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Abstract. A mixed graph has a set of vertices, a set of undirected egdes,
and a set of directed arcs. A proper coloring of a mixed graph G is a
function c that assigns to each vertex in G a positive integer such that,
for each edge {u, v} in G, c(u) 6= c(v) and, for each arc (u, v) in G,
c(u) < c(v). For a mixed graph G, the chromatic number χ(G) is the
smallest number of colors in any proper coloring of G. A directional
interval graph is a mixed graph whose vertices correspond to intervals on
the real line. Such a graph has an edge between every two intervals where
one is contained in the other and an arc between every two overlapping
intervals, directed towards the interval that starts and ends to the right.

Coloring such graphs has applications in routing edges in layered or-
thogonal graph drawing according to the Sugiyama framework; the colors
correspond to the tracks for routing the edges. We show how to recognize
directional interval graphs, and how to compute their chromatic num-
ber efficiently. On the other hand, for mixed interval graphs, i.e., graphs
where two intersecting intervals can be connected by an edge or by an
arc in either direction arbitrarily, we prove that computing the chromatic
number is NP-hard.

Keywords: Mixed graphs · mixed interval graphs · directed interval
graphs · recognition · proper coloring

1 Introduction

A mixed graph is a graph that contains both undirected edges and directed arcs.
Formally, a mixed graph G is a tuple (V,E,A) where V = V (G) is the set of
vertices, E = E(G) is the set of edges, and A = A(G) is the set of arcs. We
require that any two vertices are connected by at most one edge or arc. For a
mixed graph G, let U(G) = (V (G), E′) denote the underlying undirected graph,
where E′ = E(G) ∪ {{u, v} : (u, v) ∈ A(G) or (v, u) ∈ A(G)}.
? Work on this problem was initiated at the HOMONOLO Workshop 2021 in Nová
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A proper coloring of a mixed graph G is a function c that assigns a positive
integer to every vertex in G, satisfying c(u) 6= c(v) for every edge {u, v} in G,
and c(u) < c(v) for every arc (u, v) in G. It is easy to see that a mixed graph
admits a proper coloring if and only if the arcs of G do not induce a directed
circuit. For a mixed graph G with no directed circuit, we define the chromatic
number χ(G) as the smallest number of colors in any proper coloring of G.

The concept of mixed graphs was introduced by Sotskov and Tanaev [16] and
reintroduced by Hansen, Kuplinsky, and de Werra [8] in the context of proper
colorings of mixed graphs. Coloring of mixed graphs was used to model problems
in scheduling with precedence constraints [15]. It is NP-hard in general, and it
was considered for some restricted graph classes, e.g., when the underlying graph
is a tree, a series-parallel graph, a graph of bounded tree-width, or a bipartite
graph [5,6,14]. Mixed graphs have also been studied in the context of (quasi-)
upward planar drawings [2,3,4], and extensions of partial orientations [1,9].

Let I be a set of closed non-degenerate intervals on the real line. The inter-
section graph of I is the graph with vertex set I where two vertices are adjacent
if the corresponding intervals intersect. An interval graph is a graph G that is
isomorphic to the intersection graph of some set I of intervals. We call I an
interval representation of G, and for a vertex v in G, we write I(v) to denote
the interval that represents v. A mixed interval graph is a mixed graph G whose
underlying graph U(G) is an interval graph.

For a set I of closed non-degenerate intervals on the real line, the directional
intersection graph of I is a mixed graph G with vertex set I where, for every
two vertices u = [lu, ru], v = [lv, rv] with u starting to the left of v, i.e., lu 6 lv,
exactly one of the following conditions holds:

u and v are disjoint, i.e., ru < lv ⇐⇒ u and v are independent in G,

u and v overlap, i.e., lu < lv 6 ru < rv ⇐⇒ arc (u, v) is in G,

u contains v, i.e., rv 6 ru ⇐⇒ edge {u, v} is in G.

A directional interval graph is a mixed graph G that is isomorphic to the di-
rectional intersection graph of some set I of intervals. We call I a directional
representation of G. Similarly to interval graphs, a directional interval graph may
have several different directional representations. As there is no directed circuit
in a directional interval graph G, χ(G) is well defined. Observe that the end-
points in any directional representation can be perturbed so that every endpoint
is unique, and the modified intervals represent the same graph.

Further, we generalize directional interval graphs and directional representa-
tions to bidirectional interval graphs and bidirectional representations. There, we
assume that we have two types of intervals, which we call left-going and right-
going. For left-going intervals, the edges and arcs are defined as in directional
intersection graphs. For right-going intervals, the symmetric definition applies,
that is, we have an arc (u, v) if and only if lv < lu 6 rv < ru. Moreover, there is
an edge for every pair of a left-going and a right-going interval that intersect.

Interval graphs are a classic subject of algorithmic graph theory whose appli-
cations range from scheduling problems to analysis of genomes [7]. Many prob-



Coloring Mixed and Directional Interval Graphs 3

123456

1
23

4
56

t1
t2

t4
t3

1 2 3 4 5 6 7

1
2 3

4 5

6

7

t5
t6

t8
t7

e
e′

Fig. 1: Separate greedy assignment of left-going and right-going edges to tracks.

lems that are NP-hard for general graphs can be solved efficiently for interval
graphs. In particular, the chromatic number of (undirected) interval graphs [7]
and directed acyclic graphs [8] can be computed in linear time.

In this paper we combine the research directions of coloring geometric inter-
section graphs and of coloring mixed graphs, by studying the coloring of mixed
interval graphs. Our research is also motivated by the following application.

A subproblem that occurs when drawing layered graphs according to the
Sugiyama framework [17] is the edge routing step. This step is applied to every
pair of consecutive layers. Zink et al. [18] formalize this for orthogonal edges
as follows. Given a set of points on two horizontal lines (corresponding to the
vertices on two consecutive layers) and a perfect matching between the points
on the lower and those on the upper line, connect the matched pairs of points
by x- and y-monotone rectilinear paths. Since we can assume that no two points
have the same x-coordinate, each pair of points can be connected by a path that
consists of three axis-aligned line segments; a vertical, a horizontal, and another
vertical one; see Fig. 1. We refer to the interval that corresponds to the vertical
projection of an edge to the x-axis as the span of that edge. We direct all edges
upward. This allows us to classify the edges into left- vs. right-going.

Now the task is to map the horizontal pieces to horizontal “tracks” between
the two layers such that no two such pieces overlap and no two edges cross
twice. This implies that any two edges whose spans intersect must be mapped
to different tracks. If there is a left-going edge e whose span overlaps that of
another left-going edge e′ that lies further to the left (see Fig. 1), then e must be
mapped to a higher track than e′ to avoid crossings. The symmetric statement
holds for pairs of right-going edges. The aim is to minimize the number of tracks
in order to get a compact layered drawing of the original graph. This corresponds
to minimizing the number of colors in a proper coloring of a bidirectional interval
graph. Zink et al. solve this combinatorial problem heuristically. They greedily
construct two colorings (of left-going edges and of right-going edges) and combine
the colorings by assigning separate tracks to the two directions; see Fig. 1.
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Our contribution. We first show that the above-mentioned greedy algorithm of
Zink et al. [18] colors directional interval graphs with the minimum number of
colors; see Sect. 2. This yields a simple 2-approximation algorithm for the bidi-
rectional case. Then, we prove that computing the chromatic number of a mixed
interval graph is NP-hard; see Sect. 3. This result extends to proper interval
graphs; see App. B. Finally, we present an efficient algorithm that recognizes
directional interval graphs; see Sect. 4. Our algorithm is based on PQ-trees and
the recognition of two-dimensional posets. It can construct a directional interval
representation of a yes-instance in quadratic time.

We postpone the proofs of statements with a (clickable) “?” to the appendix.

2 Coloring Directional Interval Graphs

We prove that the greedy algorithm of Zink et al. [18] computes an optimal col-
oring for a given directional interval representation of G. If we are not given a
representation (i.e., a set of intervals) but only the graph, we obtain a representa-
tion in quadratic time by Theorem 3. The greedy algorithm proceeds analogously
to the classic greedy coloring algorithm for (undirected) interval graphs. Also our
optimality proof follows, on a high level, the strategy of relating the coloring to
a large clique. In our setting, however, the underlying geometry is more intri-
cate, which makes the optimality proof as well as a fast implementation more
involved. The algorithm works as follows; see Fig. 1 (left) for an example.

Greedy Algorithm. Iterate over the given intervals in increasing order
of their left endpoints. For each interval v, assign v the smallest available
color c(v). A color k is available for v if, for any interval u that has already
been colored, k 6= c(u) if u contains v and k > c(u) if u overlaps v.

A naive implementation of the greedy algorithm runs in quadratic time. Using
augmented binary search trees, we can speed it up to optimal O(n log n) time.

Lemma 1 (?). The greedy algorithm can be implemented to color n intervals
in O(n log n) time, which is optimal assuming the comparison-based model.

Next we show that the greedy algorithm computes an optimal proper color-
ing. This also yields a simple 2-approximation for the bidirectional case.

Theorem 1. Given a directional representation of a directional interval graph G,
the greedy algorithm computes a proper coloring of G with χ(G) many colors.

Proof. The transitive closureG+ ofG is the graph that we obtain by exhaustively
adding transitive arcs, i.e., if there are arcs (u, v) and (v, w), we add the arc
(u,w) if absent. Clearly, no pair of adjacent intervals in the underlying undirected
graph U(G+) of G+ can have the same color in a proper coloring of G. Therefore,
ω(U(G+)) 6 χ(G) where ω(U(G+)) denotes the size of a largest clique in U(G+).
We show below that the greedy algorithm computes a coloring with at most
ω(U(G+)) many colors, which must therefore be optimal. For v ∈ V let Iin(v)
be the set of intervals having an arc to v in G.
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Fig. 2: A staircase and its intermediate intervals, which form a clique in U(G+).

Let c be the coloring computed by our greedy coloring algorithm. Since we
always pick an available color, c is a proper coloring. To prove optimality of c,
we show the existence of a clique in U(G+) of cardinality cmax = maxv∈V c(v).

Consider an interval v0 = [l0, r0] of color cmax. Among Iin(v0), let v1 be the
unique interval with the largest color (all intervals in Iin(v0) have different colors
as they share the point l0). We call v1 the step below v0. We repeat this argument
to find the step v2 below v1 and so on. For some t > 0, there is a vt without
a step below it, namely where Iin(vt) = ∅. We call the sequence v0, v1, . . . , vt a
staircase and each of its intervals a step; see Fig. 2. Clearly, (vj , vi) is an arc
of G+ for 0 6 i < j 6 t. In particular, the staircase is a clique of size t + 1 in
U(G+). Next we argue about the intervals with colors in-between the steps.

For a step vi = [li, ri], i ∈ {0, . . . , t}, let Si denote the set of intervals that
contain the point li and have a color x ∈ {c(vi+1) + 1, c(vi+1) + 2, . . . , c(vi)};
see Fig. 2. Note that vi ∈ Si and, by the definition of steps, each interval in Si
contains vi. Observe that |Si| = c(vi)−c(vi+1), as otherwise the greedy algorithm
would have assigned a smaller color to vi. It follows that cmax =

∑t
i=0 |Si|.

We claim that S =
⋃t
i=0 Si is a clique in U(G+). Let u ∈ Si, v ∈ Sl such

that u ∩ v = ∅ (otherwise they are clearly adjacent in U(G+)). Assume without
loss of generality that i < l. Let j, k be the largest and smallest index so that vj∩
u 6= ∅ and vk ∩ v 6= ∅, respectively. Observe that u ∩ v = ∅, u ∩ vi+1 6= ∅,
and v ∩ vl−1 6= ∅ imply i < j < l and i < k < l. Since u does not intersect vj+1,
it overlaps with vj , i.e., G contains the arc (vj , u) and likewise, since v does not
intersect vk−1, it overlaps with vk, i.e., G contains the arc (v, vk).

If j < k, then G+ contains (v, vk) and (vk, vj), and therefore (v, vj). If j > k,
then vj is adjacent to both u and v, and since u, v are disjoint, vj overlaps with u
and v, i.e., G contains (v, vj). In either case, the presence of (v, vj) and (vj , u)
implies that G+ contains (v, u). It follows that S forms a clique in U(G+).

Corollary 1 (?). There is an O(n log n)-time algorithm that, given a bidirec-
tional interval representation, computes a 2-approximation of an optimal proper
coloring of the corresponding bidirectional interval graph.
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3 Coloring Mixed Interval Graphs

In this section, we show that computing the chromatic number of a mixed interval
graph is NP-hard. Recall that the chromatic number can be computed efficiently
for interval graphs [7], directed acyclic graphs [8], and directional interval graphs
(Theorem 1). In other words, coloring interval graphs becomes NP-hard only if
edges and arcs are combined in a non-directional way.

Theorem 2. Given a mixed interval graph G and a number k, it is NP-complete
to decide whether G admits a proper coloring with at most k colors.

Proof. Containment in NP is clear since a specific coloring with k colors serves
as a certificate of polynomial size. We prove NP-hardness by a polynomial-time
reduction from 3-SAT. The high-level idea is as follows. We are given a 3-SAT
formula Φ with variables v1, v2, . . . , vn, and clauses c1, c2, . . . , cm, where each
clause contains at most three literals. A literal is a variable or a negated variable –
we refer to them as a positive or a negative occurrence of that variable. From Φ,
we construct in polynomial time a mixed interval graph GΦ with the property
that Φ is satisfiable if and only if GΦ admits a proper coloring with 6n colors.

To prove that GΦ is a mixed interval graph, we present an interval represen-
tation of U(GΦ) and specify which pairs of intersecting intervals are connected
by a directed arc, assuming that all other pairs of intersecting intervals are con-
nected by an edge. The graph GΦ has the property that the color of many of
the intervals is fixed in every proper coloring with 6n colors. In our figures, the
x-dimension corresponds to the real line that contains the interval, whereas we
indicate its color by its position in the y-dimension – thus, we also refer to a color
as a layer. In this model, our reduction has the property that Φ is satisfiable if
and only if the intervals of GΦ admit a drawing that fits into 6n layers.

Our construction consists of a frame and n variable gadgets and m clause
gadgets. Each variable gadget is contained in a horizontal strip of height 6 that
spans the whole construction, and each clause gadget is contained in a vertical
strip of width 4 and height 6n. The strips of the variable gadgets are pairwise
disjoint, and likewise the strips of the clause gadgets are pairwise disjoint.

Frame. See Fig. 3c. The frame consists of six intervals f1i , f
2
i , . . . , f

6
i for each of

the variables vi, i = 1, . . . , n. All of these intervals start at position 0 and extend
from the left into the construction. The intervals f2i , f

4
i , f

6
i end at position 1. The

intervals f1i and f5i extend to the very right of the construction. Interval f3i ends

at position 3. Further, there are arcs (f ji , f
j+1
i ) for j = 1, . . . , 5 and (f6i , f

1
i+1)

for i = 1, . . . , n − 1. This structure guarantees that any proper coloring with
colors {1, 2, . . . , 6n} assigns color 6(i− 1) + j to interval f ji .

Variable Gadget. See Figs. 3a and 3b. For each variable vi, i = 1, . . . , n, we have
two intervals vfalsei and vtruei , which start at position 2 and extend to the very
right of the construction. Moreover, they both have an incoming arc from f1i
and an outgoing arc to f5i . This guarantees that they are drawn in the layers
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Fig. 3: A variable gadget for a variable vi.

of f2i and f4i , however their ordering can be chosen freely. We say that vi is set
to true if vtruei is below vfalsei , and vi is set to false otherwise.

For each occurrence of vi in a clause cj , j = 1, . . . ,m, we create an interval oji
within the clause gadget of cj . There is an arc (vtruei , oji ) for a positive occurrence

and an arc (vfalsei , oji ) for a negative occurrence as well as an arc (oji , f
1
i+1) if i < n.

This structure guarantees that oji is drawn either in the same layer as f3i or

as f6i . However, drawing oji in the layer of f3i (which lies between vtruei and vfalsei )
is possible if and only if the chosen truth assignment of vi satisfies cj .

Clause Gadget. See Fig. 4. Our clause gadget starts at position 4j, relative to
which we describe the following positions. Consider a fixed clause cj that contains
variables vi, vk, v`. We create an interval sj of length 3 starting at position 1.

The key idea is that sj can be drawn in the layer of f6i , f
6
k or f6` , but only if oji ,

ojk or oj` , each of which has length 1 and starts at position 3, is not drawn there.
This is possible iff the corresponding variable satisfies the clause.

To ensure that sj does not occupy any other layer, we block all the other
layers. More precisely, for each variable vz with z /∈ {i, k, `}, we create dummy
intervals djz, e

j
z of length 3 starting at position 1 that have arcs from f1z and
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Fig. 4: A clause gadget for a clause cj = vi ∨ ¬vk ∨ v`, where z /∈ {i, k, `}.

to f1z+1. These arcs force djz, e
j
z to be drawn in the layers of f3z and f6z , thereby

ensuring that sj is not placed in any layer associated with the variable z.
Similarly, for each z ∈ {i, k, `}, we create a blocker bjz of length 1 starting at

position 1 that has arcs from f1z and to f5z . This fixes bjz to the layer of f3z (since
the layers of f2z and f4z are occupied by vtruez and vfalsez ), thereby ensuring that,
among all layers associated with vz, sj can only be drawn in the layer of f6z .

Correctness. Consider for each clause cj with variables vi, vk, and v` the corre-
sponding clause gadget. To achieve a total height of at most 6n, sj needs to be
drawn in the same layer as some interval of the frame. Due to the presence of
the dummy intervals, the only available layers are the ones of f6z for z ∈ {i, k, `}.
However, the layer of f6z is only free if ojz is not there, which is the case if and
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only if ojz is drawn in the layer of f3z . By construction, this is possible if and only
if the variable vz is in the state that satisfies clause j. Otherwise we need an
extra (6n+1)-th layer. Both situations are illustrated in Fig. 4. Hence, 6n layers
are sufficient if and only if the variable gadgets represent a truth assignment
that satisfies all the clauses of Φ. The mixed interval graph GΦ has polynomial
size and can be constructed in polynomial time.

A proper interval graph is an interval graph that admits an interval represen-
tation of the underlying graph in which none of the intervals properly contains
another interval. We can slightly adjust the reduction presented in the proof of
Theorem 2 to make GΦ a mixed proper interval graph.

Corollary 2 (?). Given a mixed proper interval graph G and a number k, it is
NP-complete to decide whether G admits a proper coloring with at most k colors.

4 Recognizing Directional Interval Graphs

In this section we present a recognition algorithm for directional interval graphs.
Given a mixed graph G, our algorithm decides whether G is a directional interval
graph, and additionally if the answer is yes, it constructs a set of intervals repre-
senting G. The algorithm works in two phases. The first phase carefully selects
a rotation of the PQ-tree of U(G). This fixes the order of maximal cliques in
the interval representation of U(G). In the second phase, the endpoints of the
intervals are perturbed so that the edges and arcs in G are represented correctly.
This is achieved by checking that an auxiliary poset is two-dimensional.

PQ-trees of interval graphs [12] and realizers of two-dimensional posets [13]
can be constructed in linear time. Our algorithm runs in quadratic time, but we
suspect that a more involved implementation can achieve linear running time.

For a set of pairwise intersecting intervals on the real line, let the clique point
be the leftmost point on the real line that lies in all the intervals. Given an inter-
val representation of an interval graph G, we get a linear order of the maximal
cliques of G by their clique points from left to right. Booth and Lueker [12]
showed that a graph G is an interval graph if and only if the maximal cliques
of G admit a consecutive arrangement, i.e., a linear order such that, for each ver-
tex v, all the maximal cliques containing v occur consecutively in the order. They
have also introduced a data structure called PQ-tree that encodes all possible
consecutive arrangements of G. We present our algorithm in terms of modified
PQ-trees (MPQ-trees, for short) as described by Korte and Möhring [10,11]. We
briefly describe MPQ-trees in the next few paragraphs; see [11] for a proper
introduction.

An MPQ-tree T of an interval graph G is a rooted, ordered tree with two
types of nodes: P-nodes and Q-nodes, joined by links. Each node can have any
number of children and a set of consecutive links joining a Q-node x with children
is called a segment of x. Further, each vertex v in G is assigned either to one
of the P-nodes, or to a segment of some Q-node. Based on this assignment, we
store v in the links of T . If v is assigned to a P-node x, we store v in the link
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just above x in T (adding a dummy link above the root of T ). If v is assigned
to a segment of a Q-node x, we store v in each link of the segment. For a link
{x, y}, let Sxy denote the set of vertices stored in {x, y}. We say that v is above
(below, resp.) a node x if v is stored in any of the links on the upward path (in
any of the links on some downward path, resp.) from x in T . We write ATx (BTx ,
resp.) for the set of all vertices in G that are above (below, resp.) node x.

The frontier of T is the sequence of the sets ATx , where x goes through all
leaves in T in the order of T . Given an MPQ-tree T , one can obtain another
MPQ-tree, which is called a rotation of T , by arbitrarily permuting the order of
the children of P-nodes and by reversing the orders of the children of some Q-
nodes. The defining property of the MPQ-tree T of a graph G is that each leaf x
of T corresponds to a maximal clique ATx of G and the frontiers of rotations of T
correspond bijectively to the consecutive arrangements of G. Observe that any
two vertices adjacent in G are stored in links that are connected by an upward
path in T . We say that T agrees with an interval representation I of G if the
order of the maximal cliques of G given by their clique points in I from left to
right is the same as in the frontier of T . We assume the following properties of
the MPQ-tree (see [11], Lemma 2.2):

– For a P-node x with children y1, . . . , yk, for every i = 1, . . . , k, there is at
least one vertex stored in link {x, yi} or below yi, i.e., Sxyi ∪BTyi 6= ∅.

– For a Q-node x with children y1, . . . , yk, we have k > 3. Further, for Si =
Sxyi , we have:
• S1 ∩ Sk = ∅, BTy1 6= ∅, B

T
yk
6= ∅, S1 ( S2, Sk ( Sk−1,

• (Si ∩ Si+1) \ S1 6= ∅, (Si−1 ∩ Si) \ Sk 6= ∅, for i = 2, . . . , k − 1.

A partially ordered set, or a poset for short, is a transitive directed acyclic
graph. A poset P is total if, for every pair of vertices u and v, there is either an
arc (u, v) or an arc (v, u) in P . We can conveniently represent a total poset P
by a linear order of its vertices v1 < v2 < · · · < vn meaning that there is an arc
(vi, vj) for each 1 6 i < j 6 n. A poset P is two-dimensional if the arc set of P
is the intersection of the arc sets of two total posets on the same set of vertices
as P . McConnell and Spinrad [13] gave a linear-time algorithm that, given a
directed graph D as input, decides whether D is a two-dimensional poset. If the
answer is yes, the algorithm also constructs a realizer, that is, (in this case) two
linear orders (R1, R2) on the vertex set of D such that

arc (u, v) is in D ⇐⇒ [(u < v in R1) ∧ (u < v in R2)].

The main result of this section is the following theorem.

Theorem 3 (?). There is an algorithm that, given a mixed graph G, decides
whether G is a directional interval graph. The algorithm runs in O

(
|V (G)|2

)
time and produces a directional representation of G if G admits one.

The algorithm runs in two phases that we introduce in separate lemmas.

Lemma 2 (Rotating PQ-trees). There is an algorithm that, given a di-
rectional interval graph G, constructs an MPQ-tree T that agrees with some
directional representation of G.
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Proof. Given a mixed graph G, if G is a directional interval graph, then clearly
U(G) is an interval graph and we can construct an MPQ-tree T of U(G) in
linear time using the algorithm by Korte and Möhring [11]. We call a rotation
of T directional if it agrees with some directional representation of G. As we
assume G to be a directional interval graph, there is at least one directional
rotation T̃ of T , and our goal is to find some directional rotation of T . Our
algorithm decides the rotation of each node in T independently.

Rotating Q-nodes. Let y1, . . . , yk be the children of a Q-node x in T . We are
to decide whether to reverse the order of the children of x. Let Si = Sxyi ,
let ` = max {i : S1 ∩ Si 6= ∅}, and let u ∈ S1 ∩ S`. We have ` < k, and there
is some vertex v ∈ (S` ∩ S`+1) \ S1. This implies that u and v are assigned to
overlapping segments of x. Thus, the intervals representing u and v overlap in
every interval representation of U(G). Hence, u and v are connected by an arc
in G, and the direction of this arc determines the only possible rotation of x in
any directional rotation of T , e.g., if (u, v) is an arc in G and the segment of u
is to the right of the segment of v, then reverse the order of the children of x.

Rotating P-nodes. Let y1, . . . , yk be the children of a P-node x in T . For each
i = 1, . . . , k, let Bi = Sxyi ∪ BTyi , and let B =

⋃k
i=1Bi. The properties of the

MPQ-tree give us that (i) every vertex in ATx is adjacent in U(G) to every vertex
in B, (ii) none of the Bi is empty, and (iii) for any two vertices bi ∈ Bi, bj ∈ Bj
with i 6= j, we have that bi and bj are independent in G.

Assume that there is an arc (bi, a) directed from some bi ∈ Bi to some
a ∈ ATx . We claim that any rotation T ′ of T that does not put yi as the first
child of x is not directional. Assume the contrary. Let yj , j 6= i be the first
child of x in T ′, let I be a directional representation that agrees with T ′, and
let bj be some vertex in Bj . The left endpoint of I(a) is to the right of the left
endpoint of I(bi) as (bi, a) is an arc. The right endpoint of I(bj) is to the left
of the left endpoint of I(bi) as T ′ puts yj before yi. Thus, I(bj) and I(a) are
disjoint, a contradiction.

Similarly, there are directed arcs from ATx to at most one set of type Bi. If
there are any, the corresponding child yi is in the last position in every directional
rotation of T . Our algorithm rotates the child yi (yj) with an arc from Bi to ATx
(from ATx to Bj) to the first (last) position, should such children exist, and leaves
the other children as they are in T . It remains to show that the resulting rotation
of T is directional; see App. C.

Lemma 3 (Perturbing Endpoints). There is an algorithm that, given an
MPQ-tree T that agrees with some directional representation of a graph G, con-
structs a directional representation I of G such that T agrees with I.

Proof. The frontier of T yields a fixed order of maximal cliques C1, . . . , Ck of G.
Given this order, we construct the following auxiliary poset D. First, we add two
independent chains of length k+1 each: vertices a1, . . . , ak+1 with arcs (ai, aj) for
1 6 i < j 6 k+1, and vertices b1, . . . , bk+1 with arcs (bi, bj) for 1 6 i < j 6 k+1.
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Then, for each vertex v in G, let lc(v) and rc(v) denote the indices of the leftmost
and of the rightmost clique in which v is present, respectively. Now we add to D
vertex v plus, for 1 6 i 6 lc(v), the arc (ai, v) and, for 1 6 i 6 rc(v), the arc
(bi, v). Further, for each arc (u, v) in G, we add (u, v) to D. Lastly, for any two
vertices u and v that are independent in G and that fulfill rc(u) < lc(v), we add
an arc (u, v) to D. We claim that G is a directional interval graph if and only
if D is a two-dimensional poset.

First assume that G is a directional interval graph and fix a directional
interval representation of G whose intervals all have distinct endpoints. For i =
1, . . . , k, let Li be the sequence of all the vertices v in G for which lc(v) = i,
in the order of their left endpoints. Similarly, let Ri be the sequence of all the
vertices v in G for which rc(v) = i, in the order of their right endpoints. The
following two linear orders L and R of the vertices of D yield a realizer of D:

L = b1 < b2 < . . . < bk < a1 < L1 < a2 < L2 < . . . < ak < Lk < ak+1,

R = a1 < a2 < . . . < ak < b1 < R1 < b2 < L2 < . . . < bk < Rk < bk+1.

Now, for the other direction, assume that we have a two-dimensional realizer
of D. As bk+1 and a1 are independent in D, we have that bk+1 < a1 in exactly
one of the orders in the realizer. We call this order L, and the other one R.
As ak+1 and b1 are independent in D and b1 < bk+1 < a1 < ak+1 in L, we
have that ak+1 < b1 in R. For each i = 1, . . . , k, define Li as the sequence of
vertices in G appearing between ai and ai+1 in the order L. Similarly, let Ri
be the sequence of vertices in G appearing between bi and bi+1 in the order R.
Observe that, for every vertex v, we have that alc(v) < v in D and that alc(v)+1

and v are independent in D. As alc(v)+1 6 ak+1 < b1 6 brc(v) < v in R, we have
v < alc(v)+1 in L. Thus, v is in Llc(v) and, by a similar argument, v is in Rrc(v).

Now we are ready to construct a directional interval representation I of G.
For each i = 1, . . . , k, we select |Li| different real points in (i − 1

2 , i) and |Ri|
different real points in (i, i+ 1

2 ). For a vertex v that appears on the i-th position
in Llc(v) and on the j-th position in Rrc(v), we choose the i-th point in (lc(v)−
1
2 , lc(v)) as the left endpoint, and the j-th point in (rc(v), rc(v) + 1

2 ) as the right
endpoint. Such a set of intervals is a directional interval representation of G.
First, observe that any two intervals intersect if and only if they have a common
clique. Next, if there is an arc (u, v) in G, then the arc (u, v) is also in D, u < v
holds both in L and in R, the corresponding intervals overlap, and I(u) starts
and ends to the left of I(v). Last, if there is an edge {u, v} in G, then u and v
are independent in D, u < v in one of the orders in the realizer, and v < u in
the other. Thus, one of the intervals I(u) and I(v) must contain the other.

Theorem 3 follows easily from Lemmas 2 and 3. See App. D for details.

5 Open Problems

Can we recognize directional interval graphs in linear time? Can we recognize
bidirectional interval graphs in polynomial time? Can we color bidirectional in-
terval graphs optimally, or at least find α-approximate solutions with α < 2?
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11. N. Korte and R. H. Möhring. An incremental linear-time algorithm for recognizing
interval graphs. SIAM J. Comput., 18(1):68–81, 1989. doi:10.1137/0218005.

12. G. S. Lueker and K. S. Booth. A linear time algorithm for deciding interval graph
isomorphism. J. ACM, 26(2):183–195, 1979. doi:10.1145/322123.322125.

13. R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive ori-
entation. Discrete Math., 201(1):189–241, 1999. doi:10.1016/S0012-365X(98)

00319-7.
14. B. Ries and D. de Werra. On two coloring problems in mixed graphs. Eur. J.

Comb., 29(3):712–725, 2008. doi:10.1016/j.ejc.2007.03.006.
15. Y. N. Sotskov. Mixed graph colorings: A historical review. Mathematics,

8(3):385:1–24, 2020. doi:10.3390/math8030385.
16. Y. N. Sotskov and V. S. Tanaev. Chromatic polynomial of a mixed graph. Vestsi

Akademii Navuk BSSR. Seryya Fizika-Matematychnykh Navuk, 6:20–23, 1976.
17. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of

hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109–125,
1981. doi:10.1109/TSMC.1981.4308636.

18. J. Zink, J. Walter, J. Baumeister, and A. Wolff. Layered drawing of undirected
graphs with generalized port constraints. Comput. Geom., 105–106(101886):1–29,
2022. doi:10.1016/j.comgeo.2022.101886.

https://doi.org/10.1002/jgt.22157
https://doi.org/10.1093/comjnl/bxv082
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.7155/jgaa.00322
https://doi.org/10.1016/j.ipl.2007.11.003
https://doi.org/10.1007/978-3-540-68111-3_106
https://doi.org/10.1002/net.3230130214
https://doi.org/10.1007/BF01194253
https://doi.org/10.1007/s00453-016-0133-z
https://doi.org/10.1137/0218005
https://doi.org/10.1145/322123.322125
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1016/j.ejc.2007.03.006
https://doi.org/10.3390/math8030385
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1016/j.comgeo.2022.101886


14 G. Gutowski et al.

A Speeding Up the Greedy Coloring Algorithm

Lemma 1 (?). The greedy algorithm can be implemented to color n intervals
in O(n log n) time, which is optimal assuming the comparison-based model.

Proof. We describe a sweep-line algorithm sweeping from left to right. In a first
step, we show how to achieve a running time of O(m+ n log n), where m is the
number of edges of the directional interval graph G induced by the given set V
of n intervals. Then we use an additional data structure in order to avoid the
O(m) term in the running time. Note that m can be quadratic in n. For the
faster implementation, we do not assume knowledge of G.

Build a balanced binary search tree T to keep track of the currently available
colors. Initially, T contains the colors 1 to n. Fill a list L with the 2n endpoints
of the intervals in V (which we can assume to be pairwise different). Sort L.
Then traverse L in this order, which corresponds to a left-to-right sweep. There
are two types of events.

Left: If the current endpoint is the left endpoint of an interval v, let x be
the largest color over all intervals that have an arc to v, that is, x =
max{c(v) : (u, v) ∈ A(G)} ∪ {0}. Then search in T for the smallest color y
greater than x, delete y from T , and set c(v) = y.

Right: If the current endpoint is the right endpoint of an interval v, we in-
sert c(v) into T because c(v) is available again.

Clearly, this implementation runs in O(m+n log n) time. To avoid the O(m)
term, we use a second binary search tree T ′ that maintains the currently active
intervals, sorted according to color. We augment T ′ by storing, in every node ν,
the leftmost right endpoint rν in its subtree. Any interval that contains the
current endpoint in L is active.

At a Left event, this allows us to determine, in O(log n) time, the interval u
with the largest color x among all active intervals that overlap the new interval v
(that is, ru < rv), as follows. We find u by descending T ′ from its root. From
the current node, we go to its right child % whenever r% < rv. If such an interval
does not exist, we set x = 0. Then we continue as above, querying T for the
smallest available color y > x. Finally, we set c(v) = y and add v to T ′.

At a Right event, we update T as above. Additionally, we need to update T ′.
We do this by deleting the interval v that is about to end.

We now argue that, for outputting the greedy solution of our coloring prob-
lem, the running time ofO(n log n) is worst-case optimal assuming the comparison-
based model of computation. Suppose that a coloring algorithm would run in
o(n log n) time. Then, we could use it to sort any set {a1, . . . , an} of n numbers in
o(n log n) time by coloring the set {[a1−M,a1+M ], . . . , [an−M,an+M ]} of in-
tervals, where M = max{a1, . . . , an}−min{a1, . . . , an}. Namely, the correspond-
ing directional interval graph is a tournament graph and for each i ∈ {1, . . . , n},
the color of the interval [ai −M,ai +M ] in an optimal coloring corresponds to
the rank of ai in a sorted version of {a1, . . . , an}.
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Corollary 1 (?). There is an O(n log n)-time algorithm that, given a bidirec-
tional interval representation, computes a 2-approximation of an optimal proper
coloring of the corresponding bidirectional interval graph.

Proof. Let I be the set of intervals of G. We split I into a set of left-going inter-
vals I1 and into a set of right-going intervals I2. These sets induce the directional
graphs G1 and G2, respectively. Now we color G1 and G2 independently with
our greedy coloring algorithm and we re-combine them by using different sets of
colors for G1 and G2. This is a proper coloring of G with χ = χ(G1) + χ(G2)
colors since between any interval in I1 and any interval in I2, there may be an
edge but no arc. Clearly, χ 6 2 max {χ(G1), χ(G2)} 6 2χ(G).

B Coloring Mixed Proper Interval Graphs

Corollary 2 (?). Given a mixed proper interval graph G and a number k, it is
NP-complete to decide whether G admits a proper coloring with at most k colors.

Proof. The general idea is as follows. We start the construction with the same
set of intervals as in the proof of Theorem 2. Then, we set xleft = 0, and xright
to the very right of all intervals, i.e., xright = 4(m + 1). Next, we describe a
procedure that extends every interval so that it has the left endpoint in xleft,
or has the right endpoint in xright. The procedure adds some new intervals and
merges some groups of intervals into one interval. The total height of the interval
representation increases to 4n + 2nm during the procedure. Finally, we extend
every interval at xleft (xright) to the left (right) by a length inverse to its current
total length. This trick guarantees that in the end, no interval contains another
interval. In the remainder of the proof, we describe the procedure of extending,
adding and merging intervals.

The intervals of the frame and all vtruei and vfalsei with i = 1, . . . , n already
end at xleft or xright. Currently, we have that in any drawing of GΦ with 6n layers

and a fixed i ∈ {1, . . . , n}, all the intervals bji , and oji with j = 1, . . . ,m are
drawn in the layers of f3i and f6i . Additionally, each dummy interval and each
sj is draw in one of these layers. We divide these layers into m copies each so

that each pair of bji and oji has its own two layers.
First we divide each f3i and f6i into m copies each. Accordingly, we adjust the

height of the drawing to be 4n+ 2nm. Then, we make m copies of each dummy
interval and virtually assign each copy to a distinct layer of the drawing. For
each bji we virtually assign it to the layer of the j-th copy of f3i and extend it to

the left up to xleft. In this process, we merge bji with every dummy interval on
the left and with the j-th copy of f3i while keeping all involved arcs. We call the

merged interval f3,ji . If there is no bji , we obtain f3,ji by extending the j-th copy
of f3i up to xright and merging it with all dummy intervals virtually assigned to
its layer.
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Symmetric to bji , we extend each oji to the right up to xright and merge oji
with all dummy intervals virtually assigned to the layer of f3,ji , but here we drop

the arcs of the dummy intervals. We call the merged interval o′
j
i . Similarly, for

every clause cj with variables vi, vk, v`, we merge all dummy intervals virtually
assigned to the layer of the j-th copy of f6z , for z = i, k, ` that are to the right

of sj and drop all the arcs as in the previous case. We obtain three copies d′
1
j ,

d′
2
j , and d′

3
j of the same interval and we merge one of these copies, say d′

3
j , with

sj . We denote that new interval by s′j . We drop all arcs of d′
1
j , d

′2
j , and s′j

to preserve the freedom we had for placing sj in our original construction. The
only unmerged dummy intervals are in the layer of the j-th copy of f6i to the
left of sj or in the layer of the j-th copy of f6i if there is no occurrence of the
variable vi in the clause cj . In each of these layers, we merge the dummy intervals
together with the corresponding copy of f6i and obtain intervals ending at xleft.

For j = 1, . . . ,m, we call the merged interval f6,ji .

For i = 1, . . . , n and j = 1, . . . ,m−1, we add the arcs (f2i , f
3,1
i ), (f3,ji , f3,j+1

i ),

(f3,mi , f4i ), (f5i , f
6,1
i ), (f6,ji , f6,j+1

i ), and (f6,mi , f1i+1) to have a frame as in the
original hardness construction. Observe that this new frame now has exactly
4n+2nm intervals with their left endpoint at xleft and, in the whole construction,
there are 2n+ 6m other intervals with their right endpoint at xright, i.e., the 2n

intervals vtruei and vfalsei for i = 1, . . . , n and the 6m intervals o′
j
i , d
′1
j , d
′2
j , and s′j

for j = 1, . . . ,m.
Next, we argue that the functionality described in the proof of Theorem 2 is

retained. Intervals of the (new) frame either block a complete layer from xleft to
xright or they end at position 1 (each f2i and f4i ) or within the clause gadget of

a variable cj if a variable vi occurs in cj (each f3,ji and f6,ji ). Any other interval
starting in a clause gadget of a clause cj needs to be matched with a frame
interval that ends in the clause gadget of cj . Therefore, to have a construction

with a total height of at most 4n+2nm, we need to combine f3,ji and f6,ji with o′
j
i

and some of
{
d′

1
j , d
′2
j , s
′
j

}
, while f3,ji and s′j are not combinable. This ensures

that the correctness argument from the proof of Theorem 2 remains valid.

C Rotation Is Directional

Claim. The rotation of MPQ-tree T of a directional interval graph G constructed
in the proof of Lemma 2 is a directional rotation.

Let T ′ denote the tree T after applying the rotations described in the proof of
Lemma 2. We claim that T ′ is directional. Let T̃ be an arbitrary directional
rotation of T . By construction, T ′ and T̃ differ only in the ordering of children
of P-nodes x that do not have arcs from/to vertices in ATx . To prove that T ′ is
directional, it suffices to show that the rotation of T̃ obtained by swapping two
children of a P-node x that have no arcs from/to vertices in ATx is directional.

Consider a directional interval representation I whose clique ordering corre-
sponds to the rotation T̃ and let yk, yl be two children of some P-node x such that
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neither Bk nor Bl contains a vertex with an arc from/to a vertex in ATx . Let Ik be
the smallest interval that contains I(v) for all v ∈ Bk and let Il be defined anal-
ogously for Bl. Note that Ik and Il are disjoint and that each of them is properly
contained in

⋂
v∈AT

x
I(v) as otherwise it would have incoming or outgoing arcs.

After suitably stretching the real line, we may assume that Ik and Il have the
same length. Let xk, xl denote the left endpoints of Ik and Il, respectively. We
obtain a directional representation whose clique ordering corresponds to T ′ sim-
ply by exchanging the positions of the representations of the subgraphs induced
by Bl and by Bk. More formally, for each v ∈ Bk set I ′(v) = I(v)− xk + xl and
for each v ∈ Bl set I ′(v) = I(v)−xl+xk. For all other vertices v ∈ V \(Bk∪Bl)
set I ′(v) = I(v). It follows that each of the subgraphs induced by Bk and Bl is
still represented correctly. Moreover, by construction the vertices in Bl and Bk
still have edges (and not arcs) to all vertices in ATx .

D Recognition Algorithm

Theorem 3 (?). There is an algorithm that, given a mixed graph G, decides
whether G is a directional interval graph. The algorithm runs in O

(
|V (G)|2

)
time and produces a directional representation of G if G admits one.

Proof. Our algorithm, given a directional interval graph G, applies the algorithm
from Lemma 2 to obtain a directional MPQ-tree of G. Then, using Lemma 3,
it constructs a directional representation of G. If any of the phases fails, then
we know that G is not a directional interval graph, and we can reject the input.
Otherwise, our algorithm accepts the input and produces the directional repre-
sentation of G. It is easy to see that both algorithms from Lemmas 2 and 3 can
be implemented to run in O

(
|V (G)|2

)
time. For Lemma 2 it is enough to notice

that:

– the MPQ-tree of an interval graph U(G) is of size O(|V (G)|) and can be
constructed in time O(|V (G)|+ |E(G) +A(G)|) [11],

– when deciding the rotation of a Q-node x, the pair of vertices that decide
the rotation of x can be found in O(|V (G)|) time,

– when deciding the rotation of a P-node x, the first, and the last child of x
can be found in O(|V (G)|) time.

For Lemma 3 it is enough to notice that:

– there are O(|V (G)|) maximal cliques in an interval graph,
– there are O(|V (G)|) vertices and O

(
|V (G)|2

)
arcs in the auxiliary poset D,

– two-dimensional realizer of the auxiliary poset D can be constructed in time
O(|V (D) +A(D)|) [13].

It is also quite easy to speed up the implementation of the rotation algorithm
in Lemma 2 to linear time. Sadly, the auxiliary poset D that we construct in
Lemma 3 has quadratic size and is thus the main obstacle for obtaining a linear-
time algorithm. We suspect that an explicit construction of D can be avoided.
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