
Ecology and Evolution. 2022;12:e9561.	 ﻿	   | 1 of 18
https://doi.org/10.1002/ece3.9561

www.ecolevol.org

1  |  INTRODUC TION

Matrix models are a widely used tool for demographic analysis. 
They require individuals in the population to be grouped into sep-
arate classes and the individual dynamics through the classes to be 
quantified (Caswell, 2001). A basic application of matrix models is 
demographic projection, which consists in updating population 
abundances starting from a given initial state. A salient feature of 
these models is their being amenable to the sensitivity analysis of 
virtually any function, for example, the population growth rate, to 
the demographic parameters they contain (Caswell, 2019).

Age is a classic descriptor for individual classification. It is at the 
basis of the Leslie matrix model (Keyfitz & Caswell,  2005), where 
individuals are classified into separate age classes and their age-
specific survival and fecundity are quantified. Stage is another 

classic descriptor. A stage may be a size class (Calvo & Horvitz, 1990; 
Hoffmann, 1999; Pfeifer et al., 2006), a developmental phase (Kaneko 
& Takada, 2014), an occupied territory (Stephens et al., 2002), the 
position of the individual within a network (Giaimo et al., 2018), or 
any other individual state variable. More sophisticated demographic 
classifications are possible. For example, lately there has been 
a rise in the need of classifying individuals by both age and stage 
(Caswell, 2012; Caswell et al., 2018; Steiner et al., 2014) or through 
multiple descriptors of individual state (Roth & Caswell, 2016).

However, in matrix models purely based on stage, which are the 
focus of the present work, age is not absent. It merely is implicit 
(Cochran & Ellner,  1992). With each update of stage abundances, 
individuals either die or survive while getting one time unit older. 
Leveraging this ineluctable demographic fact, methods have been 
proposed to extract from stage-classified matrix models a variety of 
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age-related quantities. These include, for example, stage-specific life 
expectancy, average age at parenthood, or average age-specific fe-
cundity (Caswell, 2001, ch. 5, 2009; Cochran & Ellner, 1992; Horvitz 
& Tuljapurkar, 2008; Tuljapurkar & Horvitz, 2006). The reason that 
age-from-stage methods exist is that they are a natural response to 
the need of analyzing along the “age” dimension the numerous ma-
trix models that have been already constructed exclusively on the 
basis of stage and not of age. Moreover, matrix models only based on 
stage are arguably more prevalent than matrix models based on both 
age and stage, as age × stage models require more data for their pa-
rameterization and these additional data may not always be available 
or easy to collect. The presence of environmental variability may 
further exacerbate this unbalance as multiple matrix models need 
to be parameterized for the same population when the environment 
fluctuates.

A form of age-from-stage method is the sensitivity analysis of 
population growth for stage-classified populations with respect to 
age-specific perturbations. In a more general work on age × stage 
matrix models, Caswell (2012) proposed a way to perform this anal-
ysis for the stable growth rate of matrix models of populations clas-
sified by stage and living under constant environmental conditions. 
Caswell's method is based on the construction, from the stage-
based matrix model, of another, larger matrix model that includes 
both age and stage classification to then perform age-specific sen-
sitivity analysis of population growth using matrix calculus on the 
derived model. An application of this method is the quantification of 
selection gradients on age-specific mortality and fecundity from ma-
trix models of populations classified solely by stage (Caswell, 2012; 
Caswell & Salguero-Gómez, 2013).

The general framework for the analysis of age × stage matrix 
models upon which Caswell's method for the analysis of stage-based 
models relies is very general and so is the matrix calculus upon which 
it is based (Caswell, 2019; Caswell et al., 2018). This framework cov-
ers way more than the sensitivity analysis of population growth. It is 
also possible to envisage that such framework could be extended to 
capture the sensitivity analysis of transient population growth and 
long-run population growth to age-specific parameters for stage-
classified models under environmental stochasticity. Notably, an 
invitation to extend the framework for the analysis of age × stage 
matrix models to the case of changing environments is contained in 
Caswell et al. (2018, p. 581). This appears as a potentially important 
extension, as environmental fluctuations are a very common condi-
tion for most populations (Bernhardt et al., 2020). But, to the best 
of our knowledge, there has been so far no visible progress along 
the front of explicitly applying age-specific sensitivity analysis of the 
growth rate for stage-classified populations under environmental 
stochasticity.

In this work, we do note embark into the broad endeavor of ex-
tending the general analysis of age × stage matrix models. We do, 
however, go in the direction of expanding along the “age” dimen-
sion the scope of sensitivity analysis of population growth for matrix 
models solely classified by stage. In doing so, we hope to contribute 

to the mentioned need of analyzing the already available matrix 
models that happen to be based on stage only, and not on age. 
Here, we propose a method that is alternative to, and larger in scope 
than, that proposed by Caswell (2012) for the sensitivity analysis of 
population growth in models only classified by stage with respect 
to age-specific perturbations. Our method is alternative to that of 
Caswell (2012) because we do not require the separate construction 
and analysis of an age × stage matrix model (although a formal equiv-
alence between the two methods is shown in the Appendix A.2). Our 
method is larger in scope because it directly applies to stable popu-
lation growth in a constant environment as well as to transient and 
long-run population growth under environmental stochasticity. We 
propose two applications of our method to evidence what we believe 
are some of its advantages. The first application is the analysis of 
age-specific selective forces molding senescence in stage-classified 
populations. We show how some properties of these forces, which 
were made observable in Caswell and Salguero-Gómez (2013), can 
now be predicted analytically via our method. The second applica-
tion is the decomposition of the elasticities of transient and stochas-
tic growth into age-specific components. This application shows 
how our method can yield a fine-grained version of the sensitivity 
analysis of population growth for stage-classified models.

Finally, we would like to stress that our method for age-specific 
sensitivity analysis only applies to matrix models structured solely 
by stage. The method has no say on matrix models that are struc-
tured by both age and stage.

2  |  SENSITIVIT Y ANALYSIS OF 
POPUL ATION GROW TH

Before starting with the analysis, we stipulate a convention. In the 
main text, we prefer to limit ourselves to account for the influence 
of changes in a single parameter on population growth. For this 
reason, we find convenient to adopt the formalism according to 
which the derivative �A∕�� of a matrix A =

(

ai,j
)

 with respect to a 
parameter � is a matrix of the same dimensions as A and the (i, j) 
entry of �A∕�� is �ai,j ∕��. Similarly, the derivative �x∕�� of a vector 
x =

(

x1, x2, … , xn
)T, where the superscript ⊤ indicates transposition, 

is the vector 𝜕x∕𝜕𝜃 =
(

𝜕x1∕𝜕𝜃, 𝜕x2∕𝜕𝜃, … , 𝜕xn∕𝜕𝜃
)⊤. This is the for-

malism in Caswell  (2001). However, it is sometimes useful to con-
sider the effect on population growth of multiple parameters. While 
this can be done by iterating one-parameter formulas for each of the 
parameters, another possibility is to do all this at once. In Section A.7 
of the Appendix, we generalize results from the main text to account 
for the effect on growth of changes in multiple age-specific param-
eters. Therein, we describe and use a different, more apt formalism 
for the derivative of a vector or a matrix with respect to a vector of 
parameters that follows the conventions of the matrix calculus intro-
duced to ecology by Caswell (2007, 2009). We assume throughout 
that the matrix model denoted with A, or A(t) in the time-varying 
case, is classified solely by stage.
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2.1  |  No age specificity

Here, we recall known results from age-independent sensitiv-
ity analysis of population growth. A column vector n(t) describes 
stage-specific abundances in the population at time t . The com-
ponent i  of this vector is the population abundance in stage i  at 
time t . In one time unit, each individual in stage j contributes ai,j 
individuals to stage i . When the environment is constant, this con-
tribution is constant too. The dynamics of n(t) are then determined 
by the projection matrix A =

(

ai,j
)

, which is assumed to be classi-
fied by stage, as

At demographic stability, the total population size grows every 
time step by a factor corresponding to the dominant eigenvalue � 
of A and the relative fraction in stage j remains constant and equal 
to the component wj of the right dominant eigenvector w of A. This 
eigenvector is assumed to be normalized so that its components add 
up to 1. The left dominant eigenvector v contains reproductive val-
ues, which capture the relative importance of individuals to future 
population growth depending on their stage.

Suppose A depends on some parameter � with current value �∗ . A 
classic result by Caswell (1978) is that the sensitivity of stable popu-
lation growth on the log scale, ln�, to this parameter is

where the derivative should be understood as evaluated at � = �∗.
An analogous result holds when the environment can be in dif-

ferent states that affect the demography. Assume transitions among 
environmental states obey an ergodic time-homogeneous Markov 
chain and to each environmental state there corresponds a projec-
tion matrix. The update of stage-specific abundances then takes the 
form

where A(t) is the projection matrix for the environmental state at t. 
As most authors, we assume that in the long run and independently 
of the initial stage distribution, population growth is characterized by 
the stochastic growth rate ln�s (which is valid under the assumptions 
discussed by Cohen (1977a, 1977b); Tuljapurkar (1990)),

where N(t) is population size at t.
Tuljapurkar (1990) pioneered sensitivity analysis of the stochas-

tic growth rate. He defined three main quantities: the time-specific 
stage distribution w(t), the time-specific reproductive value vector 

v(t), which are vectors scaled so that the components of each add up 
to 1 (for the computation of these quantities see Section A.3 of the 
Appendix), and the time-specific growth

where e is a vector of 1s. The quantity �t is the factor by which pop-
ulation size changes between t and t + 1. Suppose that the matrices 
for demographic projection depend on some parameter �. Expanding 
upon the original analysis of Tuljapurkar (1990), Caswell (2005) showed 
that the sensitivity of long-run population growth to a parameter � 
(with current value �∗) upon which some demographic rates depend is

which is a stochastic analog of Equation 2 and where the derivative 
should be understood as evaluated at � = �∗. The chief approach to 
estimate �ln�s ∕�� is via extensive stochastic simulations of the demo-
graphic process (Caswell, 2001; Morris & Doak, 2002).

Finally, time-specific growth (sometimes called the transient 
population growth rate) ln�t is susceptible of sensitivity analysis too. 
Combining and differentiating Equations 3 and 5, Caswell (2007, eq. 
43) found that

where the vectors �n(t)∕�� are computed via the recursion

from given initial vectors n(0) and �n(0)∕��. Caswell (2007) gives infor-
mation on how to set the latter vector. A particularly relevant case is 
when � has no effect on the initial population and �n(0)∕�� is the zero 
vector. The derivatives in Equations 7 and 8 should be understood as 
evaluated at �'s current value.

2.2  |  Adding age specificity

Suppose we are given a stage-classified matrix model A. In per-
forming sensitivity analysis of the stable population growth for 
this matrix, Equation 2 presupposes that, when � changes, all in-
dividuals with demographic rates that depend on � will be equally 
affected regardless of the age of these individuals. This is because 
the entries of A express stage-specific quantities. Although the 
given model is classified by stage, changes in the population are 
theoretically conceivable so that they only affects individuals of 
age j (Caswell,  2012, p. 408). And we may want to find out the 

(1)n(t + 1) = An(t).

(2)𝜕ln𝜆

𝜕𝜃
=

v⊤
𝜕A

𝜕𝜃
w

𝜆v⊤w
,

(3)n(t + 1) = A(t)n(t),

(4)ln�s = lim
t→ ∞

1

t
ln

[

N(t)

N(0)

]

,

(5)𝜆t =
e⊤n(t + 1)

e⊤n(t)
,

(6)𝜕ln𝜆s

𝜕𝜃
= lim

L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)
𝜕A(t)

𝜕𝜃
w(t)

𝜆tv
⊤(t + 1)w(t + 1)

,

(7)𝜕ln𝜆t

𝜕𝜃
=

e⊤

N(t + 1)

𝜕n(t + 1)

𝜕𝜃
−

e⊤

N(t)

𝜕n(t)

𝜕𝜃
,

(8)�n(t + 1)

��
=

�A(t)

��
n(t) + A(t)

�n(t)

��
,
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4 of 18  |     GIAIMO and TRAULSEN

resulting effect on population growth. Supposing that no addi-
tional age-specific data are available or can be collected for the 
target population, to analyze the age-specific sensitivity of popu-
lation growth one can only try to squeeze information out of the 
given stage-classified model. To get the relevant information for 
this purpose, Caswell  (2012) proposed the construction of an 
age × stage matrix model from the entries of the stage-classified 
model. Age-specific sensitivity analysis can then be performed 
on the obtained age × stage model and not anymore on the origi-
nal stage-classified model. Here, we propose an alternative way 
of addressing the problem of getting age-specific sensitivity of 
population growth from models that were constructed using a 
stage-based classification. We deem our proposal alternative be-
cause it does not pass through the construction of an age × stage 
matrix model. (However, we can prove an essential equivalence 
with Caswell's approach, see Section  A.2 of the Appendix.) Our 
proposal in essence consists in only slightly modifying the results 
of the age-independent sensitivity analysis reviewed in the previ-
ous section to make them age-specific.

We start from the case of a constant environment. To empha-
size that we now analyze a scenario characterized by age-specific 
effects, we write the parameter as �j. Since A is assumed classi-
fied by stage, it is very hard to envisage how we could, if ever, 
introduce in it a perturbation parameter for age-specific effects. 
The matrix A governs the demography of individuals depending 
on their stage and independently of their age. Modifying entries 
of A implies modifying demographics in an age-independent fash-
ion. To solve this problem, we propose the following construction. 
First, rewrite Equation 1 as

where Ak = A for k = 1, 2, …, while nk(t) contains stage-specific abun-
dances of individuals aged k, that is, the i  component of this vector is 
the number of individuals in stage i  and of age k at t and

Equation  9 separately projects each age class using the same 
demographic rates. Using the construction in Equation  9, we can 
specifically target the demographic rates of individuals aged j by 
supposing that the matrix Aj depends on some parameter �j with 
current value �∗

j
. We then rewrite Equation 9 as

where all matrices are still identical with one another but we have sin-
gled out Aj to highlight its dependence on a parameter upon which the 
other matrices do not depend.

Next, we note that Equation  2 makes the mechanism through 
which a change in � affects stable population growth transparent. 
The quantity ai,j is the demographic contribution of an individual in 
stage j to stage i  per time step. The (i, j)-entry of the matrix �A∕ � � 
is the sensitivity of ai,j to �. In Equation 2, this sensitivity is weighted 
to contribute toward �ln�∕��. The weight is the product viwj, which 
accounts both for the relative number wj of individuals whose demo-
graphic rates are directly dependent on �, that is, the individuals in 
stage j, and for the relevance, given by the reproductive value vi, to 
population growth of a change that alters the demographic influx to 
stage i . Equation 10 and the logic behind Caswell's result suggest a 
straightforward way of getting an expression for the age-specific sen-
sitivity of ln�. We should modify Equation 2 in two ways: we should 
substitute the matrix �A∕�� of sensitivities of age-independent de-
mographic rates with the matrix �Aj ∕��j of age-specific sensitivities 
and we should substitute the stable stage distribution w with the 
fraction wj of the stable stage distribution aged j. The i  component 
of wj is the stable population fraction in stage i  and of age j. Thus

where, as in the corresponding age-independent formula, the derivative 
is evaluated at �j's current value. In this way, the sensitivity of ln� specifi-
cally accounts for the relative size of that part of the population that has 
demographic rates that depend on �j. A formal derivation of Equation 11 
is in Section A.1 of the Appendix. An essential equivalence with the ap-
proach of Caswell (2012) is shown in Section A.2 of the Appendix.

The reasoning leading to Equation  11 smoothly extends to the 
case of environmental variability. Equation 3 for projection under a 
changing environment can be decomposed into the projection of sep-
arate age classes as Equation 1. The only difference is that projection 
matrices and stage distribution now depend on time t  . Accordingly, an 
age-specific version of the sensitivity formula in Equation 6 is

A more formal derivation of this equation is in Section  A.3 of the 
Appendix.

Finally, the same strategy yields the age-specific sensitivity of 
time-specific (or transient) growth,

where the vectors �n(t)∕��j in Equation  13 are computed via the 
recursion

from given initial vectors n(0) and �n(0)∕��j. A derivation of 
Equation 14 is in Section A.4 of the Appendix.

(9)n(t + 1) =

∞
∑

k=1

Aknk(t),

n(t) =

∞
∑

k=1

nk(t).

(10)

n(t + 1) =

∞
∑

k=1

k≠ j

Aknk(t) + Aj

(

�∗
j

)

nj(t),

(11)
𝜕ln𝜆

𝜕𝜃j
=

v⊤
𝜕Aj

𝜕𝜃j
wj

𝜆v⊤w
,

(12)𝜕ln𝜆s

𝜕𝜃j
= lim

L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)
𝜕Aj (t)

𝜕𝜃j
wj(t)

𝜆tv
⊤(t + 1)w(t + 1)

,

(13)
𝜕ln𝜆t

𝜕𝜃j
=

e⊤

N(t + 1)

𝜕n(t + 1)

𝜕𝜃j
−

e⊤

N(t)

𝜕n(t)

𝜕𝜃j
,

(14)�n(t + 1)

��j
=

�Aj(t)

��j
nj(t) + A(t)

�n(t)

��j
,
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2.3  |  Age-specific stage distribution

To obtain wj(t) in Equation 12, we represent the projection matrix as a 
sum A(t) = U(t) + F(t), where U(t) =

(

ui,j(t)
)

 is the transition matrix and 
F(t) =

(

fi,j(t)
)

 is the fecundity matrix. The quantity ui,j(t) is the probabil-
ity that an individual in stage j at t is in stage i  at t + 1, while fi,j(t) is the 
number of new recruits in stage i  at t + 1 per individual in stage j at t. 
Age 1 is assigned to new recruits at their first census. Age is updated at 
demographic projection so that an individual of age j at t is of age j + 1 
at t + 1. Thus, the stage distribution aged j at time t ≥ j is

because �−1
t−1

F(t − 1)w(t − 1) is the fraction of the population at t of 
those aged 1 (new recruits), the matrix U(t − 1)U(t − 2) … U(t − j + 1) 
governs the survival and stage transitioning up to t and through age 
j ≥ 2 of those who were new recruits at t − j + 1. When they reach age 
j at t, the population has grown by a factor �t−1�t … �t−j+1 since their 
first census.

When t < j, we should consider individuals that were already 
present in the initial population and are still alive at t . However, we 
do not really require an initial age distribution within the stages to 
compute �ln�s ∕��j. Recall the weak ergodic theorem in demogra-
phy: two populations experiencing the same sequence of projec-
tion matrices converge to the same time-varying stage distribution 
even if they have different initial stage distributions (Cohen, 1979). 
A corollary of weak ergodicity is that the two populations also 
converge to the same age distribution even if their initial age dis-
tributions are different. In the long run, all initial individuals are 
dead and do not count directly anymore toward the age distribu-
tion. Moreover, the shared sequence of projection matrices and 
the convergence to a common stage distribution w(t) imply that 
both the production of new recruits F(t)w(t) and their subsequent 
survival, via U(t + 1)F(t)w(t), U(t + 2)U(t + 1)F(t)w(t), … , converge 
to the same levels in the two populations. The age distribution of 
a population is determined by the inflow of new individuals and 
their subsequent survival (Arthur, 1982). Hence, we expect the two 
populations to converge to the same time-varying age distribution. 
Appendix B reports a numerical example of this convergence.

We can then estimate �ln�s ∕��j from long stochastic simula-
tions starting from arbitrary age and stage distributions. Even more 
conveniently, we can outright discard a sufficient number of initial 
iterations of the simulated process so that any influence of the ini-
tial age distribution is negligible. Truncation of simulation results is 
already customary in the sensitivity analysis of ln�s, for example, in 
Tuljapurkar et al.  (2003), to minimize transient effects due to the 
initial stage distribution.

When the environment is constant and the population demo-
graphically stable, the recursion for wj in Equation 11 is

as Cochran and Ellner  (1992) showed, where w is the stable stage 
distribution.

3  |  APPLIC ATION 1—AGE-SPECIFIC 
SELEC TION, STAGES AND SENESCENCE

Hamilton (1966) kick-started age-specific sensitivity analysis of popula-
tion growth. Equating ln� with fitness, he proved that, in age-classified 
stable populations, selection against mortality always declines with 
adult age, and so does selection on fecundity under mild assumptions 
(e.g., the population is not shrinking, � ≥ 1, and mortality is never zero). 
His results are key to understand the evolution of senescence, an age-
related decline in biological functioning (Baudisch, 2005; Caswell & 
Shyu, 2017; Charlesworth, 1994; Giaimo & Traulsen, 2022b; Partridge 
& Barton, 1993). However, Hamilton's results are based on an age-
classified model. To understand the stage-classified case, Caswell and 
Salguero-Gómez (2013) studied selection against mortality and on fe-
cundity within stages for a s × s stage-classified matrix model A with 
dominant eigenvalue � by constructing from this matrix an age × stage 
matrix model comprising � age classes. In the stage-classified case, 
the selection force against mortality �k,j at age j within stage k is the 
sensitivity �

(

�k,j

)

 of ln� to a proportional change of the same mag-
nitude in survival (possibly accompanied by stage transitioning) for 
all individuals aged j in stage k in the population. This amounts to a 
proportional change of all entries in column k of Uj = U, where Uj is the 
transition matrix for individuals aged j. In the stage-classified case, 
such matrix is equal to the age-independent transition matrix U. The  
selection force on fecundity mk,j at age j within a reproductive stage 
k is the sensitivity �

(

mk,j

)

 of ln� to an additive change of the same 
magnitude in the fecundities of all individuals aged j in stage k in the 
population. This amounts to an additive change of the same magni-
tude in all positive entries of column k of Fj = F, where Fj is the fe-
cundity matrix for individuals aged j. In the stage-classified case, 
such matrix is equal to the age-independent transition matrix F. The 
stage-independent quantities �

(

�j

)

 and �
(

mj

)

 are the sum of �
(

�k,j

)

 
and the sum of �

(

mk,j

)

, respectively, over all stages k = 1, … , s. The 
quantity �

(

�j

)

 is the selection force against mortality �j for all indi-
viduals aged j in the population regardless of their stage. The quantity 
�
(

mj

)

 is the selection force on fecundity mj for all individuals aged j 
independently of their stage. Let ��(j) =

(

�
(

�1,j

)

,�
(

�2,j

)

, … ,�
(

�s,j

))

 
and �m(j) =

(

�
(

m1,j

)

,�
(

m2,j

)

, … ,�
(

ms,j

))

. Caswell and Salguero-
Gómez (2013, Eqs. 30-1) proposed the following formulas for these 
quantities:

(15)
w1(t)=�−1

t−1
F(t−1)w(t−1)

wj(t)=
U(t−1)U(t−2)…U(t− j+1)F(t− j)w(t− j)

∏t−1

m=t−j
�m

, j=2, 3, …

(16)wj+1 = �−1Uwj , with w1 = �−1Fw

(17)

�𝜇(j)=
1

𝜆v⊤w

(

w
⊤⊗v

⊤
)(

Is𝜔⊗K
⊤
�UK

)(

Ejj⊗K⊗ Is

)(

vec
(

I𝜔

)

⊗ Is2
)(

Is⊗G
)


(

vec
(

Is

))(

Is⊗es

)

(�)

�m(j)=
1

𝜆v⊤w

(

w
⊤⊗v

⊤
)(

Is𝜔⊗K
⊤
�FK

)(

Ejj⊗K⊗ Is

)(

vec
(

I𝜔

)

⊗ Is2
)(

Is⊗z
)

.
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6 of 18  |     GIAIMO and TRAULSEN

In Equation 17, ⊗ is the Kronecker product, In is the n × n identity ma-
trix, K is the s� × s� vec-permutation matrix—see box 2 of Caswell 
et al.  (2018) for more details on this matrix—, �U is a block diagonal 
matrix where each block is a � × � matrix with 1s in the whole subdi-
agonal and in the (�,�)-entry and zeros everywhere else, �F is a block 
diagonal matrix where each block is a � × � matrix with 1s in the first 
row and zeros everywhere else, Ejj is a matrix with a 1 in the (j, j)-entry 
and zeros everywhere else, the vec( ∙ ) operator applies to a matrix and 
returns the columns of this stacked one on top of the other, G is the 
matrix U after normalizing each column so that its components add 
up to 1, es is a s × 1 vector of 1s,  is the operator that from a vector 
argument returns a diagonal matrix, � is the vector of column sums of 
U and z is a s × 1 vector where component i  is 0 if row i  of F is zero and 
1 otherwise. Caswell and Salguero-Gómez  (2013) give more details 
on these expressions. They also noted that “[w]hile these expressions 
are impressive at first, they are easily evaluated in matrix-oriented lan-
guages such as MATLAB” (p. 594). Using Equation 17, they numerically 
explored the trajectories of selective forces over age within stages in a 
sample of several plant species and observed that within-stage selec-
tion can be contra-senescent, that is, increasing over some ages, and 
not only pro-senescent, that is, decreasing with age.

However, the remarkable observation by Caswell and Salguero-
Gómez  (2013) of contra-senescent selection has remained unex-
plained, as it is unclear what the determinants of contra-senescent 
selection may be and when we should expect contra- or pro-
senescent selection. One way to get more insight would be to attack 
Equation 17 analytically. But we preferred to avoid facing the impres-
sive expressions therein and we looked for an alternative approach 
based on our method. First of all, recall that the selection force 
against mortality �j at age j is the sensitivity of ln� to a proportional 
change of the same magnitude in survival for all individuals aged j 
in the population regardless of their stage. Thus, we set a perturbed 
matrix as Aj = Fj +

(

1 + �j
)

Uj, where Uj is the transition matrix for age 
class j. This matrix is identical to the overall transition matrix U in the 
absence of perturbations (�j = 0). From Equation 11, we then get

Similarly, recall that the selection force on fecundity mj at age j is the 
sensitivity �

(

mj

)

 of ln� to an additive increase of the same magnitude 
in the fecundities of all individuals aged j independently of their stage. 
Thus, we set a perturbed matrix as Aj = Uj + Fj + �jsgn

(

Fj

)

, where Fj 
is the fecundity matrix for age class j, which is identical to the over-
all fecundity matrix F in the absence of perturbations (�j = 0), while 
sgn

(

Fj

)

 is the matrix obtained by applying the signum function to Fj 
entry-wise, which returns a matrix with 1 in the (i, j)-entry whenever 
the corresponding entry of Fj is positive and zeros everywhere else 
(Section A.8 notes that alternative perturbation patterns are possible). 
From Equation 11, we then get

Using Equations 18 and 19, we were able to derive analytic results that 
the present authors were not able to derive directly from Equation 17. 
To start putting our expressions at work, we employed Equation 16 
and noted that death eventually completely erodes any newborn co-
hort. Therefore, wj tends to the zero vector as j → ∞, see Section A.5 
in the Appendix for a proof. The selective forces in Equations 18 and 
19 have the same asymptotic behavior,

that is, selection vanishes at very late age in stage-classified popula-
tions. This is hardly surprising. But, to our knowledge, a mathematical 
derivation of this fact within the formalism of stage-classified popula-
tions was apparently missing in the literature and it might be seen as 
evidence of the analytic power of our method.

Section A.6 in the Appendix shows another result that can be 
obtained directly from Equation 18,

where � is the earliest reproductive age. This expression indicates that 
the force of selection against mortality steadily declines with repro-
ductive age. This exactly mirrors a key result by Hamilton (1966) for the 
age-classified case. No equivalent of Equation 21 exists for fecundity. 
Hence, the asymptotic behavior of �

(

mj

)

 does not rule out that, differ-
ently from Hamilton's original finding, selection on fecundity can in-
crease over some ages before eventually waning (more on this below).

After having revisited some results of Hamilton  (1966) for the 
stage-classified case, we use Equations 18 and 19 to better under-
stand age-specific selection within stages. Since �

(

�j

)

 and �
(

mj

)

 
have limit zero as j → ∞, �

(

�j,k

)

 and �
(

mj,k

)

 must have the same as-
ymptotic behavior. Evolutionarily, this means that selection within 
each stage has an overall pro-senescent pattern at late ages. As for 
contra-senescent selection, Section A.9 of the Appendix shows that

where bk and ck are positive constants that depend on stage and not on 
age, whereas wk,j is the stable population fraction of age j and in stage 
k. Hence, within a stage, the age-trajectory of selection against mortal-
ity and the age-trajectory of selection on fecundity are both propor-
tional to the stable age distribution within that stage.

At demographic stability, the overall age distribution monotoni-
cally decreases with age when the population is not going extinct 
because death progressively erodes any newborn cohort. The stable 
age distribution within a stage, instead, is not always monotonic, de-
pends on details of the species life cycle and the shape of this dis-
tribution is not always obviously guessed (Boucher, 1997). However, 
some qualitative insights can be gained by reasoning upon the spe-
cific matrix model of one's interest. Take, for example, Dipsacus syl-
vestris, the wild teasel, as modeled by Caswell (2001, p. 60). Its life 

(18)𝜑
(

𝜇j

)

=
𝜕ln𝜆

𝜕𝜃j
=

v⊤Uwj

𝜆v⊤w
.

(19)𝜑
(

mj

)

=
𝜕ln𝜆

𝜕𝜃j
=

v⊤sgn(F)wj

𝜆v⊤w
.

(20)
lim
j→∞

�
(

�j

)

=0,

lim
j→∞

�
(

mj

)

=0,

(21)𝜑
(

𝜇j

)

> 𝜑
(

𝜇j+1

)

, with j ≥ 𝛼 − 1

(22)�
(

�k,j

)

= bkwk,j and �
(

mk,j

)

= ckwk,j ,
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    |  7 of 18GIAIMO and TRAULSEN

cycle is in Figure 1. It takes a minimum of two demographic projec-
tions to go from offspring stages, that is, stages where new recruits 
are found at their first census, to the unique reproductive stage 
(flowering plants). The reproductive stage is accessible from multi-
ple stages where stasis, that is, permanence in the same stage upon 
projection, is possible. In turn, these stages can be accessed via mul-
tiple pathways. Hence, the age distribution within the reproductive 
stage should start increasing only at age 2 being progressively fueled 
by the arrival to that stage of individuals becoming reproductive at 
different ages. By proportionality between age distribution within 
a stage and selection on age-specific fecundity within that stage, 
we expect selection on fecundity in Dipsacus to be initially contra-
senescent (Figure 1). Since there is a single reproductive stage, this 
also shows that stage-independent selection on fecundity in this 
species can increase with adult age, in contrast to Hamilton's original 
finding.

Another key insight of Equation 22 is that, within a reproductive 
stage, selection against mortality and selection on fecundity are pro-
portional to one another. In fact, Equation 22 immediately leads to

where bk ∕ck is a quantity that depends on stage (k), yet not on age ( j  ). 
This means that, within a stage, the magnitude of the ratio of selec-
tion against age-specific mortality to selection on age-specific fecun-
dity remains constant independently of age. An illustration of this fact 
is in Figure 2, where we quantified selection within female stages of 

Arisaema serratum (Thunb.) Schott (Araceae), a perennial herb, as mod-
eled by Kinoshita (1987). We also quantified selection with the method 
of Caswell  (2012), which Caswell and Salguero-Gómez  (2013, Eqs. 
30-1) applied to the same dataset. The exact match with our results 
serves as a validation of our method. It should be noted that, through 
Equation 17 by Caswell and Salguero-Gómez (2013), one can also plot 
the ratio of these two selective forces (Caswell, personal communica-
tion). However, as with the other results above, we were not able to 
prove as directly from Equation 17 the age independence of this ratio.

It should also be remarked that our findings about age-specific 
selective forces apply to the case of models only classified by stage. 
To derive these results, we have leveraged the fact that the same 
transition matrix and the same fecundity matrix apply to each age 
class in these models. In age × stage matrix models, which we do not 
study here, the transition matrix and the fecundity matrix typically 
differ between age classes so that our results do not obviously gen-
eralize to these models.

4  |  APPLIC ATION 2—AGE-SPECIFIC 
EL A STICITIES

Elasticities are proportional sensitivities (Caswell,  2001). They are 
much used quantities in ecological analysis, for example (Coutts 
et al., 2016; Csergő et al., 2017; Kayal et al., 2018; Koons et al., 2016; 
Struckman et al., 2019; Tredennick et al., 2018). Here, we show how 
to decompose the elasticities of population growth for a stage-
classified matrix model into their age-specific components. We shall 

(23)
�
(

�k,j

)

�
(

mk,j

) =
bk

ck
,

F I G U R E  1 (a) Life cycle graph of Dipsacus sylvestris. Nodes represent stages. Blue arrows indicate survival transitions and correspond to 
entries of the U matrix. Magenta arrows indicate fecundities and correspond to entries of the F matrix. There is a single reproductive stage 
(magenta), Flowering plant, that can be accessed from any Rosette stage (small, medium and large). There are two Seed stages (dormant 
year 1 and dormant year 2). Offspring stages (green) are those where new recruits are first censused. (b) Stable age distribution of flowering 
plants and selection on their age-specific fecundity in Dipsacus. Theoretical considerations (see main text) suggest that: age distribution and 
selection are proportional to one another, flowering plants can only be aged ≥ 2 and the age distribution initially increases and eventually 
decreases with age. Data for this analysis are from Caswell (2001, p. 60). For this model, stable population growth is � = 2.33 and individuals 
of every stage experience some nonzero mortality. The Supporting Information (Giaimo & Traulsen, 2022a) contains code to generate this 
panel.

(b)(a)
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8 of 18  |     GIAIMO and TRAULSEN

concentrate on elasticities of population growth to entries of the 
matrix model, and not to lower level parameters.

We are interested in the elasticity of � to a subset of the entries 
of the stage-classified matrix model A. Let A0 be the matrix obtained 
from A by zeroing the entries that are not of our interest. Creating a 
perturbed matrix A + �A0 with the unperturbed case given by � = 0 
and using Equation 2, the relevant elasticity is

Using Equation 11, making this elasticity age-specific is very simple

This is the sensitivity of ln� to the entries of A that are of our inter-
est when these are proportionally perturbed only for individuals 
of age j.

By a similar reasoning as before applied to Equation 6, the age-
independent elasticity of the stochastic growth rate to a subset of 
the entries of the matrix model is

It has proven important for some analyses to decompose this stochas-
tic elasticity in different ways. Tuljapurkar et al. (2003) and Haridas and 
Tuljapurkar (2005) distinguished the elasticity of �s to the averages of 
the relevant entries of the matrix model

from the elasticity of �s to the standard deviations of these entries

where A0 is the long-run average of A0(t). Note that 
�
(

�s ,A0

)

+ �
(

�s ,A0 − A0

)

= �
(

�s ,A0

)

, see Tuljapurkar et al.  (2003). 
Hence, the elasticity in Equation 26 can be seen as an elasticity to both 
the average and the standard deviation of the entries of interest.

The other decomposition of Equation 26 that we will consider 
here is into environment-specific elasticities. Let � be a subset of the 
environmental states and let 1�(t) be an indicator function that takes 
value 1 at t when the environment is in a state in � and value 0 oth-
erwise. The elasticity

(24)𝜀
(

𝜆,A0

)

=
v⊤A0w

𝜆v⊤w
.

(25)𝜀j
(

𝜆,A0

)

=
v⊤A0wj

𝜆v⊤w
,

(26)𝜀
(

𝜆s ,A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)A0(t)w(t)

𝜆tv
⊤(t + 1)w(t + 1)

.

(27)𝜀
(

𝜆s ,A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)A0w(t)

𝜆tv
⊤(t + 1)w(t + 1)

,

(28)𝜀
(

𝜆s ,A0 − A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)
(

A0(t) − A0

)

w(t)

𝜆tv
⊤(t + 1)w(t + 1)

,

(29)𝜀
(

𝜆s , 1𝜉A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)1𝜉(t)A0(t)w(t)

𝜆tv
⊤(t + 1)w(t + 1)

,

F I G U R E  2 Age-specific selective 
forces within females stages of Arisaema 
serratum. These forces are computed 
using the method proposed here (circles) 
and a previous method (diagonal crosses) 
by Caswell (2012) that Caswell and 
Salguero-Gómez (2013, their fig. 3) 
employed to compute the same quantities. 
The methods are in perfect agreement. 
The distinctive analytical power of the 
proposed method, however, allows 
us to make a step further and predict 
(horizontal lines) from Equation 22 
the existence of (and not only the 
theoretical possibility of visualizing) an 
age-independent ratio between the force 
of selection against mortality and the 
force of selection on fecundity at each 
age within a single stage. The Supporting 
Information (Giaimo & Traulsen, 2022a) 
contains code to generate this figure.
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    |  9 of 18GIAIMO and TRAULSEN

is the sensitivity of ln�s to a proportional perturbation of the entries 
of our interest in the matrix model only when the environment is in 
a state in � (Åberg et al., 2009; Caswell, 2005; Horvitz et al., 2005). 
When all environmental states are in �, the elasticity in Equation 29 
is equal to the environment-independent elasticity in Equation  26. 
When � contains a single environmental state, we refer to the result-
ing elasticity as the elasticity of �s to that environment. However, note 
that this name should not suggest in any way a change in the tran-
sition probabilities of the (assumed constant) environmental Markov 
chain. For perturbations of this chain, see Steinsaltz et al. (2011).

Making elasticities of the stochastic growth rate age-dependent is 
just as easy as it was for the stable growth rate. Using Equation 12, all it 
takes is to replace w(t) in the numerator of Equations 26–29 with wj(t),

These elasticities have the same meaning as their age-independent 
counterparts except that they refer to perturbations that only affect 
individuals of age j.

Finally, we consider elasticities of transient growth. From 
Equations 7 and 8, the elasticity of �t to a subset of the entries of A is

From Equations 13 and 14, the age-specific version of this quantity 
simply is

Since the sum of wj(t) over all ages j is w(t), all age-specific elastic-
ities we have considered above decompose the corresponding age-
independent elasticities

(30a)𝜀j
(

𝜆s ,A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)A0(t)wj(t)

𝜆tv
⊤(t + 1)w(t + 1)

(30b)𝜀j
(

𝜆s ,A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)A0wj(t)

𝜆tv
⊤(t + 1)w(t + 1)

(30c)𝜀j
(

𝜆s ,A0 − A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)
(

A0(t) − A0

)

wj(t)

𝜆tv
⊤(t + 1)w(t + 1)

(30d)𝜀j
(

𝜆s , 1𝜉A0

)

= lim
L→ ∞

1

L

L−1
∑

t=0

v⊤(t + 1)1𝜉(t)A0(t)wj(t)

𝜆tv
⊤(t + 1)w(t + 1)

.

(31)

𝜀
(

𝜆t ,A0

)

=
e⊤

N(t + 1)

𝜕n(t + 1)

𝜕𝜃
−

e⊤

N(t)

𝜕n(t)

𝜕𝜃
, with

𝜕n(t + 1)

𝜕𝜃
= A0n(t) + A(t)

𝜕n(t)

𝜕𝜃
.

(32)

𝜀j
(

𝜆t ,A0

)

=
e⊤

N(t + 1)

𝜕n(t + 1)

𝜕𝜃j
−

e⊤

N(t)

𝜕n(t)

𝜕𝜃j
, with

𝜕n(t + 1)

𝜕𝜃j
= A0nj(t) + A(t)

𝜕n(t)

𝜕𝜃j
.

(33)
∞
∑

j=1

�j = �.

F I G U R E  3 Age-specific elasticities of stochastic growth �s. We initiated a population with random stage distribution. We demographically 
updated the populations for 70,000 time-steps using a randomly generated sequence of projection matrices. We computed elasticities 
of �s to different demographic processes: fecundity (F), individual growth (G), retrogression (R), and stasis (St). Age-specific elasticities 
were computed for each case using Equation 30. Only age-specific elasticities up to age 7 are reported here, as elasticities for later ages 
contributed only minimally to the overall age-independent elasticity for this dataset. In computing elasticities, we removed the first and 
last 10,000 steps to minimize transient effects. The analysis is based on demographic data for population E of kidney vetch in Davison 
et al. (2010). The Supporting Information (Giaimo & Traulsen, 2022a) contains code to generate this figure.
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10 of 18  |     GIAIMO and TRAULSEN

Assuming, as it seems reasonable, that even under fluctuating envi-
ronment, death stills erodes to the end any initial newborn cohort so 
that wj(t) → 0 as j → ∞, then Equations 30 and 32 imply that �j → 0 as 
j → ∞. Hence, we can approximate an age-independent elasticity � by 
adding a sufficient number of its age-specific components �j.

To put age-specific stochastic elasticities at work, we took demo-
graphic data about one of the populations of Anthyllis vulneraria, the 
common kidney vetch, analyzed by Davison et al. (2010). In their model, 
there are three projection matrices corresponding to three environ-
mental states assumed independent and identically distributed. Four 
stages were distinguished: seedling, vegetative adult, small flowering 
adult, and large flowering adult. Projection matrices were of the form

Entries in this matrix are grouped on the basis of the general demo-
graphic process they contribute to: fecundity (F), individual growth (G), 
retrogression (R), and stasis (St). To obtain the elasticity of �s to one of 
these processes, we set A0(t) by zeroing the entries in Equation 34 that 
do not pertain to this process. Figure 3 reports stochastic elasticities 
to each demographic process. Elasticities are represented as sums of 
age-specific components. Figure 3 makes visible how, overall, individ-
ual growth at age 1 is the age-specific demographic process to which 
�s is the most elastic.

Using the same dataset, we computed age-specific elasticities 
of transient growth to each general demographic process (Figure 4). 
Age-independent elasticities of transient growth can take different 
signs at different time points (see elasticity to stasis, Figure 4). Our 
analysis shows that the elasticity of transient growth at a single 
time point can have age-specific components of different signs. For 
example, looking at time t = 14 in Figure 4, the elasticity to fecun-
dity at age 2 is positive, while the elasticity to fecundity at age 3 
is negative.

(34)A(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 F1,3(t) F1,4(t)

G2,1(t) St2,2(t) R2,3(t) R2,4(t)

G3,1(t) G3,2(t) St3,3(t) R3,4(t)

G4,1(t) G4,2(t) G4,3(t) St4,4(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

F I G U R E  4 Age-specific elasticities of transient growth �t. We initiated a population with uniform stage distribution and random age 
distribution with maximum initial age of 30. We demographically updated the populations for 30 time-steps using a randomly generated 
sequence of projection matrices. We computed elasticities of �t to different demographic processes: fecundity (F), individual growth (G), 
retrogression (R), and stasis (St). Age-specific elasticities were computed for each case using Equation 32 with initial vectors �n(0)∕�� set 
equal to the zero vector. Only age-specific elasticities up to age 7 are reported here, as elasticities for later ages contributed only minimally 
to the overall age-independent elasticity for t ≥ 6 in these simulations. Note that elasticities are on different scales. The analysis is based on 
demographic data for population E of kidney vetch in Davison et al. (2010). The Supporting Information (Giaimo & Traulsen, 2022a) contains 
code to generate this figure.
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5  |  SUMMARY

The growth rate of a population is a quantity of primary interest in 
ecology and evolution. A well-established machinery rooted in ma-
trix models exists to compute the sensitivity of population growth 
to any underlying demographic variable (Caswell,  2001, 2005, 
2007, 2019; Caswell et al.,  2018; Horvitz et al.,  2005; Tuljapurkar 
et al., 2003). Here, we have proposed a method that, by only mini-
mally modifying some results of such machinery, can make sensi-
tivity analysis age-specific. The modification essentially consists in 
replacing the overall stage distribution that appears in sensitivity 
formulas for stage-classified populations with the age-specific stage 
distribution. The latter is easily computed by distinguishing transi-
tion/survival events from reproductive events in the matrix model. 
The method may be useful to those who are interested in analyzing 
along the “age” dimension the already existing matrix models that are 
classified solely by stage.

The proposed method applies to stable population growth, the 
stochastic growth rate and transient growth. In the age-specific sen-
sitivity analysis of stable growth for populations solely classified by 
stage, our method offers a possible alternative to the established 
method that requires for this analysis the separate construction of 
an age × stage matrix model (Caswell, 2012; Caswell et al.,  2018). 
This latter method led to observe contra- and pro-senescent se-
lection within life stages (Caswell & Salguero-Gómez,  2013). We 
regard as an advantage of our method its ability to explain these 
observations by proving the existence of a proportionality between 
age-specific selective forces within a stage and the age distribution 
within that stage. In the case of stochastic population growth, to our 
knowledge there is no other method that has been applied explic-
itly yet for the age-specific sensitivity analysis of matrix models only 
classified by stage.

More generally, our method contributes to studies in ecology 
and evolution by decomposing usual quantities in the sensitivity 
analysis of population growth, like elasticities, into their age-specific 
components. Thus, the proposed method makes sensitivity analysis 
more fine-grained.
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APPENDIX A

MATHEMATICAL DERIVATIONS

A .1 | DERIVATION OF EQUATION  11
We start from the eigenvector equation that relates the stable stage 
distribution w (with components that add up to 1), the stable growth 
rate � and the projection matrix A of the population:

We rewrite the right hand side of Equation A1 as a series

where the component i  of wk is the stable population fraction that is 
both in stage i  and of age k. Age 1 is assigned to new recruits at their 
first census. Age is updated at demographic projection so that an indi-
vidual of age j at t is of age j + 1 at t + 1. Thus, w can be thought of as 
the row sums of an array with as many rows as stages and an infinite 
number of columns each representing one age. The sum over all entries 
of the array is 1. The age index in Equation A2 runs to infinity. To set a 
maximum age �, it is sufficient to let all vectors w j with j > 𝜔 be equal 
to the zero vector. In Equation A2, Ak = A for all k = 1, 2, … so that 
Akwk demographically projects individuals aged k over one time step.

In this scheme, individuals of each age are all subject to the same 
demographic rates. But suppose there is a parameter xj on which the 
demographic rates of individuals of age j in the population depend. 
The parameter currently takes value x∗

j
. Since the demography of the 

population depends on xj, both the stable stage distribution w and 
the stable growth rate � are functions of this parameter. As for demo-
graphic projection, only Aj is a function of xj, while all other matrices Ak 
with k ≠ j in Equation A2 are not, as these matrices contain the demo-
graphic rates to project individuals of age different from j  . However, 
note that there presently is no difference between these projection 
matrices so that Aj

(

x∗
j

)

= Ak with k ≠ j. To express the dependencies 
of �, w, and Aj from xj we can rewrite Equation A1 using Equation A2

Note that, when xj = x∗
j
, the right hand side of Equation  A3 con-

verges to Aw. We assume that 
∑∞

k=1
�wj ∕�xj uniformly converges on 

some interval containing x∗
j
. Let us differentiate Equation  A3 with 

respect to xj

Multiplying v, the reproductive value vector, on the left of Equation A4,

Evaluating Equation A5 at xj = x∗
j
,

Using the fact that the reproductive value vector is the left eigenvector 
of the population projection matrix when xj = x∗

j
, we have that

Using Equation A7 into Equation A6, simplifying and rearranging leads 
to

dividing this equation by �
(

x∗
j

)

 yields

which corresponds to Equation 11 in the main text.

A . 2 | EQUIVALENCE WITH C A SWELL (2012 )
Here, we show that the approach of Caswell  (2012) to the age-
specific sensitivity analysis of stable population growth for stage-
classified models and our approach are essentially equivalent. Given 
a q × q, time-independent stage-classified model A, Caswell  (2012) 
suggests to decompose it into a transition matrix U =

(

ui,j
)

 and a 
fecundity matrix F =

(

fi,j
)

, where ui,j is the probability that an indi-
vidual in stage j at t is alive and observed in stage i  at t + 1 and fi,j 
is the number of new recruits in the population observed in stage i  
at t + 1 per individual in stage j at t, so that A = U + F. Then, fixing a 
maximum number � of age classes, one defines the age-specific ma-
trices Ui = U and Fi = F for i = 1, 2, … ,�, where Ui + Fi = Ai with Ai 
defined as in Section 2.2 of the main text. Using these matrices and a 
construction approach of extremely high generality, Caswell (2012) 
builds the age × stage matrix Ã in blocks. It would seem that Caswell's 
construction leads to:

(A1)�w = Aw.

(A2)Aw =

∞
∑

k=1

Akwk ,

(A3)

�
(

xj
)

w
(

xj
)

=

∞
∑

k=1

k≠ j

Akwk

(

xj
)

+ Aj

(

xj
)

wj

(

xj
)

.

(A4)

��
(

xj
)

�xj
w
(

xj
)

+�
(

xj
) �w

(

xj
)

�xj
=

∞
∑

k=1

k≠ j

Ak

�wk

(

xj
)

�xj
+
�Aj

(

xj
)

�xj
wj

(

xj
)

+Aj

(

xj
) �wj

(

xj
)

�xj
.

.

(A5)

𝜕𝜆
(

xj
)

𝜕xj
v
⊤
(

xj
)

w
(

xj
)

+𝜆
(

xj
)

v
⊤
(

xj
) 𝜕w

(

xj
)

𝜕xj
=v

⊤
(

xj
)

∞
∑

k=1

k≠ j

Ak

𝜕wk

(

xj
)

𝜕xj

+v⊤
(

xj
) 𝜕Aj

(

xj
)

𝜕xj
wj

(

xj
)

+v⊤
(

xj
)

Aj

(

xj
) 𝜕wj

(

xj
)

𝜕xj
.

(A6)

𝜕𝜆
(

xj
)

𝜕xj

|

|

|

|

|xj=x
∗
j

v
⊤
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x∗
j

)
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(

x∗
j
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(

x∗
j
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(

x∗
j
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∗
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∑
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∗
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|

|
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∗
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v
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This matrix updates a population state vector ñ(t) of the form

where ñk(t) =
(

ñ1,k(t), ñ2,k(t), … , ñq,k(t)
)⊤ with k = 1, 2, … ,� − 1 is 

the vector containing the population abundance ñi,k(t) in stage i  and 
of age k at t, while the vector ñ≥𝜔(t) =

(

ñ1,≥𝜔(t), ñ2,≥𝜔(t), … , ñq,≥𝜔(t)
)⊤ 

contains the population abundance ñi,≥�(t) in stage i  and of age at least 
� at t. Note, in particular, that the shape of Ã implies that new recruits 
at t are all in ñ1(t) and that individuals in ñk(t) who survive (and pos-
sibly transition of stage) over one time step are all in ñk+1(t + 1) for 
k = 1, 2, … ,� − 2, those who are in ñ�−1(t) and survive over one time 
step are all in ñ≥�(t + 1) with the remaining part of those in ñ≥�(t + 1) 
being composed of those who are in ñ≥�(t) and survive over one time 
step. This explains the sense in which the matrices Ui and Fi are age-
specific. Caswell  (2012) then proposes to get age-specific sensitivity 
information about the initial, stage-classified matrix A by performing 
the analysis on the age × stage matrix Ã instead. The assumption is 
that A and Ã have the same dominant eigenvalue. As Caswell  (2012, 
p. 409) says, since “the vital rates do not depend on age, the dominant 
eigenvalues of A and Ã should be identical.” Caswell (2012, p. 413) also 
notes that, in general, Ã may be reducible. “This means that one must 
ascertain that the eigenvalues and eigenvectors [of the age × stage 
model] under analysis correspond to initial conditions of interest” 
(Caswell, 2012, p. 413), because asymptotic dynamics may depend on 
initial conditions. However, Caswell (2012, pp. 413, 415–6) shows that it 
is both necessary and sufficient that the left eigenvector corresponding 
to the dominant eigenvalue of Ã is positive component-wise for pop-
ulation growth to be described by this eigenvalue regardless of initial 
conditions. Caswell (2012) appears to suggest that one should numer-
ically check for the specific matrix model of one's interest whether the 
condition of positivity for the left dominant eigenvector of Ã is satisfied.

Before showing equivalence with our approach, we first expand 
on Caswell's approach. We assume that A is irreducible. By irreduc-
ibility and nonnegativity, the matrix A has a dominant eigenvalue � , 
which is real, positive, with geometric multiplicity of 1 and greater in 
magnitude than all other eigenvalues of A (Horn & Johnson, 2013, 
Theorem. 8.4.4). Let w and v be the unique (up to a constant scalar) 
right and left eigenvectors of A, respectively, corresponding to �. By 
Perron–Frobenius theorem, these eigenvectors are both positive 

component-wise (ibid.). Recall that the matrix Ã is nonnegative and 
possibly reducible. Let us form the equations xy = Ãy and xz⊤ = z⊤Ã 
with unknowns x (scalar), y and z (vectors). Recall Equation A16 from 
the main text,

where w is the dominant right eigenvector of A, that is, the stable stage 
distribution, A = U + F and wj is the fraction of the stable stage distri-
bution aged j so that 

∑∞

i=1
wi = w. Define w≥� =

∑∞

i=�
wj and observe 

that

We can see that x = � and y =
(

w1,w2, … ,w≥𝜔

)⊤ are solutions of the 
equation xy = Ãy, because from Equations A10–A13, Ui = U and Fi = F,

Similarly, x = � and z =
(

v⊤, v⊤, … , v⊤
)⊤ are solutions of the equation 

𝜆z⊤ = z⊤Ã, because v is the left eigenvector corresponding to the ei-
genvalue � of A = U + F (with U = Ui and F = Fi) and, therefore, using 
Equation A10

Using these results and the fact that v is positive component-wise, 
Theorem 8.3.4 in Horn and Johnson (2013) implies that � is a dominant 
eigenvalue of Ã and a corresponding left eigenvector is component-
wise positive. Letting then Iq� be the q� × q� identity matrix, we can 
see from Equation A10 that �Iq� − Ã has at least some positive princi-
pal minor, for example, its (q + 1, q + 1)-entry. Therefore, by Problem 
8.3.P14 in Horn and Johnson (2013), the eigenvalue � of Ã has geo-
metric multiplicity at most 1, that is, its left and right eigenvectors 
are unique. We can then strengthen the informal considerations and 
results of Caswell  (2012) by concluding that the irreducibility of A 
and the construction of Ã from it are sufficient both to identify the 
dominant eigenvalue � of A with the dominant eigenvalue of Ã and to 
guarantee that this eigenvalue describes population growth when the 
population is updated via Ã independently of initial conditions, that is, 
if A is irreducible, there is no need to numerically check the positivity 
of the left dominant eigenvector of Ã, as this positivity is already guar-
anteed by the irreducibility of A.

(A10)
Ã =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F1 F2 F3 … F�

U1

U2

⋱

U�−1 U�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(A11)ñ(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ñ1(t)

ñ2(t)

⋮

ñ≥�(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A12)
⎧

⎪

⎨

⎪

⎩

w1=�−1Fw

wj+1=�−1Uwj ,

(A13)

U
(

w�−1 +w≥�

)

= �w� + U

∞
∑

i=�

wi = �w� +

∞
∑

i=�

Uwi = �w� +

∞
∑

i=�

�wi+1 = �

(

w� +

∞
∑

i=�+1

wi

)

= �w≥�.

(A14)

Ã

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

w1

w2

w3

⋮

w≥�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F1w1+F2w2+. . . +F�w≥�

U1w1

U2w2

⋮

U�−1w�−1+U�w≥�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F
�

w1+w2+. . . +w≥�

�

Uw1

Uw2

⋮

U
�

w�−1+w≥�

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

w1

w2

w3

⋮

w≥�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(A15)

(

v
⊤, v⊤, … , v⊤

)

Ã =
(

v
⊤
(

F1+U1

)

, v⊤
(

F2+U2

)

, … , v⊤
(

F𝜔+U𝜔

))

=
(

v
⊤
A, v⊤A, … , v⊤A

)

=𝜆
(

v
⊤, v⊤, … , v⊤

)

.
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    |  15 of 18GIAIMO and TRAULSEN

We can now directly address the equivalence problem. Let us de-
note with w̃ and ṽ, respectively, the right and left eigenvectors of 
Ã and note that, using the above results about these eigenvectors,

Suppose now that we are interested in the age-specific sensitivity of 
the natural logarithm of the eigenvalue � of Ã. Since the blocks Uj and 
Fj for j < 𝜔 contain the demographic rates specific to individuals of age 
j, we rewrite the matrix Ã as

to highlight that only demographic parameters for individuals of age 
j depend on �j. Using (while somewhat abusing notation) the general 
result of Caswell (1978) in Equation 2 of the main text, Equation A16 
and the results above about w̃ and ṽ, we have

which coincides with Equation A11 in the main text. This proves the 
equivalence of the two approaches.

A . 3 | DERIVATION OF EQUATION  12
Here, we derive Equation 12 in the main text by adapting the original 
derivation by Tuljapurkar (1990), with later extension by Caswell (2005), 
of Equation 6 in the main text. A derivation of Equation 6 that is more 
rigorous, yet more complex, than that in Tuljapurkar (1990) concern-
ing limit interchanges is in Steinsaltz et al.  (2011). For simplicity, we 
here adapt the original derivation of Tuljapurkar (1990) as presented in 
Caswell (2001, sec. 14.4.1) to obtain Equation 12.

We introduce four quantities. First, the time-specific stage 
distribution

where e is a vector of 1s. Second, the time-specific growth

Third, the time-specific reproductive value vector

Fourth, the time-specific backward growth of reproductive value

Then, we recall from Tuljapurkar (1990, Eq. 11.2.3) that the stochastic 
growth rate in Equation 4 in the main text can be expressed as

where w(0) and v(L), that is, the initial stage distribution and the final 
reproductive value vector, are two independent vectors each having 
arbitrary nonnegative components that add up to 1. We let

be the quantity within brackets in Equation A23.
Initially, we consider an age-independent perturbation. 

Repeatedly using Equations A19–A22, we write �L by making explicit 
the contribution of projection of the population stage distribution at 
time t toward the computation of the stochastic growth rate

We first consider the effect of a time-specific, age-independent 
change in �L. In particular, we assume that the projection matrix A(t) 
containing demographic rates at time t depends on some parameter 
xt with current value x∗

t
 so that we write this matrix as A(t) = A

(

x∗
t
, t
)

. 
Note that �

(

xt
)

 also is a function of xt. Using Equation A25, the sensi-
tivity of �L to xt at x∗

t
 is

Suppose now that the change is no longer time specific and all matrices 
in �L may depend on the parameter x. The sensitivity of �L to x at x∗ 
is the sum of time-specific sensitivities each having the same form as 
Equation A26. Thus,

Using Equations A19–A25 and A27, the sensitivity of ln�s to x at x∗ 
then is

where we have assumed the validity of interchange of limits, that 
is, the time limit and the derivative with respect to x. Equation A28, 

(A16)ṽ
⊤
w̃ =

𝜔−1
∑

i=1

v
⊤
wi + v

⊤
w≥𝜔 =

∞
∑

i=1

v
⊤
wi = v

⊤

∞
∑

i=1

wi = v
⊤
w.

(A17)Ã
�

�j
�

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

F1 F2 … Fj

�

�j
�

… … F�

U1

U2

⋱

Uj

�

�j
�

⋱

U�−1 U�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(A18)𝜕 ln𝜆

𝜕 𝜃j
=

ṽ
⊤ 𝜕 Ã

𝜕 𝜃j
w̃

𝜆ṽ⊤w̃
=

v⊤
𝜕 Fj

𝜕 𝜃j
wj

𝜆v⊤w
+

v⊤
𝜕Uj

𝜕 𝜃j
wj

𝜆v⊤w
=

v⊤
𝜕 Aj

𝜕 𝜃j
wj

𝜆v⊤w
,

(A19)w(t + 1) =
A(t)w(t)

e⊤A(t)w(t)
,

(A20)𝜆t = e
⊤
A(t)w(t).

(A21)v
⊤(t) =

v⊤(t + 1)A(t)

v⊤(t + 1)A(t)e
,

(A22)𝜂t = v
⊤(t)A(t − 1)e.

(A23)ln𝜆s = lim
L→ ∞

1

L
ln
[

v
⊤(L)A(L − 1)A(L − 2) … A(0)w(0)

]

,

(A24)𝛽L = v
⊤(L)A(L − 1)A(L − 2) … A(0)w(0),

(A25)𝛽L =

(

t−1
∏

i=0

𝜆i

)(

L
∏

i=t+2

𝜂i

)

v
⊤(t + 1)A(t)w(t).

(A26)
𝜕𝛽L

𝜕xt

|

|

|

|xt=x
∗
t

=

(

t−1
∏

i=0

𝜆i

)(

L
∏

i=t+2

𝜂i

)

v
⊤(t+1)

𝜕A
(

xt , t
)

𝜕xt

|

|

|

|

|

|xt=x
∗
t

w(t)

(A27)
𝜕𝛽L

𝜕x

|

|

|

|x=x∗
=

L−1
∑

t=0

(

t−1
∏

i=0

𝜆i

)(

L
∏

i=t+2

𝜂i

)

v
⊤(t+1)

𝜕A(x, t)

𝜕x

|

|

|

|

|

|x=x∗

w(t)

(A28)

𝜕ln𝜆s

𝜕x

�

�

�

�x=x∗
= lim

L→∞

1

L𝛽L(x
∗)

L−1
�

t=0

�

t−1
�

i=0

𝜆i

��

L
�

i=t+2

𝜂i

�

v
⊤(t+1)

𝜕A(x, t)

𝜕x

�

�

�

�

�

�x=x∗

w(t)

= lim
L→∞

1

L

L−1
�

t=0

�

∏t−1

i=0
𝜆i

��

∏L

i=t+2
𝜂i

�

v⊤(t+1)
𝜕A(x,t)

𝜕x

�

�

�

�x=x∗
w(t)

�

∏t−1

i=0
𝜆i

��

∏L

i=t+2
𝜂i

�

v⊤(t+1)A(x∗, t)w(t)

= lim
L→∞

1

L

L−1
�

t=0

v⊤(t+1)
𝜕A(x,t)

𝜕x

�

�

�x=x∗
w(t)

𝜆tv
⊤(t+1)w(t+1)

,
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16 of 18  |     GIAIMO and TRAULSEN

which is due to a variation of Caswell (2005) on the original result of 
Tuljapurkar (1990), corresponds to Equation 6 in the main text.

We now consider age- and time-specific changes in demographic 
parameters. We use the fact that Equation A25 singles out the role 
of demographic projection at time t in the computation of ln�s to 
proceed similarly to Section A.1 and write

where M is the maximum age in the initial population, that is, at t = 0 , 
and Ak(t) = A(t), while the vector wk(t) is the fraction of the stage dis-
tribution of age k at t so that

Equation A29 makes conspicuous the demographic projection of each 
age class in the population at t. Similarly to the previous section and 
above, we model time- and age-specific dependency of demographic 
rates by assuming that the matrix Aj(t) depends on some parameter xj,t 
with current value x∗

j,t
 so that Aj

(

x∗
j,t
, t
)

= Ak(t) for k ≠ j. The sensitivity 
of �L to xj,t at x∗

j,t
 is

Proceeding as in Equations A27 and A28 to remove time specificity 
and look at the sensitivity of ln�s to xj at x∗

j
, we find that

which corresponds to Equation 12 in the main text.

A .4 | DERIVATION OF EQUATIONS  13 AND 14
As in the previous sections, let xj be a parameter with current value x∗

j
 

upon which the demographic rates of individuals aged j depend. We 
start by decomposing Equation 3 in the main text, where projection 
is via the time-dependent matrix A(t), as we did for Equation 1 in the 
main text to get to Equation 10 in the main text. Thus, we obtain

where M is some maximum age. This equation expresses population 
projection for each age class at t . Recall that Aj

(

t, x∗
j

)

= Ak(t) = A(t) 
with k ≠ j. However, Equation  A33 shows that if the population 
fraction aged j at some point depends on xj (right hand side), then 

the whole population at the next time point (left hand side) depends 
on xj as well. Hence, we can write Equation A33 more generally as

Taking then the derivative with respect to xj,

and evaluating this derivative at xj = x∗
j
, when Aj

(

t, x∗
j

)

= Ak(t) = A(t) 
with k ≠ j

which corresponds to Equation 14 in the main text.

A . 5 | COHORT EROSION BY DE ATH
Under standard assumptions in demography about A, we have 
that � is the Perron root of this matrix and the corresponding ei-
genvectors v and w are entrywise positive. Hence, from Equation 2, 
𝜕ln𝜆∕𝜕ai,j = viwj ∕

(

v⊤w
)

> 0 so that � is an increasing function of the 
entries of A. Hence, we have that 𝜌

(

𝜆−1U
)

< 𝜌
(

𝜆−1A
)

= 1, where � 
is the spectral radius because U ≤ A entrywise with at least some 
strict inequality. Therefore, �−1U converges to the zero matrix. From 
Equation 16, wj+1 =

(

�−1U
)j
w1 with j ≥ 1 tends to the zero vector as 

j goes to infinity. We refer to this as the fact that death eventually 
completely erodes any newborn cohort.

A .6 | DERIVATION OF EQUATION  21
Using Equation 16 in the main text, we can rewrite Equation 18 in 
the main text as

We then recall the left dominant eigenvector equation for reproduc-
tive values

Multiplying wj on the right of both sides of Equation A38, using the 
decomposition A = U + F and Equation 16 from the main text

(A29)𝛽L =

(

t−1
∏

i=0

𝜆i

)(

L
∏

i=t+2

𝜂i

)

v
⊤(t + 1)

M+t
∑

k=1

Ak(t)wk(t),

(A30)
M+t
∑

k=1

wk(t) = w(t).

(A31)
𝜕𝛽L

𝜕xj,t

|

|

|

|

|xj,t=x
∗
j,t

=

(

t−1
∏

i=0

𝜆i

)(

L
∏

i=t+2

𝜂i

)

v
⊤(t+1)

𝜕Aj

(

xj,t , t
)

𝜕xj,t

|

|

|

|

|

|xj,t=x
∗
j,t

wj(t)

(A32)𝜕ln𝜆s

𝜕xj

|

|

|

|

|xj=x
∗
j

= lim
L→∞

1

L

L−1
∑

t=0

v⊤(t+1)
𝜕Aj(xj ,t)

𝜕xj

|

|

|

|xj=x
∗
j

wj(t)

𝜆tv
⊤(t+1)w(t+1)

,

(A33)

n(t + 1) =

M
∑

k=1

k≠ j

Ak(t)nk(t) + Aj

(

t, x∗
j

)

nj(t).

(A34)
n
(

t + 1, xj
)

=

M
∑

k=1

k≠ j

Ak(t)nk
(

t, xj
)

+ Aj

(

t, xj
)

nj

(

t, xj
)

.

(A35)

�n
(

t+1, xj
)

�xj
=

M
∑

k=1

k≠ j

Ak(t)
�nk

(

t, xj
)

�xj
+Aj

(

t, xj
) �nj

(

t, xj
)

�xj
+
�Aj

(

t, xj
)

�xj
nj

(

t, xj
)

,

(A36)

�n
(

t+1, xj
)

�xj

|

|

|

|

|xj=x
∗
j

=

M
∑

k=1

Ak(t)
�nk

(

t, xj
)

�xj

|

|

|

|

|xj=x
∗
j

+
�Aj

(

t, xj
)

�xj

|

|

|

|

|xj=x
∗
j

nj

(

t, x∗
j

)

=A(t)

M
∑

k=1

�nk
(

t, xj
)

�xj

|

|

|

|

|xj=x
∗
j

+
�Aj

(

t, xj
)

�xj

|

|

|

|

|xj=x
∗
j

nj

(

t, x∗
j

)

=A(t)
�n

(

t, xj
)

�xj

|

|

|

|

|xj=x
∗
j

+
�Aj

(

t, xj
)

�xj

|

|

|

|

|xj=x
∗
j

nj

(

t, x∗
j

)

,

(A37)𝜑
(

𝜇j

)

=
v⊤wj+1

v⊤w
.

(A38)v
⊤ = 𝜆−1v⊤A.

(A39)

v
⊤
wj = 𝜆−1v⊤Awj = 𝜆−1v⊤Uwj + 𝜆−1v⊤Fwj = v

⊤
wj+1 + 𝜆−1v⊤Fwj .
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    |  17 of 18GIAIMO and TRAULSEN

Let � be the first age at which reproduction is possible. This is the 
shortest path length from any offspring stage to any reproductive 
stage in the graph of the transition matrix U (Cochran & Ellner, 1992). 
Offspring stages are those corresponding to the nonzero rows of the 
fecundity matrix F, while reproductive stages are those corresponding 
to the nonzero columns of F. All components of wj corresponding to 
reproductive stages are equal to zero for 1 ≤ j < 𝛼. Some of the compo-
nents of wj corresponding to reproductive stages are greater than zero 
for j ≥ �. Then, we have that 𝜆−1v⊤Fwj = 0 for j < 𝛼 and 𝜆−1v⊤Fwj > 0 
for j ≥ �. As a consequence, we can establish the following inequalities 
between the left-most side of Equation A39 and the first term in the 
right-most side of this equation

Dividing through the second line of Equation A40 by v⊤w and using 
Equation A37, we obtain Equation 21 in the main text.

A .7 | MORE THAN ONE AG E-SPECIFIC PAR AME TER
In the main text, we have explored the sensitivity of population 
growth to a single age-specific parameter. Here, we give formulas 
for the sensitivity of population growth to multiple age-specific pa-
rameters. Suppose that demographic rates for individuals aged j are 
a function of a vector

of p age-specific parameters. We want to obtain the sensitivity of (the 
natural logarithm of) stable population growth �, which is the domi-
nant eigenvalue of the m × m stage-classified projection matrix A, to 
this vector. We recall that Aj is the projection matrix for individuals of 
age j. We adopt the formalism of matrix calculus introduced to ecology 
by Caswell (2007, 2009), see there for more details. In this formalism, 
the vec( ∙ ) operator takes a matrix as argument and returns a column 
vector containing the matrix columns stacked one above the other, the 
vec⊤( ∙ ) operator takes a matrix as argument and returns the transpose 
of a column vector containing the matrix columns stacked one above 
the other and ⊗ is the Kronecker product. Adapting this formalism to 
our case, the generalization of Equation 11 in the main text to multiple 
age-specific parameters is

where d𝜆∕d�⊤(j) is a 1 × p vector with component i  equal to the partial 
derivative of � with respect to component i  of �(j), dln𝜆∕dvec⊤

(

Aj

)

 
is a 1 × m2 vector with ��∕�(A)k,l as component k + (l − 1)m, while 
wj, w and v are, as in the main text, the stable fraction of the stage 

distribution aged j (see Equation 16 in the main text), the stable stage 
distribution (right dominant eigenvector), and the reproductive value 
vector (left dominant eigenvector) of A, respectively. The partial de-
rivative of the (k, l)-entry of Aj with respect to component s of �(j) is 
found as the (k + ml − m, s) entry of the m2 × p matrix dvec

(

Aj

)

∕d�⊤(j).
Similarly, Equation 12 in the main text generalizes to

while Equations 13 and 14 in the main text generalize to

where 𝜕n(t)∕𝜕�⊤(j) in Equation A44 is a m × p matrix with (k, l)-entry 
equal to �nk(t)∕��l(j), which is computed via the recursion

with Im the m × m identity matrix.

A . 8 | PERTURBATION PAT TERN OF FECUNDITIE S
We could substitute sgn(F) with another matrix with a different 
pattern of 0s and 1s, that is, representing a different way of ad-
ditively perturbing fecundity, and still obtain a null sequence. These 
alternative perturbation patterns correspond to what is deemed 
biologically realistic in a specific context. For example, one can 
also consider the possibility of additively incrementing all entries in 
those rows of Fj that contain at least one positive entry. Different 
nonzero rows of Fj identify different offspring stages, where off-
spring can differ, for example, in their size at birth, that are born to 
parents aged j. Altering all entries in one of these rows for sensitiv-
ity analysis means including in the analysis the effect of altering the 
fecundity of all stages. But there may be stages that, for biological 
reasons, cannot be reproductive, for example, a stage comprising 
individuals of too small size. Moreover, not all reproductive stages 
may be able to produce all types of offspring, for example, a repro-
ductive stage with small-sized individuals may not produce large-
sized offspring. For these reasons, we prefer to only look at the 
effect of additive increments in already existing fecundities.

A .9 | DERIVATION OF EQUATION  22
First, we derive the sensitivity �

(

�k,j

)

 of ln� to a proportional change 
of the same magnitude exclusively in the entries of Uj = U that are in 
column k. By a reasoning analogous to that brought us to Equation 18 
in the main text

(A40)
v
⊤
wj =v

⊤
wj+1, j<𝛼,

v
⊤
wj >v

⊤
wj+1, j≥𝛼.

(A41)�(j) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1(j)

�2(j)

⋮

�p(j)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A42)
dln𝜆

d�⊤(j)
=

dln𝜆

dvec⊤
(

Aj

)

dvec
(

Aj

)

d�⊤(j)
=

w⊤

j
⊗ v⊤

𝜆v⊤w

dvec
(

Aj

)

d�⊤(j)

(A43)dln𝜆s

d�⊤(j)
= lim

L→ ∞

1

L

L−1
∑

t=0

w⊤

j
(t)⊗ v⊤(t + 1)

𝜆tv
⊤(t + 1)w(t + 1)

dvec
(

Aj(t)
)

d�⊤(j)
,

(A44)
dln𝜆t

d�⊤(j)
=

e⊤

N(t + 1)

𝜕n(t + 1)

𝜕�⊤(j)
−

e⊤

N(t)

𝜕n(t)

𝜕�⊤(j)
,

(A45)dn(t + 1)

d�⊤(j)
=
(

n
⊤

j
(t)⊗ Im

)dvec
(

Aj(t)
)

d�⊤(j)
+ A(t)

dn(t)

d�⊤(j)
.

(A46)
𝜑
�

𝜇k,j

�

=
v⊤UEk,kwj

𝜆v⊤w
=

∑

i

viui,kwk,j

𝜆v⊤w
=wk,j

∑

i

viui,k

𝜆v⊤w
���

=bk

,
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where Ek,k is a matrix of the same dimensions as U and with (k, k) entry 
equal to 1 and 0 everywhere else. Then, we derive the sensitivity 
�
(

mj,k

)

 of ln� to an additive change of the same magnitude exclusively 
in the positive entries of Fj that are in column k assuming that this col-
umn is not zero. Adapting the reasoning that led us to Equation 19 in 
the main text,

APPENDIX B

NUMERICAL SIMULATIONS
We made use of the data of Davison et al.  (2010) to numerically il-
lustrate a theoretical idea discussed in Section 2.3 of the main text. 
There, we noted that two initial populations with different age and 
stage distributions will eventually converge to a common time-varying 
age distribution when the same sequence of projection matrices is ap-
plied to both populations. Figure B1 gives an example of this phenom-
enon. As it can be seen, convergence is quite fast and can occur within 
a few steps of demographic projection.

(A47)𝜑
�

mk,j

�

=
v⊤sgn(F)Ek,kwj

𝜆v⊤w
=

∑

i

visgn
�

fi,k
�

wk,j

𝜆v⊤w
=wk,j

∑

i

visgn
�

fi,k
�

𝜆v⊤w
�������������

=ck

.

F I G U R E  B 1 Convergence to a common age distribution. We used demographic data for population C of kidney vetch in Davison et al. (2010). 
We initiated ten populations. To each, we assigned a random age and stage distribution with maximum age 30. We updated the populations for 
several time steps by subjecting the populations to the same randomly generated sequence of projection matrices. Here, we report for different 
time points (columns) and within each stage (row), the differences between the age distribution of each population and the arithmetic mean of 
the ten age distributions. Different lines correspond to different populations. As time increases, differences vanish and lines overlap so that, 
eventually, only a single horizontal line at level 0 is visible. The Supporting Information (Giaimo & Traulsen, 2022a) contains code to generate 
this figure.
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