
Zoonoses Public Health. 2022;69:475–486.	﻿�   | 475wileyonlinelibrary.com/journal/zph

Received: 17 June 2021  | Revised: 15 February 2022  | Accepted: 26 February 2022

DOI: 10.1111/zph.12937  

O R I G I N A L  A R T I C L E

A statistical modelling approach for source attribution 
meta-analysis of sporadic infection with foodborne pathogens

Lapo Mughini-Gras1,2  |   Elisa Benincà1 |   Scott A. McDonald1 |   Aarieke de Jong3 |   
Jurgen Chardon1 |   Eric Evers1 |   Axel A. Bonačić Marinović1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Zoonoses and Public Health published by Wiley-VCH GmbH.

Lapo Mughini-Gras and Elisa Benincà contributed equally to this work.  

1Centre for Infectious Disease Control 
(CIb), National Institute for Public Health 
and the Environment (RIVM), Bilthoven, 
The Netherlands
2Institute for Risk Assessment Sciences 
(IRAS), Faculty of Veterinary Medicine, 
Utrecht University, Utrecht, The 
Netherlands
3Office for Risk Assessment & Research 
(BuRO), Netherlands Food and Consumer 
Product Safety Authority, Utrecht, The 
Netherlands

Correspondence
Lapo Mughini-Gras, National Institute 
for Public Health and the Environment 
(RIVM), Centre for Infectious 
Disease Control (CIb), Antonie van 
Leeuwenhoeklaan 9, 3721MA Bilthoven, 
Utrecht, The Netherlands.
Emails: lapo.mughini.gras@rivm.nl; 
l.mughinigras@uu.nl

Funding information
Ministerie van Landbouw, Natuur en 
Voedselkwaliteit; One Health European 
Joint Programme

Abstract
Numerous source attribution studies for foodborne pathogens based on epidemio-
logical and microbiological methods are available. These studies provide empiri-
cal data for modelling frameworks that synthetize the quantitative evidence at our 
disposal and reduce reliance on expert elicitations. Here, we develop a statistical 
model within a Bayesian estimation framework to integrate attribution estimates 
from expert elicitations with estimates from microbial subtyping and case-control 
studies for sporadic infections with four major bacterial zoonotic pathogens in the 
Netherlands (Campylobacter, Salmonella, Shiga toxin-producing E. coli [STEC] O157 
and Listeria). For each pathogen, we pooled the published fractions of human cases 
attributable to each animal reservoir from the microbial subtyping studies, account-
ing for the uncertainty arising from the different typing methods, attribution models, 
and year(s) of data collection. We then combined the population attributable frac-
tions (PAFs) from the case-control studies according to five transmission pathways 
(domestic food, environment, direct animal contact, human–human transmission and 
travel) and 11 groups within the foodborne pathway (beef/lamb, pork, poultry meat, 
eggs, dairy, fish/shellfish, fruit/vegetables, beverages, grains, composite foods and 
food handlers/vermin). The attribution estimates were biologically plausible, allowing 
the human cases to be attributed in several ways according to reservoirs, transmis-
sion pathways and food groups. All pathogens were predominantly foodborne, with 
Campylobacter being mostly attributable to the chicken reservoir, Salmonella to pigs 
(albeit closely followed by layers), and Listeria and STEC O157 to cattle. Food-wise, 
the attributions reflected those at the reservoir level in terms of ranking. We provided 
a modelling solution to reach consensus attribution estimates reflecting the empirical 
evidence in the literature that is particularly useful for policy-making and is extensible 
to other pathogens and domains.
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1  |  INTRODUC TION

It is estimated that, annually, bacterial foodborne infections cause 
~350 million illnesses and ~187 thousand deaths globally, accounting 
for ~14.5 million disability-adjusted life years (DALY) (WHO, 2015). 
Food reaches the consumer through complex production chains in 
which many opportunities for (re-)contamination exist. For policy-
making, it is crucial to know which fraction of the disease burden 
is attributable to food and which food products contribute to that 
fraction. To this end, source attribution is used. Source attribution 
is defined as the partitioning of human disease burden (DALY, inci-
dence, costs, etc.) for a given pathogen over their animal, food, envi-
ronmental and human (if any) sources of infection (Pires et al., 2009).

The umbrella term ‘source attribution’ consists of several 
methods and data types, a detailed overview of which is available 
elsewhere (Mughini-Gras et  al.,  2019; Pires et  al.,  2009). Briefly, 
source attribution approaches can be divided into ‘top-down’ and 
‘bottom-up’. Top-down approaches attribute the human cases (i.e. 
the ‘top’ of the transmission chain) back to their sources of infec-
tion (i.e. the ‘bottom’), and these approaches can be further divided 
into epidemiological methods, e.g. analysis of outbreak investi-
gations (Pires et  al.,  2010, 2019) and case-control/cohort studies 
(Domingues et al., 2012a, 2012b), and microbiological methods (i.e. 
microbial subtyping (Barco et al., 2013)), or a combination of both 
(Mossong et  al.,  2016; Mughini Gras et  al.,  2012; Mughini-Gras, 
Enserink, et al., 2014; Mughini-Gras et al., 2018; Rosner et al., 2017). 
Conversely, bottom-up approaches like comparative exposure as-
sessment (Pintar et al., 2016) aim to predict the number of human 
cases caused by a given pathogen in a source, starting from the level 
of contamination (prevalence and concentration) and then incor-
porating effects of food processing, preparation, storage and con-
sumption, and dose–response relationships.

When data are scarce, source attribution is often done using 
structured expert elicitations (Havelaar et al., 2008). Expert elicita-
tions, however, can only provide an indication of consensus opinions 
among (some) experts in the field. Several limitations undermine 
the reliability of expert elicitations, such as the issues of properly 
accounting for qualitative arguments, cognitive heuristics and over-
confidence, the selection/representativeness of experts’ back-
grounds and agendas, and the uncertainty and diversity in opinions. 
Although expert elicitations remain a highly valuable instrument for 
policy-making, they should be considered a low-cost/low-effort al-
ternative to the generation, analysis and interpretation of empirical 
data. Expert elicitations should actually build on these data and be 
undertaken only when knowledge remains inadequate or conflict-
ing (Morgan,  2014). Some authors have therefore called for novel 
data-driven approaches to source attribution to combine different 
types of data in a single analytical framework (Havelaar et al., 2008; 
Koutsoumanis et al., 2019; Pires et al., 2018).

For several foodborne pathogens, numerous source attribution 
studies based on epidemiological and microbiological methods have 
been performed (Mughini-Gras et al., 2019). These studies provide 
empirical data for input into a modelling framework that synthesizes 

the quantitative evidence at our disposal and constrains it with the 
estimates from expert elicitations as to make best use of all avail-
able evidence. In the Netherlands, expert elicitations are routinely 
used to attribute the burden of 17 enteropathogens to five major 
transmission pathways (food, environment, direct animal contact, 
human–human transmission and travel) and 11 groups within the 
food pathway (beef/lamb, pork, poultry meat, eggs, dairy, fish/shell-
fish, fruit/vegetables, beverages, grains, composite foods and food 
handlers/vermin), but the elicitation in question was conducted in 
2008 and has therefore become outdated (Havelaar et  al.,  2008). 
Here, we present a way to integrate the existing expert estimates 
with available empirical data derived from source attribution anal-
yses based on microbial subtyping and case-control studies of 
sporadic foodborne infection. To this goal, we developed a quan-
titative statistical modelling approach and applied it to four major 
bacterial zoonotic pathogens in the Netherlands (i.e. Campylobacter, 
Salmonella, Shiga toxin-producing E. coli [STEC] O157 and Listeria 
monocytogenes), although the approach can in principle be applied to 
other pathogens and domains as well.

2  |  METHODS

2.1  |  Data collection

A literature search was conducted in January 2019 using a combina-
tion of keywords related to (a) the foodborne pathogen (e.g. ‘Shiga* 
Escherichia coli OR Shiga* E coli OR STEC OR VTEC etc.’ or ‘Salmonella 
OR salmonellosis’ etc.) and (b) a general term indicating the type of 
study ‘source attribution OR microbial subtyping OR case-control 
study’, joined by the logical connector AND, using Google Scholar, 
Science Direct, PubMed, Scielo, ISI Web of Science and Scopus. 

Impacts

•	 A statistical model within a Bayesian estimation frame-
work was developed to combine attribution estimates 
from expert elicitations with estimates from microbial 
subtyping and case-control studies of sporadic infection 
with zoonotic pathogens to reach consensus estimates 
reflecting the available empirical evidence.

•	 Attribution estimates were robust and biologically 
plausible and allowed human cases to be attributed in 
several ways according to reservoirs, transmission path-
ways and food groups, which is particularly useful for 
policy-making.

•	 The four pathogens attributed were all predominantly 
foodborne, with Campylobacter mostly attributable to 
chicken, Salmonella to pigs, Listeria and STEC O157 to 
cattle. Food-wise, the attributions reflected those at the 
reservoir level.
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A similar search strategy has been used in a recent collection of 
manuscripts on systematic reviews and meta-analyses of risk fac-
tors for 11 sporadic foodborne diseases globally (Gonzales-Barron 
et al., 2021). There were no restrictions in terms of year and type 
of publication. The search was limited to the languages English and 
Dutch. Each reference was manually and independently screened 
for relevance by two reviewers, and the following inclusion crite-
ria were applied: the data reported in the study had to be collected 
from the year 2000 onwards, and the study had to be performed in 
the Netherlands. If there was no Dutch study available, the inclusion 
criterion was relaxed to include also studies performed outside the 
Netherlands. For this, the global overview of case-control studies 
provided by the aforementioned collection of systematic reviews 
and meta-analyses (Gonzales-Barron et al., 2021), and other recent 
review papers (Koutsoumanis et al., 2019; Mughini-Gras et al., 2019) 
were also used.

The data extracted from the studies based on microbial subtyp-
ing that passed the screening were pathogen, typing method, year(s) 
of data collection, country of the study, source attribution model, 
number of human cases attributed, sources which the human cases 
were attributed to and the per cent attribution estimates (the at-
tribution estimates provided by these studies, by default, sum up 
to 100% over the sources). For the case-control studies, data ex-
traction included the study characteristics (i.e. year, country, popu-
lation studied and sample size) the statistical analysis performed, the 
statistically significant risk factors and the outcomes of the study 
(odds ratios [ORs] and, if available, the corresponding population 
attributable fractions [PAFs]). Only case-control studies of sporadic 
cases (i.e. not those conducted in outbreak settings) performed in 
the Netherlands from 2000 onwards using multivariable logistic re-
gression and reporting ORs as a measure of association were con-
sidered. Following standard epidemiological terminology, sporadic 
cases are those occurring irregularly/occasionally in time and place 
(i.e. scattered or isolated) and differ from the outbreak-related cases 
because they cannot be linked to one another or to a common source 
of infection. The use of adjusted ORs was done to account for possi-
ble confounding that needed to be controlled for within each study 
through multivariable analysis. All studies included in the analysis 
were checked for redundancy, i.e. whether they used the same data 
and methods. The focus was on sporadic cases for different reasons: 
(a) sporadic cases are the majority of cases and are generally more 
difficult to attribute to sources, as they are not linked to one an-
other or to a common source of infection (Domingues et al., 2012a, 
2012b); (b) outbreaks are usually caused by one (or just a few) patho-
gen strain (as clonality is common within an outbreak) and one (or 
just a few) exposure; (c) outbreak data are usually synthetized using 
a specific type of meta-analysis (Pires et al., 2010, 2019); (d) com-
bining attributions for sporadic and outbreak-related cases are not 
recommended, as outbreaks tend to be investigated disproportion-
ally more often than sporadic cases. The epidemiology of a same 
pathogen can be quite different when this pathogen appears sporad-
ically or as part of an outbreak, with some sources being dispropor-
tionally represented among outbreak-related versus sporadic cases 

simply because these sources (e.g. drinking water) are more likely to 
be identified and have the potential to cause larger, albeit extremely 
rare, outbreaks (Pires et al., 2010).

2.2  |  Analytical approach

For the four pathogens included here, there are different transmis-
sion routes from an animal reservoir. For example, if the reservoir is 
a food-producing animal, transmission can be foodborne, but also 
environment-mediated or occurring through direct contact with 
the animal. Source attribution based on microbial subtyping usu-
ally attributes human cases at the level of reservoir (or amplifying 
host) regardless of the transmission pathway, whereas case-control 
studies usually provide attributions at the exposure level (Mughini-
Gras et al., 2019; Pires et al., 2009). To address these methodologi-
cal differences while providing attributions comparable with those 
based on the aforementioned expert elicitation (Tables 1 and 2) of 
Havelaar et al. (2008), which were provided at exposure level, two 
different methods were applied.

2.2.1  |  Attribution across reservoirs

For each pathogen, Bayesian statistical modelling was used to esti-
mate the fraction of human cases attributable to each reservoir by 
accounting for the heterogeneity arising from the use of different 
typing methods, attribution models and year(s) of data collection 
in the different studies. This step provided attribution estimates at 
the reservoir level, which thereby included the contributions of both 
foodborne and non-foodborne transmission routes.

For each study s, we define psi,s as the attribution estimates for 
each reservoir i (with i = 1,…,R) being R the total number of reser-
voirs. The reservoirs investigated vary among studies (i.e. not all 
studies considered the same reservoirs), which leads to missing es-
timates for some reservoirs that are not necessarily zero. Therefore, 
the values of psi,s are partial estimates and would not add up to 1 
over all reservoirs in the studies. To circumvent this, we normalized 
the attribution estimates for all reservoirs by considering the (com-
plete) attribution estimate pi,s calculated using the following formula:

to ensure that 
∑R

i=1
pi,s is constrained to 1. This is, in fact, equivalent to 

using a Dirichlet distribution and a multinomial distribution likelihood. 
We used the alternative method described above because of the miss-
ing data in the dataset, and the Bayesian analysis software JAGS (v4.3) 
(Plummer, 2003) we used is not able to model a partially observed mul-
tinomial distribution.

To ensure that psi,s values are naturally bounded between 0 and 
1, we introduced the parameter ppi,s, which relates to psi,s by the 
logistic function

(1)pi,s =
psi,s

∑R

i=1
psi,s
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The source attribution parameters ppi,s have prior normal dis-
tributions ppi,s ∼ N(wi , e

zi ), where w and z have vague prior normal 
distributions wi ∼ N

(

�i , � i
)

 and zi ∼ N
(

�i , � i
)

, with mean �i = 0 and 
precision � i = (1∕�2

i
) = 0.01 (σ is the standard deviation).

The studies providing data for a certain reservoir were hetero-
geneous in terms of typing methods and types of source attribution 
models used, as well as years of data collection, and all these fac-
tors might influence the attribution estimate pi,s. To account for this, 
extra terms were considered: bj,s defined as the contribution (log-
odds) to the attribution estimate from the various typing methods j 
(j = 1,…,T; with T being the total number of typing methods); bk,s de-
fined as the contribution (log-odds) to the attribution estimate from 
the various source attribution models k (k = 1,…,M; with M being the 
total number of source attribution models).

The log-odds bj,s and bk,s followed normal distributions 
bj,s ∼ N

(

mj , e
�j
)

 and bk,s ∼ N
(

mk , e
�k
)

. The parameters m and ϵ followed 
vague prior normal distributions, mj ∼ N

(

�j , � j
)

; mk ∼ N
(

�k , �k
)

; and 
�j ∼ N

(

�j , � j
)

; �k ∼ N
(

�k , �k
)

; with mean �j = �k = 0 and precision 
� j = �k = (1∕�2) = 0.01 (σ is the standard deviation).

Then we considered L as the total number of unique combina-
tions of i, j, k and s, and we defined the attribution estimate

where ilogit(x) = ex∕(1 + ex). The estimates were calculated with 
L = 54 cases for Campylobacter, 110 for Salmonella, 128 for Listeria and 
8 for STEC O157. In the absence of heterogeneities between studies, 
pl = pi,s. For each study-reservoir-typing method-model combination, 
the number of human cases attributed to each reservoir was modelled 
as drawn from a binomial distribution:

with Neff,s being the effective number of human cases in study s. As 
mentioned above, the set of reservoirs investigated varies among 
studies. Therefore, unless a study covered all possible reservoirs 
when using a specific typing method and model, there are missing 
data for each study, and a few extra observations are needed to fill 
in the unobserved reservoirs in each study. Of note, these extra 
observations would also increase the precision of the estimates. 
Consequently, we considered an effective number of human cases 

(2)psi,s = eppi,s∕(1 + eppi,s )

(3)pl = ilogit
(

ppi,s + bj,s + bk,s
)

(l = 1,…, L)

(4)Casesl ∼ Binomial
(

Neff,s, pl
)

; (I = 1,…, L)

TA B L E  1  Attribution estimates at the transmission pathway level for Campylobacter, nontyphoidal Salmonella spp., Listeria monocytogenes 
and STEC O157

Pathogen Transmission pathway PAFa (normalized)
Expert estimates, from Havelaar 
et al. (2008)

Attribution 
estimatesb

Campylobacter spp. Food 54.3% (50.9%) 42.0% 56.0% (53.9%–58.2%)

Environment 17.2% (16.1%) 21.0% 14.6% (13.0%–16.2%)

Human 4.0% (3.8%) 6.0% 3.2% (2.5%–4.1%)

Animal 12.9% (12.1%) 19.0% 10.7% (9.4%–12.1%)

Travel 18.2% (17.1%) 12.0% 15.4% (13.8%–17.0%)

Nontyphoidal Salmonella spp. Food 23.5% (43.2%) 55.0% 46.2% (41.2%–51.0%)

Environment N/A 13.0% 5.1% (1.8%–10.2%)

Human 9.4% (17.4%) 9.0% 11.1% (7.7%–14.9%)

Animal 4.5% (8.2%) 9.0% 7.6% (4.8%–10.8%)

Travel 17.0%c (31.2%) 14.0% 30.0% (24.9%–35.4%)

STEC O157 Food 36.9% (64.8%) 40.0% 36.5% (31.5%–42.4%)

Environment N/A 17.0% 15.0% (1.8%–36.5%)

Human N/A 10.0% 9.6% (1.1%–34.1%)

Animal N/A 21.0% 18.4% (2.3%–37.3%)

Travel 20.0%c (35.2%) 12.0% 20.4% (16.4%–25.0%)

Listeria monocytogenes Food 54.4% (91.6%) 69.0% 78.8% (72.4%–84.2%)

Environment N/A 7.0% 5.2% (0.9%–12.8%)

Human N/A 5.0% 4.3% (0.7%–11.9%)

Animal N/A 5.0% 4.3% (0.6%–11.6%)

Travel 5.0%c (8.6%) 13.0% 7.3% (4.1%–11.4%)

N/A, not available.
aPopulation attributable fraction from case-control studies.
bRanges within parentheses denote 95% credible intervals (95%CI).
cObtained from the cases reported to the Dutch national surveillance system for infectious diseases.
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TA B L E  2  Attribution estimates at the food group (i.e. within the foodborne pathway) level for Campylobacter, nontyphoidal Salmonella 
spp., Listeria monocytogenes and STEC O157

Pathogen Foodborne exposure PAFa (normalized)
Expert estimates, from 
Havelaar et al. (2008)

Attribution 
estimatesb

Campylobacter spp. Beef/lamb 11.0% (22.2%) 4.0% 19.5% (16.9%–22.1%)

Pork N/A 5.0% 3.1% (0.5%–8.2%)

Poultry meat 28.0% (54.9%) 54.0% 48.8% (45.5%–52.1%)

Eggs N/A 3.0% 2.3% (0.3%–6.9%)

Dairy 3.0% (5.2%) 9.0% 4.1% (0.8%–9.9%)

Fish/shellfish/crustaceans 4.0% (7.9%) 7.0% 6.9% (5.3%–8.6%)

Fruit/vegetables N/A 5.0% 3.1% (0.5%–8.2%)

Beverages N/A 2.0% 1.8% (0.2%–6.0%)

Grains N/A 2.0% 1.8% (0.3%–5.7%)

Composite foods 1.0% (2.0%) 3.0% 1.8% (1.0%–2.7%)

Food handlers, vermin 4.0% (7.8%) 5.0% 6.9% (5.3%–8.6%)

Nontyphoidal Salmonella 
spp.

Beef/lamb 4.0% (9.8%) 13.0% 7.4% (4.4%–11.1%)

Pork 14.0% (39.7%) 14.0% 21.9% (14.8%–29.4%)

Poultry meat N/A 15.0% 13.2% (3.4%–23.9%)

Eggs 9.0% (24.4%) 22.0% 15.4% (11.2%–20.0%)

Dairy N/A 7.0% 6.8% (1.5%–18.7%)

Fish/shellfish/crustaceans N/A 4.0% 4.1% (0.9%–12.7%)

Fruit/vegetables N/A 6.0% 5.9% (1.3%–16.9%)

Beverages N/A 3.0% 3.2% (0.7%–9.4%)

Grains N/A 4.0% 4.1% (0.9%–12.3%)

Composite foods N/A 6.0% 5.9% (1.3%–17.5%)

Food handlers, vermin 9.4% (26.2%) 6.0% 12.3% (8.2%–17.4%)

STEC O157 Beef/lamb 66.9% (87.0%) 44.0% 65.0% (60.1%–69.6%)

Pork 10.0% (13.0%) 6.0% 9.2% (6.6%–12.1%)

Poultry meat N/A 3.0% 2.3% (0.4%–6.9%)

Eggs N/A 2.0% 1.8% (0.2%–5.8%)

Dairy N/A 7.0% 3.4% (0.6%–9.0%)

Fish/shellfish/crustaceans N/A 3.0% 2.3% (0.4%–6.7%)

Fruit/vegetables N/A 7.0% 3.5% (0.6%–9.1%)

Beverages N/A 4.0% 2.6% (0.4%–7.6%)

Grains N/A 3.0% 2.3% (0.3%–7.0%)

Composite foods N/A 4.0% 2.6% (0.4%–7.9%)

Food handlers, vermin N/A 17.0% 5.1% (1.1%–11.8%)

Listeria monocytogenes Beef/lamb 4.9% (6.9%) 11.0% 6.2% (3.4%–9.8%)

Pork 4.5% (6.3%) 9.0% 5.6% (2.9%–9.1%)

Poultry meat 9.3% (13.1%) 7.0% 11.2% (7.3%–15.9%)

Eggs N/A 4.0% 2.5% (0.4%–7.5%)

Dairy 24.4% (34.4%) 25.0% 28.7% (24.6%–33.0%)

Fish/shellfish/crustaceans 4.6% (6.5%) 18.0% 5.9% (3.1%–9.4%)

Fruit/vegetables 23.3% (32.8%) 8.0% 28.5% (24.1%–32.6%)

Beverages N/A 3.0% 2.2% (0.3%–6.8%)

Grains N/A 6.0% 3.2% (0.6%–8.8%)

Composite foods N/A 6.0% 3.1% (0.5%–8.8%)

Food handlers, vermin N/A 5.0% 2.9% (0.5%–8.2%)

N/A, not available.
aPopulation attributable fraction from case-control studies.
bRanges within parentheses denote 95% confidence intervals (95%CI).
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Neff,s instead of the total observed number of human cases, Ntotal,s. 
Specifically, a number of cases Nextra,s was added to Ntotal,s as Neff,s 
= Ntotal,s + Nextra,s. Nextra,s was drawn stochastically for every study 
s from a Poisson distribution Nextra,s ~Poisson(λextra,s), where λextra,s, 
was drawn from a vague prior distribution Log

(

�extra,s
)

∼ N(0, 10). 
This allowed the model to fill in the missing reservoirs of each study 
with a proportion informed by the rest of the studies containing the 
corresponding reservoirs in question.

Recent studies are more likely to be up-to-date and so provide 
more relevant information for the current situation. Therefore, we 
gave more weight to the more recent studies by reducing the preci-
sion (� = 1∕�2) of the older studies as follows:

where �hc = 1∕ (2020−year)2, so if the year is 2020, 
then �hc = 1. Thus, Casesl followed the actual number observed in 
a study ObservedCasesl with increasingly less accuracy according 
to study's age. We then checked whether the different models and 
typing methods were predominantly used in older studies, as these 
studies had less influence on the results. However, even after ig-
noring the age of the studies, the effects of the model and typing 
method were minimal.

2.2.2  |  Attribution across transmission routes

For each pathogen, we combined the PAFs of the significant risk fac-
tors from the case-control studies as to group them, where possible, 
according to the transmission pathway (Table  1) and the different 
food groups within the foodborne transmission pathway (Table 2). 
When PAFs were not reported in the study, we calculated them using 
Miettinen's formula (Miettinen, 1974) based on the study-provided 
multivariable ORs (a proxy for relative risks) and prevalence of expo-
sure among cases, as follows:

where pd is the prevalence of exposure to the risk factor among the 
cases. If necessary (i.e. adjusted ORs or pd not available), Levin's for-
mula (Levin, 1953) was used for the calculation of the PAFs, as follows:

where pe is the prevalence of exposure to the risk factor in the overall 
population as obtained from the Dutch National Food Consumption 
Survey (https://www.rivm.nl/en/dutch​-natio​nal-food-consu​mptio​
n-survey) if the risk factors pertained to food consumption, or from 
a continuous population-based survey conducted in the Netherlands 
since 2008 from which the exposure to different risk factors in the 
general population can be derived (Friesema, van Gageldonk-Lafeber 

et  al.,  2015). This provided attribution estimates at the exposure 
level for the five transmission pathways and the 11 food groups, to 
be combined with the estimates from the expert elicitation (Havelaar 
et al., 2008). For Salmonella, STEC O157 and Listeria, the fractions at-
tributable to ‘travel’ as transmission pathway could be derived directly 
from the cases reported to the Dutch national surveillance system 
for infectious diseases, which are published annually by the Dutch 
National Institutes for Public Health and the Environment (RIVM) 
(Vlaanderen et al., 2019).

In a similar way to how the attributions at reservoir level were 
estimated, a Bayesian framework was used in which prior informa-
tion is combined with data to arrive at posterior parameter estimates 
for the fraction of human cases attributable to the different trans-
mission pathways. For the attribution estimates per transmission 
pathway (also for each food group within the foodborne pathway), 
there is a total number of cases per study, Ntotal,s. However, a few of 
them cannot be classified because the set of studied pathways does 
not cover all possible existing transmission pathways. Therefore, the 
number of human cases per pathway reported in a given study s that 
can provide information is Nobserved,s, which is less than Ntotal,s, and 
consequently reduces the accuracy of a study's estimate pq,s (with 
q = 1,…, Qs). Note that q denotes the transmission pathway and Qs, 
the number of studied transmission pathways in study s. Let

where CPobserved is the cumulative probability of a human case being 
attributed to one of the transmission pathways observed in study s 
(note that Qs ≤ Q, the total number of possible transmission pathways). 
Therefore, the total number of cases in study s that can be classified 
into one of the observed transmission pathways can be written as

To account for all existing pathways, we used a hypothetical ef-
fective number of human cases Neffective,s. This effective number is to 
be used in the stochastic process to correctly calculate the posterior 
distributions for all pathways, even for those unmeasured in a study. 
Note that the use of Neffective,s modifies the precision of the esti-
mates. Based on expert elicitation data (Havelaar et al., 2008), we 
inferred the total proportion of all transmission pathways observed 
in a given study s by simply adding the expert-provided fractional 
values of the pathways observed in the study. For this, we used the 
point estimates. Let us consider CPexpert,s, the cumulative proportion 
(from expert opinions) over all transmission pathways that were ob-
served in study s:

Note that attribution estimates from the expert elicitation study 
(Havelaar et al., 2008) were normalized to sum to 1. We can then 
write:

(5)ObservedCasesl ∼ N
(

Casesl , �hc
)

,

(6)PAF = pd

[

(OR − 1)

OR

]

(7)PAF =
pe (OR − 1)

pe (OR − 1) + 1

(8)CPobserved,s = 1 −
[(

1 − p1,s
) (

1 − p2,s
)

…
(

1 − pQs
)]

,

(9)Nobserved,s = CPobserved,s × Ntotal,s

(10)CPexpert,s = p1,expert + p2,expert +⋯ + pQs,expert.

(11)Nobserved,s = CPexpert,s × Neffective,s,

https://www.rivm.nl/en/dutch-national-food-consumption-survey
https://www.rivm.nl/en/dutch-national-food-consumption-survey
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which combined with Equation  (9) provides the effective number of 
cases:

The number of human cases observed within transmission path-
way q in study s is specified as binomially distributed, allowing infer-
ence on the attribution estimate pq,s:

To allow the data on the proportion for the various pathways 
from expert opinions, pq_expert, to provide information on the missing 
pathways per study, we assumed that these contribute to the likeli-
hood as data points drawn from log-normal distributions.

Here, τq_expert is the precision (τ = 1/σ2) attributed to the loga-
rithm of experts’ fractional estimates, which for this study, we have 
arbitrarily set to 1, i.e. experts’ fractional estimates were then as-
sumed to be certain by a factor 1.96 × e ≈ 5 up or down.

Calculations were carried out using Markov Chain Monte Carlo 
(MCMC) sampling. The model was implemented and run in JAGS 
(v4.3) (Plummer,  2003), interfaced with the statistical language R 
(v4.03). Five parallel chains were run for 100,000 iterations with a 
previous burn-in phase of 10,000 iterations, and convergence was 
assessed by visual inspection of the posteriors (mixing of chains). 
The script of the model is available as Data S1.

Ethical approval was not required, as this is a meta-analytical 
modelling study synthesizing data from other published studies. 
Only anonymized, aggregate statistics were available from the pri-
mary studies.

3  |  RESULTS

3.1  |  Descriptive results

3.1.1  |  Studies based on microbial subtyping

Eleven studies based on microbial subtyping passed the screen-
ing: 4 Dutch studies on Campylobacter (Mughini Gras et al., 2013; 
Mughini-Gras et  al.,  2012, 2020; Smid et  al.,  2013), three of 
which used Multilocus Sequence Typing (MLST) data with the 
Asymmetric Island Model (AIM) (Wilson et  al.,  2008) and one 
used core-genome MLST (cgMLST) data with the STRUCTURE 
algorithm (Pritchard et  al.,  2000). These studies provided at-
tributions for a total of 3205 human campylobacteriosis cases 
(in 2002/2003, 2010/2011 and 2018/2019) to nine reservoirs 
(broiler chickens, egg-laying hens, turkeys, beef cattle, dairy 
cattle, pigs, small ruminants [sheep/goats], dogs/pets and wild 
birds/environment). For Salmonella, three Dutch studies were in-
cluded (Mughini-Gras, Enserink, et al., 2014; Mughini-Gras & van 

Pelt, 2014; Vlaanderen et al., 2019), two of which used the modi-
fied Dutch model (Mughini-Gras, Smid, et al., 2014) and one used 
both the modified Dutch and modified Hald (Mullner et al., 2009) 
models based on serotyping data. These studies provided attri-
butions for a total of 39,174 human salmonellosis cases (during 
2002–2018) to five reservoirs (broiler chickens, egg-laying hens, 
beef cattle, pigs and reptile pets). For STEC O157, only one Dutch 
study was available (Mughini-Gras et  al.,  2018), which used O-
serotyping data with both the modified Dutch and modified Hald 
models to attribute 321 human STEC O157 cases (during 2010–
2014) to four reservoirs (broiler chickens, beef cattle, pigs and 
small ruminants). For Listeria, there was no Dutch study available 
on source attribution based on microbial subtyping. Therefore, 
we included three other European studies, one conducted in the 
United Kingdom (UK) in 2004–2007 based on sero-AFLP typing 
data (Little et al., 2010), one in Northern Italy in 2005–2016 based 
on MLST and Multi-Virulence-Locus Sequence Typing (Filipello 
et al., 2020) and one in eleven European countries in 2010–2011 
using different MLST and cgMLST schemes (Nielsen et al., 2017). 
These studies provided attributions for 1115 human cases to eight 
reservoirs (broiler chickens, turkeys, beef cattle, dairy cattle, small 
ruminants, pigs, fish/shellfish and other/unknown).

3.1.2  |  Case-control studies

Five case-control studies were identified, one for Campylobacter 
(Doorduyn et al., 2010), two for Salmonella (Doorduyn et al., 2006; 
Mughini-Gras, Enserink, et  al.,  2014), one for STEC O157 
(Mughini-Gras et al., 2018) and one for Listeria (Friesema, Kuiling, 
et  al.,  2015). The study on Campylobacter, conducted in 2002–
2003, included 1315 C. jejuni and 121 C. coli cases and 3409 
frequency-matched controls and provided PAFs for 18 significant 
risk factors from multivariable analysis (Doorduyn et  al.,  2010). 
The two studies on Salmonella were based on comparable data 
from 2002 to 2003, but one of the two studies (Mughini-Gras, 
Enserink, et  al.,  2014) also included Salmonella serotypes other 
than Typhimurium and Enteritidis, which were the focus of the 
other study (Doorduyn et  al.,  2006). In total, they included 414 
human cases and 3165 frequency-matched controls and provided 
PAFs for 16 significant risk factors from multivariable analysis. 
The study on STEC O157, conducted in 2010–2014, included 342 
STEC cases and 2260 controls and provided ORs (from which PAFs 
could be derived) for five risk factors from multivariable analy-
sis (Mughini-Gras et  al.,  2018). The study on Listeria (Friesema, 
Kuiling, et al., 2015), however, did not identify any significant risk 
factor other than underlying chronic diseases, so it could not be 
used for the purposes of source attribution. We therefore used 
the pooled ORs of a recent systematic review and meta-analysis of 
case-control studies for human listeriosis (Leclercq et al., 2020) to 
calculate unnormalized PAFs using Levin's formula and the preva-
lence of exposure p obtained from the population-based surveys 
mentioned in section 2.2.2.

(12)Neffective,s =
(

CPobserved,s∕CPexpert,s

)

× Ntotal,s

(13)Nobserved,q,s ∼ Binomial(Neffective,s, pq,s)

(14)Log(pq_expert) ∼ N(Log(pq), �q_expert).
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3.1.3  |  Attribution estimates at the reservoir level

Figure 1a shows the fractions of human campylobacteriosis cases attrib-
utable to the different reservoirs projected by combining the estimates 
from the four studies based on microbial subtyping. The main reservoir 
was estimated to be chicken, accounting for 38.9% (95%CI 35.9%–
42.0%) of human cases, followed by dogs and cats (15.4%, 95%CI 
13.0%–17.8%), beef cattle (10.4%, 95%CI 8.8%–12.0%), dairy cattle 
(11.2%, 95%CI 8.9%–13.9%), turkeys (6.9%, 95%CI 4.9%–9.1%), laying 
hens (6.3%, 95%CI 4.4%–8.5%), small ruminants (3.7%, 95%CI 2.7%–
4.8%) and pigs (0.8%, 0.2%–1.7%), while 6.4% (95%CI 5.2%–7.7%) of 
cases was attributed to the environment and other (unknown) sources.

For Salmonella (Figure 1b), the most important reservoirs were pigs 
(41.6%, 95%CI 40.8%–42.4%) and laying hens (34.2%, 95%CI 33.4%–
35.0%), followed by chickens (10.4%, 95%CI 9.8%–11.1%), reptile pets 
(8.4%, 95%CI 7.7%–9.1%) and cattle (5.4%, 95%CI 4.8%–6.1%).

For Listeria (Figure 1c), most cases were attributed to dairy cattle 
(30.6%, 95%CI 24.7%–34.9%), followed by small ruminants (11.1%, 
95%CI 7.4%–15.0%), pigs (10.0%, 95CI 7.2%–12.7%), fish/shellfish 

(8.1%, 95%CI 5.6%–10.9%), chickens (7.2%, 95%CI 4.7%–9.8%), tur-
keys (3.6%, 95%CI 0.0%–20.9%) and beef cattle (0.6%, 95%CI 0.0%–
3.4%), whereas 28.5% (95%CI 22.8%–33.1%) of the cases could not 
be attributed to any of the sources included in the studies.

For STEC O157 (Figure 1d), cattle were estimated to be the most 
important reservoir, accounting for 71.9% (95%CI 62.6%–81.8%) of 
human cases, followed by small ruminants (20.7%, 95%CI 14.0%–
27.6%), pigs (6.3%, 95%CI 0.0%–14.1%) and chickens (1.0%, 95%CI 
0.0%–6.8%).

Most of the variability in the attributions at reservoir level was 
accounted for by the typing method for Campylobacter and Listeria, 
although generally the variability was limited (Figures S1 and S2).

3.1.4  |  Attribution estimates for the different 
transmission pathways

For all the pathogens, the primary transmission pathways were es-
timated to be food, with attributions ranging from 78.7% (Listeria) 

F I G U R E  1  Distribution of the attribution estimates at the reservoir level for (a) Campylobacter, (b) nontyphoidal Salmonella spp. (c) Listeria 
monocytogenes and (d) STEC O157, based on microbial subtyping data
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to 46.2% (Salmonella) (Table  1). Travel came next (from 30.0% for 
Salmonella to 7.2% for Listeria), followed by the environmental path-
way (from 14.6% for Campylobacter to 5.3% for Listeria). Direct con-
tact with animals appeared to be most important for STEC (18.5%) 
and person-to-person transmission for Salmonella (11.1%).

3.1.5  |  Attribution estimates for the foodborne 
transmission pathway

Within the foodborne transmission pathway, Campylobacter infec-
tions were mainly attributed to poultry meat (48.8%) and beef/
lamb (19.5%) (Table  2). For Salmonella, pork (21.8%), eggs (15.4%) 
and poultry meat (13.2%) were the main attributable sources of 
foodborne transmission. Beef/lamb accounted for most of STEC 
foodborne transmission (65.0%), while dairy products and vegeta-
bles accounted for most of foodborne Listeria infections (28.7% and 
28.5% respectively) (Table 2).

4  |  DISCUSSION

We presented a statistical model within a Bayesian framework to 
generate attribution estimates, either at the reservoir or transmis-
sion pathway level, for sporadic infection with zoonotic pathogens 
as derived from studies based on microbiological and epidemiologi-
cal methods. This approach offers the opportunity to blend the re-
sults of different (and usually less comprehensive) studies. Individual 
source attribution studies based on empirical data that provide es-
timates broken down by reservoir, transmission pathway and (food) 
subgroups therein at the same resolution as only an expert elicita-
tion can offer, are not available. Our approach therefore provides an 
alternative to capitalize on the availability of multiple (yet inevitably 
incomplete) small-scale studies.

Looking at the attribution estimates, these are biologically plau-
sible. The pathogens can be grouped in several categories with re-
spect to their reservoirs, transmission pathways or food groups. For 
instance, all four pathogens can be transmitted by multiple path-
ways, but they are predominantly foodborne, with Campylobacter 
being mostly attributable to the chicken reservoir, Salmonella to pigs 
and Listeria and STEC O157 to cattle. Food-wise, the attributions 
largely reflected those at reservoir level. For Salmonella, about half 
of the attributions at reservoir level for pigs (41%) and layers (34%) 
was attributed to the respective food groups, i.e. pork (22%) and 
eggs (15%), highlighting the role of other sources. For STEC O157, a 
relatively large contribution of the environmental pathway was es-
timated (15%). A study on the spatial epidemiology of STEC O157 
in the Netherlands (Mulder et  al.,  2021) found that living in areas 
with high levels of exposure to small ruminants is associated with in-
creased incidence of human STEC O157 infections, suggesting that 
environmental exposure to small ruminants is a significant risk factor 
for STEC O157. Also, for Campylobacter, a relatively large attribution 
to the environmental transmission pathway was estimated (15%). 

Contamination of surface water with Campylobacter is widespread 
in the Netherlands and mostly concerns wild bird-associated strains 
(Mulder et al., 2020). However, the contribution of poultry to sur-
face water contamination with Campylobacter has been found to be 
associated with the magnitude of poultry production (Mughini-Gras, 
Penny, et al., 2016; Mulder et al., 2020).

While results may be expected to vary over countries due to 
differences in food production and consumption patterns, these es-
timates are consistent with the general knowledge on these patho-
gens. Except perhaps for Listeria, which calculations were based 
on data from other European countries, our results pertain to the 
Netherlands and should not be expected to be like those in other 
countries, especially countries outside Europe characterized by the 
frequent occurrence of foodborne outbreaks linked to products 
that are hardly ever implicated as sources in the Netherlands and 
other European countries, such as vegetables and grains among 
others. This is, for example, the case of the USA where generally 
larger numbers of foodborne outbreaks are reported, most of which 
being linked to fresh produce (https://www.cdc.gov/foods​afety/​
outbr​eaks/multi​state​-outbr​eaks/outbr​eaks-list.html). Accordingly, 
in the USA, experts tend to attribute a far greater role to produce 
(Hoffmann et  al.,  2007). The attributions to some ‘rare’ sources 
tended to shrink as compared to the expert estimates, as these 
estimates were probably influenced by the considerable (media) 
attention that outbreaks usually receive, whereas the attributions 
reported here pertain to the sporadic cases, which are less likely to 
make the news. An example are the sources that experts are inclined 
to consider important due to some outbreaks that sparkled inter-
est in past years, such as some campylobacteriosis outbreaks linked 
to unpasteurized dairy (Heuvelink et al., 2009; Kenyon et al., 2020; 
MMWR, 2013), although it is now clearer that campylobacteriosis is 
mostly sporadic and that those outbreaks were more an exception 
than a rule. That is probably why the attribution for Campylobacter to 
dairy decreased compared to the expert elicitation.

Our approach was also able to capture trends in the attributions 
by downweighing the importance of older studies. This is exemplified 
by the attributions of Salmonella to pork and eggs at the exposure 
level. Indeed, the expert elicitation was performed in a period (2008) 
in which the most frequently isolated Salmonella serovar from human 
cases was Enteritidis, a serovar strongly associated with laying hens 
(Mughini-Gras, Smid, et al., 2014) and therefore mostly transmitted 
with eggs (Doorduyn et al., 2006), followed by serovar Typhimurium, 
associated with pigs (Mughini-Gras, Smid, et al., 2014). However, over 
the years, Enteritidis has decreased spectacularly in the Netherlands 
and other European countries, whereas Typhimurium and its mono-
phasic variant have increased (Mughini-Gras, Heck, et  al.,  2016; 
Mughini-Gras, Smid, et  al., 2014). Since 2011, Enteritidis is no lon-
ger the primary serovar, meaning that laying hens are nowadays no 
longer the primary reservoir and that pigs have taken the first place. 
Therefore, the attribution estimates now better reflect the current 
situation. In general, the synthetized attribution estimates were more 
similar to those of the original studies than the expert elicitation. 
This was particularly evident for the Campylobacter attribution to 

https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html
https://www.cdc.gov/foodsafety/outbreaks/multistate-outbreaks/outbreaks-list.html
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food as transmission pathway, which increased in importance, par-
ticularly for beef/lamb as food product. Accordingly, recent studies 
have highlighted a more prominent role of cattle as source of human 
campylobacteriosis (Mughini-Gras et al., 2020; Thepault et al., 2018). 
For Salmonella, the contribution of travel gained importance as com-
pared to expert estimates, which agrees in magnitude with recent 
findings of a significant drop in notified (travel-related) salmonellosis 
cases during the COVID-19 pandemic as a result of travel restrictions 
(Mughini-Gras et al., 2021). Conversely, Listeria attribution to travel 
decreased compared to expert estimates, which seems to better 
reflect the reality since contrary to salmonellosis, listeriosis did not 
seem to be affected by travel restrictions during the COVID-19 pan-
demic (Benincà et al., 2021).

The attributions are estimated separately for the reservoirs, the 
transmission pathways, and the exposures within the foodborne 
pathway; thus, they provide separate pictures of the relative con-
tributions of different sources at defined points in the transmission 
chain, without inferring a (quantitative) relationship between these 
points. Another limitation is intrinsic in the datasets used, as no em-
pirical study is as comprehensive and complete (in terms of number 
and resolution of the sources) as an expert elicitation. This means 
that for some sources, only the estimates from expert elicitations 
are available and cannot be updated with other studies unless these 
become available in the future. Although our method can also be 
used with other types of data (e.g. from original studies, unpub-
lished material, surveys, etc.) than data obtained from the literature 
alone, and a literature review was not in itself the goal of this study, 
the type and quality of the literature search (or data collection in 
general) will define the interpretation of the model outcomes. The 
method presented here may thus be used in other settings (i.e. stud-
ies), provided that the necessary data are collected from the liter-
ature or other sources of information in a way that suits the scope 
of the study in question. Indeed, the data collection phase must be 
tailored to the specific research question, not the method per se, 
and cannot therefore be taken as such from the present study. Yet, 
different research questions can be answered with the method pre-
sented here. While the literature search of this study is not gener-
alizable to other situations as it was meant to fulfil the needs of a 
specific goal (i.e. model development with application to four major 
foodborne pathogens in the Netherlands), it can be amended for the 
purposes of other studies. The same is true for the way the attribu-
tion estimates are presented. For example, for the attributions at the 
exposure level, we used the source categorization defined by the 
expert elicitation available in the country (Havelaar et al., 2008) be-
cause this offered the most complete overview of source categories 
and corresponding attribution estimates. However, this could be dif-
ferent in another setting where it is possible that this categorization 
is inapplicable or the focus of the study is limited to, e.g. the food-
related sources. In that case, both the data collection phase and the 
framework (i.e. categorization of sources) will have to be amended.

In conclusion, we developed a meta-analytical model that com-
bines the attribution results from different studies and provides 
robust, biologically plausible estimates, being a valid solution to 

reach consensus estimates reflecting the available empirical evi-
dence as to inform policy.
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