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Abstract

Growing tissues are highly dynamic, and flow on sufficiently long timescales due to cell proliferation, migration, and tissue remodeling.
As a consequence, growing tissues can often be approximated as viscous fluids. This means that the shape of microtissues growing
in vitro is governed by their surface stress state, as in fluid droplets. Recent work showed that cells in the near-surface region of
fibroblastic or osteoblastic microtissues contract with highly oriented actin filaments, thus making the surface properties highly
anisotropic, in contrast to what is expected for an isotropic fluid. Here, we develop a model that includes mechanical anisotropy of
the surface generated by contractile fibers and we show that mechanical equilibrium requires contractile filaments to follow geodesic
lines on the surface. Constant pressure in the fluid forces these contractile filaments to be along geodesics with a constant normal
curvature. We then take this into account to determine equilibrium shapes of rotationally symmetric bodies subjected to anisotropic
surface stress states and derive a family of surfaces of revolution. A comparison with recently published shapes of microtissues shows
that this theory accurately predicts both the surface shape and the direction of the actin filaments on the surface.
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Significance Statement:

Growing tissues share many characteristics of fluids, for which the equilibrium shape is described by the classical Young–Laplace
equation for isotropic surfaces. However, cells usually generate stress through contracting filaments, so that material behavior on
the surface will not be isotropic. Here, we show that local mechanical equilibrium implies that contractile filaments should be
along geodesics of the surface, and we completely characterize rotationally symmetric equilibrium shapes based on contractile
fibers with constant contractile stress. Fibers are shown to typically wind in helical paths around the axis of rotation, in agreement
with experimental observation.

Introduction
Surface stresses have long been known to determine the shape of
fluid bodies and they have been implicated in the growth of biolog-
ical tissues. The general idea is that the minimization of the total
surface energy leads to droplet shapes with constant mean cur-
vature, whereby the associated surface stresses counterbalance a
pressure inside the fluid droplet in a way described by the Young–
Laplace equation [1, 2]. More than a hundred years ago, D’Arcy
Thompson proposed that surface tension plays a role in the mor-
phogenesis of biological organisms [3]. Indeed, growing tissues
where cells permanently divide and rearrange behave—over suf-
ficiently long timescales—as fluids [4, 5], where shear stresses re-
lax over time and only isostatic pressure remains. D’Arcy Thomp-
son’s ideas have meanwhile found their way into modern devel-
opmental biology, where the importance of mechanical forces for
morphogenesis receives increasing attention [6, 7]. While a fluid
droplet subjected only to surface energy would converge to the

simplest shape with constant mean curvature, a sphere, the com-
bination with the adherence to another wettable surface may lead
to the emergence of complex shapes depending on the boundary
conditions [8]. It has also been shown that surface energy influ-
ences not only the shape of growing tissues but also their growth
kinetics [9], a phenomenon that can be rationalized through sim-
ple models of tissue growth [10]. Such concepts have significant
practical implications for the optimal design of scaffolds for tis-
sue engineering [11, 12], for example.

Surface energy concepts have been successfully applied es-
pecially to the development of epithelial layers, which are nat-
urally two-dimensional tissues [6, 7]. However, it has also been
shown that in vitro grown microtissues based on connective-
tissue-forming fibroblasts develop a contractile layer at the sur-
face of the growing tissue, where cells temporarily turn into my-
ofibroblasts [13] capable of generating surface stresses. The shape
of the resulting microtissues is fully compatible with constant cur-
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vature surfaces (Fig. 1A). Recently, it was shown that microtissues
with cylindrical symmetry grown in vitro evolve into shapes with
cylindrical symmetry and constant mean curvature [14], known
as Delaunay surfaces [15, 16] (Fig. 1B). This is to be expected from
the Young–Laplace equation that assumes isotropic, in-plane sur-
face mechanical properties. However, the same recent work also
revealed a puzzling observation that remains unexplained: Fluo-
rescently stained, contractile actin filaments in the microtissue
surface turn out to be highly aligned and follow helical paths
around the tissue [14] (Fig. 1C) and indicate, therefore, that the
surface does not have isotropic in-plane properties.

Thin elastic sheets reinforced by filaments are a well-known
structural motif in biological materials, e.g., in human skin [17]. A
well-studied case is the mechanical behavior of blood vessels that
are subjected to blood pressure. Collagen fibril winding around the
vessel tube has a strong impact on the elastic behavior of an artery
[18]. A geometrically rather similar structure is the plant cell wall,
where cellulose fibrils are winding within the cell wall around the
tube-like cell [19]. The spiral angle of the cellulose microfibrils is
known to have a decisive effect on the mechanical behavior of
wood, for example [20]. All these examples refer to passive fibers
(collagen or cellulose) that control the deformation for a material
subjected to external forces, such as blood pressure in the artery
or water swelling of the plant cell wall. In contrast, actin filaments
in the near-surface region of a growing tissue [14] are actively con-
tracting and, therefore, generating surface stress states in equilib-
rium with pressure in the volume of the growing tissue. Depend-
ing on geometry, contractile actin fibers near the surface region
of the tissue might either increase or decrease the pressure inside
the tissue. Based on the hypothesis that a reduction of pressure
inside the growing tissue favors growth while an increase would
hinder it [10], it will be interesting to explore which shapes emerge
under the influence of contractile fibers on the surface.

In this paper, we first derive a simple extension of the Young–
Laplace law, assuming that the surface properties are extremely
anisotropic, where all the surface loads are carried by the fibers
under tension. Note that this type of anisotropy is not the same
as what is studied for the surface of crystals [21] or liquid crys-
tals [22]. In those cases, the underlying bulk material itself has
anisotropic properties. We also assume that the fibrous reinforce-
ment remains bound to the surface in contrast to growing fibers
constrained within a volume [23]. The case that we consider is in-
herently simpler and consists of an isotropic fluid bounded by a
surface layer, modeled as a shell that consists of locally parallel
fibers. Considering that the isostatic pressure inside the fluid is in
equilibrium with the force in the surface fibers, the Young–Laplace
equation is shown to be replaced by two simple conditions. We
then consider the special case of volumes with rotational sym-
metry around an axis and derive the corresponding equilibrium
shapes that are distinct from Delaunay surfaces corresponding to
isotropic surface properties. The resulting shapes all show spiral
arrangements of fibers on the surface, and for some special situa-
tions, the tissue shapes are qualitatively close to Delaunay shapes.
This is finally discussed in terms of the known experimental ob-
servations [14].

Modification of the Young–Laplace equation
for a fiber surface
Surface stress and pressure
The Young–Laplace equation was derived by both Young and
Laplace in 1805 [1, 2]. It describes how the pressure difference

acting on the surface of a thin shell (e.g., a drop), p, is related to
the surface stress γs [or surface tension, dimension (N/m)] via the
prominent relation

p = −γ s (1/R1 + 1/R2) = −2γsH. (1)

The surface stress γs may also consist of several contributions,
(see e.g., [22, 24]). Since γs is assumed to be independent of any
direction, often the term “isotropic surface stress” is used.

Both quantities R1 and R2 in Eq. 1, are the signed principal radii
of curvature; the expression (1/R1 + 1/R2) is thus twice the mean
curvature H. This equation is a special formulation of the equi-
librium equation for a membrane (see e.g., [25–29]) via the signed
principal curvatures 1/R1 and 1/R2 with corresponding membrane
forces N1 and N2, reading as

p =
(

N1

R1
+ N2

R2

)
. (2)

N1 and N2 are the tensile membrane forces measured in the
direction of the orthogonal principal curvature lines, denoted by
the unit vectors e1 and e2. The quantity p is the pressure difference
across the membrane measured in the direction of e1 × e2 = e3 .
This equilibrium equation is general and does not rely on the sym-
metry of any particular configurations, such as axisymmetric and
spherically symmetric shells. It should be mentioned that N1 and
N2 instead of the constant surface stress γs were sometimes de-
noted in the literature as “anisotropic surface tensions” e.g., [30].
From the point of view of the mechanics of materials, the term
“anisotropic” is, however, assigned to the material behavior.

The Young–Laplace equation (Eq. 1) has motivated the mathe-
matical community to look for surfaces with constant mean cur-
vature H, and thus constant pressure difference p. In 1841, De-
launay showed that the surfaces of revolution, namely; spheres,
cylinders, nodoids, catenoids, and unduloids, have constant mean
curvature H and thus satisfy the Young–Laplace equation [15]. The
Young–Laplace equation has also been previously used to describe
tissue growth [31].

In-plane anisotropic properties
Here we consider an isotropic fluid bounded by a surface layer
modeled as a thin, unloaded shell reinforced with long contrac-
tile fibers. A pressure difference p is generated across this surface
layer by the fiber contraction, such as the actin stress fibers in
the tissues shown in Fig. 1C [14]. Static equilibrium enforces that
the direction eT of any fiber is colinear with the (local) resultant
membrane force (due to N1 and N2) in the tangent plane to a ma-
terial point of the shell. We further define the local signed curva-
ture 1/RT of the fiber in direction of eT . It becomes immediately
clear that for equilibrium the fiber needs to fulfill two conditions
(Fig. 1F). The first one is due to the fact that the force resulting
from a tension on the fiber will be within the osculating plane of
the fiber at this point. This force (denoted s in Fig. 1F) will be along
the principal normal to the curve, ep, a unit vector perpendicu-
lar to the curve and pointing toward the local center of curvature
and, therefore, lying within the osculating plane of the curve. The
pressure difference across the surface results in a force that acts
along the normal direction to the surface en. In general, this is not
parallel to the principal normal to the curve representing the fiber
at the same point (Fig. 1F). Therefore, mechanical equilibrium re-
quires that en = ep . The second condition links the magnitude of
the fiber load with the pressure difference across the surface. A
representative membrane force σT · d is assigned to the shell/fiber
system with an average thickness d and an average load stress σT .
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Fig. 1. Experimental observations and definition of surface coordinates. (A) Image of a catenoid, i.e., the surface of revolution of a catenary, which
satisfies Young–Laplace equation for zero pressure difference over the membrane. (B) Projection of bone-like tissue grown on a polymeric surface of
revolution (capillary bridge) fixed on a central pin (dark line). The light arrow indicates the boundary of the polymeric surface, and the dark arrow
indicates the position of the tissue after 30 days growth. R and L are the radius and separation of two circular disks corresponding to the upper and the
lower boundary of the tissue. (C) Projection of a 3D light sheet fluorescence microscopy image of tissue stained for actin (green fibers). Note the strong
orientation of the actin stress fibers. (D) The Young–Laplace equation (Eq. 1) can be understood by the tension balance over a surface patch, with two
principal curvatures κ1 and κ2 and membrane forces N1 and N2 Eq. 2. (E) The pressure p of the fluid within the volume generates a force directed along
the normal to the surface en. For isotropic mechanical surface properties, the resultant membrane force s is also perpendicular to the surface but
pointing in opposite direction −en. There is equilibrium if s and p have the same magnitude. (F) If the local mechanical response of the membrane is
only generated by a fiber on the surface with tension σT , then the resultant local force s lies along ep, within the osculating plane of the fiber, and is not
necessarily colinear with p (i.e., �= 0). Therefore, the conditions for equilibrium of the surface are (i) that the direction of p (i.e., en) lies within the
osculating plane of the curve describing the fiber (i.e., the angle = 0), and (ii) that the magnitudes of s and p are the same, which correspond to Eqs. 4a
and 3, respectively. The fibril angle μ is measured between the fiber direction and N2. The images in panels B and C are reproduced from ref. [14], under
the CC BY-NC licence.

According to Eq. 2, the local equilibrium between the fiber–shell
system and the pressure difference p enforces

p = d
RT

σT . (3)

Indeed, the membrane force perpendicular to the fiber is zero,
and along the fiber, it is d σT , so that Eq. 2 reduces directly to Eq. 3.
Given that the pressure inside the volume is constant (as it should
be for an isotropic fluid) and that the load along a fiber should
also be constant, the requirement for a constant mean curvature
that results from the Young–Laplace equation (Eq. 1) needs to be
replaced by two conditions:

en = ep, (4a)

RT = constant. (4b)

The first condition ensures that the resultant force on the vol-
ume generated by the fiber tension is parallel to the surface nor-
mal (and, thus, able to compensate the internal pressure). The sec-
ond condition ensures that the force along the fiber is constant.

Equation 4a states that the geodesic curvature of the line
in the surface is zero. This means that contractile fibers have

to follow geodesic lines on the surface. This is related to the
well-known fact that an elastic strap stretched between two
points over a curved surface follows a geodesic line because
this corresponds to the shortest distance between the two points
and, therefore, to the minimum of elastic strain energy of the
strap. Equation 4b then states that the normal curvature of the
lines (noting that their geodesic curvature is zero) must be con-
stant in order to accommodate the constant pressure inside the
body.

Fiber-supported surfaces of
revolution—generalization of delaunay surfaces
In order to get a geometric understanding of the requirements
of Eqs. 4a and b, we analyze surfaces of revolution that fulfil
these conditions. Since the experiment data reported in Fig. 1
were also obtained with tissues growing on surfaces of revo-
lution, this will allow us a direct comparison with these ex-
periments. In principle, however, the generalization of constant
mean curvature surfaces as defined by Eqs. 4a and b does
not need to be rotationally symmetric, depending on boundary
conditions.
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Calculating the equilibrium for fibers on surfaces
of revolution
We consider a surface of revolution X given in a Cartesian coordi-
nate system by the coordinates x, y, z as products of the shape
function g(z) and the polar angle θ in the x–y plane. Moreover,
we assume that this surface consists of fibers that are positioned
around the z-axis according to a function θ = θ (z) + θ0. The an-
gle θ0 at z = 0 indicates the starting point of any particular fiber.
Making use of the rotational symmetry, we restrict our analyses
to the fiber where θ (0) = 0. Therefore, we can describe the sur-
face of the system in vector form X(θ, z) depending on only two
coordinates, θ and z.

X (θ, z) =

⎛
⎜⎝x

y
z

⎞
⎟⎠ =

⎛
⎜⎝g (z) cosθ

g (z) sinθ

z

⎞
⎟⎠ . (5)

Using standard differential geometry (see e.g., [32, 33]), we can
determine the unit normal vector of the fiber ep (that is, the unit
normal vector lying within the osculating plane and along which
the resulting force onto the surface will be directed).

ep = 1√
x′′2 + y′′2 + (y′′x′ − x′′y′ )2

√
x′2 + y′2 + 1

·

⎛
⎜⎜⎝

x′′
(
1 + y′2

)
− y′′x′y′

y′′
(
1 + x′2

)
− x′′x′y′

− (x′x′′ + y′y′′ )

⎞
⎟⎟⎠ .(6)

Note that primes refer to derivatives with respect to z. Likewise,
the unit surface normal, en, is given by

en = 1√
x2

(
1 + x′2) + y2

(
1 + y′2) + 2xyx′y′

⎛
⎜⎝ x

y
− (xx′ + yy′ )

⎞
⎟⎠ . (7)

The curvature, κT = 1/RT , of the fiber is given by

κT =
√

x′′2 + y′′2 + (y′′x′ − x′′y′ )2

(
x′2 + y′2 + 1

)3/2 . (8)

As outlined above, the vector ep is assumed to be parallel to the
surface normal en. It follows that

ep × en ≡ 0. (9)

Including the condition of constant fiber curvature Eq.8 and re-
arranging gives a set of two differential equations in x, y, as

x′′ = κT

(
x

(
1 + x′2

)
+ yx′y′

) (
1 + x′2 + y′2

)
(
x2

(
1 + x′2) + 2xyx′y′ + y2

(
1 + y′2))1/2 , (10a)

y′′ = κT

(
1 + x′2 + y′2

) (
xx′y′ + y

(
1 + y′2

))
(
x2

(
1 + x′2) + 2xyx′y′ + y2

(
1 + y′2))1/2 . (10b)

The fiber curvature, κT , can be positive or negative (see Sup-
plementary Information for a full derivation). It is helpful to
rewrite Eqs. (10a and b) in cylindrical coordinates as

g′′ = 1 + g′2

g (Kg2 − 1)

(
1 − K κT g3

√
1 + g′2

)
, (11a)

θ ′ = 1
g

√
1 + g′2

Kg2 − 1
. (11b)

The constant K is an integration constant that depends on
boundary conditions. Note that both equations above have sym-
metric solutions where g (−z) = g(z) and θ (−z) = −θ (z). It is worth
noting that Eq. 11b is the classical equation for geodesic lines
on a surface of revolution [34]. Equation 11a results from the
condition that the geodesic should have constant normal curva-
ture κT . Denoting α the angle between the geodesic line and the
meridian of the surface of revolution at the same point of the sur-
face, Clairaut’s relation [34] must hold: g(z) sin α = 1/

√
K . This

means that the angle α does not depend on θ . Therefore, fami-
lies of geodesics are spiraling around the axis of revolution in a
parallel fashion.

Boundary conditions
We consider surfaces of revolutions bounded by two circles with
radius g (±L/2) = R at the positions z = ±L/2, as sketched in Fig. 2
(upper left corner). The neck radius at z = 0 is defined as g (0) =
g0 , and we search for symmetric solutions with respect to the
axis of revolution yielding g′ (0) = 0. We introduce the fiber angle
μ0 between the z-direction and the fiber at the neck (z = 0) (see

Figs. 1F and 2), which is given by cos μ0 = 1/

√
1 + g2

0 (θ ′(0))2. With
this definition, it follows from Eq. 11b (taken at z = 0) that the
integration constant K can be written as

K = 1

g2
0sin2

μ0

. (12)

Clairaut’s relation then gives

sin α = g0

g (z)
sin μ0. (13)

This relation reflects the fact that, at the neck (z = 0), the
meridian of the surface is parallel to the axis of revolution.
The boundary conditions sketched in Fig. 1 imply that g (L/2) =
g (−L/2) = R. In the experimental setting shown in Fig. 1, we set
2L/R = 1.25. The symmetry condition and the value g0 uniquely
define the surface. Each fiber line is then contained in this surface
and crosses the neck at θ (0) with an angle μ0. Due to axisymmetry
we only need to consider fibers for which θ (0) = 0.

Equation 11a is a second order nonlinear differential equation,
and 11b is a first order nonlinear differential equation meaning
that for any value of κT we need a total of two boundary conditions
for g and one for θ as

g′ (0) = 0, g(0) = g0, θ (0) = 0. (14)

A numerical study
It turned out to be more efficient than solving the equations nu-
merically for fixed κT , to only fix g0 and μ0 over a range of κT .
Solutions were accepted that satisfied the additional constraint
g (L/2) = R, thereby giving the value of κT in accordance with these
conditions. Solving Eqs. 11 to 14 for surfaces of revolution, we find
typically either neck-shaped or barrel-shaped surfaces bounded
on the upper and the lower side by disks or radius R. The results
are summarized in Fig. 2 (see also Figs. S1 and S2). To simplify the
graphs, we choose a coordinate system so that R = 1 and, conse-
quently, L = 1.25.

The solutions include expected shapes, such as the sphere, the
cylinder, and the hyperboloid. The latter is obtained by straight
fibers and is found in the graph at κT = 0. Different fibril angles
correspond to different neck radii. At the fibril angle of μ0 = 0,
the hyperboloid coincides with a cylinder, as expected. For positive
values of κT solutions tend toward stackings of spherical segments
that satisfy Eq. 13, except at the joint (see Supplementary Infor-
mation for more detail). Finally, the upper black curve for μ0 = 0,
corresponds to segments of a torus.

All shapes in Fig. 2 will be barrel-like in the upper part where
g0 > 1 and neck-like in the lower half, where g0 < 1. All shapes on
the left side (κT < 0) correspond to a situation where tensed fibers
will create a negative pressure inside the volume (according to Eq.
3), while for all shapes on the right side of the figure (κT > 0) fiber
tension will create a positive pressure. In the case of a growing
tissue, negative pressure can be interpreted as a support to the
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Fig. 2. Surfaces of revolution satisfying Eqs. 11a and b and the boundary conditions 14 as indicated in the inset top left, characterized by the (constant)
curvature κT of the fibers which stabilize the shape and the neck radius g0. Fibers follow spiraling paths, and the fibril angle at the equator μ0 is
indicated for each set of curvature and neck radius. The inset (top-left) shows one such surface of revolution consisting of fibers of constant curvature
that cross the equator with a “microfibril” angle, μ0. The dashed line on the inset indicates the path of one such fiber. Grey lines in the main diagram
give the relationship between g0 and κT for a fixed fibril angle μ0 at the equator. The dashed red lines indicate the limits below or above which no
solutions can be found. The solid red line shows the range of solutions satisfied by hyperboloids of one sheet, the dashed black line shows the range of
cylindrical solutions. The full black circle indicates the solution given by one spherical segment. All solutions with microfibril angles less than 58◦ pass
through this point. The dotted blue line indicates the relationship between g0 and κT or a stack of two spherical segments, and the solid blue line for a
stack of three spherical segments. Note that these solutions are not differentiable at the joint between the spherical segments and can be considered
as limit cases. The lower part of the graph (g0 < 1) corresponds to necked structures as shown in the inset. The upper part of the graph describes
bulged structures (g0 > 1), akin to the single spherical segment. The light grey region between the dotted blue line and the solid blue line is shown in
more detail in the supplementary information (Fig. S2).

volume increase and, therefore, growing of the tissue, while posi-
tive pressure created by the fibers will rather slow down the tissue
growth.

For a better comparison with Delaunay surfaces, we redraw
Fig. 2 by using the mean curvature at the neck for the x-axis, in-
stead of the fiber curvature (Fig. 3). Note that the mean curvature
is not constant for the shapes considered here, while it is constant
for the Delaunay surfaces (Fig. S4). The Delaunay surfaces are in-
dicated in Fig. 3 by a dotted line. It is quite remarkable that this
dotted line is quite close to line corresponding to μ0 = 35◦ in the
range of parameters from g0 = 0.4 to g0 = 0.7. This means that
surfaces stabilized by fibers with this fibril angle will be close to
Delaunay surfaces.

Implications for the interpretation of experiment
data
We now turn back to the experiments that motivated the cur-
rent study and compare the published experiment data with our
model (Fig. 4). Experimental values, obtained from [14], of neck
radius versus curvature are indicated by dots in this figure. The
data were originally interpreted as being compatible with Delau-
nay surfaces (dashed line Fig. 4A). For a better comparison, we

therefore represent the graph as neck radius versus mean curva-
ture at the neck, Hneck. Indeed, mean curvature is constant for a
Delaunay surface and H ≡ Hneck The solutions of Eq. 11 (where H
is not a constant) are also plotted on this graph, whereby the x-
axis represents Hneck. In order to interpret this graph, it is worth
going back to Eq. 1 and 3. In case of isotropic surface properties
(and a resulting Delaunay curve) the surface stress reduces the
pressure in the volume for negative Hneck (that is on the left of the
graph in Fig. 4A). For positive Hneck (area highlighted in sepia in
Fig. 4A), the surface tension increases the pressure in the tissue
and, therefore, hinders its growth. This is in stark contrast to the
fact that no fundamental change in tissue growth was found ex-
perimentally [14] when the neck radius g0 started to exceed the
value of about 0.7 (which is the point where the mean curvature
starts to be positive, see Fig. 4A).

In contrast to this fact, contractile fibers decrease the pres-
sure for all neck radii below the red line in Fig. 4A. Only in the
region highlighted in blue, contractile fibers would increase the
pressure in the volume and, therefore, hinder rather than favor
tissue growth. Very interestingly, all experimental data points in
Fig. 4A are located in the area where contractile fibers favor tissue
growth.
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Fig. 3. Alternative representation of Fig. 2, showing the neck radius, g0, versus the mean curvature at the neck, Hneck, for different “mifrofibril” angle, μ0,
at the equator. Grey lines give solutions in which the microfibril angle at the neck is fixed. The dashed red lines indicate the limits beyond, which no
solutions can be found. The solid red line shows the range of solutions satisfied by hyperboloids of one sheet, the solid blue line indicates solutions for
stacks of three spherical segments. The black dot indicates cylindrical solutions, the blue dot shows the solution for one segmented sphere. The
dashed black line shows the relationship between neck radius and mean curvature for Delaunay surfaces that satisfy the boundary conditions. Note
that this curve is close to the solutions for μ0 = 35◦ for the neck ranging from about g0 = 0.4 to g0 = 0.7.

Moreover, it turns out that the solutions of Eqs. 11a and b can
hardly be distinguished experimentally from Delaunay surfaces,
in case that the fiber angle at the neck is in the range between
35◦ and 45◦. Figure 5 shows differences between these two types
of surfaces that are, indeed, too small to be distinguished in tis-
sue culture experiments. Finally, it is striking to see that the actin
stress-fiber angle that was measured in the experiments (Fig. 4B)
is, indeed, in the range of 35◦ to 40◦. The fiber paths predicted from
Eqs. 11a and b for a tilt angle at the neck of 35◦ (Fig. 4C) also match
remarkably well the experimental images.

This observation indicates that tension generated by aligned
stress fibers in cells of the near-surface region produces a re-
duction of pressure inside the tissue more effectively than in an
isotropic surface stress state. Indeed, for the example studied, an
isotropic surface stress state would generate negative pressure
only up to a neck radius of g0 ≈ 0.7, while aligned stress fibers
in the surface provide negative pressures up to a neck radius of
g0 ≈ 0.9.

At this point, it remains unclear why cells chose an angle of
approximately 35◦ to develop the stress fibers, but one may spec-
ulate, based on the fact that force generation by actin–myosin in-
teraction is always intermittent [35], that in the relaxation phases
of the contractile fibers the tissue relaxes to shapes dictated by the
surface energy without contractile fibers. Based on the boundary
conditions, these shapes would be Delaunay surfaces. As visible
in Fig. 4A, contractile fibers have the same values of Hneck and g0

as the Delaunay surface when μ0 is close to 35◦. It is then perhaps

not unlikely that cells, when they develop fiber tension, chose an
orientation of ∼35◦ both to preserve the actual shape and to pro-
vide additional negative pressure inside the tissue to allow for and
to enhance growth.

The reason why a particular fiber chirality appears in the tissue
growth experiments described in ref. [14] is currently unknown,
and our model is equally valid for both possible chiral directions.
Possibly, the inherent chirality of cells [36] may prefer one direc-
tion over another. Further experiments will be required to inves-
tigate this.

In addition, the contractile actin stress fibers will only have a
significant effect if indeed, as assumed in the treatment above, the
surface stress generated by the fibers is significantly larger than
the isotropic surface tension of the tissue. The surface tension of
tissues has been reported to be on the order of 0.1 to 3 mN/m [37,
38]. This tension arises due to a combination of cell–cell adhe-
sion and cortical tension. In previous work [13], we have shown
that the cells in the surface layer acquire the phenotype of my-
ofibroblasts. Such cells were reported to generate tension on the
order of 2 to 5 kPa [39]. Assuming that these cells occupy the top
10 μm below the surface of the tissue, this converts roughly to 20
to 50 mN/m, which would be up to two orders of magnitude larger
than the surface tension. These rough estimates suggest that the
contraction of actin stress fibers may, indeed, control the shape of
the growing tissue.

The present theory is only geometrical, and the mechanical
properties of the tissue (except assuming that it is fluid, with all
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Fig. 4. Comparison of the model based on anisotropic surface contraction to the experiments of ref. [14]. Panel A is an enlargement of a portion of
Fig. 3 with dots indicating all the tissue growth experiments performed in ref. [14]. It is quite remarkable that these dots are simultaneously close to
the line for Delaunay surfaces (dotted line) and to fiber-stabilized volumes with a microfibril angle at the neck between 30◦ and 35◦. It is also
important to realize that the size of these dots is not representative for the experimental uncertainty in measuring curvatures. To account for this,
they should be much larger and make the figure unreadable. Note that the induced tissue pressure is positive for all configurations in the blue area
above the red line that corresponds to hyperboloids. Below this line, the tissue pressure induced by contraction of the fibers is negative and favors
tissue growth. For isotropic mechanical surface properties, the surface stress induces a positive tissue pressure on the right side of the vertical line
with zero mean curvature (sepia area in panel A). Panel B shows a typical microtissue grown in vitro under the boundary conditions used in our model
calculations. The green coloration is due to actin staining and the microfibril angle in the neck is around 30◦ to 35◦ for most of the experiments. Panel
C shows a solution to Eq. (11) with predicted fiber paths shown in green and a microfibril angle at the neck of 30◦.

Fig. 5. Comparison of Delaunay shapes (red) for different values of neck
radii (0.25, 0.5, and 0.75) with solutions of Eq. 11 (grey lines) using values
of the fiber angle at the neck, μ0, as indicated. While the surfaces are
mathematically distinct, they are essentially indistinguishable in a
typical tissue culture experiment. A more detailed comparison is shown
in Fig. S4.

shear moduli equal to zero) do not enter the description. This
can only be justified if the remodeling (that generates fluidity)
is faster than the volume change due to growth. Otherwise, the
time-dependent properties of the fluid need to be modeled, which
most likely requires numerical modeling beyond the analytical
description presented here. Another limitation is the assumption
that fibers do not transfer load laterally. Relaxing this assumption
implies that the surface force would not anymore be unidirec-
tional along a fiber, which considerably complicates the problem
and would also likely require numerical analysis. Qualitatively,
one can consider situations, where some load is transferred be-
tween neighboring fibers, to be intermediate between the model
analyzed here and the classical treatment with isotropic surface
tension. Finally, one should consider that individual fibers are not
as long as it seems in Fig. 1, which means that they need to be as-
sembled into larger load carrying bundles. In that context, it is in-
teresting to notice that—although actin fibers are intracellular—
the directions of stress fibers are consistent over distances much
larger than the size of a cell [40]. This means that there must be
some mechanical communication between cells that is implicit in
the present model.

Conclusion
The well-known Young–Laplace equation can be modified to de-
scribe the pressure change induced by parallel contractile fibers
instead of surface stress states in a mechanically isotropic sur-
face. The pressure inside the volume is then proportional to the
stress in the fibers and, therefore, inversely proportional to the
radius of curvature of the fibers. The directions of the contractile

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/1/pgac292/6889547 by M

PI C
olloids and Interfaces user on 20 January 2023



8 | PNAS Nexus, 2022, Vol. 2, No. 1

fibers represent geodesic lines of the surface. The surface shape
results from the fact that the geodesic lines need to have constant
normal curvature. The current analysis of surfaces of revolution
fulfilling these conditions shows that such surfaces are mathe-
matically different from constant mean curvature (Delaunay) sur-
faces. However, they might be numerically sufficiently similar to
make them indistinguishable in tissue culture experiments.
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