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1. Introduction

An increasing amount of research is being directed towards neuro-symbolic computing,
combining learning in neural networks with reasoning and explainability via symbolic
representations [4]. One subfield of Al where neuro-symbolic methods are a promising
alternative for existing symbolic methods is computational argumentation. Much of the
theory of computational argumentation is based on the seminal work by Dung [6], in
which he introduces abstract argumentation frameworks (AFs) of arguments and attacks,
and several acceptability semantics that define which sets of arguments (extensions) can
be reasonably accepted. Core computational problems in abstract argumentation are typi-
cally solved with handcrafted symbolic methods [1]. However, recently we demonstrated
the potential of a deep learning approach by showing that a graph neural network is able
to learn to determine almost perfectly which arguments are (part of) an extension [2].

When considering dynamic argumentation - a growing research area where the
knowledge about attacks between arguments can be incomplete or evolving - other types
of computational problems arise where neuro-sybmolic methods are still unexplored.
In [3] we propose our enforcement graph neural network (EGNN), a learning-based
approach to the dynamic argumentation problem of enforcement: given sets of argu-
ments that we (do not) want to accept, how to modify the argumentation framework in
such a way that these arguments are (not) accepted, while minimizing the number of
changes [5]. Here we demonstrate our implementation of an EGNN.

2. Demonstration

When confronted with some problems with a high computational complexity, existing
symbolic enforcement solvers exhibit quite a significant drop in runtime performance,
limiting their practical applicability. While there is a need for efficient heuristics to ad-
dress this problem, designing such heuristics takes considerable expert effort and domain
knowledge. EGNN is a single architecture that can be trained through deep reinforce-
ment learning to learn enforcement heuristics for all common semantics and enforcement
problems, without supervision of an existing solver. EGNN learns a message passing
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Figure 1. Consider enforcing argument b in the AF F = ({a,b,c,d},{(a,b),(b,c)(b,d),(c,d),(d,c)}). EGNN
takes the AF (a), maps it it to a fully connected graph where nodes have a vectorial representation denoting
which arguments should be enforced (b). Node vectors are updated through message passing and are mapped
to an output per edge (c) indicating which edge should be flipped (d).

algorithm that predicts which attack relations between arguments should be flipped (i.e.
added or deleted) in order to enforce the acceptability of (a set of) arguments. Experi-
mental results demonstrate that EGNN can learn near-optimal heuristics for all extension
and status enforcement problems under the most common semantics, and outperforms
symbolic solvers with respect to efficiency on enforcement problems that are higher in
the complexity hierarchy.

We demonstrate our Python implementation of an EGNN and show: the input, mes-
sage passing and output steps of the model; the learned heuristics for enforcement prob-
lems; how the learned heuristic differs from symbolic algorithms. We do so by graphi-
cally demonstrating EGNN’s behaviour on an AF (cf. Figure 1).
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