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Ultracold plasmas are a promising candidate for the creation of strongly-coupled Coulomb systems. Unfortunately, the

values of the coupling parameter Γe actually achieved after photoionization of the neutral atoms remain relatively small

because of the considerable intrinsic heating of the electrons. A conceivable way to get around this obstacle might be

to utilize a spontaneous ionization of the ultracold Rydberg gas, where the initial kinetic energies could be much less.

However, the spontaneous avalanche ionization will result in a very inhomogeneous distribution (clusterization) of the

ions, which can change the efficiency of the electron relaxation in the vicinity of such clusters substantially. In the

present work, this hypothesis is tested by an extensive set of numerical simulations. As a result, it is found that despite

a less initial kinetic energy, the subsequent relaxation of the electron velocities in the clusterized plasmas proceeds

much more violently than in the case of the statistically-uniform ionic distribution. The electron temperature, firstly,

experiences a sharp initial jump (presumably, caused by the “virialization” of energies of the charged particles) and,

secondly, exhibits a gradual subsequent increase (presumably, associated with a multi-particle recombination of the

electrons at the ionic clusters). As a possible tool to reduce the anomalous temperature increase, we considered also a

two-step plasma formation, involving the blockaded Rydberg states. This leads to a suppression of the clusterization due

to a quasi-regular distribution of ions. In such a case, according to the numerical simulations, the subsequent evolution

of the electron temperature proceeds more gently, approximately with the same rate as in the statistically-uniform ionic

distribution.

I. INTRODUCTION

Experimental realization of the Coulomb systems with

large values of the coupling parameter

Γ =
q2n1/3

kBT
(1)

(where q, n, and T are the electric charge, concentration,

and temperature, respectively) is a long-standing problem in

plasma physics1–3. It was usually addressed4 either by shock

compression of the substance, resulting in the increased con-

centration of the charged particles n, or by employing the

dusty particles with large effective charges q.

An absolutely new way for the creation of strongly-coupled

plasmas is usage of the very low temperatures T , which be-

came possible in the late 1990’s and early 2000’s due to ad-

vances in the laser cooling of atoms in the magneto-optical

traps5–8. These devices were initially constructed for the cre-

ation of atomic Bose–Einstein condensates, but later some

of them were used for producing the cold ionized gases and

studying the respective plasma effects. The main idea5 was

that, by choosing the energy of a narrow-band ionizing laser

slightly above the ionization threshold of cold (almost immo-

bile) atoms, it would be possible to obtain a system of charged
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particles with very low kinetic energy and, therefore, consid-

erable values of the coupling parameter Γ.

Besides, the ultracold plasmas could also be formed in the

gas-dynamic installations, e.g., the supersonic gaseous jets ir-

radiated by the laser beams9. Such experiments benefit from

the much greater gas density achieved, but working with the

molecular gases involves a lot of additional complications10.

Yet another (and even earlier) setup for the production of ul-

tracold plasmas were the so-called active space experiments,

where the ionized gas clouds were released into the vacuum

from spacecraft and after a sharp expansion could also evolve

into the ultracold state11,12. Unfortunately, the diagnostic fa-

cilities in space were very limited as compared to the labora-

tory installations.

If energy of the absorbed photon is approximately equal to

the ionization threshold of the atom, then the released pho-

toelectron will possess zero total energy at infinity (where its

velocity tends to zero). Therefore, when the electron is sep-

arated from the original atom, e.g., by half the characteristic

interionic distance l/2 (in other words, it becomes to be gov-

erned by the “collective” plasma field), its kinetic and poten-

tial energies should be equal to

k(l/2) = |u(l/2)|= 2e2/l . (2)

In other words,

Γe ≈ |u(l/2)|/k(l/2) = 1 , (3)

i.e., the coupling parameter can be about unity but not substan-

tially larger than this value. (In fact, due to additional heating,

http://arxiv.org/abs/2204.00844v3
mailto:dumin@pks.mpg.de, dumin@yahoo.com
mailto:lukashenko@dec1.sinp.msu.ru, a_lu@mail.ru
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FIG. 1. Sketch of the simultaneous scattering of two electrons (e) at

the ionic cluster, namely, two closely-located ions (i), marked by the

dotted ring.

e.g., by the three-body recombination, the experimentally-

achieved temperature turns out to be a few times greater. So,

the coupling parameter Γe becomes only a fraction of unity:

for example, the recently reported values13 were up to 0.35.)

A natural question arises: Is it possible to overcome the

limit (3)? One of the most evident ideas is to irradiate the

atoms by photons with energy slightly below the ionization

threshold. In such a case, the atoms will not be ionized di-

rectly but transferred firstly into the strongly-excited (Ryd-

berg) states. Next, these “inflated” atoms will be ionized spon-

taneously due to the interparticle interactions. In fact, the ef-

fect of spontaneous ionization of the ultracold Rydberg gas

and its transformation into the plasma was discovered long

time ago14, and the same phenomenon was observed already

in the first experiments with the magneto–optical traps15,16.

At first sight, it can be naturally expected that if the initial

energy introduced into the system becomes less, then the re-

sulting electron temperature should be substantially reduced

and, therefore, considerable values of the Coulomb coupling

parameter, Γe≫1, can be achieved. However, a closer anal-

ysis reveals the dangerous pitfall: Namely, the ions produced

by the spontaneous avalanche ionization will have a strongly

nonuniform (clusterized) distribution in space. Then, as illus-

trated in Fig. 1, such compact ionic clusters (composed, for

example, of two particles) will simultaneously attract a few

electrons and, thereby, stimulate the inelastic multi-particle

scattering, followed by the efficient redistribution of energy

between the particles. (As is known, a bi-particle scattering

of an electron by the ion cannot result in a noticeable redis-

tribution of energy: it is equivalent to the reflection of a light

particle from a “wall”, which can change only direction of

the momentum of the scattered particle but not its absolute

value and, therefore, the kinetic energy.) So, if multi-particle

processes are allowed, the electron temperature can increase

substantially.

Yet another factor potentially leading to the increased tem-

perature is that the clusterized ions contribute more to the total

value of the potential energy appearing in the virial theorem17

for the system of charged particles. As a result, at the earli-

est stage of establishment of the quasi-equilibrium energy dis-

tribution between the interacting particles (at the time scale

about the inverse plasma frequency), the virial value of the

kinetic energy should also be larger. We shall discuss the rela-

tive contributions of both the above-mentioned effects in more

FIG. 2. Shift (asymmetry) of the potential curves of atoms in the

vicinity of a pre-formed ion, facilitating their subsequent ionization.

FIG. 3. Arrangement of Rydberg atoms (large red circles) in the

blockade regime. Dashed rings are the spots of the Rydberg block-

ade, and small black circles are the unexcited (background) atoms.

detail in the subsequent sections of the paper.

Therefore, it is unclear in advance if the reduced value of

energy introduced initially into the system will lead to the less

electron temperature, or it will be quickly compensated by the

more violent subsequent relaxation. It is the aim of the present

work to answer this question. Let us emphasize that we shall

not try to give a self-consistent description of the entire pro-

cess of the spontaneous ionization. Instead, we shall start from

the predefined distributions of ions in space, which are as-

sumed to be formed due to the avalanche ionization, and then

study in much detail the subsequent relaxation of the electron

velocities in the corresponding ionic configurations.

Let us briefly mention that, apart from the collisional

avalanche ionization, there might be yet another conceivable

mechanism of the cluster formation in the case when ions

are produced by the near-threshold narrow-band laser irradia-

tion. Namely, the first formed ion shifts the potential curves

of nearby atoms, thereby facilitating production of additional

ions in the same place; see Fig. 2.

One more problem to be addressed in the present paper is

treating the case of suppressed clusterization, which can be

achieved by the two-step plasma formation with the so-called

effect of Rydberg blockade at the first stage, as was suggested
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in Ref. 18. The Rydberg blockade is the phenomenon when

one Rydberg atom, excited by a narrow-band laser irradiation,

shifts the energy levels of the nearby atoms due to its huge

electric dipole moment. As a result, these levels turn out to

be beyond the energy band of the irradiation and cannot be

excited. So, a subsequent formation of the Rydberg atoms in

the neighborhood of the previously excited atom becomes im-

possible19–21. In principle, if the disturbance is sufficiently

strong, the neighboring energy levels can enter the excitation

band of irradiation and, thereby, to restore the possibility of

excitation to the Rydberg states22–24. Moreover, in the case of

plasmas, the shift of energy levels can be produced also by the

much stronger electric fields of ions. As a result, these levels

will either leave or enter the excitation band, thereby leading

to the phenomena of Coulomb blockade or anti-blockade, re-

spectively25.

Therefore, as illustrated in Fig. 3, the blockaded Rydberg

atoms form a quasi-regular lattice: they are placed approxi-

mately at the same distance from each other, so that the pos-

sibility of close localization to each other is excluded. If such

atoms are subsequently irradiated by an ionizing pulse, then

the resulting ions will also possess the quasi-regular arrange-

ment, i.e., their clusterization will be efficiently suppressed.

(The atoms that were not initially excited because of the Ryd-

berg blockade remain unionized and do not participate in the

plasma processes.)

The experimental attempt to produce plasmas by the two-

step process with Rydberg blockade was undertaken, e.g., in

Ref. 18. Unfortunately, because of the limited diagnostic ca-

pabilities, it remained unclear if the electron temperature was

really reduced or, in other words, if this is a reasonable ap-

proach to the creation of the strongly-coupled ultracold plas-

mas. So, to answer this question, we shall numerically sim-

ulate below both the cases of enhanced and suppressed ionic

clusterization.

Besides, the quasi-regular arrangement of ions can be ob-

tained also in the optical lattices, formed by the counter-

propagating laser beams. This case was considered in the pre-

vious literature mostly in the context of temporal behavior of

the ionic coupling parameter Γi; see, for example, Ref. 26

and references therein. However, it might be interesting to

consider also dynamics of electrons in such kind of the ionic

background.

At last, a rather sophisticated manipulation with ionic dis-

tribution functions can be performed due to specific features

of Penning ionization in the molecular Rydberg gases27.

II. NUMERICAL SIMULATIONS

A. Formulation of the Model

The main idea of subsequent simulations is to consider a

relaxation of the electron velocities against the background

of immobile ions with various kinds of their arrangement.

Namely, the following cases will be tested:

1. Statistically-uniform distribution of ions, where some

kind of clusterization is possible only due to occasional

FIG. 4. Examples of the ionic arrangement (3D views on the

left-hand side, and xy-projections on the right-hand side) for the

statistically-uniform random distribution (top row), enhanced clus-

terization with Npc = 5 and σclus = 0.1 (middle row), and suppressed

clusterization with σreg = 0.1 (bottom row). All distances are mea-

sured in the units of l.

coincidence of the ionic coordinates; see Fig. 4 (top

row). As an example, we use here a cubic box com-

posed of 5 cells of length l in each direction, where

each “unitary” cell (denoted by dotted lines) contains

on average exactly one particle.

2. Enhanced clusterization, where each cluster contains

Npc ions (the abbreviation “pc” implies “particles per

cluster”). To get such an arrangement, we firstly take

the centers of the clusters to be distributed statistically

uniform in space, and then positions of the individual

ions are generated according to the normal (Gaussian)

law with the root-mean-square (r.m.s.) deviation σclus

with respect to the cluster centers; see Fig. 4 (middle
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row).

3. Suppressed clusterization, where ions were initially lo-

cated in the nodes of a perfectly regular cubic lattice

with the cell size l and then randomly shifted from these

positions (randomized) by the normal law with r.m.s.

deviation σreg; see Fig. 4 (bottom row).

The grid of the dotted lines in these figures, denoting the uni-

tary cells, does not have a rigorous physical meaning in the

cases of random and clusterized distributions. Nevertheless,

this grid is very convenient for the visualization of the aver-

age density: each cell corresponds on the average just to one

particle.

In the numerical simulations, we used various values of the

parameters Npc, σclus, and σreg, which will be specified below.

Besides, for each particular set of these parameters, the sim-

ulations were performed for the sufficiently large number of

initial conditions (usually, 15) to make the results statistically

significant.

Let us mention that the pictures of ionic arrangement are

clearly distinct from each other only at the relatively small

values of r.m.s. deviations σclus and σreg, e.g., 0.1 (in the units

of the interparticle distance l), as in Fig. 4. On the other hand,

when the r.m.s. deviations are on the order of unity, both the

clusterized and quasi-regular distributions become quite sim-

ilar to the random one. Moreover, as will be seen from the

results of subsequent numerical simulations, the electron dy-

namics in such cases will also be almost the same.

At last, it is interesting to look at the histograms of inter-

particle separation (i.e., up to normalization, the pair corre-

lation functions), which are presented in Fig. 5. As should

be expected, these histograms are strikingly different from

each other at small values of the r.m.s. deviation (especially,

at σ =0.01). On the other hand, the histograms become very

similar at the large value of σ (namely, σ =1.0): in this case,

all particles are randomly shifted from their original positions

by the distances comparable to the average interparticle sep-

aration. As a result, all distributions are quasi-random, and

their histograms take the Gaussian-like shape.

In the case of quasi-regular distributions with small σreg,

the histograms are very spiky, since the quasi-regular arrange-

ment of particles assumes a large set of the preferable dis-

tances between them, exactly as in a crystalline structure. Of

course, when σreg increases (i.e., the distribution is random-

ized), these spikes gradually disappear. The most surprising

fact is that, even when the entire distribution is very spiky, this

actually does not affect the relaxation of electron velocities, as

will be seen from the results of numerical simulations below.

On the other hand, a specific feature of the clusterized dis-

tributions is a narrow bump (local maximum) at very small

distances, on the order of the typical scatter of particles inside

the cluster σclus. While such a bump often looks like a minor

disturbance of the histogram, as will be seen from the sub-

sequent simulations, it changes dramatically the efficiency of

relaxation of the electron velocities due to the effect of multi-

particle scattering, illustrated in Fig. 1.

So, to simulate dynamics of the electrons against the above-

mentioned ionic backgrounds, we performed a straightfor-

ward numerical integration of their equations of motion:

d2

dt2
ri =−∑

j

e2 ri −R j

|ri −R j|3
+∑

k 6=i

e2 ri − rk

|ri − rk|3
, (4)

where ri and Ri are the coordinates of electrons and ions re-

spectively, and e is the elementary electric charge. Since we

are interested only in the sufficiently short time scales, the

ionic motion was ignored (i.e., the ions were assumed to be at

rest at the time interval of the simulation).

While the initial arrangement of ions was outlined above,

the initial coordinates of electrons were always specified by

a uniform statistical distribution; and their velocities, by the

normal (Gaussian) distribution with r.m.s. deviation σv. In

the particular simulations presented below, we used σv = 0.3,

which means that the initial kinetic energy of electrons was an

order of magnitude less than their potential (Coulomb) energy.

So, the plasma at t=0 was assumed to be “overcooled”.

Strictly speaking, the random initial positions for the elec-

trons are somewhat artificial. In the case of instantaneous pho-

toionization, the electron positions should be initially strongly

correlated with the positions of ions; and just this case was

simulated in detail in the work28. On the other hand, if the

ionization process takes some time, the released electrons will

be mixed in space between the ions. So, one can expect that

their positions might be reasonably described by the uniform

random distribution. As follows from the comparison of our

subsequent results with the above-cited paper, a temporal de-

pendence of the kinetic energy turns out to be qualitatively

the same, apart from the very early time interval (about the

inverse plasma frequency).

For simplicity, the perfectly reflective conditions were im-

posed at the boundaries of the simulation box. As an alter-

native, we tried to use also the periodic boundary conditions.

Unfortunately, they required a much more computational time

to get the convergent results, which was unacceptable in the

present study; for more details, see Appendix A.

Of course, for the simulation with a relatively small num-

ber of particles within a box with reflective boundaries to

correspond to the physical reality, it is necessary that the

Debye screening length rD be much smaller than the box

size L. Since rD/l =
√

K/6πU (where K = (3/2)kBTe is

electron kinetic energy and U ≈ e2/l is the potential one)

and L = 5 l, one can easily find that at the initial instant of

time, when we specified K ≈ 0.1U , the above-mentioned ra-

tio was rD/L ≈ 0.015. Next, when the electrons are heated in

the course of their subsequent dynamics, the temperature can

increase by 300 times, up to K ≈ 30U (see Table I and Fig. 8

below). Then, rD/L ≈ 0.26 ≪ 1, i.e., the required inequality

is still satisfied.

The set of equations (4) was integrated by the numerical al-

gorithm with the adaptive stepsize control, based on the com-

bination of Runge–Kutta methods of the 4th and 5th order

(subroutines odeint, rkck, and rkqs from the book29). This

enabled us to deal with the “original” (singular) Coulomb po-

tentials, without any artificial cut-off or “softening” at the very

small distances, e.g. Refs. 28 and 30. Thereby, all artifacts

caused by the distorted potentials were completely excluded.
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FIG. 5. Histograms of the interparticle separation for various kinds of ionic arrangement.

In this sense, our simulation follows the recent works31–33 as

well as our earlier study34. However, despite dealing with the

singular functions, the adaptive stepsize control provided us

the accuracy of integration (e.g., estimated by the conserva-

tion of energy) at the same level as in the majority of other

simulations of ultracold plasmas with softened or truncated

potentials. Namely, the error was usually about 0.1% and very

rarely increased up to 5%.

To check the accuracy of simulations, we tried to perform

calculations with various number of particles in the simulation

cell. The major part of our results for the variety of initial pa-

rameters presented below were obtained for the case of only

Ntot = 125 electrons and 125 ions, i.e., exactly for the situa-

tion illustrated in Fig. 4. Increasing the number of particles,

e.g., up to Ntot = 1000 requires much more computational time

(which scales approximately as N2
tot), but the resulting aver-

age curves remain almost the same; for more details, see Ap-

pendix B. This is in accordance with the earlier study28, where

a hundred of particles of each kind were found to be sufficient

to simulate the electron temperature with a reasonable accu-

racy.

For the sake of brevity, we shall use below the dimension-

less quantities, normalized to the following basic units: the

unit of length is the size of the “unitary” cell (or mean distance

between the ions) l; the unit of time is inversely proportional

to the square root of the plasma frequency, τ =
√

ml3/e2 =√
4π/ωpl; and the unit of energy is the characteristic Coulomb

energy, U = e2/l. The corresponding normalized quantities

will be denoted by hats.

We shall assume below that the electron kinetic energy per

particle K (with coefficient 2/3) is a direct measure of the elec-

tron temperature Te. It was found in Ref. 28 that such def-

inition of Te reasonably coincides with a more sophisticated

derivation of Te by fitting the simulated velocity distributions

to the Maxwellian ones, provided that the electrons located

sufficiently close to ions (within the “exclusion sphere”) are

not taken into account in calculation of the kinetic energy. In

fact, as was discussed in our earlier work12, the straightfor-

ward definition Te = (2/3)K/kB should work rather well even

for the electrons strongly interacting with ions. Besides, the

introduction of the exclusion spheres is not a self-consistent

procedure: a small distance of an electron from the nearby

ion at some instant of time cannot be a criterion of its capture

by this ion. This is the reason why we take into account all

electrons in calculation of the kinetic energy.

B. Results of the Numerical Calculations

Examples of the computed temporal behavior of the elec-

tron kinetic energy for various kinds of ionic arrangement are

shown in Fig. 6. To avoid cluttering the figure with a lot of

sharp peaks, caused by the close passages of electrons near

the ions, the data were smoothed out over the running win-

dow of width ∆t̂ = 0.1.

In the case of purely random ionic distribution (top panel),

this energy quickly jumps approximately up to the virial value

at the time scale t̂ ∼ 0.5, which is in agreement with the pi-



Electron Temperature Relaxation 6

FIG. 6. Examples of the temporal behavior of the electron kinetic

energy in the case of the purely random ionic distribution (top panel),

enhanced clusterization of ions (middle panel), and the suppressed

clusterization (bottom panel). Thin blue curves show the individual

simulations with different initial conditions for Ntot = 125 particles

of each kind, and the thick curve is their average over 15 realizations.

oneering work35, as well as with our earlier simulations34.

At longer times, the energy continues to increase but much

more slowly, due to the heat release by the three- (or multiple-

)body recombination, when some electrons become perma-

nently captured by ions.

Next, in the case of considerable clusterization (e.g., Npc =
10,σclus = 0.01, middle panel), both the initial jump of energy

is a few times greater, and its subsequent increase is much

more pronounced. Both these features are not surprising: Re-

ally, since the potential energy of compact clusters is larger

than in the random distribution, the kinetic energy established

after the “virialization” (i.e., after the first stage of relaxation)

should be also larger. Besides, since the above-mentioned

ionic clusters act as the multiply-charged centers of attraction

for a few electrons (see Fig. 1), the efficiency of the three- and

multiple-body recombination should also increase, leading to

more pronounced heating at the second stage. Naturally, the

total increase of the electron temperature becomes larger for

the clusters with larger number of ions Npc and the smaller

size σclus, as will be seen below in Fig. 7.

At last, behavior of the electron kinetic energy for the sup-

pressed clusterization of ions (bottom panel) looks quite sim-

ilar to the case of the purely random distribution. In fact, the

resulting values of the electron temperature are a bit smaller

than for the random distribution; but this difference is not so

significant. A very nontrivial finding of our simulations is that

the above-mentioned similarity with random distribution per-

sists even at the very small values of σreg, corresponding to

the almost regular (weakly distorted) ionic lattices.

To study the case of enhanced clusterization in more de-

tail, it is insightful to plot simultaneously the curves of kinetic

energy at the fixed number of particles per cluster Npc (e.g.,

10) and various σclus (namely, 1, 0.3, 0.1, 0.03, and 0.01), on

the one hand, and the same curves at the fixed r.m.s. deviation

of particles from the cluster center σclus (e.g., 0.01) and var-

ious Npc (namely, 2, 3, 5, 7, and 10), on the other hand. As

is seen in the top panel of Fig. 7, when Npc is constant and

σclus decreases from 1 to 0.03 (i.e., the clusters become more

compact), the initial jump of temperature (at the time inter-

val from 0 to approximately 0.3) considerably increases, but

the subsequent heating (at t̂ & 0.3) changes not so apprecia-

bly. However, when σclus decreases further to 0.01, the initial

jump is “saturated”, but the subsequent heating begins to op-

erate more efficiently.

On the other hand, as is seen in the bottom panel of Fig. 7,

when σclus is constant while the number of particles per clus-

ter Npc increases from 2 to 10, then both the initial jump of the

temperature and the subsequent slope of the curves increase

simultaneously.

Finally, the most interesting item for the possibility of cre-

ation of the strongly-coupled plasmas are the resulting values

of the electron kinetic energy 〈K̂〉 after a sufficiently long pe-

riod of evolution. So, it is insightful to plot these values as

function of Npc and σclus. Figure 8 represents the correspond-

ing quantities averaged over the time interval t̂ ∈ [9,10] (which

was taken somewhat arbitrary) and 15 different versions of

initial conditions. The same data are listed in more detail

in Table I. Strictly speaking, parameter σ is irrelevant to the

purely random distribution. Nevertheless, the corresponding

data are formally placed in the column with σreg/clus = 1, be-

cause in this case both the clusterized and quasi-regular distri-

butions become very similar to the random one. To character-

ize “stability” of the average values, both the r.m.s. deviations

with respect to time (over the above-specified interval) σ̂t and

with respect to different versions of the initial conditions σ̂ver

are presented there. As is seen, the values of σ̂t are usually
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FIG. 7. The average (over 15 realizations) temporal behavior of the

electron kinetic energy at the fixed Npc=10 and various σclus (top

panel) and, vice versa, the fixed σclus=0.01 and various Npc (bottom

panel).

(but not always) somewhat larger than σ̂ver. To avoid clutter-

ing Fig. 8, only σ̂ver are plotted by the vertical bars.

The quite large values of σ̂t and σ̂ver were actually caused

by the relatively small number of the simulated particles. If

this number is increased (e.g., from Ntot = 125 to 1000 parti-

cles of each kind), the r.m.s. deviations become much smaller,

but the average values almost do not change; for more details,

see Appendix B.

III. DISCUSSION AND CONCLUSIONS

As distinct from a number of previous theoretical studies

of the avalanche ionization, which were based on the kinetic

rate equations (e.g., review10), we performed a self-consistent

ab initio modeling of the many-body effects in the plasmas

with a nontrivial ion arrangement. (It is interesting to mention

that already the pioneering work on the avalanche ionization

of Rydberg gas14 emphasized that “it is thus possible that the

two-body analysis is too naive”.) Thereby, we arrived at the

FIG. 8. Resulting values of the electron kinetic energy (in dimen-

sionless units), formed at the interval t̂ ∈ [9,10], for various types

of the background ionic distribution. Here, σ implies either σclus or

σreg, depending on the particular context; and their values are plot-

ted in the decreasing order. Vertical bars denote the r.m.s. deviations

over the various versions of initial conditions σ̂ver.

following conclusions:

1. Studying both the cases of enhanced and suppressed

clusterization, in general, reveals the same features as in

the previous works: if system of the charged particles is

taken initially in the state with very small kinetic energy

(e.g., by an order of magnitude less than the potential

one), then the kinetic energy begins to increase quickly.

This process proceeds in two stages: Firstly, the elec-

trons are sharply accelerated in the local electric fields

of the nearby ions and, thereby, increase their kinetic

energy approximately up to the virial value (i.e., about

a half of the potential one). This takes place on the

time scale about the inverse plasma frequency ωpl or,

up to the numerical factor, the Keplerian period (more

exactly, t̂ ≈ 0.3). Next, the process of three- or multi-

body recombination comes into play, resulting in the

subsequent gradual increase of the electron kinetic en-

ergy.

2. As follows from Fig. 7, both stages of heating pro-

ceed more intensively with increasing the number of

particles (ions) per cluster Npc and decreasing the char-

acteristic cluster size σclus. Besides, according to the

top panel of this figure, when Npc is fixed, the in-

creasing compactness of the clusters results initially in

more intense virialization (i.e., a sharper jump of the

kinetic energy at small t̂) and then to the more effi-

cient heating due to the multi-particle recombination,

i.e., a steeper increase of the kinetic energy at the sec-

ond stage. (To avoid misunderstanding, let us empha-

size that—although we do not take into account mo-

tion of the ions during the simulations—the virial re-

lations should be applied to the total Coulomb energy
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TABLE I. Values of the electron kinetic energy 〈K̂〉± σ̂t ± σ̂ver achieved in the interval t̂ ∈ [9,10], where σ̂t is the r.m.s. deviation with respect

to time, and σ̂ver with respect to various versions of initial conditions

σreg/clus 0.01 0.03 0.10 0.30 1.00

Random ——————— ——————— ——————— ——————— 4.87±0.72±0.57

Quasi-regular 3.50±0.61±0.29 3.60±0.66±0.35 3.66±0.63±0.46 3.99±0.64±0.24 4.35±0.60±0.43

Clusterized: Npc = 2 8.70±1.15±0.75 7.57±1.03±0.69 6.31±0.83±0.57 5.07±0.68±0.44 4.42±0.72±0.28

Npc = 3 12.03±1.83±0.94 10.30±1.23±0.80 7.66±0.80±0.53 5.31±0.63±0.40 4.43±0.64±0.30

Npc = 5 17.75±2.46±1.97 15.03±1.72±1.17 10.12±1.04±0.77 6.43±0.83±0.65 4.85±0.71±0.44

Npc = 7 22.79±2.89±2.54 18.51±1.86±1.10 12.10±1.29±1.01 7.16±0.74±0.78 4.56±0.70±0.46

Npc = 10 28.29±3.52±2.64 21.56±2.02±1.44 14.54±1.35±1.18 7.99±0.69±0.98 4.80±0.63±0.46

of all charged particles, i.e. the increased compactness

of ionic clusters should be of primary importance.) Of

course, the total increase of the kinetic energy at the suf-

ficiently large times (e.g., t̂ ∈ [9,10]) will depend on Npc

and σclus in the same way; see Fig. 8.

3. A very nontrivial finding of our simulations is that a

suppressed clusterization (modeled by the quasi-regular

ionic distributions) hardly affects the relaxation of the

electron velocities. As demonstrated by the lowest

curve in Fig. 8, the electron kinetic energy in the inter-

val t̂ ∈ [9,10] remains almost the same when the r.m.s.

shift of the ions from the regular lattice positions σreg

decreases by two orders of magnitude, from 1 to 0.01;

and it equals approximately the value for a purely ran-

dom distribution of ions. Let us emphasize that this con-

clusion refers only to the electron temperature, while

ionic temperature at the longer time scale can exhibit

a much more nontrivial behavior, depending on the de-

gree of disorder26,36–39. Particularly, suppression of the

disorder-induced heating of ions, e.g., by the Rydberg

blockade of the original gas can be really efficient.

4. Referring to the histograms of interparticle separation

(or, which is the same, the pair correlation functions) in

Fig. 5, we see that at σclus = σreg = 1 the plots are ap-

proximately Gaussian. This is not surprising because

at σclus = 1 the clusters become very diffuse, and at

σreg = 1 the original regular lattice becomes completely

destroyed. Therefore, these random distributions be-

come statistically uniform in space, and the resulting

values of the electron kinetic energy, presented in Fig. 8

and Table I, are almost the same. Next, when for the

clusterized distribution σclus decreases, the Gaussian

shape of the plots is slightly distorted, and a very nar-

row peak is formed near zero (i.e., at the very small

interparticle separation). In fact, just this peak is of

crucial importance for the electron heating, because it

strongly enhances both the efficiency of initial virializa-

tion and the subsequent multi-body recombination. On

the other hand, when for the quasi-regular distribution

σreg decreases from 1 to 0.01, the Gaussian shape of

the plots becomes completely distorted, and a lot of the

narrow peaks are formed at various interparticle sepa-

rations. However, none of these peaks is localized near

zero and, as a result, they are insignificant for relaxation

of the electron velocities.

5. The main conclusion following from our simulations

is that the clusterization of ions (e.g., in the course of

avalanche ionization) is a very serious obstacle to get-

ting large values of the Coulomb coupling parameter Γe.

Really, since all energies were normalized to the charac-

teristic Coulomb energy of interparticle interaction (i.e.,

〈Û〉 ∼ 1), large values of the dimensionless kinetic en-

ergy 〈K̂〉 obtained in the simulations imply that the cou-

pling parameter Γe ≈U/K = Û/K̂ will be rather small

as compared to unity. Therefore, the smaller energy in-

put into the Rydberg gas (as compared to the direct pho-

toionization) will lose any advantage after formation of

clusters in the spontaneously-ionized plasma. (Yet an-

other conceivable method to reduce the electron tem-

perature in ultracold plasmas is to add there the Ryd-

berg atoms with binding energies |Eb| . (2− 3)kBTe.

Then, their inelastic collisions with electrons will lead

to a further excitation of the atoms and cooling of the

electrons. Unfortunately, as follows both from the ex-

periments and numerical simulations40,41, the overall

efficiency of such process is quite low—the electron

temperature can be reduced by no more than 20–30 %.)

6. At last, if the two-step formation of ultracold plasma in-

volves the Rydberg blockade at the first stage, resulting

in the quasi-regular arrangement of ions18, the electron

temperature and the corresponding Coulomb coupling

parameter Γe should be stabilized approximately at the

same level as for the purely random ionic distribution.

Therefore, one should not expect that this method can

appreciably increase the attainable values of the cou-

pling parameter.
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Appendix A: Effect of the Boundary Conditions on the Results

of Simulations

Since we performed all simulations with a relatively small

number of charged particles, it is of crucial importance to

specify the adequate boundary conditions. At the first sight,

the most reasonable choice would be the periodic conditions,

when a particle leaving the simulation box through some

boundary simultaneously enters this box from the same point

at the opposite boundary. Unfortunately, our computations

with periodic boundary conditions led to the quite unsatisfac-

tory results, whose example is presented in Fig. 9. Namely,

there was a huge scatter between the individual curves, so that

it was meaningless to draw the average curve as in Fig. 6.

A more careful analysis shows that the accumulation of er-

rors (estimated by conservation of the total energy) comes

mostly from the transposition of particles between the oppo-

site boundaries, while accuracy of the integration algorithm

itself remains very good; see Fig. 10. In fact, the spread of

curves in Fig. 9 is caused by a population of the “transient”

particles. They are strongly accelerated at the very early stage

of plasma relaxation, when almost immobile electrons be-

gin to fall onto the nearest ions. Subsequently, these “tran-

sient” electrons cross the boundaries of the simulated volume

many times, thereby accumulating the computational errors

due to the jumps of the Coulomb forces and energies during

the transpositions.

One possible remedy to exclude such errors is to increase

the number of “mirror” boxes Nm in each direction from the

“basic” box, until the required accuracy of convergence of

the Coulomb force and energy is achieved. This seems to be

the most self-consistent method to take into account the long-

range character of the Coulomb interactions. Particularly, just

this approach was implemented in one of our earlier works34.

Unfortunately, it is extremely time-consuming: the total num-

ber of the mirror boxes to be included into the calculations

scales with Nm as (2Nm + 1)3. As follows from our previous

experience34, the required value of Nm at a particular step of

integration changed from 9 to 27, leading to the total number

of mirror boxes to be processed about 104 − 105. As a result,

the entire simulation for a single set of initial conditions took

up to a few months of computational time. Such computing

requirements were evidently unacceptable in the present work,

because we aimed to perform simulations for a very large set

of initial conditions. Therefore, we chose the reflective bound-

ary conditions, where all calculations (both integration of the

equations of motion and the summation of the Coulomb inter-

actions) are performed within a single simulation box.

An alternative option might be to employ the “wrap”

boundary conditions28, where any particle interacts with other

particles within the cube of size ±L/2 centered at that particle.

It can be easily shown that such prescription ensures a smooth

variation of the Coulomb energy when the above-mentioned

cube is redefined in the course of interparticle displacements.

However, the corresponding Coulomb force experiences an

abrupt unphysical change (namely, its component perpendicu-

lar to the cube boundary suddenly changes its sign for the par-

ticular pair of particles). Moreover, the effect of such jumps

cannot be represented by the error estimated from the conser-

vation of energy.

In summary, none of the boundary conditions for simula-

tion of the infinite system is perfect: each of them has its

own advantages and disadvantages. Anyway, we preferred

to use here the reflective boundary conditions because the

abrupt changes in velocity, caused by the reflection, have a

much more physical meaning than the abrupt changes in the

Coulomb forces.

Appendix B: Effect of the Number of Particles on the Results
of Simulations

Yet another important issue for the validity of simulations is

to check that the results depend only weakly on the total num-
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FIG. 10. Example of accumulation of the errors due to the integration itself (left panel) and due to the transposition of particles (right panel)

in one of the worst cases of initial conditions.

ber of particles. With this aim in view, we increased the size

of the simulated box from L = 5 l to L = 10 l and, respectively,

the number of particles from Ntot = 125 to 1000, i.e., almost

by an order of magnitude. The computations were repeated

for 5 versions of initial conditions in each of the three extreme

cases: a completely random distribution of ions, the most clus-

terized distribution (the number of ions per cluster Npc = 10

and their r.m.s. deviation within the cluster σclus = 0.01), and

the almost regular distribution (the r.m.s. deviation with re-

spect to the ideal lattice σreg = 0.01). The corresponding re-

sults, combined with the previous simulations, are presented

in Fig. 11. As is seen, the curves for Ntot = 1000, drawn in

red, possess a substantially less r.m.s. deviation than the blue

curves for Ntot = 125. However, the average (thick) curves

coincide with each other surprisingly well. In fact, the blue

curve is often invisible at all, because it is completely covered

by the red one.

The only noticeable difference between the average curves

can be seen in the top panel, referring to the completely ran-

dom distribution of ions: The red curve looks a bit less sloping

than the blue one, i.e., the initial jump of kinetic energy (pre-

sumably caused by the “virialization”) for Ntot = 1000 is more

pronounced, but the subsequent increase (associated with the

multi-particle recombination) is slower. The corresponding

difference can be up to approximately 5%. It is difficult to

say if this is a real physical effect, because our algorithm of

integration turned out to be less efficient for the completely

random distribution, so that the total accumulated error (es-

timated by the conservation of energy) often was also about

5%. Anyway, the above-mentioned discrepancy in the aver-

age curves is much less than the r.m.s. deviations σ̂t and σ̂ver

presented in Table I and Fig. 8.

In summary, one can conclude that a reasonable way to re-

duce the computational cost is to perform simulations with

a less number of test particles but for a larger set of initial

conditions. Then, a greater variation of the individual curves

should be quickly compensated by averaging over a larger sta-

tistical sample, and the resulting average curve will be suffi-

ciently accurate. For example, the cost of 15 simulations with

125 particles is 20 times cheaper than the cost of 5 simula-

tions with 1000 particles, while the resulting average curves

coincide with each other almost perfectly.
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