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Abstract
Text embedding models from Natural Language Processing can map text data (e.g.
words, sentences, documents) to meaningful numerical representations (a.k.a. text
embeddings). While such models are increasingly applied in social science research,
one important issue is often not addressed: the extent to which these embeddings
are high-quality representations of the information needed to be encoded. We view
this quality evaluation problem from a measurement validity perspective, and
propose the use of the classic construct validity framework to evaluate the quality of
text embeddings. First, we describe how this framework can be adapted to the
opaque and high-dimensional nature of text embeddings. Second, we apply our
adapted framework to an example where we compare the validity of survey question
representation across text embedding models.
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1 Introduction
Text embedding models from Natural Language Processing (NLP) can map texts (e.g.
words, sentences, articles) to supposedly semantically meaningful, numeric vectors (i.e.
embeddings) with typically a few hundred or thousand dimensions (e.g. [1, 2]). Intuitively
speaking, this means that the embeddings of similar texts (e.g. words like “big” and “large”)
would be closer to one another than those of dissimilar texts (e.g. “big” and “paper”) in the
vector space.

Such models are often pretrained on an enormous amount of text data (e.g. Wikipedia,
websites, news) and made publicly available (e.g. [1–4])). This allows researchers to obtain
off-the-shelf pretrained text embeddings for downstream applications, without the need
to spend many computational resources on training the models from scratch. Researchers
can also choose to further train the text embedding models on additional task-specific
data (i.e. fine-tuning) or domain-specific data (i.e. continued pre-training) for better per-
formance.
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Because of their capability for meaningful text representation and convenient use, text
embedding models have attracted various applications in (computational) social science.
For instance, they have been employed to encode the Big-Five personality questionnaire for
personality trait prediction [5], social media posts for suicide risk assessment [6], Tweets
and TV captions for emotion detection [7], and relevant terms (e.g. gender pronouns,
names, occupations) to quantify societal trends of gender and ethnic stereotypes in the
US [8].

Despite the popularity of text embedding models, an important question to ask is: how
good are the text representations, given a research task? High-quality representations are
desirable because they encode relevant information, which leads to greater generaliza-
tion capabilities [9]. Typically, the quality of text embeddings is evaluated by established
benchmarks like GLUE [10] and SentEval [9]. GLUE is a collection of common natural
language understanding (NLU) tasks like question answering, sentiment analysis and tex-
tual entailment recognition. Similarly, SentEval consists of a broad and diverse set of NLU
tasks, such as sentiment analysis, semantic textual similarity, natural language inference,
and verb tense prediction.

While such benchmarks are useful for evaluating an embedding model’s capability for
certain NLU tasks, they do not necessarily inform researchers about whether an embed-
ding model is suitable for a specific downstream task at hand. In computational social
science research, the goal of using embedding models is often to tackle a substantive ques-
tion (e.g. personality prediction, bias detection) that requires the embedding models to be
capable of handling tasks that are different from or not directly addressed by the tasks in
existing benchmarks. Moreover, the type of text data can also be different from the evalua-
tion data sets in those benchmarks. For instance, in [5], the authors used embedding mod-
els to encode personality questionnaires and social media posts for personality prediction.
This requires that the embedding models should be able to encode personality-relevant
information from questionnaire texts and social media text data. However, knowing how
well an embedding model performs many of the NLU tasks (e.g. natural language infer-
ence, verb tense prediction) on other types of data (e.g. movie reviews, image captions)
do not tell us much about whether this embedding model is appropriate for the task of
personality prediction.

Therefore, we need an additional framework that can help to guide the quality evalua-
tion of text embedding models for a specific research task, which benefits model selection,
debugging and improvement. Concretely, this framework should evaluate whether an em-
bedding model encodes what it is supposed to for the research task. Furthermore, it should
be easily adaptable to different research tasks.

In this work, we propose such a framework based on the classic construct validity testing
framework widely used in the social sciences. In measurement theory, construct validity
concerns whether the measure of a construct “measures what it is supposed to”. Constructs
are theoretical, latent variables (e.g. personality traits, emotions and biases). They are not
directly observable and hence, need to be translated into something measurable. This pro-
cess is called operationalization, which results in some concrete measure for the construct
of interest [11]. For instance, the emotion “anger” can be translated into actionable mea-
sures like one’s facial expression, one’s tone of voice or a simple question “how angry are
you?”. However, the operationalization procedure inevitably introduces some degree of in-
congruence between the intended construct and the measure. When this incongruence is
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high, we say the construct validity of a measure is low and vice versa. Needless to say, the
construct validity of a measure needs to be checked and established before it is adopted in
research. To achieve this, social scientists resort to an established construct validity test-
ing framework, which involves examining various types of construct validity such as face
validity, content validity, convergent validity, discriminant validity and predictive valid-
ity [11]. This testing framework is grounded in measurement theory and is the standard
approach to testing the validity of a measure in the social sciences.

That an embedding model should “encode what it is supposed to” is comparable to the
idea of construct validity (i.e. a measure should measure what it is supposed to). Specifi-
cally, we can treat what an embedding model needs to encode as the construct of interest,
the embedding model as the measure, and the embeddings as the measurements. This al-
lows us to approach the quality evaluation of text embedding models from the perspective
of construct validity testing.

Thus, in this paper, we propose using the construct validity testing framework to eval-
uate the quality of text embedding models, given a research task. This framework has the
advantages of being theory-driven and having established testing procedures. It is also eas-
ily adaptable to different research tasks. Furthermore, we focus on the validity of the text
embeddings (rather than model predictions), because this can help researchers choose
more “valid” models, which encode information relevant for the task at hand. This can
help to lower the risk of overfitting due to the model learning from noises.

This paper has three main parts. First, we review several popular text embedding models
in Sect. 2. Second, in Sect. 3, we describe the classic construct validity testing framework
and how it can be adapted to the quality evaluation of text embedding models, given a
specific research task. The main challenge is that established procedures for construct
validity analysis only apply to low-dimensional measurements (e.g. responses to survey
questions), while text embeddings are much higher-dimensional. We show how to adapt
the classic construct validity framework to high-dimensional settings by, for instance, bor-
rowing tools from interpretable NLP. Finally, in Sect. 4, we apply our adapted construct
validity testing framework to a concrete application, where we show how to evaluate the
quality of embedding models when they are used to encode survey questions.

2 Background: text embeddings
In this section, we review several popular text embedding models, including word2vec,
fastText, GloVe, BERT, Sentence-BERT and Universal Sentence Encoder. We are aware of
other (near) state-of-the-art text embedding models, such as GPT-3 [12], ALBERT [13]
and XLNet [14]. Nevertheless, it is not our goal to cover all text embedding models.

2.1 word2vec and fastText
One influential family of text embeddings algorithms is word2vec [1, 15]. Simply put,
word2vec is a two-layer neural network model that takes as input a large corpus of text and
gives as output a vector space. This vector space has typically several hundred dimensions
(e.g. 300), with each unique word in the training corpus being assigned a corresponding
continuous vector. Such a vector is also called an embedding. The objective of the algo-
rithm is to predict words from surroundings words (or the other way around). In this way,
the final word vectors are positioned in the vector space such that words sharing com-
mon contexts in the corpus are located closely to one another. Under the Distributional
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Hypothesis [16, 17], which states that words occurring in similar contexts tend to have
similar meanings, closely located words in the vector space are expected to be semanti-
cally similar.1 The similarity between two word vectors can be measured by cosine simi-
larity. Mathematically, it is simply the cosine of the angle between two vectors, which can
be calculated as the dot product of the two vectors divided by the product of the lengths
of the two vectors. Cosine similarity scores are bounded in the interval [–1, 1], where –1
indicates complete lack of similarity while 1 suggests the other extreme.

Word2vec has been shown to produce text representations that capture syntactic and
semantic regularities in language, in such a way that vector-oriented reasoning can be
applied to the study of word relationships [19]. A classic example is that the male/female
relationship is automatically learned in the training process, such that a simple, intuitive
vector operation like “King – Man + Woman” would result in a vector very close to that of
“Queen” in the vector space [19].2 Many studies have also made use of this characteristic
to study human biases (e.g. gender and racial bias) encoded in texts [8, 21–23].

One popular extension of word2vec is fastText [3], which is trained on subwords in ad-
dition to whole words. This allows fastText to estimate word embeddings even for words
unknown to the training corpora. fastText was shown to outperform its word2vec prede-
cessors across various benchmarks [24].

2.2 GloVe
GloVe, which stands for Global Vector (for word representations) [25], is another popular
text embedding model. Similar to word2vec, GloVe also produces word representations
that capture syntactic and semantic regularities in language. However, a major difference is
that GloVe is trained on a so-called global word-word co-occurrence matrix, where matrix
factorisation is used to learn word embeddings of typically 25 to 300 dimensions.

2.3 BERT and sentence-BERT
More sophisticated embedding models have recently become available. A prominent one
is BERT, which stands for Bidirectional Encoder Representations from Transformers [4].
Like word2vec and fastText, BERT is a type of neural networks trained on a large text cor-
pus in order to learn a good representation of natural language. Notably, BERT produces
context-dependent embeddings. That is, while word2vec, fastText and GloVe models pro-
duce a fixed embedding for each word, BERT can produce different embeddings for the
same word depending on the context (e.g. the neighbouring words). For instance, the word
“bank” can have different meanings (e.g. a financial establishment or land alongside a river)
or function (i.e. as a noun or verb), across linguistic contexts.

BERT has achieved state-of-the-art performance on various natural language tasks [4].
BERT embeddings have also been shown to encode syntactic and semantic knowledge
about the original texts [26].

Sentence-BERT [2], an extension of BERT, differs from the original BERT in that its
architecture is optimised for generating semantically meaningful sentence embeddings
that can be compared using cosine similarity [2].

1However, as widely applicable as it is, the Distributional Hypothesis’ reliance on word contexts can be limiting. For in-
stance, Parasca et al. [18] pointed out that word contexts alone cannot capture implicit or prior knowledge.
2Note that this is a somewhat outdated example, as one reviewer pointed out. For instance, Linzen [20] showed that using
vector operations to study word relationships is not always warranted.
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2.4 Universal sentence encoder
Universal Sentence Encoder (USE) is another text embedding model meant for greater-
than-word length texts like sentences, phrases and short paragraphs [27]. USE uses both a
Transformer model and a Deep Averaging Network model. The former focuses on achiev-
ing high accuracy despite suffering from greater resource consumption and model com-
plexity, while the latter targets efficient inference at the cost of slightly lower accuracy [27].
It is trained on various language understanding tasks and data sets, with the goal to learn
general properties of sentences and thus produce sentence-level embeddings that should
work well across various downstream tasks. Pretrained USE embeddings have been shown
to outperform word2vec-based pretrained embeddings across different language tasks.

3 Construct validity testing
In this section, we first introduce the classic construct validity testing framework. Then,
we describe how this framework can be adapted for the quality evaluation of text embed-
ding models.

3.1 The classic framework
As mentioned in the introduction, construct validity concerns the extent to which a mea-
sure matches the intended construct in theory. In practice, evaluating the construct va-
lidity of a measure means answering questions like: Does the measure capture all relevant
aspects of the construct? Do the measurements correlate with other measurements of the
same construct, or the measurements of similar constructs? Do the measurements differ
from measurements of unrelated constructs? Each of these questions focuses on a partic-
ular aspect of construct validity.

Therefore, construct validity testing involves carefully thinking about the relevant as-
pects of construct validity that apply (i.e. need investigation) and designing the appro-
priate tests to evaluate those aspects. The literature often refers to such aspects as the
(sub)types of construct validity [11]. We describe below the most common and important
ones, as well as how they are usually tested. They are: face validity, content validity, con-
vergent validity, discriminant validity, predictive validity and concurrent validity. We use
the example of measuring emotional intelligence (EI) as a recurring example.

3.1.1 Face validity
Face validity concerns checking whether the measure “on its face” seems like a good op-
erationalization of the construct. For example, EI was defined by Goleman [28] as con-
sisting of five domains: self-awareness (i.e. knowing one’s emotions), self-regulation (i.e.
managing one’s emotions), motivation (i.e. motivating oneself ), empathy (i.e. recognizing
emotions in others), and social skills (i.e. handling relationships). If a self-report question-
naire is designed to measure this definition of EI, then the questions in the questionnaire
should appear to reflect the definition in the eyes of, for instance, experts on this topic.

3.1.2 Content validity
Content validity concerns whether a measure adequately covers all relevant aspects of the
intended construct. For example, per the earlier definition of EI, the questionnaire should
consist of questions that measure all the five domains of EI. To judge the content valid-
ity of such a test, expert opinions can be requested. Often, researchers also ask a sample
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of individuals to provide responses to the questionnaire. Then, they use latent variable
models like factor analysis to test whether the data supports the theoretical structure of
the construct: What is the most likely number of EI domains based on the data? Do those
questions intended to measure the same domain also fall under the same and only that
domain? Are there questions that do not belong to any domain?

3.1.3 Convergent and discriminant validity
Convergent validity concerns whether the measure of a construct is similar to other
measures that it should be similar to. For instance, say there is already an established
questionnaire-based measure of EI, but we wish to develop a shorter version of it (to save
time and costs associated with filling out the questionnaire). Then, given that the same
people respond to both the long and the short questionnaires, the responses to one ver-
sion (e.g. aggregated scores on an EI domain) should highly correlate with the responses
to the other.

In contrast, discriminant validity concerns whether the measure of a construct is differ-
ent from other measures that it should not be similar to. For instance, EI was proposed to
be distinct from constructs like IQ and personality traits. Therefore, measurements of EI
should not highly correlate with IQ or personality traits.

3.1.4 Predictive validity
Predictive validity concerns the ability of a measure to predict some future target it should
be able to. For instance, Goleman [28] claimed that per his theory about EI, EI is crucial for
success in life. Then, EI measurements should be able to predict one’s future performances
in, for example, career and academics.

3.2 Construct validity testing for text embedding models
To apply the idea of construct validity to text embedding models, we can view what an
embedding model needs to encode as the construct of interest, the embedding model as
the measure, and the embeddings as the measurements. Then, similar to the regular way
of construct validity testing, we need to think about the relevant aspects of construct va-
lidity to evaluate. However, because text embeddings are high-dimensional data without
interpretable labels for the dimensions, we need to adapt the testing procedures described
earlier accordingly, which we describe next.

3.2.1 Face validity
We can evaluate the face validity of a text embedding model by looking at whether some
fundamental aspects of the model (e.g. architecture, training data) are suitable for the
task at hand. For instance, if the task is to predict hate speech from Tweets, a sentence
embedding model is likely more valid than a word embedding model; a model trained on
Twitter data is also likely more valid than one trained on Wikipedia entries.

3.2.2 Content validity
Text embeddings are high-dimensional and opaque, which makes it difficult to find out
what information is encoded in them. We therefore borrow an approach from inter-
pretable NLP: probing classifiers. The idea is to train a classifier that takes text representa-
tions as input and predicts some property of interest (e.g. sentence length). If the classifier
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performs well, this suggests that the representations encode information relevant to the
property [29].

A recommended practice in choosing a classifier is to select a linear model like (multi-
nomial) logistic regression, because a more complex probing classifier may run the risk of
inferring properties not actually present in the text representations [30–34]. Furthermore,
it is recommended to always include baselines for comparison [29]. The better the probing
classifier based on some text representation performs relative to the baselines, the more
evidence that the probed property is present and that content validity is supported. Previ-
ous studies [35–38] suggest using two forms of baselines: simple majority in the training
data and random embeddings.

3.2.3 Convergent and discriminant validity
We define convergent validity as the extent to which a reference embedding is similar to
some embedding that it is supposed to be similar to. To investigate convergent validity,
we introduce perturbations to a given text (i.e. the reference text) without changing its
label or core meaning. For instance, if the research task is to detect hate speech, then a
text considered as hate speech should not be modified in a way that would render it no
longer hate speech. High cosine similarity between the embeddings of the reference and
the modified text indicates convergent validity.

Likewise, we define discriminant validity as the extent to which a reference embedding
is dissimilar to some embedding that it is not supposed to be similar to. To investigate dis-
criminant validity, we introduce perturbations to the reference text in such a way that the
new text is substantially different from the reference text (e.g. that would lead to chang-
ing the label or the core meaning). Accordingly, we would expect low cosine similarity
between the two embeddings, which would then indicate discriminant validity.

In the social sciences, there are guidelines to interpret the sizes of correlations for con-
vergent and discriminant validity testing. However, there are no such agreed-upon rules
for cosine similarity in NLP. Therefore, it is difficult to say how high or low cosine similar-
ity scores need to be to provide sufficient evidence for convergent or discriminant validity.
To partly mitigate this problem, we propose using the difference between the two cosine
similarity scores (i.e. one from convergent validity analysis and the other from discrimi-
nant validity analysis) as a joint indicator for convergent and discriminant validity. This
provides the benefit of having a natural baseline: zero. If the difference score is above zero,
it provides some degree of support for both convergent and discriminant validity.

Our proposed testing procedure for convergent and discriminant validity shares some
commonality with several existing model testing methods in NLP, including robustness
tests [39], adversarial changes [40], invariance checks and directional expectation tests
[41]. However, they focus on evaluating model predictions, while we focus on text repre-
sentations.

3.2.4 Predictive validity
How well an embedding model performs the research task of interest already provides
information about the predictive validity of the model. In addition, we can test how well
the embeddings can perform tasks that are related to the research task but not part of it.
For instance, if an embedding model is designed to detect hate speech in Tweets, then
the embeddings should also be able to predict whether a Tweet gets reported later. If an
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embedding model is used for political stance detection, then the embeddings should also
be able to predict a person’s party affiliation or their future voting behaviour.

4 Application: embedding models for survey questions
There is growing research interest in using embedding models to encode subjective survey
questions. Such questions are subjective because they aim to measure information that
only exists in the respondent’s mind (e.g. opinions, feelings). For instance, Vu et al. [5] used
pretrained BERT to encode participants’ social media posts and the questions from the
Big-Five personality questionnaire, to predict individual-level responses to out-of-sample
Big-Five questions. Pellegrini et al. [42] used the skip-gram embedding algorithm [1] to
encode psychiatric questionnaires and patients’ responses to those questionnaires. They
showed that the resulting embeddings can be used for effective diagnosis of some mental
health conditions.

However, to the best of our knowledge, there is no work on evaluating whether text
embedding models can provide valid representations of subjective survey questions. In
this section, we demonstrate how our proposed construct validity testing procedures can
be used to investigate and compare the validity of text embedding models for represent-
ing subjective survey questions. Nevertheless, because survey questions exist in various
forms and are used differently across research fields, we are unable to cover all kinds of
survey questions in our analysis. In this work, we focus on the ones that are more typical
in sociological research.

We begin an overview of the embedding models we use (Sect. 4.1.1), and describe how
to generate sentence-level embeddings (Sect. 4.1.2). Then, we describe the data that we
use for the analysis, with a focus on the synthetic data set (Sect. 4.2). Next, we present our
analysis of face validity (Sect. 4.3), content validity (Sect. 4.4), convergent and discriminant
validity (Sect. 4.5), as well as predictive validity (Sect. 4.6).

4.1 From survey questions to pretrained sentence embeddings
4.1.1 Pretrained embedding models
We focus on the following embedding models: fastText, GloVe, BERT and USE. We use
their pretrained versions (as opposed to fine-tuned models) because of their widespread
and convenient use. However, our approach to construct validity analysis also applies to
fine-tuned text embeddings and other vector representations of texts.

Table 1 lists the pretrained embedding models we adopt. For fastText, we use the pre-
trained model developed by [3]. It is trained on Common Crawl with 600B tokens, and
produces word embeddings with 300 dimensions for 2M words. For GloVe, we use the
model pretrained on Common Crawl with 840B tokens and a vocabulary of 2.2M words.
It also outputs word vectors of 300 dimensions.

Table 1 Overview of Pretrained Text Embedding Models Investigated in this Study

Model Name Dimension File size

fastText cc.en.300.bin 300 2.44 GB
GloVe glove.840B.300d 300 2.03 GB
BERT BERT-base-uncased 768 420 MB
BERT BERT-large-uncased 1024 1.25 GB
Sentence-BERT All-DistilRoBERTa-V1 768 292 MB
Sentence-BERT All-MPNet-base-V2 768 418 MB
USE USE-V4 512 916 MB
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As for pre-trained Sentence-BERT models, there are many to choose from, which differ
not only in the specific natural language tasks that they have been optimised for, but also
in their model architecture. We select two pretrained models which have been trained on
various data sources (e.g. Reddit, Wikipedia, Yahoo Answers; over 1B pair of sentences)
and are thus designed as general purpose models [2]. They are “All-DistilRoBERTa” and
“All-MPNet-base”, where “DistilRoBERTa” [43, 44] and “MPNet” [45] are two different
extensions of the original BERT. “Base” indicates that the embedding dimension is 768,
as opposed to “Large” where the dimension is 1024. Both “All-DistilRoBERTa” and “All-
MPNet-base” have been shown to have the top average performance across various lan-
guage tasks. For the purpose of comparison, we also include two pretrained models of
the original BERT model [4]: “BERT-base-uncased” and “BERT-large-uncased”. “Uncased”
refers to BERT treating upper and lower cases equally. Both models have been trained on
Wikipedia (2.5B words) and BookCorpus (800M words).

As for USE, we use the most recent (i.e. 4th) version of its pretrained model, which
outputs a 512 dimensional vector given an input sentence. The sources of training data
are Wikipedia, web news, web question-answer pages, discussion forums and the Stanford
Natural Language Inference corpus [46].

4.1.2 Sentence-level embeddings
For survey questions, we need to obtain sentence-level representations (as opposed to
word-level). Namely, we treat a survey question as one sentence and represent it as a sin-
gle embedding. Obtaining sentence-level embeddings is straightforward with Sentence-
BERT and USE models, because they have been designed for this specific purpose. In con-
trast, word2vec and GloVe models only produce word embeddings. When using these
models, it is therefore necessary to combine the word embeddings into a sentence-level
representation. Among various methods, simple averaging across all the word embeddings
(e.g. taking the means along each dimension) has been shown to either outperform other
methods [47] or approximate the performance of more sophisticated ones [48]. Therefore,
we use simple averaging to compute sentence-level embeddings for survey questions from
fastText and GloVe word embeddings. The resulting embeddings have the same number
of dimensions as the word-level embeddings, as we average the word embeddings along
each dimension. However, one disadvantage of this approach is that information like word
order is absent in the aggregated representation.

As for the original BERT models, we follow the advice of [2, 26] to average the word
embeddings produced at the last layer of BERT to form sentence-level embeddings. This
way, the resultant sentence-level representation has the same dimension as that of the
word embeddings.

4.2 Data sets
4.2.1 Synthetic data set
For the analysis of content validity, convergent validity and discriminant validity, we use
a data set of subjective survey questions which we generate by ourselves (hence the name
“synthetic”). The reason for using a synthetic data set over existing survey questions is
two-fold. First, because we would like to study how well a text embedding model encodes
subjective survey questions in general, it is important that the questions we study cover
a diverse range of concepts and formulations. Existing questionnaires like the European
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Social Surveys only concern a small set of concepts and formulations. Second, for the
analysis of convergent and discriminant validity, we need to introduce small perturbations
to a reference survey question to create similar and dissimilar survey questions. This is
difficult when the survey questions themselves are problematic, which is the case for many
existing survey questions in use. For instance, many surveys use this question to measure
generalized trust: “Generally speaking, would you say that most people can be trusted,
or that you can’t be too careful in dealing with people?”. The problem with this question
is that it is unclear what this question is measuring: trust or caution [49]? This makes
it difficult to make variants of the question that are similar or different in terms of the
underlying concept. Using synthetic questions, in contrast, allows us to focus on high-
quality questions that are also easier to vary.

Therefore, we create a synthetic data set of survey questions for the analysis of content,
convergent and discriminant validity. To generate a diverse set of high-quality survey ques-
tions, we follow the three-step procedure described in [50]. The full details are described
in Appendix A. We summarize below three main characteristics of this data set.

First, we focus on covering a wide selection of survey questions. According to Saris
and Gallhofer [50], subjective survey questions normally fall under one (or more) of the
following 13 basic concepts: “evaluation”, “importance”, “feelings”, “cognitive judgment”,
“causal relationship”, “similarity”, “preferences”, “norms”, “policies”, “rights”, “action tenden-
cies”, “expectation”, and “beliefs” (see Appendix B for definitions and examples of these 13
basic concepts). The questions in our data set therefore cover these 13 basic concepts.

Second, for every subjective concept, we assign three reference concrete concepts. Take
the basic concept “evaluation” as an example: we specify “the state of health services”, “the
quality of higher education” and “the performance of the government” as the three cor-
responding reference concrete concepts. Next, for every reference concrete concept, we
specify one similar concrete concept and one dissimilar concrete concept (see Appendix C
for a complete list of concrete concepts). Finally, for each concrete concept, we create sur-
vey questions that vary in their formulation. [50] provided many templates for each type of
formulation. We adopt 19 templates (see Appendix D) and thus create differently formu-
lated survey questions for each concrete concept. Our final data set contains 5436 unique
subjective survey questions.

Table 2 shows six example questions from the data set. They all fall under the basic
concept “evaluation”. The main concrete concept here is evaluation about “the state of

Table 2 Example Questions from Our Survey Question Data Set. InDe: interrogative-declarative
request. DR: direct request

ID Concrete concept Similarity Formulation Survey question

1 state of health services reference DR How good is the state of health services in your
country?

2 state of health services reference InDe Do you agree that the state of health services in
your country is good?

3 state of medical services high DR How good is the state of medical services in your
country?

4 state of medical services high InDe Do you agree that the state of medical services in
your country is good?

5 state of religious services low DR How good is the state of religious services in your
country?

6 state of religious services low InDe Do you agree that the state of religious services in
your country is good?
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health services”, while the corresponding similar and dissimilar concepts are evaluation
about “the state of medical services” and “the state of religious services”. Each concrete
concept has two differently formulated questions in the table: DR (i.e. direct request) and
InDe (i.e. interrogative-declarative request).

4.2.2 European social survey wave 9
For the analysis of predictive validity, we use the publicly available European Social Survey
(ESS) Wave 9 data [51]. More information is available in Sect. 4.6.1.

4.3 Analysis of face validity
Survey questions are carefully curated sentences that are used to measure some concepts
or constructs. This means that an embedding model should ideally: (1) provide sentence-
level representations; (2) have been trained on texts similar to survey questions. Therefore,
to examine the face validity of the embedding models (i.e. fastTest, GloVe, BERT, Sentence-
BERT and USE), we can check whether they fulfil these two requirements.

With regard to the first aspect, only Sentence-BERT and USE can generate sentence-
level embeddings by design. The other models require aggregating word-level embed-
dings to form sentence-level embeddings. However, because BERT can produce context-
dependent embeddings, their representations of survey questions are likely of higher-
quality than those of fastText and GloVe.

For the second aspect, none has been trained specifically on survey questions. However,
all the models have been trained on common data sources (e.g. Common Crawl, Wikipedia
and Reddit) which certainly contain some survey questions. Among them, Sentence-BERT
models are additionally trained on many question answering data sets, which may allow
them to represent survey questions better.

Taking both aspects into account, Sentence-BERT seems to show the highest face valid-
ity, followed by USE, then BERT, then fastText and GloVe.

4.4 Analysis of content validity
The analysis of content validity concerns whether text embeddings encode information
about all relevant aspects of survey questions. Naturally, not all aspects are equally im-
portant, and we also cannot provide an exhaustive list of them. In this paper, we consider
four such aspects.

The first aspect concerns the underlying concepts. According to [50], most subjective
survey questions can be categorised into one of 13 so-called basic concepts, such as “feel-
ings”, “cognitive judgement” and “expectations” (see Appendix B). In addition to the basic
concept, a survey question also has a concrete concept, such as “happiness” (under the ba-
sic concept “feelings”) and “political orientation” (under “cognitive judgement”) (see Ap-
pendix C).

Furthermore, survey questions can differ in terms of formulation. Specifically, five
types of formulation often apply in survey research [50]: direct request (DR), imperative-
interrogative request (ImIn), interrogative-interrogative request (InIn), declarative-
interrogative request (DeIn) and interrogative-declarative request (InDe).3 See Ap-
pendix D for examples of these different formulations.

3[50] mentioned one more formulation type: direct instruction, which does not apply to most survey questions concerning
subjective basic concepts and is thus not considered in our study.
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Lastly, complexity is another important aspect of survey questions which can affect how
respondents understand and answer a survey question [52]. A simple proxy for complexity
is the length of a survey question [50].

Therefore, we investigate whether text embeddings encode information about the fol-
lowing aspects of survey questions: basic concepts, concrete concepts, formulation and
length. We refer to them as properties in the remainder of the paper.

4.4.1 Methods
We use probing classifiers for content validity analysis. Following [35–38], we include two
baselines: simple majority in the training data and random embeddings. To generate ran-
dom embeddings for each survey question, we randomly generate from a uniform dis-
tribution (-1,1) a unique fixed size embedding for each word in the training data. Then,
we simply average the word embeddings along each dimension to derive sentence-level
embeddings for the survey questions.

A common problem with probing classifiers is that the good performance of the classi-
fier could simply be due to it making use of other properties present in the embeddings
that are correlated with the properties of interest [53]. For instance, if we want to find
out whether text embeddings encode information about basic concepts, our training data
should differ only in terms of the probed property (i.e. basic concepts). In other words,
for survey questions corresponding to a particular basic concept (e.g. “feelings”), the dis-
tribution of other properties should be similar to that of questions belonging to another
basic concept (e.g. “expectation”). Otherwise, we cannot conclude that the performance of
our classifier is explained by whether the text embeddings encode knowledge about basic
concepts.

Unfortunately, with natural language data such as survey questions, it is extremely dif-
ficult, if not impossible, to construct a data set where properties like concepts, length and
formulation are completely uncorrelated. To mitigate this issue, we need to construct our
training and test sets in a way that they do not share the same distribution of the corre-
lated properties. In this way, the probing classifier is less likely to make use of the correlated
properties to achieve good performance on the test sets. We explain below how we achieve
this.

In our data, we see that sentence length (as a four-level categorical variable, see Table 3)
is highly correlated with all the other properties. Chi-square tests of independence show
that sentence length is statistically significantly related to basic concepts (χ2 = 3636.7, df =
36, p < 0.05), concrete concepts (χ2 = 4612.1, df = 348, p < 0.05) and formulation (χ2 =
1252.7, df = 12, p < 0.05), with multiple testing corrected for. Therefore, when probing
these properties (i.e. basic concepts, concrete concepts and formulation), we split the data
into a training set and a test set of similar sizes, where the length of the survey questions in
the training set is different from that in the test data (see Fig. 1 for illustration). Likewise,
when probing sentence length, we make sure that our training and test data do not share
the same concepts or formulation. Furthermore, when probing basic concepts, because
concrete concepts are nested within basic concepts (and hence highly correlated), we make
sure that the concrete concepts between the training set and the test set do not overlap.

Nevertheless, even separating the training and test set in terms of sentence length is
not enough for effective probing of concrete concepts. We find that regardless of whether
we use random embeddings or the actual text embeddings, the classifier always achieves
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Figure 1 Illustration of Train-test Splitting for the Probing Analysis. Note that in this figure, the probing target
is basic concept, while the correlated feature is sentence length

Table 3 Results of Content Validity Analysis: Prediction Accuracy Scores of Probing Classifiers. Note
that sentence length is converted into a categorical variable with four levels including “0-10”, “11-12”,
“13-15” and “16-25”; basic concept, concrete concept and formulation are also categorical with 13,
117 and 5 levels, respectively

Length Basic concept Concrete concept Formulation Average

Simple Majority 0.389 0.010 0.029 0.255 0.171
Random 300 0.102 0.198 0.440 0.742 0.371
Random 768 0.148 0.198 0.509 0.694 0.387
Random 1024 0.074 0.198 0.548 0.731 0.388
TF 0.148 0.198 0.636 0.770 0.438
TF-IDF 0.167 0.198 0.493 0.690 0.387
fastText 0.093 0.173 0.711 0.656 0.408
GloVe 0.194 0.192 0.908 0.642 0.484
BERT-base-uncased 0.657 0.175 0.815 0.944 0.648
BERT-large-uncased 0.620 0.153 0.739 0.908 0.605
All-DistilRoBERTa 0.407 0.198 0.916 0.776 0.574
All-MPNet-base 0.481 0.198 0.929 0.805 0.603
USE 0.454 0.198 0.903 0.853 0.602

perfect performance on the test set. The absence of difference in performance prohibits
us from concluding whether the embedding models encode information about concrete
concepts to different extent. This is likely due to the fact that the prediction of concrete
concepts may rely solely on the presence of certain words, which is a simple task and can be
fully captured by even random embeddings. We therefore decided to increase the difficulty
of the probing task for concrete concepts. Specifically, we made the classifier predict for
a survey question its similar concrete concept (such as “the importance of achievement”
and “the importance of success”) (which we define in Sect. 4.2.1), while ensuring that the
training set and the test set have not seen the exact same concrete concepts.

Using the probing approaches above, if we observe any positive difference between the
performance of the probing classifier and that of the baseline using random embeddings,
we can more confidently attribute it to the relevant survey question property being en-
coded in the text embeddings (on top of simple word-level information). In this way, we
can learn about whether one text embedding model encodes more information about a
property than does another model.

4.4.2 Results
Table 3 summarises the performance of the probing classifier (multinomial logistic regres-
sion) across different embedding models. The baseline classification accuracy scores are
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based on simple majority voting, random embeddings of three dimension sizes, two simple
count-based text representation approaches: term-frequency (TF) and term frequency-
inverse document frequency (TF-IDF).

If the classifier performs better on a particular type of text embeddings than on the
random embedding baselines for a survey question property, we can conclude that the
corresponding text embeddings of survey questions likely encode information about that
property.

For sentence length, we see that the BERT-based and the USE embeddings perform bet-
ter than all the baselines, which suggests that they likely encode information about sen-
tence length. Among them, both original BERT models have better performance than any
of the Sentence-BERT models.

For basic concepts, none of the pretrained text embeddings seems able to beat the per-
formance of the baseline random embeddings, TF and TF-IDF vectors. The fact that all
text embeddings (including the random embeddings) have similar performance and per-
form better than the simple majority baseline suggests that only simple word-level infor-
mation could be used by the classifier. A possible explanation is that the basic concepts
as defined by [50] are too abstract information which are not explicitly encoded in the
embeddings.

As for concrete concepts, all types of pretrained text embeddings perform better than
the baselines. This suggests that text embeddings likely encode information about con-
crete concepts of survey questions. We also see that both Sentence-BERT embeddings
(0.916 and 0.929) show better performance than do the original BERT embeddings (0.815
and 0.739). Furthermore, USE (0.903) and GloVe (0.908) have similarly good performance.

Lastly, we can see that random embeddings themselves can already achieve good pre-
diction on the types of formulation, likely because single words are indicative of formula-
tion. This holds true also for TF and TF-IDF. The random embeddings even outperform
fastText and GloVe, despite the margin being relatively small. The original BERT repre-
sentations, like with sentence length, perform the best again, suggesting that they encode
sentence-level information about formulation. Both Sentence-BERT models and USE also
perform better than the random baselines, however, only to a much smaller margin.

To conclude, we find that different text embedding models encode somewhat differ-
ent kinds of information about survey questions and to different degrees. If we rank the
importance of the properties of survey questions in the order of concepts, formulation
and sentence length, then USE seems to demonstrate the highest level of content valid-
ity with regard to survey questions on average. The sentence-BERT and original BERT
models quickly follow. FastText and GloVe as word embedding models do encode some
information about survey questions like concrete concepts, but not sentence length or
formulation.

4.5 Analysis of convergent & discriminant validity
We analyse convergent validity of text embeddings for survey questions as the extent to
which the text embeddings of two conceptually similar survey questions are similar to
each other. High convergent validity (as is desired) would be indicated by a high degree of
similarity between the two text embeddings. In contrast, discriminant validity concerns
the degree to which two conceptually dissimilar survey questions differ in their text em-
beddings. High discriminant validity (as is desired) is signalled by low similarity between
the text embeddings.
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4.5.1 Data
We use the same synthetic data set described in Sect. 4.2.1.

4.5.2 Methods
We take a joint approach to examining convergent and discriminant validity. That is, if text
embedding models possess both convergent and discriminant validity, the embeddings of
conceptually similar survey questions would be closer to one another while the embed-
dings of conceptually dissimilar survey questions would be further apart. Two hypotheses
naturally follow:

With Hypothesis 1, we expect cosine similarity scores to be higher between the embed-
dings of conceptually similar survey questions than between those of conceptually dissim-
ilar survey questions, with all other aspects of the survey questions being the same.

With Hypothesis 2, we expect cosine similarity scores to be higher between the embed-
dings of conceptually identical but differently formulated survey questions than between
those of conceptually dissimilar but identically formulated survey questions.

In the synthetic survey question data set, we can find many pairs of survey questions
that only differ in their concrete concepts and those that differ in their formulation but
not in their concrete concepts.

For Hypothesis 1, we first calculate the cosine similarity between the embedding of a
given survey question (i.e. Ereference) and the embedding of the corresponding conceptu-
ally similar question (i.e. Esimilar). Then, we calculate the cosine similarity between Ereference

and the embedding of the corresponding conceptually dissimilar question (i.e. Edissimilar).
In this way, we obtain cos (Ereference, Esimilar) and cos (Ereference, Edissimilar). We expect the dif-
ference between these two scores (i.e. cos (Ereference, Esimilar) – cos (Ereference, Edissimilar)) for
a given survey question to be larger than zero. As an example, in Table 2, the two scores
of interest are cos (EID1, EID3) and cos (EID1, EID5). Note that the two comparison questions
differ from the reference question only in terms of the underlying concrete concepts; all
other aspects like the formulation and sentence length are identical. This applies to all the
question triads, which allows us to attribute any observed differences in similarity scores
to the differences in the concrete concepts.

For Hypothesis 2, we first calculate the cosine similarity between the embedding of a
given survey question (i.e. Ereference) and the embedding of the corresponding concep-
tually identical but differently formulated question (i.e. Eidentical). Then, we calculate the
cosine similarity between Ereference and the embedding of the corresponding conceptu-
ally dissimilar but identically formulated question (i.e. Edissimilar). In this way, we obtain
cos (Ereference, Eidentical) and cos (Ereference, Edissimilar). We expect the difference between these
two scores (i.e. cos (Ereference, Eidentical) – cos (Ereference, Edissimilar)) for a given survey question
to be larger than zero. In the exemplar Table 2, the two scores of interest are cos (EID1, EID2)
and cos (EID1, EID5). Note that each comparison question differs from the reference ques-
tion only in terms of one aspect: either concept or formulation.

4.5.3 Results
Figure 2 shows the distribution of the difference between cos (Ereference, Esimilar) and
cos (Ereference, Edissimilar) scores for Hypothesis 1 across various baselines and text embed-
ding approaches. The more positive the difference scores are, the more support for con-
vergent and discriminant validity.
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Figure 2 The distribution of the cosine similarity difference scores for Hypothesis 1 across text representation
approaches. The y-axis indicates the size and direction of the differences. The more positive the difference
scores are, the more support for convergent and discriminant validity

We can see in Fig. 2 that the only models that consistently score above zero are the
two Sentence-BERT models (“All-DistilRoBERTa” and “All-MPNet-Base”) and USE, with
the percentages of positive scores being 98.3%, 96.8% and 95.4%, respectively. This result
shows evidence of convergent and discriminant validity for the three models. Only in a
small percentage of cases does this observation not hold. In stark contrast, none of the
baselines models (i.e. TF, TF-IDF, random embeddings) show performance comparable
to any of the Sentence-BERT and USE models. To our surprise, this observation holds
also for fastText, GloVe and the two original BERT pretrained models, suggesting that
these text embeddings lack convergent and discriminant validity. However, for the original
BERT embeddings, one other possible explanation is that cosine similarity might not be a
suitable measure, as earlier research suggested [2].

Figure 3 shows the distribution of the difference between cos (Ereference, Eidentical) and
cos (Ereference, Edissimilar) scores for Hypothesis 2. Note that Jaccard similarity is explicitly
included here as an additional baseline of similarity between two survey questions. It is
calculated as the ratio of the number of unique overlapping words (i.e. intersection) to
the total number of unique words between two survey questions (i.e. union). Naturally,
Jaccard similarity scores are bounded in the interval [0, 1]. For Hypothesis 1, because any
pair of comparison questions differs in only one word, the difference in Jaccard similar-
ity for any pair of comparison questions would always be zero and therefore not a useful
measure.

Similar to Fig. 2, the two Sentence-BERT models and USE again score consistently above
zero (98.8%, 97.9% and 87.2% of the cases, respectively). Only in a few cases does this ob-
servation not hold (e.g. the concrete concept “petition institutional racism”). We can thus
say that for these models, there is reasonable evidence for convergent and discriminant
validity. Most of the other approaches (including the baselines, the random embedding
models and the original BERT models) score either around or below zero. The only excep-
tion is TF-IDF, which in 94.5% cases scores above zero, suggesting evidence for convergent
and discriminant validity. However, this conclusion should be treated with great caution,
because when we generate the TF-IDF vectors, we build the vocabulary based on all the
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Figure 3 The distribution of the cosine similarity difference scores for Hypothesis 2 across text representation
approaches. The y-axis indicates the size and direction of the differences. The more positive the difference
scores are, the more support for convergent and discriminant validity

survey questions. We follow this approach because in this analysis, it is unclear what the
training and testing data should be. In real research applications, TF-IDF may not perform
as well due to the difference in the vocabulary between training and test data.

Finally, it is worth noting that the two Sentence-BERT models performed either about
equally or better in Hypothesis 2 than in Hypothesis 1, in terms of the percentages of
scores above zero. This is somewhat surprising considering that the task in the second
hypothesis is supposedly more difficult because the survey questions differ in one extra
aspect: formulation.

Overall, we can conclude that text embeddings of survey questions based on Sentence-
BERT and USE demonstrate the highest convergent and discriminant validity. Meanwhile,
there is not enough evidence to suggest the same for the other approaches.

4.6 Analysis of predictive validity
If embeddings are valid measures of survey questions, we should be able to use them to
help with the prediction of people’s responses to survey questions. For instance, knowing
someone’s response to a survey question about gender issues, we should be able to predict
that person’s response to a question about family values because the two are conceptually
related. Also, knowing how someone responds to a particular question formulation may
also be helpful in predicting how that person would respond to new questions of simi-
lar formulation. Therefore, we test the predictive validity of survey question embeddings
by checking whether they can improve the prediction of a respondent’s answer to new
survey questions, compared to not using text embeddings. Specifically, we can inspect
the correlation between the predicted responses and the actual responses. The higher the
correlation (compared to some baseline), the more evidence for predictive validity.

4.6.1 Data: European social survey wave 9
We use the publicly available European Social Survey (ESS) Wave 9 data [51]. The ESS is
a research-oriented cross-national survey that is conducted with newly selected, cross-
sectional samples every two years since 2001 [54]. The survey aims to measure attitudes,
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beliefs and behaviour patterns of diverse populations in Europe, concerning topics like
media and social trust, politics, subjective well-being, human values and immigration.
We focus on the UK sample (N = 2204), because the official language of the UK is English,
which is consistent with the language of the data on which our text embedding models are
pretrained.

Out of more than 200 questions that were asked to the participants, we select only the
ones which measure subjective concepts and are continuously or ordinally scaled, totalling
94 questions. This choice is consistent with the type of survey questions we examined
previously during the analysis of content, convergent and discriminant validity analysis.
To harmonise the difference in response scales across the survey questions, we rescale all
the responses to be between 0 and 1.

In addition to these 94 survey questions and the individual responses to each of them, we
included the following background variables for each participant: region, gender, educa-
tion, household income, religion, citizenship, birthplace, language, minority status, mari-
tal past and marital status.

The reason for including background variables is two-fold. First, background variables
are predictive of many subjective opinions (like the ones measured by the ESS survey ques-
tions). Second, we also expect that different people (defined by their background char-
acteristics) will interpret survey questions differently, which in turn influences their re-
sponses. This can be modelled by allowing the background variables to interact with the
text embedding dimensions, which may help the model to achieve better prediction per-
formance.

Note that we use existing survey questions here (despite some of them having quality
problems like unclear underlying concepts), because for this predictive validity analysis,
we need response data, which we cannot generate synthetically.

4.6.2 Methods
The data set includes two types of features: (1) various background variables and (2) text
representations of survey questions. The prediction target concerns respondents’ answers
to survey questions. Every respondent answered all or most of the 94 survey questions.
Each row in the data corresponds to a unique respondent and survey question combina-
tion.

To estimate the average performance of a prediction model, we apply 10-fold cross-
validation [55]. Namely, we split the data into 10 folds by survey question IDs, whereby
each data partition contains its own unique set of survey questions and responses (see
Fig. 4 for illustration). Then, for every one out of the 10 cross-validation loops, we use 9
folds as the training set (covering 90% of the survey questions) and keep the remaining
one fold as the test set. We train the prediction model on the whole training set, also using
10-fold cross-validation but for hyperparameter selection (i.e. fine-tuning). Once we have
the fine-tuned model, we apply it to the test set and obtain an evaluation score. Because we
apply 10-fold cross-validation to the entire data set, we obtain 10 evaluation scores in total.
Finally, we average the 10 scores to arrive at the performance estimate of the prediction
model.

Text representation methods Apart from the various embedding models, we include TF,
TF-IDF and random embeddings of dimension 300, 768 and 1024 as baseline text repre-
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Figure 4 Illustration of Train-test Splitting for the Analysis of Predictive Validity

sentation methods. Note that with these baseline approaches, we build the feature vocab-
ulary based only on the training data, similar to how we conducted the content validity
analysis earlier. That is, new words encountered in the test set would be assigned zero
weight.

Lasso and random forest We adopt two popular prediction models. The first is Lasso re-
gression [56], which differs from OLS regression by including an additional regularisation
term in the loss function. The regularisation term has the advantage of reducing model
variance (i.e. lower prediction error, at the cost of slightly higher bias). Furthermore, it
can zero-out the parameter estimates of those predictors considered by the model to be
“unimportant”, thus simplifying the model and easing interpretation.

The second model is Random Forest (RF) [57], which constructs multiple regression
trees during training time and outputs the average prediction of all the trees. This ap-
proach of combining multiple models falls under the so-called ensemble learning tech-
nique, which generally provides the benefit of more powerful prediction. In addition, RF
automatically considers interaction among the predictors, which Lasso regression falls
short of. This may enable RF to learn more fine-grained patterns from data.

Evaluation metric We use Pearson’s correlation r to evaluate the predictive validity of
text embeddings. Specifically, we measure the Pearson’s correlation between the predicted
responses to survey questions and the observed responses. This metric has the advantage
that it is bounded between –1 and 1, hence easier to interpret.

As a prediction baseline (as opposed to TF, TF-IDF and random embeddings, which are
baselines for text embedding models), we use the average response of each participant
in the training data as the prediction for that participant’s responses in the test set. We
choose this baseline because previous research has shown that a respondent’s answer be-
haviour (e.g. choosing a particular answer option) can be quite consistent across survey
questions [58]. We also tried using model predictions based on only the background vari-
ables of respondents, but the model performance (the best Pearson’s r based on RF: 0.187)
is similar to using the within-person average baseline.
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Table 4 Results of the Predictive Validity Analysis. r is the average Pearson’s correlation between
predicted and observed scores. �% in the parentheses indicates the percentage change in r in
comparison to the baseline r: 0.187. 95% CI refers to the 95% confidence interval around r

Lasso r (�%) Lasso 95% CI RF r (�%) RF 95% CI

TF 0.106 (–43.316) [0.102, 0.110] 0.337 (80.007) [0.333,0.341]
TF-IDF 0.092 (–50.802) [0.087, 0.096] 0.323 (72.830) [0.319,0.327]
Random 300 0.149 (–20.321) [0.144, 0.153] 0.331 (77.066) [0.327,0.335]
Random 768 0.116 (–37.968) [0.111, 0.120] 0.334 (78.614) [0.330,0.338]
Random 1024 0.069 (–63.102) [0.065, 0.073] 0.338 (80.520) [0.333,0.342]
fastText 0.204 (9.261) [0.200, 0.209] 0.356 (90.439) [0.352,0.360]
GloVe 0.107 (–42.781) [0.103, 0.111] 0.347 (85.664) [0.343,0.351]
BERT-base-uncased 0.195 (4.278) [0.191, 0.200] 0.411 (119.994) [0.407,0.415]
BERT-large-uncased 0.151 (–19.251) [0.147, 0.155] 0.378 (102.260) [0.374,0.382]
All-DistilRoBERTa 0.188 (0.535) [0.183, 0.192] 0.374 (100.228) [0.370,0.378]
All-MPNet-base 0.119 (–36.364) [0.115, 0.123] 0.406 (117.135) [0.402,0.410]
USE 0.186 (–0.535) [0.182, 0.191] 0.386 (106.272) [0.382,0.390]

4.6.3 Results
Table 4 summarises the prediction performance of all text representation methods, mea-
sured as the average Pearson’s correlation r across all 10 folds. �% in the parentheses
indicates the percentage change in r in comparison to the prediction baseline r. Higher
scores mean that the observed response scores are more correlated with the predicted re-
sponse scores than with the prediction baseline. The more positive the value of �%, the
more evidence for predictive validity. The 95% confidence intervals (CI) around r are also
provided. The prediction baseline r is 0.187 with a 95% CI of [0.184, 0.190].

We can make three observations. First, RF consistently performs substantially better
than Lasso regression. This is not a surprising result, as we know that RF can learn more
complex patterns (like interactions) from data and impose stronger model variance re-
duction, compared to Lasso regression. Furthermore, because Lasso regression performs
worse than or about the same as the prediction baseline, we can infer that the interac-
tion between background variables and the survey question representations is crucial for
a good prediction performance.

Second, despite RF faring better, the exact r scores depend on the text representation
methods used. We see that simply using RF with baseline text representation methods (TF,
TF-IDF and random embeddings) can already lead to substantial prediction improvement
compared to the baseline prediction. All the embeddings approaches achieved higher r
scores than did TF, TF-IDF and random embeddings. This suggests that predictive validity
holds (to some extent) for the embedding models, especially the BERT-based models and
the USE.

Lastly, in Appendix E, we summarise the prediction performance in terms of RMSE
(Root Mean Square Error) and MAE (Mean Absolute Error). We see that the performance
pattern (i.e. which text representation performs better or worse) stays similar. However,
the magnitude of improvement over the baseline prediction is much smaller, compared
to when Pearson’s correlation is used as the evaluation metric. This may suggest that the
prediction models are more capable of predicting the trend in survey responses (i.e. higher
or lower) rather than the exact values.

In summary, we see that all the text embeddings exhibit some degree of predictive valid-
ity. Namely, they can be used to some extent to predict respondents’ answers to completely
new survey questions. However, the level of predictive validity that can be demonstrated
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seems to highly depend on both the specific prediction algorithm, the embedding model
and the evaluation metric used.

4.7 Summary
We find that different text embedding models demonstrate different degrees of validity
evidence for the purpose of survey question representation. For instance, the USE and
the two Sentence-BERT models show the best overall performance across all the con-
struct validity analyses. In contrast, fastText fails to achieve performance comparable to
the BERT-based approaches and the USE on all the validity analyses. Furthermore, even
for the same text embedding model, its performance varies depending on the specific type
of construct validity analysis. For instance, in our probing experiments to assess content
validity, the USE and the two Sentence-BERT models show the best overall content valid-
ity. However, the original BERT models perform best in probing the formulation of survey
questions. GloVe achieves prediction accuracy comparable to the Sentence-BERT models
when probing concrete concepts, but it does poorly on the other probing tasks.

5 Conclusion and discussion
In this paper, we propose to view the quality evaluation of text embedding models as a
measurement validity problem. That is, we can view what needs to be encoded from texts
for a research task as the construct of interest, the text embedding model as the corre-
sponding measure, and the embeddings as the measurements. In this way, we can apply
the classic construct validity testing framework to evaluating the quality of text embed-
dings. This approach has the advantage of being grounded in measurement theory, pro-
viding a clear framework about what needs to be tested (i.e. in terms of the different types
of validity), and being applicable to many substantive research questions in computational
social science.

We describe how we can adapt this framework to suit text embeddings. For face validity,
we recommend looking at readily available information about a text embedding model,
such as the architecture and the data it is pretrained on. For content validity analysis, we
suggest using probing classifiers to investigate explicit information in text embeddings.
For convergent and discriminant validity analysis, we recommend constructing test cases
where the texts only differ on a main property of interest. Then, we can inspect whether
the cosine similarity score for a pair of texts is in line with our theoretical expectation.
As for predictive validity, we need to define a relevant prediction task whose observed
scores can be seen as prediction target. The better the prediction, the more evidence for
predictive validity.

We also demonstrate this framework on the case of survey question representation.
More concretely, we investigate the face, content, convergent, discriminant and predictive
validity of various popular pre-trained text embedding models, including fastText, GloVe,
BERT, Sentence-BERT and USE. Note that despite our use of pretrained embeddings, our
approach to construct validity analysis applies equally to fine-tuned and continued pre-
trained embeddings.

5.1 Limitations
We are aware of several limitations of this study. First, we focus only on the validity of
text embeddings. However, validity is only one aspect of measurement quality; the other
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aspect is reliability (or instability). Previous work has shown that text embeddings can be
unstable (e.g. across random seeds and hyper-parameters) [59–61]. Therefore, this insta-
bility aspect can also have an influence on the quality of text representation, and even
on the results we obtain in our application study. Nevertheless, it is beyond the scope of
our study to address the instability issue of embedding models. Second, the synthetic sur-
vey question data set and the ESS data do not cover nearly most survey question types (in
terms of, for instance, the concrete concepts, the presence of problematic features), nor do
they necessarily resemble the type of survey questions commonly used in research. This
means that our findings concerning the construct validity of the investigated text embed-
ding models may not generalise to other/all survey questions. Nevertheless, the goal of our
paper is not to perform a comprehensive analysis of the construct validity of text embed-
dings for all survey questions, but to show how to conduct construct validity analysis for
text embeddings, with our specific choice of survey questions as an application example.
Last but not least, while we follow Saris and Gallhofer’s [50] recommended procedure to
generate the synthetic survey question dataset (according to the authors, this procedure,
“if properly applied, will always lead to a measurement instrument that measures what is
supposed to be measured”), the measurement quality of those synthetic survey questions
is assumed rather than empiricallly tested and supported.

5.2 Future directions
Our proposed approach to quality evaluation of text embeddings, based on construct va-
lidity testing, can benefit many research areas that make use of text embedding models.
For instance, predicting personality traits from Twitter data has been a difficult task, where
models often do not outperform simple majority-class baseline [62]. One possible reason
is that relevant linguistic cues are not encoded in the text embeddings used to represent
Tweets. Our construct validity analysis can help to uncover possible reasons: Do the em-
beddings encode relevant linguistic cues (i.e. content validity)? Are the embeddings robust
to noises and sensitive to altered texts that would indicate a different personality type (i.e.
convergent and discriminant validity)? Can the embeddings perform tasks (e.g. prediction
of personal achievements and health outcomes) that personality traits can (i.e. predictive
validity)? We also hope that our proposed approach can provide insight into the strengths
and weaknesses of current text embedding models and thus help the field develop more
valid embedding models. Lastly, our paper focuses on the construct validity of text embed-
dings, while the construct validity of downstream models’ prediction is equally important
and should be studied in the future.

Appendix A: The synthetic survey question data set
Saris and Gallhofer [50] described a three-step procedure to operationalize a construct
into survey questions. First, specify a complex construct by one or more basic concepts.
Second, transform the basic concepts into statements. Third, transform the statements
into survey questions formulated in a specific way. According to the authors, this proce-
dure, “if properly applied, will always lead to a measurement instrument that measures
what is supposed to be measured.”

For instance, say we want to measure someone’s attitude towards immigrants. This
complex construct can be represented by three basic concepts: belief about immigrants,
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feelings about immigrants and action tendency towards immigrants. These basic con-
cepts can then be transformed into the following statements, among many other possibil-
ities: “Immigrants have made my country a worse place”, “I do not trust immigrants”, and
“I would not want to be neighbours with immigrants”. Then, these statements should be
transformed into survey questions following some formulation style, such as imperative-
interrogative questions. An example is: “Tell me, do you trust immigrants?”.

For researchers who would like to test the quality of text embedding models for survey
questions used in a particular area of research (e.g. migration studies; family sociology),
we recommend collecting a comprehensive and representative list of constructs relevant
to the area of research, and then generate survey questions for these constructs follow-
ing the three-step procedure. In this way, one can test how well a text embedding model
represents survey questions in a particular field.

In our analysis, we would like to cover a wide range of constructs typical in sociolog-
ical research. However, it is beyond our capacity to cover all of them, nor do we have
access to a representative list of sociological constructs. Because of this difficulty and that
our focus is on demonstrating our proposed construct validity framework (rather than
answering which text embedding model is the best at representing sociological survey
questions in general), we take a more practical approach. Specifically, instead of generat-
ing survey questions from a predefined list of constructs, we generate concrete concepts
for each of the 13 basic subjective concepts defined by Saris and Gallhofer [50], and then
generate survey questions based on those concrete concepts. Because most (if not all) sub-
jective survey questions fall under these 13 concepts, we are still able to generate a diverse
(and potentially representative) set of survey questions. To generate concrete concepts
for each one of the 13 basic concepts, we use the examples of concrete concepts given in
[50].

Specifically, for every subjective concept, we assign three reference concrete concepts.
Take the basic concept “evaluation” as an example: we specify “the state of health services”,
“the quality of higher education” and “the performance of the government” as the three
corresponding reference concrete concepts. Next, for every reference concrete concept,
we specify one similar concrete concept and one dissimilar concrete concept. Then, for
each concrete concept, we generate a statement. We make sure that the statements for
every triad of concrete concepts (i.e. reference, similar and dissimilar) only differ in one or
two words that define the concrete concepts. Finally, we transform these statements into
survey questions which vary in their formulation. [50] provided many templates for each
type of formulation. We adopt 19 templates, implement them in code, and then automat-
ically create differently formulated survey questions for each concrete concept. Our final
data set contains 5436 unique subjective survey questions.

Naturally, our generated data set of survey questions do not cover nearly all constructs
common in the social sciences. Nor are they sufficiently varied in the types of questions.
For instance, batteries of stimuli are another popular form of survey questions we do not
cover. We also do not cover questions that have problematic features (e.g. double-barrelled
questions; questions with implicit assumptions).

Appendix B: Definitions of basic subjective concepts
The definitions and examples are taken from Saris and Gallhofer (2007) [50] and the code-
book of Survey Quality Predictor [63].
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Evaluation Evaluations are questions about attitudes. They are marked by evalua-
tive words like good/bad, positive/negative, perfect/imperfect, superior/inferior, use-
ful/useless etc. For example: “Is the state of health services in your country is good?”.

Importance The importance of something concerns questions that include an expression
of “importance” as subject complement. Example: “Is personal success important to you?”.

Feelings These questions refer to affective evaluations or feelings for something. Exam-
ple: “Do you trust the legal system?”.

Cognitive judgment Cognitive judgments concern questions about someone or some-
thing not in evaluative terms (e.g. good/bad, positive/negative) but in neutral terms (e.g.
active/passive, small/big, aware/unaware). Example: “How large is the role of politics in
your life?”.

Causal relationship Such a question concerns a relationship between a subject and an
object, with the subject being the cause of the object. Example: “Have immigrants made
your country a worse place?”.

Similarity These questions concern the similarity/dissimilarity or distance/closeness
between objects or connectedness between subjects. Example: “How attached are you to
your nationality?”.

Preferences Such questions concern one’s preferences. They are frequently used in con-
sumer research, election studies and in studies of policies. Example: “Are you for or against
universal healthcare?”.

Norms Norms questions concern actions deemed by a group of people to be proper
or correct. They often contain words like “should” or “have to”. Example: “Do you think
women should have children?”.

Policies These questions are similar to norms questions, but are about what the govern-
ment or people in power should do. Example: “Do you agree that the government should
reduce income inequality?”.

Rights These are questions about permission. They often contain words like “accepted”,
“allowed”, “justified” or “the right to”. Example: “Do immigrants have the right to social
security?”.

Action tendency Action tendency questions are about what one intends to do in the fu-
ture. Example: “Will you vote in the election?”.

Expectation These questions are about anticipations of events in which the respondent
is not involved. Example: “Do you expect another economic crisis to come soon?”.
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Belief Such questions aim for an evaluation of the respondent’s belief in something with-
out the explicit use of evaluative terms like good/bad, positive/negative, etc. Despite that,
they still typically have a positive or negative connotation. Example: “Do people in your
country face discrimination because of their gender?”.

Appendix C: The concrete concepts
Below we list all the concrete concepts used in our synthetic data set, sorted by the 13
basic concepts. Each basic concept consists of 3 triads of concrete concepts, separated by
a semicolon. Each triad is constructed in the following way: a reference concrete concept,
a similar concrete concept, and a dissimilar concrete concept. The similarity is defined
relative to the reference concrete concept.

Evaluation Evaluation of the state’s health services, evaluation of the state’s medical ser-
vices, evaluation of the state’s religious services; evaluation of the quality of higher educa-
tion, evaluation of the quality of public schooling, evaluation of the quality of the trans-
portation infrastructure; evaluation of the performance of the current government, eval-
uation of the performance of the current leadership, evaluation of the performance of the
current economy.

Importance The importance of personal success, the importance of personal achieve-
ment, the importance of personal safety; the importance of personal creativity, the impor-
tance of personal novelty, the importance of personal loyalty; the importance of personal
family, the importance of personal friendship, the importance of personal career.

Feelings Trust in the legal system, trust in the police force, trust in the pharmaceutical
industry; trust in family, trust in parents, trust in the president; trust in the Internet, trust
in the media, trust in the church.

Cognitive judgment Personal political orientation, personal ideological orientation, per-
sonal sexual orientation; the role of politics in one’s life, the role of activism in one’s life,
the role of family in one’s life; the influence of ethnicity on one’s career, the influence of
race on one’s career, the influence of gender on one’s career.

Causal relationship Immigrants making my country a worse place, refugees making my
country a worse place, politicians making my country a worse place; immigrants making
my culture richer, foreigners making my culture richer, artists making my culture richer;
the economic reform making my life better, the monetary reform making my life better,
the education reform making my life better.

Similarity Closeness to a political party, closeness to a government organization, close-
ness to a religious group; attachment to one’s country, attachment to one’s nationality,
attachment to one’s religion; closeness to one’s children, closeness to one’s kids, closeness
to one’s colleagues.

Preferences Support racial equality, support ethnic equality, support income equality;
against universal healthcare, against universal coverage, against universal demogrant; for
the freedom of speech, for the freedom of expression, for the freedom of movement.
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Norms Women should have children, women should be mothers, women should stay
home; children should respect parents, children should respect elders, children should
respect peers; one should believe in God, one should believe in Jesus, one should believe
in oneself.

Policies Government should reduce economic inequality, government should reduce
income inequality, government should reduce age inequality; government should make
education affordable, government should make schooling affordable, government should
make housing affordable; government should make stricter immigration policy, govern-
ment should make stricter naturalisation policy, government should make stricter eco-
nomic policy.

Rights Women’s right to marriage, women’s right to divorce, women’s right to educa-
tion; people’s right to free speech, people’s right to free expression, people’s right to free
education; one’s right to education, one’s right to schooling, one’s right to life.

Action tendency Petition against institutional racism, petition against systematic racism,
petition against individual racism; protest against police brutality, protest against police
violence, protest against police reforms; participate in election, participate in referendum,
participate in demonstration.

Expectation Housing prices will increase, home prices will increase, food prices will in-
crease; pandemic will end, epidemic will end, war will end; economic crisis will come,
economic depression will come, economic boom will come.

Belief Extent of gender discrimination in one’s country, extent of sex discrimination in
one’s country, extent of religion discrimination in one’s country; extent of ethnicity dis-
crimination in one’s country, extent of racial discrimination in one’s country, extent of age
discrimination in one’s country; people lose jobs over sexual identity, people lose jobs over
gender identity, people lose jobs over religious identity.

Appendix D: Survey question formulations
A statement can be transformed into different formulations. We list below the 5 types
that we use in this study: direct requests, imperative-interrogative requests, interrogative-
interrogative requests, declarative-interrogative request, and interrogative-declarative re-
quest.

According to [50], a direct request is based on the inversion of the (auxiliary) verb and the
subject in the given statement. The other formulations consist of two parts. The first part
(also the main clause) mostly indicates a researcher’s desire to obtain information, while
the second part presents the concept of interest (a subordinate clause). For an imperative-
interrogative request, the main clause is phrased in the imperative mood (indicated by
words like “tell”, “specify”, “indicate”). For an interrogative-interrogative request, the main
clause uses the interrogative mood (e.g. “Could you tell me . . . ”), which is more polite than
the imperative mood. Polite declarative terms can also be used (e.g. “I would like to ask
. . . ”), which makes a declarative-interrogative request. Lastly, an interrogative-declarative
request formulates the main clause in the interrogative mood and the subclause in the
declarative form (e.g. “Do you think that . . . ”).
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See below the 19 templates we used for the study. The direct request is simply the in-
version of the (auxiliary) verb and the subject.

Imperative-interrogative requests “Tell me . . . ”, “Specify . . . ”, “Please tell me . . . ”, “Please
specify . . . ”.

Interrogative-interrogative requests “Will you tell me . . . ”, “Can you tell me . . . ”, “Can you
please tell me . . . ”, “Could you tell me . . . ”, “Could you please tell me . . . ”, “Would you tell
me . . . ”, “Would you please tell me . . . ”, “Would you like to tell me . . . ”, “Would you mind
telling me . . . ”, “Would you be so kind as to tell me . . . ”.

Declarative-interrogative request “I ask you . . . ”, “I would like to ask you . . . ”.

Interrogative-declarative request “Do you think that . . . ”, “Do you believe that . . . ”, “Do
you agree or disagree that . . . ”.

Appendix E: Additional results of the predictive validity analysis
Table 5 and Table 6.

Table 5 Results of the Predictive Validity Analysis. MAE is the mean absolute error between
predicted and observed scores. �% in the parentheses indicates the percentage change in MAE in
comparison to the baseline MAE: 0.240. 95% CI refers to the 95% confidence interval around MAE

Lasso 0.240 (�%) Lasso 95% CI RF 0.240 (�%) RF 95% CI

TF 0.247 (2.970) [0.233, 0.261] 0.226 (–5.958) [0.211, 0.24]
TF-IDF 0.248 (3.478) [0.233, 0.264] 0.228 (–5.061) [0.211, 0.245]
Random 300 0.245 (2.247) [0.233, 0.258] 0.231 (–3.568) [0.219, 0.244]
Random 768 0.245 (1.899) [0.232, 0.258] 0.231 (–3.842) [0.218, 0.243]
Random 1024 0.247 (3.082) [0.234, 0.261] 0.230 (–4.206) [0.218, 0.242]
fastText 0.240 (–0.056) [0.229, 0.251] 0.227 (–5.299) [0.216, 0.239]
GloVe 0.245 (2.239) [0.234, 0.257] 0.227 (–5.273) [0.215, 0.240]
BERT-base-uncased 0.243 (1.391) [0.230, 0.257] 0.222 (–7.527) [0.211, 0.233]
BERT-large-uncased 0.245 (2.067) [0.232, 0.258] 0.225 (–6.051) [0.215, 0.236]
All-DistilRoBERTa 0.240 (–0.102) [0.228, 0.252] 0.224 (–6.601) [0.213, 0.235]
All-MPNet-base 0.245 (1.975) [0.232, 0.258] 0.223 (–7.088) [0.211, 0.235]
USE 0.241 (0.309) [0.228, 0.254] 0.224 (–6.478) [0.213, 0.236]

Table 6 Results of the Predictive Validity Analysis. RMSE is the root-mean-square error between
predicted and observed scores. �% in the parentheses indicates the percentage change in RMSE in
comparison to the baseline RMSE: 0.288. 95% CI refers to the 95% confidence interval around RMSE

Lasso RMSE (�%) Lasso 95% CI RF RMSE (�%) RF 95% CI

TF 0.296 (2.847) [0.283, 0.310] 0.279 (–3.059) [0.263, 0.296]
TF-IDF 0.298 (3.525) [0.283, 0.314] 0.284 (–1.598) [0.264, 0.303]
Random 300 0.294 (2.207) [0.282, 0.307] 0.280 (–2.769) [0.268, 0.292]
Random 768 0.293 (1.658) [0.280, 0.306] 0.280 (–2.923) [0.267, 0.292]
Random 1024 0.297 (3.101) [0.283, 0.311] 0.279 (–3.170) [0.266, 0.292]
fastText 0.290 (0.781) [0.278, 0.303] 0.277 (–3.772) [0.266, 0.289]
GloVe 0.295 (2.425) [0.283, 0.308] 0.276 (–4.200) [0.263, 0.289]
BERT-base-uncased 0.294 (1.962) [0.279, 0.309] 0.270 (–6.197) [0.259, 0.282]
BERT-large-uncased 0.297 (2.986) [0.282, 0.311] 0.274 (–5.018) [0.263, 0.285]
All-DistilRoBERTa 0.287 (–0.238) [0.275, 0.300] 0.272 (–5.434) [0.260, 0.284]
All-MPNet-base 0.294 (1.947) [0.280, 0.308] 0.270 (–6.327) [0.258, 0.282]
USE 0.290 (0.662) [0.277, 0.303] 0.273 (–5.405) [0.261, 0.284]
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Appendix F: Reproducibility checklist
We check our paper against the ACL Reproducibility Checklist. We report additional de-
tails concerning the reproducibility of our experiments that are not mentioned in the main
body of the paper.

The computing infrastructure Most analyses were done on a personal laptop, which runs
on a 11th Gen Intel(R) Core(TM) i7-11800H processor with 32 GB of RAM. These anal-
yses concern generating sentence embeddings from pretrained embedding models, gen-
erating survey questions, running probing models for the content validity analysis, com-
puting cosine similarity scores for the convergent and discriminant validity analysis, and
training the lasso regression models for the predictive validity analysis.

For training the Random Forest models (during the predictive validity analysis), we used
the High Performance Computing service available at Utrecht University. We used 50 GB
of RAM on a CPU with 12 parallel nodes.

Average runtime Each Random Forest model took on average 5 to 6 hours. All the other
analyses took only a few seconds on average.

The number of parameters For the Lasso regression, the number of parameters was up
to about 1300. For the Random Forest models, the number of parameters was up to about
5000.

Hyperparameter search For the Lasso regression, one hyperparameter was used: alpha.
The alpha search was done automatically by the scikit-learn implementation of LassoCV
[64]. We only specified the length of the regularization path (0.001), which is defined as
the ratio of the smallest alpha to the largest. The criterion was mean squared error.

For the Random Forest models, three hyperparameters were used: the number of esti-
mators (between 100 and 500 with an increment of 5), the maximum number of features
in a tree (either log 2 or the square root of the total number of features), and the maximum
depth of a tree (between 10 and 100 in a step of 10). The hyperparameter search was done
using grid search. The evaluation criterion was mean squared error.
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