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Abstract: We develop a Bayesian framework for making inference on a class of marginal
models for categorical variables, which is formulated through equality and/or inequality
constraints on generalized logits, generalized log-odds ratios and similar higher-order
interactions. A Markov chain Monte Carlo (MCMC) algorithm is used for parameter
estimation and for computing the Bayes factor between competing models. The approach
is illustrated through the application to a well-known dataset on social mobility.
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1 Introduction
An interesting class of models for the analysis of contingency tables is based on the mul-
tivariate logistic transform of Glonek and McCullagh (1995). These models parametrise
the joint distribution of the variables of interest on the basis of marginal logits, marginal
log-odds ratios and similar higher-order interactions. This parametrisation is then sub-
stantially different from a log-linear parametrisation. The class of models of Glonek and
McCullagh (1995) can be extended in several ways. In particular, we deal here with mod-
els in which: (i) the parameters of the saturated model are given by generalised logits
for each univariate marginal distribution, generalised log-odds ratios for each bivariate
marginal distribution and similar interactions for each higher-order marginal distribu-
tion; (ii) linear equality and inequality constraints can be formulated on such parameters.
Thus, several hypotheses of positive association can be expressed (Bartolucci et al., 2001;
Colombi and Forcina, 2001).
The literature on Bayesian inference for models such as those described above is rather
scarce, especially when the parameters are subject to inequality constraints. In order to
bridge this gap, we propose a Bayesian framework that is based on the Bayes factor (BF);
see Kass and Raftery (1995). The BF has been recently used in categorical data analysis
by several authors among which Dellaportas and Forster (1999) who propose a general
framework for selecting a log-linear model under a multivariate Normal prior distribution
on the parameters. Also in our framework we assume a multivariate Normal prior. How-
ever, our approach is more general in that it also allows for inequality constraints on the
parameters. Furthermore, we use different numerical methods for computing the posterior
distribution of the parameters and the BF between competing models.
The paper is organised as follows. In Section 2 we describe the class of models of in-
terest and the prior distribution on the parameters. In Section 3 we deal with Bayesian
estimation and model selection. Finally, in Section 4 we propose an application.
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2 A class of marginal models for categorical variables
Let A = (A1, . . . ,Aq)′ be a vector of q categorical variables, the i-th of which has support
{1, . . . ,mi}, and πππ a vector of length r = ∏i mi with elements p(A = a) for every possible
con�guration a of A. We describe a saturated parametrisation of πππ based on marginal
logits, log-odds ratios and similar higher-order interactions, which generalises the one of
Glonek and McCullagh (1995). The marginal logits may be of the following types:

� local: ηi(ai; l) = log p(Ai = ai +1)/p(Ai = ai);
� global: ηi(ai;g) = log p(Ai ≥ ai +1)/p(Ai ≤ ai);
� continuation: ηi(ai;c) = log p(Ai ≥ ai +1)/p(Ai = ai);
� reverse continuation: ηi(ai;r) = log p(Ai = ai +1)/p(Ai ≤ ai).

for ai = 1, . . . ,mi− 1. Local logits are appropriate for variables with non-ordered cate-
gories, whereas global and continuation logits are suitable for ordinal variables. Marginal
log-odds ratios are de�ned as contrasts between conditional logits. For example, when
logits of type l and g are used for Ai and A j, respectively, we obtain the local-global log-
odds ratios ηi j(ai,a j; l,g) = η j(a j;g|Ai = ai +1)−η j(a j;g|Ai = ai), with ai = 1, . . . ,mi−
1 and a j = 1, . . . ,m j − 1. Similarly, three-way interactions are de�ned as contrasts be-
tween conditional log-odds ratios and so on for higher-order interactions. Once the type
of logit has been chosen for each variable, all the marginal parameters are collected in a
(r−1)-dimensional vector ηηη which may be expressed as

ηηη = C log(Mπππ), (1)
where C and M are matrices whose construction is described in Colombi and Forcina
(2001). Note that parametrisation (1) de�nes a saturated parametrisation of πππ which may
be inverted by a simple iterative algorithm.
Several models may be formulated by equality and inequality constraints on ηηη of type
Eηηη = 0, Uηηη ≥ 0. For instance, we can formulate the hypothesis of positive association
between two variables, A1 and A2 say, by constraining all log-odds ratios to be non-
negative. The type of association depends on the logits used: local logits for both variables
lead to Total Positivity of Order 2 (TP2), whereas global logits determine the less stringent
hypothesis of Positive Quadrant Dependence (PQD). Regardless the type of log-odds
ratios, independence requires all of them to be 0. Moreover, if A1 and A2 have the same
categories, we may formulate the hypothesis that A2 is stochastically greater than A1 or
that of marginal homogeneity; see also Bartolucci et al. (2001).
For what concerns the prior distribution, we assume ηηη ∼ N(µµµη ,ΣΣΣη) when the model is
saturated, i.e. neither equality nor inequality constraints are formulated on ηηη . The hy-
perparameters µµµη and ΣΣΣη are chosen as, respectively, the expected value and variance of
ηηη = C log(Mπππ), under a Dirichlet distribution with parameter 1r on πππ . For a constrained
model, we employ the encompassing prior strategy of Klugkist et al. (2005); see also
Consonni and Veronese (2006). The rule underlying this strategy is that, once a prior
distribution has been formulated on the parameters of a certain model, the prior for any
nested model derives by conditioning on the corresponding parameter space. Consider
�rst the case in which we only assume the equality constraints of type Eηηη = 0. We can
equivalently express this constraint as ηηη = Xβββ , with X being a suitable design matrix.
The prior for βββ is automatically determined from that for ηηη as βββ ∼ N(µµµβ ,ΣΣΣβ ), with
µµµβ = X′µµµη −X′ΣΣΣηE′(EΣΣΣηE′)−1Eµµµη and ΣΣΣβ = X′ΣΣΣηX−X′ΣΣΣηE′(EΣΣΣηE′)−1EΣΣΣηX. If
also inequality constraints are used, the distribution is further conditioned in order to sat-
isfy Uηηη = UXβββ ≥ 0.



3 Bayesian estimation of the parameters and model selection
Let y be the vector of frequencies for the observed contingency table. The posterior
distribution of the parameters under a certain model is obtained by an MCMC algorithm
which is brie�y illustrated in the following.
Consider �rst the saturated model. Under this model, the algorithm draws realizations
from the posterior distribution of ηηη , p(ηηη |y), by using the acceptance-rejection rule of
Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) based on the proposal
distribution N(νννη ,ΩΩΩη), with parameters νννη and ΩΩΩη chosen by a pilot chain. For a
model formulated by the equality constraints Eηηη = 0, which are equivalent to ηηη = Xβββ ,
we use a similar algorithm to sample from the posterior p(βββ |y). In this case, we use
N(νννβ ,ΩΩΩβ ) as proposal distribution, where νννβ = X′νννη −X′ΩΩΩηE′(EΩΩΩηE′)−1Eνννη and
ΩΩΩβ = X′ΩΩΩηX−X′ΩΩΩηE′(EΩΩΩηE′)−1EΩΩΩηX. When also inequality constraints are used,
the proposal has to be properly conditioned.
An important issue is typically that of choosing a model in the set M = {M1, . . . ,MK}
of competing models de�ned by different choices of the type of logits or of the equal-
ity and/or inequality constraints on the saturated parameter vector. For this aim, we rely
on the BF that for two models, say Ml and Mk, is de�ned as Blk = p(y|l)/p(y|k) where
p(y|k) is the marginal likelihood of Mk. The larger Blk, the greater the evidence in favour
of Ml with respect to Mk (Kass and Raftery, 1995). In practice, when Blk > 1, or equiv-
alently log(Blk) > 0, model Ml has to be preferred to Mk. To compare more than two
models, it is convenient to single out a �reference� model, M1 say, and compute the BF
between any other model and this one. Note that the BF allows us to easily compare
models parametrised through different types of logits, an otherwise cumbersome task in
a likelihood-ratio approach. The latter may also be dif�cult to apply in the presence of
nuisance parameters which, however, do not limit the use of the BF.
The BF cannot be computed analytically for the models at issue. Following the approach
of Chib and Jeliazkov (2001), we obtain an estimate of the marginal likelihood of each
model as a by-product of the Metropolis-Hastings algorithm, previously described.

4 An application
As an example we analyze the data in Table 1, which concern a sample of British males
cross-classi�ed according to their occupational status (A2) and that of their father (A1).

Table 1: Father (A1) and son (A2) occupational status for a sample of British males.
A2

A1 I II III IV V VI
I 125 60 26 49 14 5
II 47 65 66 123 23 21
III 31 58 110 223 64 32
IV 50 114 185 715 258 189
V 6 19 40 179 143 71
VI 3 14 32 141 91 106

The data were already considered by Dardanoni and Forcina (1998) who, on the basis of
a likelihood-ratio approach, concluded that the data conform to some forms of positive



association. However, they did not reach a conclusion about TP2, due to presence of
nuisance parameters, given by marginal column probabilities.
For these data we �rst compared the saturated model (M1), the independence one (M2)
and those incorporating PQD (M3) and TP2 (M4), obtaining:

log( �B21) =−357.49 log( �B31) = 4.79 log( �B41) = 33.88.

The hypothesis of independence must be de�nitely rejected, whereas that of positive as-
sociation may not be rejected. The model incorporating TP2 has to be preferred to that
incorporating PQD. Thus, sons coming from a better family seem to have a better chance
of success also conditional on remaining within any given subset of neighbouring classes.
The hypothesis of uniform association has instead to be rejected: comparing model M5,
incorporating this constraint in addition to TP2, with M4, we obtained log( �B54) =−31.86.
We also considered constraints on the marginal distributions: M6 incorporates in M4 the
constraint that the marginal distributions of A1 and A2 are equal, while M7 incorporates in
M4 the constraint that A2 is stochastically greater than A1. We obtained:

log( �B64) =−1.27 log( �B74) = 1.63.

The data seem to support M7. Thus we can observe not only pure mobility, i.e. positive as-
sociation between family's origin and the son's status, but also structural mobility, which
refers to how far apart the two marginals are and is related to socioeconomic growth.
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