the predictive distributions for W2 and V2 are in the form of a
Gaussian distribution (as explained in the Section IV-B), thus,
the drift monitoring residual (R) results in Gaussian distribution
as

R ∼ N (μ∗
y2

− μ∗
y1
,Σ∗

y2
+Σ∗

y1
) (3)

where the notations of μ∗
y2

and μ∗
y1

represent the mean of
predictive Gaussian distributions for V2 and W2, respectively,
whereas the notations of Σ∗

y2
and Σ∗

y1
denote the variance of

predictive Gaussian distributions for V2 and W2, respectively.
The derivation is described in Appendix D.

The second method enables drift detection by complementing
the first method through monitoring the updates of one of the
key variables measured by LCSs. This is shown as the blue
and brown dashed lines in Fig. 1. Due to the simplicity and
transparency of the model, the key variables affecting calibrators
can be identified by analyzing the model coefficients of the
calibrator W. For example, in our case PM2.5 is the key variable
affecting the calibration. If the calibrators were trained with
normal event, then the calibrators may drift when LCSs are
deployed on smoking events. Let us recall that normal event
refers to scenarios, where there is no smoking and generally
the PM2.5 concentration is considered to be low, while smoking
event indicates to the scenarios, where LCSs measuring PM2.5

concentration is high.
To enable the drift detection, an outlier limit (L) can be

computed by calculating the upper limit of quantile (q) from
the training data. For example, the outlier limit (L) can be set
by computing the qth quantile of the training data of PM2.5
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Fig. 5. Calibration results for different scenarios. Note: one alternative solution is that we put the numbers as tables and put the alternative colors
behind the numbers. The letter D in G5 indicates to the detection of drift.

concentrations obtained from LCSs (XPM2.5 ). Whenever new
PM2.5 measurement (X∗

PM2.5
) is bigger than L, this is considered

as outlier in the test data. Indeed, the outlier in test data is
one of the indicators for drift occurrence. To this end, the
number of outliers in test data needs to be counted. We show
this counting with C. Finally, the accepted percentage of outlier
X∗

PM2.5
(denoted as P) is computed by C

l × 100%, where l is the
number of XPM2.5 data points.

Algorithm 1 presents our proposed parallel calibration de-
ployment and drift detection (P). The Algorithm operates such
that from lines 1 to 3, it uses three determined thresholds includ-
ing the maximum accepted residual (T1), maximum accepted
percentage of X∗

PM2.5
(T2), and the quantile outlier (qth). The Al-

gorithm performs computations for the two methods (explained
earlier) from lines 4 to 23 (while LCSs are deployed and perform
measurements). The first method (lines 6 to 8) computes both
calibrators (W and V) and the residual R. In line 9, using the
available training data (XPM2.5 ), the second method computes
the outlier limit (L), where in our case, we select q = 0.99. The
lines 10 and 11 compute the outlier test data (C) and the accepted
percentage of outlier X∗

PM2.5
(P), respectively.

In lines 12 and 13, if the mean(R < T1), then our proposed
calibration is executed using V, which is known to be more
accurate. In our study, since 100μg/m3 residual between two
calibrators already indicate the drift in the calibrator V, thus,
we select T1 = 100. From lines 14 to 22, if R value crosses the
defined threshold (T1), this indicates that V, which is known to
be less robust, begins to drift. Hence, our proposed calibration
switches to execute calibrator W (line 16). In the lines 17–18,
when P crosses the threshold T2 (e.g., in our case, we select it
to be 25%), then calibrator drifts are declared. This means that
both calibrators V and W do not function properly (line 19).
Therefore, a mitigation such as recalibration is required (line
20), as explained in Section VI-B.

V. RESULTS

A. Calibration Performance

In order to evaluate the performance of calibrators W and V,
we design 12 different scenarios within five groups. As shown
in Fig. 5, the groups are labeled by G1 − G5 and the scenarios

Algorithm 1: Deployment of Parallel Calibrators and Drift
Detector (P).

1: Determine maximum accepted residual: T1

2: Determine maximum accepted percentage of X∗
PM2.5

:
T2

3: Determine qth quantile outlier threshold
4: while LCSs measurements are being performed do
5: From LCS measurements, obtained {PM2.5, Temp,

RH, P} to form matrix input X∗

6: Compute W : y∗
1 = W(X∗,β∗)

7: Compute V : y∗
2 = V(X∗,β∗)

8: Compute R

9: Compute the outlier limit: L = quantile (XPM2.5 , q)
10: Count C : the occurrence number of X∗

PM2.5
> L

11: Compute the accepted percentage of X∗
PM2.5

outliers :
P = C

l × 100% (l is the number of XPM2.5 data
points)

12: if mean(R) < T1 then
13: Calibrate LCS using V

14: else if mean(R) > T1 then
15: V does not function well:
16: Calibrate LCS using W

17: if P > T2 then
18: Calibrator drift is declared!
19: V and W do not function well
20: Mitigation (Section VI-B)
21: end if
22: end if
23: end while

are labeled by S1 −S12. These grouped scenarios are planned to
evaluate the calibrators’ performance within four approaches in-
cluding cross-units validation, cross-different-units validation,
benchmark validation, and calibrators drift validation.

The cross-units validation refers to calibrators’ performance
evaluation when we train the calibrators on one unit and then test
them on another unit of the same type. This approach enables
evaluating the calibrators’ sensitivity and accuracy. In addition,
this validation is beneficial for evaluating calibrators’ resilience



1372 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023

against sensor fabrication variance. The cross-different-units
validation aims to investigate the calibrators’ performance when
we train the calibrators on one unit and then test the them on
another unit of different type. We use this approach to evaluate
the calibrators’ accuracy. The calibrators drift validation aims
to investigate the calibrators drift due to the lack of information
in the training data (for example, when calibrators have never
experienced smoking events). Finally, benchmark validation is
planned to evaluate the calibrators performance using a standard
modeling process, which typically uses 70% random data for
training and the remaining 30% of the data for testing. In our
study, we use benchmark validation to compare its performance
with the other validation approaches.

The first group (G1), which includes scenario S1 aims to eval-
uate the calibrators using the benchmark validation approach.
The second group (G2), which includes scenarios S2 and S3

is designed to observe the accuracy of calibrators utilizing the
cross-units validation approach. The third group (G3) that in-
cludes scenariosS4 −S7 uses the cross-different-units validation
approach to investigate the calibrators’ accuracy across different
types of LCSs. The fourth group (G4), which includes scenarios
S8 −S11, is designed to perform cross-units validation approach
in order to observe the sensitivity of the developed calibrators. In
the scenarios in G4, we use all data except one particular smoke
from the sensorL2a for training the calibrators. Then, we test the
calibrator on sensor L2b. For instance, in scenario S8, we train
the calibrators using all dataset from L2a except for tobacco and
test it on sensorL2b. The fifth group (G5) that consists of only the
scenario S12 is planned to perform calibrators drift validation.
In this scenario, we use L2a to train calibrators using the whole
normal events data, and test the trained calibrators with all of
the smoking events.

Fig. 5 shows the performance results of different calibrators,
including BLM (W2), BNN (V2), and our proposed calibrator
(P) for different scenarios. In the figure, we also include the
most popular white-box (W1) and black-box (V1) calibration
methods in order to compare the performance results of the
calibrators V2, W2, and P. As presented in figure, we use the
performance metrics R, MAE, and MAPE.

Using benchmark validation approach, which is the case
of G1, W2 and V2 calibrators demonstrate to have a better
performance thanW1 andV1 using all performance metrics. The
existence of regularization factor in Bayesian inference makes
W2 and V2 calibrators more generalized than W1 and V1. In
addition, the performance of V2 is better than W2, shown by
all performance metrics. Through this approach, our proposed
method (P) shows better performance than the rest of the cal-
ibrators, except in case of V2 that has just minor performance
difference with P. The reason for this minor difference might
be that the training data already contain the outliers, while the
test data do not contain the outliers.

The cross-units validation approach that is evaluated within
G2 consists of the scenarios S2 and S3. The values of R for V2

are consistently higher than W2 for both scenarios. This implies
V2 generates better calibrators’ accuracy. Likewise, the values
of metrics MAE and MAPE for V2 is lower than W2, indicating
that V2 is more accurate than W2 in these scenarios. Both W2

Fig. 6. Scatter plots between the reference instrument and the cali-
brated LCS using W2 (left) and V2 (right) for scenario S2.

Fig. 7. Time-series plot representing the ground truth (R1), uncali-
brated LCS (L2b), calibrated LCS (L2b) using W2 and V2, tested on
scenario S2.

and V2 calibrators outperform W1 and V1 due to the same
reasons explained previously for scenario S1. In scenario S2,
P demonstrates to have better performance than all calibrators.
In scenario S3, P also outperforms all of the calibrators, except
the V2 with a very minor difference. The reason for the minor
difference is explained in S1. To conclude, the performance
metrics evaluations confirm that the calibrators function well
across units of the same type.

For cross-different-units validation approach, we consider
the scenarios S4 − S7 in group G3. Similar to group G2, the
performance metrics in the scenarios in group G3 show that
generally W2 and V2 have better performance than W1 and
V1, respectively. However, in these scenarios, V2 does not
outperform W2, indicating that white-box calibrators perform
slightly better than black-box calibrators when they are tested
on different unit type. Nevertheless, P still outperforms all other
calibrators, indicating that P shows promising results when it is
tested on different unit type. As outcome of the cross-different-
units validation, the performance results demonstrate that all of
the calibrators still function well across different units.

Similar to group G2, the group G4 that includes the scenarios
S8–S11 also evaluates the cross-units validation approach. In
scenarios of G4, calibrators W2 and V2 still outperform W1

and V1. However, in some cases (e.g., S8 and S11), the results
of performance metrics show that W2 slightly perform better
than V2. Therefore, as an outcome of cross-units validation, V2

seems to be more sensitive when facing a new smoking event. For
example, in S8, the calibrator W2 works better than V2, because
W2 is more robust to outliers than V2. As a result, V2 does
not accurately calibrate the LCS on the tobacco smoking event.
Nevertheless, P outperforms all of the calibrators, although the
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TABLE II
SUMMARY OF R VALUES FOR DIFFERENT GROUPS OF SCENARIOS

test data contains outliers. This is due to the fact that the parallel
implementation in P enables switching from V2 to W2 when
the residual R increases due to outliers.

To investigate the calibrators drift validation approach, we
consider the group G5 that includes the scenario S12. Let us
recall that in this scenario, all smoking events data are excluded
in calibrators’ training. The results show that both calibratorsV1

and V2 clearly drift by presenting small values for the metric R
and values higher than 1 for MAPE. WhileW1 andW2 maintain
the performance to an acceptable level by showing a value about
0.7 for the metric R. Indeed, calibrators W1 and W2 are more
robust than calibrators V1 and V2, that is, because white-box
calibrators have less modeling complexity. In this scenario, our
proposed method P alerts the calibrators drift as described in
Algorithm 1. This is highlighted by D, i.e., calibrators drift
for scenario S12 in Fig. 5. The calibrators drift analysis will
be explained in Section IV-C.

Next, we generate scatter plots (see Fig. 6) and time-series
plots (depicted in Fig. 7) to provide further insights about the
results presented in Fig. 5. Since most results indicate that V2 is
more accurate than W2, in this case, as an example, we consider
further analyzing scenario S2, which is also a simpler scenario
to understand. Fig. 6 depicts scatter plots between the reference
instrument (R1) and calibrated LCS (L2b), for calibrators W2

(left subfigure) andV2 (right subfigure). In this figure, the colors
indicate the density of data points for PM2.5 measurement. The
plot shows that the data points of PM2.5 concentrations scatter
around the red reference lines for both calibrators. The results
of scatter plot indicate that both calibrators perform well by
correcting the measurements of L2b and making them similar to
the measurements of R1. In addition, V2 calibrate PM2.5 more
accurately than W2, especially at high PM2.5 concentrations.
Nevertheless, both W2 and V2 calibrate PM2.5 to an acceptable
level. This is confirmed by Fig. 7, where both calibrators W2

and V2 are tracking very well the reading of R1. Fig. 7 also
illustrates that the calibrators are able to capture the extreme
smoking events effectively. As a result, implementing both of
the calibrators enables detecting and avoiding false negative
situations, which may be harmful for human.

The results of different scenarios presented in Fig. 5 show
that both calibrators have strengths and weaknesses. Indeed,
V2 tends to drift drastically when a completely new situation
emerges (as the case in scenario S12), however, W2 performs
adequately with acceptable performance degradation. Indeed,
these facts had motivated us to deploy both calibrators in par-
allel (P) as they have two different characteristics. In order to
highlight the performance results of all of the calibrators and P,
in Table II, we summarize the mean ofR values for the scenarios
in each group. Indeed, this table concludes the results presented

Fig. 8. Model coefficients of calibrator W in the forms of ellipsoids for
scenarios S1, S2, S4, and S8–S12.

in Fig. 5 by presenting that 1) W2 and V2 are generally better
than the most popular calibration methods W1 and V1, 2) V2

is better than W2 for most scenarios, 3) our proposed approach
P outperforms the other calibrators, and 4) P enables calibrator
drift detection as shown in scenario S12.

It is worth noting that the drift detection is important be-
cause LCSs and reference instruments usually are not installed
or placed near each other. Consequently, it is challenging to
detect calibrator drifts in the absence of a reference instrument,
which provides ground truth data. As described in Section IV-C,
deploying two types of calibrators allows cross-checking them.
This process which is called drift monitoring aims to ensure
both calibrators perform effectively by enabling detecting the
calibrators drifts. The next section provides further analysis
about the calibrators drifts.

B. Drift Analysis

As explained in Section IV-C, analyzing the model coeffi-
cients of calibrator W provides insights about the variables
impacting the LCSs measurements. Fig. 8 depicts the model
coefficients of calibratorsW2 (obtained using the data fromL2a)
for scenarios S1, S2, S4, and S8–S12. Since the calibratorsW2 in
these scenarios are based on BLMs, their model coefficients (β)
are in the form of Gaussian distribution, following p(μβ , Vβ),
with mean μβ and variance Vβ . These model coefficients (β)
are depicted in Fig. 8 with the ellipsoids, where the core and
radius represent the mean and standard deviation of multivariate
Gaussian distribution, respectively.

In the figure, the largest magnitude of coefficient β indicates
the most dominant variable in LCSs measurements. The vari-
ables include PM2.5, Temp, and RH, which are associated with
β1,β2, andβ3, respectively. It can be seen that while PM2.5 that is
associated withβ1 plays a major role in calibration as their values
range between 0.7 and 0.9, which are one magnitude bigger
than the values in β2 and β3. The variations of Temp and RH
measurements have less influence in calibrators performance. In
addition, the role of pressure (P) is trivial with the mean of β4

for all scenario is closed to −0.003 (not including in the figure).
Moreover, as illustrated in Fig. 8, the ellipsoids position that
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Fig. 9. Calibrators drift monitoring for scenario S12.

divide between normal (yellow) and drift (dark blue) clusters are
dominated by the magnitude ofβ1. This means that (as described
in Algorithm 1) monitoring the changes on the test data PM2.5

(X∗
PM2.5

) provides an indication about the calibrator drifts.
Fig. 9 illustrates the relationship between residual (R) and

PM2.5 measurements data gathered during the testing process
(X∗

PM2.5
), for S12. While the blue histogram shows the X∗

PM2.5
,

the pink histogram is PM2.5 measurements data collected during
the training process (XPM2.5 ). In the figure, x-axis represents
PM2.5 measurements from LCS prior to calibration, the left y-
axis shows the residual (R) between V2 and W2, and the right
y-axis presents the frequency of histograms.

As described in Algorithm 1, drifting detection can be per-
formed by monitoring R between V2 and W2. In the figure,
R shows incremental pattern (with uncertainty) when the LCS
PM 2.5 measurement concentration increases. In this case, W2

maintains the calibration performance to an acceptable level, but
both calibrators fail when LCS PM2.5 measurements (X∗

PM2.5
) are

too large (i.e., mean(R) > T1). In the figure, this is shown when
the R reaches 100 μ g/m3 in the left y-axis.

Furthermore, while the outlier limit (L) lies on the edge of
the pink histogram’s right tail (about 50 μg/m3 on x-axis at
q = 0.99). It is obvious that the blue histogram has deviated
(expanded) largely from the pink histogram, indicating that the
accepted percentage of X∗

PM2.5
already crosses the threshold

(i.e., P > T2). This indicates that the calibrator drift is declared
(according to Algorithm 1) and both calibrators are unable to
calibrate the readings of LCSs.

Obtaining a reliable drifting monitoring also enables detecting
the wear in sensors hardware when they are in real use. As
the wear of hardware usually provides inconsistent reading,
therefore, residual evaluation would assist in identifying the
sources of errors. The drifting monitoring allows ensuring the
sensors calibrators and hardware function accurately in the field
deployment. If they do not function accurately, then the mainte-
nance can be performed based on the information provided by
drifting monitoring.

VI. DISCUSSION

A. Comparison With the State-of-the-Art

LCSs increasingly use ML-based calibration methods to im-
prove the accuracy of sensor measurements [5]. The studies
in the state-of-the-art, present specific ML-based calibration

methods, however, in contrast, we propose a generic strategy
in applying parallel ML-based calibration models (P). Indeed,
most of the studies in literature implement either white-box (W)
or black-box (V) models to perform calibration. Our proposed
method offers flexibility in choosing any ML model to represent
W and V models. Thus, we selected BLM and BNN in our
proposed method P.

These studies in literature use different datasets generated
in different environments, seasons, and locations, while each
dataset has different characteristics. Hence, comparing the per-
formance results of the calibration models seems to be inap-
propriate. Nevertheless, to show the performance of our pro-
posed method (P), we redeveloped the most popular calibration
methods [5], i.e., MLR and ANN, and then we, respectively,
compared them with our selected calibration methods, which
are BLM and BNN. Indeed, as presented in Section V-A, our
proposed method (which implements parallel ML models) out-
performs individual selected methods (i.e., BLM and BNN) as
well as the most popular methods (i.e., MLR and ANN). Our
proposed method indeed promotes the use of Bayesian models
and parallel deployment for LCSs calibration methods.

Furthermore, as the deployment of sensor networks in smart
cities has recently increased, the drifts of calibration models have
become challenging during their in-field operation time. The
drifts result from various reasons including clean air policies,
e.g., traffic, changes in humans consumption patterns such as
fuel and gas [22], or temporal effects such as forest fires and
volcano eruptions [23]. To detect the drifts, the methods in
the state-of-the-art use statistical difference in distributions of
air pollution measurements [12]. However, in contradiction our
proposed method uses two layers of detection methods, first by
computing residual between W and V, and then by monitoring
the changes of one of the key variables measured by LCSs,
e.g., PM2.5. The two layers implementation would reduce the
probability of receiving false positive alarms if the proposed
method was applied in the earlier mentioned scenarios causing
the drifts (such as policies and temporal effects).

Moreover, to the best of our knowledge, it is also the first time,
the drift detection method is tested in indoor environments. As
we have performed comprehensive experiments by testing and
evaluating our proposed method in an indoor environment (by
various smoking events), while according to recent literature
survey study focused on the use of LCSs indoors [13], the
majority of the works in literature do not calibrate nor validate
the LCSs used in their studies. For example, based on this
survey study there are approximately 77.5% of works did not
include details about the calibration of their LCSs [14]. We also
demonstrate how extreme events such as smoking activities can
alter significantly the LCSs reading, leading to false negative. It
is worth noting that false negative situation in sensors reading
can be harmful to human exposure as there are no alarm alerting
people when the pollution concentration is very high in indoor
environments.

In summary, in our paper, we propose a generic parallel ML-
based calibration method, which (as mentioned earlier) provides
many advantageous compared which the works in literature. Cal-
ibration and drift detection methods might perform differently in



ZAIDAN et al.: INTELLIGENT AIR POLLUTION SENSORS CALIBRATION FOR EXTREME EVENTS AND DRIFTS MONITORING 1375

various environments, e.g., meteorological conditions. However,
the dataset we used in our study is limited to only to one type
of indoor environment having a specific characteristics such as
room size, ventilation, and other influencing factors. Hence, our
proposed method requires more evaluations using different and
comprehensive datasets obtained from various environmental
characteristics. Therefore, the use of comprehensive datasets can
assist investigating different LCSs calibration and drift detection
methods.

B. Suggested Solutions for Drifting

Besides sensors recalibration, investigating the causes of
drifts helps understanding the sources of problems and therefore
enables improving the calibration models and the LCS hardware
design. We envision three methods to minimize the drift in
calibrators:

Method 1: Extensive laboratory experiments can be per-
formed for testing different scenarios on new design LCSs.
Different kinds of aerosol particles with varying meteorological
variables are inserted to an experimental chamber, where the
LCSs are placed. The idea aims to mimic as many scenarios
in which the LCSs may encounter in the field deployment as
possible. For example, if LCSs are designed to be deployed
indoors, they should be tested on different indoor scenarios, e.g.,
smoking and fire sensing. Thus, based on these experiments,
effective calibrators can be developed.

Method 2: Adaptive calibration model can be used. The adap-
tive model can be developed if the ground truth data available,
e.g., from a nearby reference instrument or other calibrated LCS,
which can communicate via Internet. For example, adaptive
calibrators can be developed using federated learning tech-
niques [24].

Method 3: Robust calibrators can be developed such as W,
where the calibrators do not drift easily under unexpected cir-
cumstances. For example, in our approach, we coupled W and
V. Hence, if a drift is detected thenW still function to an accept-
able limit compared to V in some new cases before retraining
the calibrators. The best robust calibrators are physics-based
models, where the underlying physical relationship between
LCS and reference instrument can be derived.

C. Industrial Applications

Our proposed method can be potentially extended on various
industrial applications using the calibrated PM2.5 concentration
(as shown in Fig. 1, part ❺). Following are examples of few
potential industrial applications:

1) Personalized Health Device: Accurate measurements of
PM2.5 concentration enables deriving personalized health infor-
mation from LCS devices [25]. This provides information of
individual deposited dosage [26], which can be integrated via
wearable devices [27].

2) Smoking Detector: When smoking indoors, the smoke
lingers in the air, because the smoke particles sizes are too

small such that 85% of them are invisible and odorless.3 Our
experiment shows that high PM2.5 concentrations remain in
the room for hours, which can cause longer breathing issue
for humans. Recent development in automatic image and video
analytics has enabled smoke detection with a high accuracy [28].
However, adopting this method is expensive since cameras need
to be installed in all rooms. Using our proposed methodology
for smoking detection is economically beneficial.

3) Fire Detector: Current indoor fire detectors are based on
ionization and photoelectric technologies [29]. However, these
technologies might not always be effective in detecting very
small increase of PM concentration triggered by fires in early
stages. Thus, to complement, applying our proposed method of
calibrated PM2.5 LCSs contributes to early fire detection.

4) Poisonous Gases Detector and Monitoring: LCSs can
also be used for detecting poisonous gases indoors such as
CO [30]. Indeed, CO is a colorless, tasteless, and odorless
gas produced by incomplete combustion of carbon-containing
materials. Similar to LCSs of PM2.5, other LCSs capable of
measuring CO require calibration. Extending and embedding
our proposed method to low-cost gas sensors such as CO enables
detecting accurately the poisonous gas concentrations.

5) Engineering Assets Monitoring: Accurate LCSs deploy-
ment can help monitor engineering assets. For example, more
affordable accurate sensors can be deployed massively to mon-
itor atmospheric corrosion. Different gases such as CO2, SO2,
and dust can accelerate corrosion in various types of metals [31].
Accurate monitoring of such pollutants enables engineers to
perform preventive maintenance.

6) Electronic Nose (e-nose): E-nose is known as an elec-
tronic sensing device intended to detect odors. E-nose devices
are widely used in research and development, quality control,
process and production, health, and security purposes. Although
e-nose devices currently are used in many application areas,
they are still considered as unreliable solutions [7] due to low
accuracy as air quality LCSs. Indeed, our proposed method can
be adopted to improve e-nose sensing performance.

VII. CONCLUSION

Air quality LCSs suffer from sensing accuracy when they were
used for measuring extreme events. In this article, we proposed
an intelligent sensor calibration process that enables effectively
correcting LCS readings as well as identifying the calibrators’
drift. Therefore, we performed controlled experiments in an
indoor environment for defining scenarios for extreme events.
These scenarios included 12 different indoor smoking activities.
We used the data collected from these controlled experiments
for obtaining insight about smoking events and we also utilize
dthe data for developing calibrators and investigating their per-
formance. We further used Bayesian framework for developing
white-box (W) and black-box (V) calibrators. Then, we de-
ployed these calibrators in parallel (P) in order to correct LCSs
measurements and enable detecting calibrators drift. Then, we

3[Online]. Available: https://www.nhsinform.scot/campaigns/take-it-right-
outside

https://www.nhsinform.scot/campaigns/take-it-right-outside
https://www.nhsinform.scot/campaigns/take-it-right-outside
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TABLE III
PERFORMANCE METRICS FOR SENSORS AND CALIBRATORS VALIDATIONS

evaluated the calibrators in a controlled experiment under differ-
ent types of smoking events within 12 scenarios. For instance, in
scenario 2 (i.e.,S2), we trained the calibrator on one LCS and test
it on another LCS of the same type. Another example was sce-
nario 12 (i.e., S12), which is designed to mimic the calibrators’
drift. We then evaluated the developed calibrators on all designed
scenarios using different performance metrics. The performance
results showed that our proposed method accurately estimates
the aerosol mass concentration in different scenarios, except for
S12. Because the calibrators in S12 were established only using
normal data (not for extreme events). Nevertheless, we demon-
strated that our proposed drift monitoring was able to detect the
calibrators’ drift forS12. Finally, we discussed how our proposed
method was extendable to various industrial applications, such
as smoking, fire and poisonous gas detectors, engineering assets
monitoring, and health informatics.

APPENDIX

A. Performance Metrics

Performance metrics used to validate the sensors and calibra-
tors are presented in Table III. The notations y and ȳ are the
measurements through reference instrument and its mean value,
respectively. Whereas the notations ŷ and ¯̂y represent LCS
measurements and the mean of LCS measurements, respectively,
before calibration (for sensors validation) or after calibration (for
calibrators validation).

B. BLM: White-Box Calibrator (W)

A Bayesian linear calibrator, y1, can be modeled as

y1 = W(X,β) + ε1 (4)

where ε1 is a random error term, which follows a Gaussian
distribution, with zero mean, and σ2 noise variance, ε1 ∼
N (0, σ2I). The symbol W is a function of white-box BLM.
W(X,β) = Φ(X)β, where Φ(X) is an N ×D design matrix
for the inputs. In this case, the design matrix is choice to
be: Φ(X) = [X1, X2, . . . , XD]. The calibrator W , expressed
in the (4) can be called a white-box because the relationship
between the inputs and output are visible and transparent. In
order to optimize variable β, Bayesian inference use Bayes’
rule: posterior ∝ likelihood × prior.

1) Prior Distributions: of the calibrator coefficients, β is
modeled as a Gaussian distribution: p(β) ∼ N (μo, σ

2
0). Infor-

mative prior can be determined by applying linear regression on

the data. Therefore, variableμ0 can be estimated and the variable
σ2

0 are chosen three times larger than its mean value.
2) Likelihood Function: for this model is the conditional

probability of observing the measurement data (X) and the
model parameters (β, σ2). The likelihood also follows a Gaus-
sian distribution and it can be written as

p(y1|X,β) = N (y1|Φ(X)β, σ2I). (5)

3) Posterior Distributions: can be computed using the like-
lihood function and the prior distribution, based on Bayes’
theorem to give

p(β|y1,X)︸ ︷︷ ︸
posterior dist.

∝ p(y1|X,β)︸ ︷︷ ︸
likelihood func.

p(β)︸︷︷︸
prior dist.

. (6)

The probabilistic model above is linear, and therefore the
posterior distribution can be computed analytically, resulting
in another Gaussian distribution to give

p(β) = p(β|β∗, V ∗) (7)

where β∗ and V ∗ are the mean and variance, respectively. They
can be computed by

β∗ = V ∗(V −1β̄ +Φ(X)y1/σ
2) (8)

V ∗ = (V −1 +Φ(X)TΦ(X)/σ2)−1. (9)

4) Predictive Distribution: is also in the form of Gaussian
distribution, symbolized by p(y∗

1|X∗,X,y1). This can also be
computed analytically by using posterior distribution, to give

p(y∗
1|X∗,X,y1) = (y∗

1|Φ(X∗)β∗,Φ(X∗)V ∗Φ(X)∗T + σ2I).
(10)

C. BNN: Black-Box Calibrator (V)

Neural networks are usually considered as a black-box model
(V), since they provide little explanatory insight into the relative
influence of the independent variables in the prediction process.
The black-box calibrator can then be modeled as

y2 = V(X,ω) + ε (11)

where ε2 is a random error term following a Gaussian distribu-
tion with zero mean andγ precision. The symbolV is a black-box
BNN function and X is input data measurements.

A neural network, V(X,ω), can be viewed as a probabilistic
model, that follows a Gaussian distribution, given by

p(y2|X,ω, γ) = N (y2|V(X,ω), γ−1) (12)

where the notations of X,ω, and γ are the inputs, the neural
network weights, and the precision of the Gaussian distribution,
respectively. Equation (12) is also known as a likelihood func-
tion.

In a Bayesian framework, a prior distribution needs to be
assigned, where in this case, the prior follows a Gaussian distri-
bution with mean zero and the precision of α, given by

p(ω|α) = N (ω|0, α−1I). (13)

Using the prior distribution and likelihood function, the pos-
terior distribution for the BNN can be computed based on Bayes
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theorem to give

p(ω|y2,X, α, γ)︸ ︷︷ ︸
posterior dist.

∝ p(y2|X,ω, γ)︸ ︷︷ ︸
likelihood func.

p(ω|α)︸ ︷︷ ︸
prior dist.

. (14)

The inclusion of the prior distribution leads to a regularization,
which then counters overfitting. Furthermore, BNN provides a
degree of belief on the estimated output, which can be used to
assess the quality of the predictions. In our case, the confidence
interval will be used to monitor drifting detection, which will be
described in Appendix D.

Due to the nonlinear dependence of V(X,β) on ω, the
posterior distribution calculation is intractable. Therefore,
the posterior distributions as well as predictive distribution,
p(y∗

2|X∗,X,y2), can be approximated using Laplace approx-
imation or variational inference as described in [20].

D. Calibrators Residual: Drifting Monitoring

The calibrators’ drifting is monitored through the residual
of two predictive distributions, that is between W and V. Let
W and V be independent random variables that are normally
distributed, then their residual is also normally distributed

W ∼ N (y∗
1|μ∗

y1
,Σ∗

y1
) (15)

V ∼ N (y∗
2|μ∗

y2
,Σ∗

y2
) (16)

R = V −W (17)

where R is a residual function for monitoring calibrators. Then,
this results in another Gaussian predictive distribution, given by

R ∼ N (r|μ∗
y2

− μ∗
y1
,Σ∗

y2
+Σ∗

y1
). (18)

The sensors inspection and maintenance decision can then be
determined using information from the residual distribution, by
extracting the mean, μR = μ∗

y2
− μ∗

y1
and the standard devia-

tion, σR =
√

Σ∗
y2

+Σ∗
y1

.
Proof: For independent random variables V and W, the

distribution fR of R = V −W equals to the convolution of fV
and fW

fR =

∫ ∞

−∞
fV(y

∗
1 − r)fW(y∗

1)dy
∗
1. (19)

Given fW and fV are Gaussian distribution following:

fW = N (y∗
1|μ∗

y1
,Σ∗

y1
) (20)

fV = N (y∗
2|μ∗

y2
,Σ∗

y2
). (21)

Therefore, by substituting (20) and (21) into (19), we obtain

fR =
1√

2π(Σ∗
y2

+Σ∗
y1
)
exp

[
−

(r− (μ∗
y2

− μ∗
y1
)2

2(Σ∗
y2

+Σ∗
y1
)

]
. (22)
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