
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE

“IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE”

A.V.Petrashenko, V.I.Pavlovskyi

DATABASES

PRACTICUM

Recommended by the Methodical Council of Igor Sikorsky Kyiv Polytechnic

Institute as a study guideline for bachelor's degree holders in 121-"Software

Engineering" specialty.

Electronic network educational publication

Kyiv

Igor Sikorsky Kyiv Polytechnic Institute

 2022

2

Reviewer Klyatchenko Y.M., PhD, associate professor,

Igor Sikorsky Kyiv Polytechnic Institute

Responsible

editor

Zabolotnia, T.M., PhD, associate professor,

Igor Sikorsky Kyiv Polytechnic Institute

The classification was provided by the Methodical Council of Igor Sikorsky Kyiv Polytechnic

Institute

(protocol No. 3 dated January 27, 2022)

on the proposal of the Academic Council of the Faculty of Applied Mathematics

(protocol No. 5 dated 12/28/2021)

Andriy Vasylyovych Petrashenko, PhD, associate professor

Volodymyr Ilyich Pavlovsky, PhD, associate professor

DATABASES
PRACTICUM

Databases. Practicum [Electronic resource]: education textbook for students of

specialty 121 – Software engineering. / A.V. Petrashenko, V.I. Pavlovsky; Igor

Sikorsky Kyiv Polytechnic Institute. – Electronic text data (1 file: 3.3 MB). – Kyiv:

Igor Sikorsky Kyiv Polytechnic Institute, 2022. – 124 pp.

The practicum is designed to acquaint students with the methodology of using SQL

language and PostgreSQL database server as the support teaching materials for laboratory works

of the "Databases" discipline. The tutorial provides information on ERD-modelling, SQL

commands syntax and usage as well as on installing PostgreSQL and using it effectively, including

creating and modifying database objects, and the transactions management.

The study guide is intended for full-time students of the specialty 121 - "Software

Engineering" of Applied Mathematics Faculty of Igor Sikorsky Kyiv Polytechnic Institute.

 © A.V.Petrashenko, V.I.Pavlovskyi

©Igor Sikorsky Kyiv Polytechnic Institute, 2022

3

CONTENTS
1 Introduction .. 7

1.1 Basic definitions ... 7

1.2 Database life cycle ... 8

2 Database Modeling ... 11

2.1 Entity-Relational Diagrams (ERD) ... 11

2.1.1 Example of Entity-Relationship Diagram .. 14

2.1.2 The algorithm of translation ERD to relational database schema. 15

2.2 Logical design of database: relational model .. 17

2.2.1 Structural aspect of the relational model 17

2.2.2 The integrity aspect of the relational model................................... 19

2.2.3 Functional aspect of the relational model 23

3 PostgreSQL Data Analysis using SQL Select operator 25

3.1 Syntax of PostgreSQL Select command ... 25

3.2 Other syntax of PostgreSQL select command .. 26

3.3 Examples of Select command in PostgreSQL .. 27

4 Database implementation using PostgreSQL ... 31

4.1 Installing the PostgreSQL .. 32

4.2 Verifying the Installation of PostgreSQL ... 37

4.3 Database design using pgAdmin 4 .. 38

4.3.1 Create Table Example .. 39

4.3.2 Query Tool Example ... 42

4.3.3 pgAdmin 4 ERD Tool ... 43

4.3.4 PostgreSQL – Data Types ... 47

5 Basics of SQL language in PostgreSQL .. 51

5.1 PostgreSQL SELECT examples .. 51

5.1.1 Using PostgreSQL SELECT statement to query data from all

columns of a table example ... 52

5.1.2 Using PostgreSQL SELECT statement with expressions example 53

5.2 PostgreSQL ORDER BY clause .. 53

4

5.2.1 Using PostgreSQL ORDER BY clause to sort rows by one column 54

5.2.2 Using PostgreSQL ORDER BY clause to sort rows by one column in

descending order .. 55

5.2.3 Using PostgreSQL ORDER BY clause to sort rows by multiple

columns ... 56

5.3 PostgreSQL WHERE clause ... 57

5.3.1 Using WHERE clause with the equal (=) operator example 59

5.3.2 Using WHERE clause with the AND operator example 59

5.3.3 Using the WHERE clause with the LIKE operator example 60

5.4 PostgreSQL Joins ... 60

5.4.1 PostgreSQL inner join .. 62

5.4.2 PostgreSQL left join .. 63

5.4.3 PostgreSQL right join ... 64

5.4.4 PostgreSQL full outer join .. 65

5.5 PostgreSQL GROUP BY clause .. 65

5.5.1 Using PostgreSQL GROUP BY without an aggregate function

example ... 66

5.5.2 Using PostgreSQL GROUP BY with SUM() function example 67

5.6 Common Table Expressions .. 68

5.6.1 Recursive Queries ... 69

5.6.2 PostgreSQL recursive queries example (Factorial) 70

5.6.3 A Tree example ... 71

5.7 SQL: Data Manipulation Commands ... 73

5.7.1 PostgreSQL INSERT statement .. 73

5.7.2 INSERT statement examples.. 74

5.8 UPDATE statement .. 75

5.8.1 UPDATE examples .. 76

5.9 DELETE statement ... 77

6 PostgreSQL Schema ... 78

6.1 Creating a Schema ... 78

5

6.2 PostgreSQL Schema Objects ... 79

6.3 PostgreSQL Views .. 80

6.3.1 Views examples .. 80

6.3.2 View example: access restriction ... 81

6.3.3 Updatable & Temporary Views .. 82

6.3.4 Materialized Views .. 82

6.3.5 Materialized Views Example .. 83

6.4 Triggers ... 84

6.5 Indexing .. 87

6.5.1 Types of PostgreSQL Indexes ... 88

6.5.2 PostgreSQL Create Index ... 90

6.5.3 Disadvantages of using the PostgreSQL Indexes 91

7 PL/pgSQL procedural language ... 91

7.1 PL/pgSQL Block Structure ... 92

7.2 Basic examples of functions .. 94

8 SQL EXPLAIN ... 95

8.1 EXPLAIN select example .. 97

8.1.1 EXPLAIN Estimations .. 99

8.1.2 EXPLAIN and Functional Indexes ... 103

8.1.3 EXPLAIN and Partial indexes .. 103

9 Table Scan Modes and Joins .. 104

9.1 Sequential Scan ... 105

9.2 Index Scan .. 106

9.3 Index Only Scan .. 106

9.4 Bitmap Scan ... 107

9.5 Joins implementation ... 110

9.5.1 Nested Loop Join .. 110

9.5.2 Hash Join .. 111

9.5.3 Merge Join .. 112

10 Transactions and Concurrency Control .. 114

6

10.1 States of Transactions .. 114

10.2 ACID: Properties of Transaction ... 116

10.3 Transaction Isolation Levels (Phenomena) ... 117

10.3.1 Black and White Example ... 118

10.4 Four Isolation Levels ... 121

10.5 Schedule (Serialization) ... 122

10.5.1 Concurrency Control .. 122

10.5.2 Concurrency Control techniques ... 122

REFERENCES ... 124

7

 Introduction

The history of modern databases dates back to the 1960s, which developed

almost simultaneously with many other software development technologies,

such as high-level programming languages, operating systems, algorithms and

data structures, etc. In the 1970s, the scope of database applications expanded

significantly, so there was a need to develop an appropriate scientific basis

capable of systematizing tasks that rely on databases, on the one hand, and on

the other hand, providing developers with the opportunity to build universal

software tools that can be used in in various subject areas. Among the typical

tasks solved with the help of databases, the following can be distinguished:

reliable storage and maintenance of the integrity of the data of the subject field,

filtering, sorting and grouping of data, continuous and simultaneous access to

data by many users and others. At the same time, an extremely important aspect

of the scientific basis of database development is the data model - an abstract

presentation of formalized data structures describing the subject field, their

relationships, as well as operations that are allowed to be performed on these

data structures. During its development, several interesting data models have

been proposed, including hierarchical, network, and object-oriented, but the

most successful, which has been in use for almost half a century, is the relational

model developed by Edgar Codd in the late 1960s. It is worth noting that the vast

majority of modern database management systems (DBMS), such as Oracle,

PostgreSQL, MySQL, MS SQL Server, etc., are based on the ideas proposed in the

relational model.

Thus, the purpose of this cycle of laboratory work is to acquire basic knowledge

and skills in designing, developing and maintaining the functioning of modern

relational databases.

 Basic definitions

Database (DB) is a named set of interconnected data of a certain subject area or

a domain. The subject area can be almost any sphere of human activity: business,

education, science, public administration, etc. For example, a database of a

university, a trading company, a ministry of social policy, a register of real estate,

etc. As a rule, solving the problems of effective use of the database relies on the

database management system (DBMS). A DBMS is a set of language and software

tools designed for joint maintenance (input, modification, filtering, sorting, etc.)

8

of a database by many users at the same time. Examples of DBMS are PostgreSQL,

Oracle, MS SQL Server, redis, MongoDB, etc. The DBMS's ability to process data

from various subject areas is ensured by the availability of a universal formal

(mathematical) representation of information - a data model. The data model

makes it possible to separate the most essential aspects of the subject field by

defining its meaningful objects (entities) and the connections between them, as

well as to determine restrictions and basic operations on given objects. Examples

of the database model are relational (object - relation, operations - union,

intersection, Cartesian product, and others), hierarchical (in particular, based on

the XML language family), object-oriented (based on the principles of object -

oriented programming). as well as define restrictions and basic operations on

given objects. Examples of the database model are relational (object - relation,

operations - union, intersection, Cartesian product, and others), hierarchical (in

particular, based on the XML language family), object-oriented (based on the

principles of object -oriented programming). as well as define restrictions and

basic operations on given objects. Examples of the database model are relational

(object - relation, operations - union, intersection, Cartesian product, and

others), hierarchical (in particular, based on the XML language family), object-

oriented (based on the principles of object -oriented programming).

 Database life cycle

In software engineering, the life cycle of an information system (system

development life cycle) is considered as a sequence of clearly defined steps:

planning, analysis, design, implementation, testing and operation. The database,

as a rule, is part of the information system and has its own specific interpretation

of the specified stages.

1. Database planning. At this stage, they develop a generalized plan for the

development and integration of the database into the existing information

infrastructure of the organization: they determine the technical requirements

and scope of work, methods of data collection, the cost of the project, as well as

documentation requirements. For example, a class schedule database should be

added to the information infrastructure of the university. Therefore, it is

important to combine this database with the database of student performance

evaluations, the database of the personnel department and other university

systems.

9

2. Analysis of database requirements. At this stage, the planned volumes of data,

what is planned to be stored in the database, the number of users who will have

access to the data at the same time, and scaling methods in case of increased

server load are determined. For example, for the class schedule database, it is

important to analyze the server load at peak times, in particular, at the beginning

of the semester, which index structures should be developed, how much

memory, processor time, etc. are needed.

3. Database design. This stage aims to determine the data to be stored in the

database and the relationships between them, or in other words, the transition

from informal description by a person to a formal representation in a computer.

Typically, this work is done by a database designer along with a subject matter

expert. The first knows how to submit data in a computer, and the second knows

the specifics of the subject area. Structuring data in the form of a certain model

is the main goal of database design. According to the level of structuring, the

following will be distinguished:

unstructured data (scanned documents, presentations, spreadsheets,

multimedia data, text messages, geolocation data, etc.) – data that do not have a

clearly defined model, data types;

semi structured data (Web pages, XML, CSV and JSON documents, etc.) – have a

certain level of data organization, but transferring them to a database with a

defined model is complicated;

structured data (data of relational tables in the database) - have a formal

structure, in particular, a defined data type, for example, a number, string, time

stamp, and others. Having a data type allows you to most efficiently perform

operations such as searching, sorting, and grouping data.

To solve the problem of data structuring, the following stages of database design

are performed, which ensure a step-by-step transition from the customer's

informal ideas to the presentation of the database in a specific DBMS with defined

technical and non-technical requirements.

3.1. Conceptual design. At the same time, graphical information and logical

models are used, which allow to perform a primary analysis of the subject area in

order to highlight the main entities and their relationships. The most widespread

model is considered to be "Entity-connection". Its main characteristics are the

simplicity of graphical interpretation of the subject area and the possibility of

automated conversion to models used in modern DBMSs. For an example of a

10

class schedule database, you can select "Semester", "Group", "Day of the week",

"Subject" as an entity. Connections exist between subject and group, semester

and day of the week, etc.

3.2. Logical design makes it possible to move from a generalized, somewhat

abstract representation of a database to a data model specific to a particular

DBMS, most often a relational one. This design stage is characterized by the

specification of the concept of an entity, when its attribute is set to a data type,

and various types of relationships between entities (one-to-one, one-to-many,

and many-to-many) are implemented in the form of database tables. A special

aspect of logical design for a relational model is normalization - an iterative

process of overcoming the so-called harmful redundancy of data.

3.3. Physical design is intended for the organization of efficient database storage

on physical media, as well as ensuring competitive access of a large number of

database users.

The implementation of the database with the help of the existing means of

operating systems, application and system software consists in the preparation

of information carriers, the creation of the necessary requests to the database,

the development of server procedures for data processing, the development of a

software and visual interface for user interaction with the database, as well as

ensuring control user access to the database in accordance with their functional

powers.

4. Database testing consists in checking the compliance of the developed

database structure with the real subject area and specifications, controlling the

relationships between tables, evaluating the system's performance and its ability

to scale if necessary. Testing takes place both directly by potential users of the

database and with the help of special software that evaluates various

characteristics of the database server.

5. The operation of the database includes monitoring the performance of

executing user requests, maintaining and analyzing logs of the operation of

various subsystems related to the operation of the DBMS, monitoring the

information security of the database, in particular, preventing unauthorized

access to it, as well as managing the storage of information on appropriate media

and periodic backup of the database.

11

 Database Modeling

 Entity-Relational Diagrams (ERD)

The main goal of the database design stage is the formalization of data and their

relationships in the subject area under consideration. The first stage of

formalization or the transition from unstructured to structured data is the

presentation of information in the form of one of the so-called information-

logical models. The most used among such models is "entity-relationship" (ER,

entity-relationship). It allows you to define the main entities, connections

between entities and their attributes in an intuitively understandable graphic

form. It should be noted that an important advantage of this model is the

possibility of automatic transformation into a scheme of a real database, in

particular, a relational one.

So, the entity-relationship model consists of the following elements.

1. An entity that describes a real or imaginary class of objects in the subject field.

For example, a student, a book, a computer, an order, etc. An instance of an entity

is a specific representative of a class of objects, for example, student

"Dmytrenko", book "C++", computer "Model M1", order "N321", etc. Graphically,

the entity is indicated by a rectangle:

1.1. A weak entity, instances of which cannot exist in the subject field

independently, but require the presence of another entity on which the given

depends. For example, the entity "order item" cannot exist without the entity

"order", "blog post" cannot exist without its author. It is indicated by a rectangle

with a double border.

2. An attribute that defines a certain characteristic of an entity. For example, in

the Student entity, the attributes are "record book number", "surname", "date of

birth", etc. Graphically, the attribute is denoted as an oval:

12

In some specific cases, different types of attributes are used:

2.1. A key attribute intended to uniquely identify a specific instance of an entity.

For example, the "Number of the student's record book" or "VIN number of the

car". Note that any entity must have a key attribute or, in the case of a composite

key, key attributes. It is graphically represented as a normal attribute with an

underlined name:

2.2. A derived attribute that is intended to represent an entity characteristic

whose value depends on another attribute, such as the "discount price" of an

item, is calculated based on the "base price" and "discount". It should be noted

that saving derived attributes in databases is impractical in most cases, as it leads

to saving redundant information. It is graphically displayed as follows:

2.3. A composite (composite) attribute defines a complex characteristic of an

entity, which also consists of a group of other attributes. An example of a

composite attribute is an address consisting of a city, a street, a house number,

and an apartment. It is graphically indicated as follows:

2.4. A multivalued attribute displays characteristics that can have multiple values

at the same time, for example, a person can have multiple email addresses or

phone numbers. This attribute is denoted as follows:

13

3. Connection between entities determines the degree of their relationship. The

most common type of relationship is binary, which connects two entities. A

connection is denoted as a rhombus connecting two entities with lines and, like

entities, can have its own attributes. For example, the relation "sold" between

the entities Seller and Buyer can have the attributes "Sold Date" and "Item

Name". The following figure graphically illustrates this:

3.1. The cardinality of relationships is an important quantitative characteristic of

the ratio of instances of entities. The following types of connections are

distinguished:

1:1- to each other

1:N- one to many

N:M- many to many

Graphically, the cardinality of connections is indicated by a special sign next to

the end of the line:

At the same time, in the case when the connection is not mandatory, the symbol

"0" is set. Similar special signs must be placed on both sides of the line as in the

example:

14

Such a scheme should be read as follows: "each user of the site has one profile

and each profile on the site corresponds to exactly one user." The following

example illustrates a one-to-many relationship:

At the same time, the educational building necessarily contains one or more

classrooms, and one classroom is contained in one and only one building.

An example of using a many-to-many (N:M) relationship is illustrated in the

following figure:

In the picture: one sports team participates in several competitions and several

teams participate in one competition.

 Example of Entity-Relationship Diagram

The idea of an example is to create a conceptual model of data for polling

application. The idea is to store user accounts of two types: administrators and

regular users. Administrators can create a poll, enter some questions and

possible options. On the other hand, regular users can enter answers to these

questions.

15

Figure 2.1 Polling ERD

The diagram at the Figure 2.1 has four entities: users, questions, options and

answers. There are some relationships between them. For example, users can

select options to the questions. There are also some different types of cardinality:

1:N and N:M.

 The algorithm of translation ERD to relational database schema

Since ER diagram gives us the good knowledge about the requirement and the

mapping of the entities in it, we can easily convert them as tables and columns.

i.e.; using ER diagrams one can easily create relational data model, which nothing

but the logical view of the database.

Follow the steps given below for the conversion of the ER diagrams to tables in

the database management system (DBMS).

Step 1 − Conversion of strong entities

For each strong entity create a separate table with the same name.

Includes all attributes, if there is any composite attribute divided into simple

attributes and has to be included. Ignore multivalued attributes at this stage.

Select the primary key for the table.

Step 2 − Conversion of weak entity

16

For each weak entity create a separate table with the same name. Include all

attributes. Include the primary key of a strong entity as foreign key is the weak

entity. Declare the combination of foreign key and decimator attribute as P key

from the weak entity.

Step 3 − Conversion of one-to-one relationship

For each one to one relation, say A and B modify either A side or B side to include

the primary key of the other side as a foreign key. If A or B is having total

participation, then that should be a modified table. If a relationship consists of

attributes, include them also in the modified table.

Step 4 − Conversion of one-to-many relationship

For each one to many relationships, modify the M side to include the primary key

of one side as a foreign key. If relationships consist of attributes, include them as

well.

Step 5 − Conversion of many-many relationship

For each many-many relationship, create a separate table including the primary

key of M side and N side as foreign keys in the new table. Declare the combination

of foreign keys as P for the new table. If relationships consist of attributes, include

them also in the new table.

Step 6 − Conversion of multivalued attributes

For each multivalued attribute create a separate table and include the primary

key of the present table as foreign key. Declare the combination of foreign key

and multivalued attribute as primary keys.

Step 7 − Conversion of n-ary relationship

For each n-ary relationship create a separate table and include the primary key

of all entities as foreign key. Declare the combination of foreign keys as primary

key.

Let’s consider the ER diagram from the Figure 2.1.

The basic rule for converting the ER diagrams into tables is to convert all the

Entities in the diagram to tables.

17

All the entities represented in the rectangular box in the ER diagram become

independent tables in the database. In the diagram, USERS, QUESTIONS and

OPTIONS forms individual tables.

All single valued attributes of an entity are converted to a column of the table.

All the attributes, whose value at any instance of time is unique, are considered

as columns of that table. In the USER Entity, name forms the columns of USER

table. Similarly, Title form the columns of QUESTIONS table. And so on.

Key attribute in the ER diagram becomes the Primary key of the table.

In diagram above, User_id, Question_Id and Option_id are the key attributes of

the entities. Hence, we consider them as the primary keys of respective table.

 Logical design of database: relational model

The relational model is built on the basis of set theory and the theory of relational

databases specially developed by E. Codd in the 1970s. The model considers

three aspects of the data:

structural, which describes the model object, its composition and properties;

integrity, which sets the rules and limitations of data use;

functional, which defines a certain set of operations on the model object.

 Structural aspect of the relational model

The main object of the relational model is called a relation. A relation is defined

as a subset of the Cartesian product. In turn, the Cartesian product D1×D2×,

…,×Dn for given finite sets D1, D2, …, Dn (not necessarily different) is called the

set of products of the form d1×d2×…×dn, where n > 0, d1 ∈ D1, d2 ∈ D2,...dn ∈ Dn.

Sets D1, D2, ..., Dn are called domains. Let us give an example of a Cartesian

product. Let two sets D1 = {1,2,3} and D2 = {a,b} be given, then the Cartesian

product of D will be:

D = D1×D2 = (1×a, 1×b, 2×a, 2×b, 3×a, 3×b).

Therefore, the relation defined on the sets D1, D2, ..., Dn is a subset D1×D2×,

...,×Dn. For the given example, the ratios are (1×a, 3×a), (2×a), (1×a, 1×b, 2×a, 2×b),

(1×a, 1×b, 2× a, 2×b, 3×a, 3×b), Ø and others. It should be noted that the empty set

Ø is also a correct relation.

18

Tuple is an element of the Cartesian product. The number n (the number of

domains) determines the degree of the relation, and the number of tuples is

called the cardinal number or power of the relation. In the example, the tuples

are 1×a, 1×b, 2×a, etc., the degree of the relation is 2, and the power is 6 = 2×3,

where 2 is the number of elements in D1 and 3 is the number of elements in D2.

Domains play a special role in this regard. They define a certain set of values of

the same type. In practice, a domain is defined as: a list of valid values, a range of

values, or some function. Domains have a similar purpose to data types in

programming languages: they define valid operations on data and allow them to

be compared.

Visually, it is convenient to present the relationship in tabular form, where the

columns correspond to the value of the tuple element from the corresponding

domain and are called attributes, and the rows are tuples. For the example above,

the tabular representation of the Cartesian product will have the following form:

1 a

1 b

2 a

2 b

3 a

3 b

In practice, the tabular representation of the relation contains a special first row

- the relation header, where each of its values determines the name of the

corresponding attribute, and the data of this column belongs to a certain domain.

For example, in the relation "Movie", the attributes are the name of the film

(domain - string), the director's last name (domain - string), the year of release

(domain - integer), and the duration of the tape (domain - integer):

The name of the movie
Director's last

name
Year of release

Duration
(min)

Star Wars. Episode IV:
New Hope

George Lucas 1977 121

Joker Todd Phillips 2019 123

Aladdin Guy Ritchie 2019 128

19

Based on the above, the following properties of the relation follow.

1. The absence of identical tuples, which is a consequence of defining a relation

as a set of tuples, and elements in a set cannot be repeated.

2. Lack of ordering of tuples, which also follows from the multiple nature of the

relation: the elements of sets in mathematics are not ordered.

3. Atomicity of attribute values, which is a consequence of defining the domain

as a set of atomic values of a certain set. This means that the relation at the

intersection of a column and a row is allowed to have only one value, and not a

list of them. For example, according to the rules of the subject field, in relation

"Book" each instance can have several authors, but it is forbidden to write them

in one cell in the relational model:

Book The authors

The C
Programming

language

B. Kernighan, D.
Ritchie

From the point of view of the relational model, the following relation will be

correct:

Book The authors

The C
Programming

language
B. Kernigan

The C
Programming

language
D. Ritchie

In this version, the "Authors" attribute contains only one last name in each cell.

4. The absence of ordering of attributes means that the position of data elements

(values) in a tuple is arbitrary and does not affect the content of the tuple,

provided that the order of attributes in all tuples is the same. In practice, this

means that the columns of the relation can be rearranged in any way.

 The integrity aspect of the relational model

In the context of the relational model, integrity means the correctness of the data

after the operation of modifying, extracting and inserting data into the relation.

From a practical point of view, integrity safeguards provide protection against

20

violations of certain domain rules and restrictions. Integrity is ensured by the

following types of constraints.

Structural: a relational DBMS is capable of processing only relational relations

that have the properties discussed above, in particular, regarding the uniqueness

of tuples. The uniqueness of tuples is ensured by the presence of a primary key: a

specially selected minimum possible set of relation attributes that uniquely

identify each tuple and also do not contain empty (NULL) values. For example, for

the relationship "Book" with the attributes "title", "author's last name", "genre",

"number of pages", the primary key can be "title" in the event that the database

knows in advance that there will be no identical book titles. Otherwise, you

should choose "title" and "author's last name". If two books of the same author

with the same title are allowed (for example, with the release of a new edition),

then the attribute "number of pages" should be added to the primary key.

When there are too many attributes in the primary key (usually more than two or

three), then a separate attribute is artificially added to the relationship - the so-

called surrogate key. It usually has a numeric data type (domain), its values are

automatically generated by the DBMS as unique and, as a result, each tuple

regardless of the values of the remaining attributes will be unique. However,

surrogate keys should be used with caution and only in the case of the

impracticality of choosing "natural" attributes, as this leads to the actual loss of

control over the data. For example, for the "Book" relation in question, it will be

possible to enter more than one book with completely identical data (except for

the value of the surrogate key), which will lead to negative consequences of

working with the data. It should be remembered that each relationship must

have a primary key. then they artificially add a separate attribute to the

relationship - the so-called surrogate key. It usually has a numeric data type

(domain), its values are automatically generated by the DBMS as unique and, as

a result, each tuple regardless of the values of the remaining attributes will be

unique. However, surrogate keys should be used with caution and only in the

case of the impracticality of choosing "natural" attributes, as this leads to the

actual loss of control over the data. For example, for the "Book" relation in

question, it will be possible to enter more than one book with completely

identical data (except for the value of the surrogate key), which will lead to

negative consequences of working with the data.

A special value in relational databases is NULL. This value is not the same as the

Boolean "False", the numeric "0", or the empty string. According to the definition

21

of the primary key, the attributes included in it cannot take the value NULL. The

rest of the attributes can receive this value by default (although there is an option

to disallow this possibility by specifying a NOT NULL constraint). In this regard,

logical operations NOT, AND and OR are generally performed in three-digit logic,

where: 1=True, 0.5=NULL, 0=False. At the same time, the calculation of these

functions is performed according to general rules: AND as MIN(a,b), OR as

MAX(a,b) and NOT as 1-a, where a, b are function arguments. For example, 1 AND

NULL = NULL, 0 OR NULL = NULL, 1 OR NULL = 1, NOT(NULL) = NULL. However,

NULL ≠ NULL, and the expression NULL=NULL returns NULL instead of True.

Another type of constraint is referential integrity, which binds two relationships

in a master-child pattern or as a one-to-many relationship, where "one"

corresponds to the master relationship and "many" to the child relationship. At

the same time, for each value of the foreign key defined in the subordinate

relation, there must exist a tuple with the same value of the primary key in the

main relation. In other words, if the child relation is related to the main one by

means of a certain attribute(s), then the value of this attribute(s) must belong to

the set of values of the primary key of the main relation. Let there be two

relations: Group (group code), Student (group code, student code, last name),

where a is the primary key of the corresponding relation, and "group code" is an

attribute of the foreign key. The following figure graphically illustrates this

scheme:

Figure 2.2 Group, Student

Thus, the value of the "Group Code" attribute in the "Student" relationship can

only be KV-01 or KV-02, since no other values are entered in the "Group"

22

relationship. That is why the value of KV-03 is crossed out, illustrating that

entering this value is prohibited.

Linking relations using a foreign key imposes certain restrictions on operations

to modify the values of attributes of the primary key of the main relation, as well

as on extracting tuples of the main relation that have dependent data in the child.

For example, what will happen to tuples of the relation "Student" with student

codes 001 and 003, if the related tuple KV-01 is removed from the relation

"Group"? Or how will changing the name of the KV-02 group in the "Group"

relation affect the tuple of the "Student" relation with the student code 002? To

answer such questions in the relational model, the following options are

provided:

1. In the presence of dependent data in the subordinate relationship, prohibit the

execution of extraction/editing operations in the main relationship.

2a. When performing an extraction operation in the main relation if there is

dependent data in the subordinate relation, extract the cascaded dependent

data in the subordinate relation. For example, removing the tuple "KV-01" from

the "Group" relation will automatically remove the tuples with the student code

001 and 003.

2b. When performing an operation to edit data in the primary key of the main

relation, the data in the corresponding attribute(s) of the subordinate relation

will automatically change. For example, changing the group code KV-02 in the

"Group" relation to KV02, the same changes will occur in the "Student" relation

for the tuple with the student code 002.

3. When performing extraction/editing operations in the main relation (if there is

dependent data in the subordinate relation), set the foreign key attribute to NULL

in the subordinate relation. For example, removing a tuple with the group code

KV-01 from the "Group" relation will automatically set the value NULL to the

attribute group code of the "Student" relation of the tuples with the student code

001 and 003.

The next aspect of integrity is language. At the same time, it is claimed that access

to the data of the relational database occurs only by means of the special SQL

language (structural query language) and cannot be done in any other way. In this

way, the correctness of relational database processing is guaranteed. The SQL

language is covered in the following sections.

23

The final aspect of integrity in the relational model is the semantic or domain

aspect, which allows for domain-specific constraints on relational attribute data.

First of all, it is the domain of an attribute or a certain data type. For example, in

the relation "Student", the attribute student_code refers to the numeric data

type. Other limitations are:

NOT NULL– the prohibition to leave the attribute value empty (performed

unconditionally for primary key attributes).

UNIQUE– attribute value must be unique, i.e. no attribute value can be repeated.

DEFAULT– if the value is not inserted, then automatically substitute the default

value.

CHECK– set an additional limit on the value, for example, in the form of a

comparison on a range, specific values, etc.

 Functional aspect of the relational model

A necessary condition for the existence of a relational model is the functional

aspect, which considers the performance of certain operations on data. At the

same time, operations are built in such a way that their arguments and results

are relations, that is, the model has the property of closure, which in turn

provides the opportunity to build chains of calculations and expand the list of

possible operations. Based on this, basic and derivative operations are

considered.

Table. Basic operations of relational algebra

Name and
operation

designation
Appointment Examples

Sample
or Select (σ)

Filtering tuples in a relation based on a
given condition (predicate):
σpredicate (R), where R is a relation.

σyear > 2016 (Person)
σid = 20 or pages>100

(Book)
σmark = 'A' and stud_id=1

(Mark)

Projection or
Projection
(∏)

Selection of relationship attributes
and removal of duplicate tuples:
Pattr1, . . . , attr(R), where attr1..attrn are
the attributes to be selected, R is the
relation.

∏email, username (User)
∏name (Book)

∏title, comment (Post)

24

Association or
Union (∪)

Union of tuples of two relations,
compatible by the number and types
of the corresponding attributes
(domains):
R ∪ S, where R,S where R and S are
relations.

User U Person
∏city (City) U ∏city

(Capital)

Difference or
Difference or
Minus
(-)

Difference of tuples of relations R and
S: such tuples from R that are not in S.

RS

User – Student

User - σonline(User)

Cartesian
product (X)

The concatenation of each tuple R
with each tuple S:

RXS

User X User

UserX Student X Book

Renaming or
Rename (ρ)

Renaming a relation or its attribute:
ρ(new name, old name)

ρ(School, University)
ρ(Attr, Attribute)

Table. Derivative operations of relational algebra

Name and
operation

designation
Appointment Examples

Natural
connection
orNatural

Join (⋈)

Join is a derived operation from the
Cartesian product, combined with the
sampling operation. A natural join
uses a sample with the condition of
equality of values of attributes shared
by name and domain.

R⋈ S

Product type⋈Goods
Group⋈Student

Intersection
or

Intersection
(∩)

Selection of identical tuples of two
relations, compatible by the number
and types of corresponding attributes
(domains):
R ∩ S, where R,S where R and S are
relations.
Can be expressed through basic
operations:
R ∩ S = R – (R – S)

Product in stock ∩
The product is in the

store

Things for Monday ∩
Things for Tuesday

25

Division or
Division (÷)

For relations R(A,B) and S(B) returns a
from A such that for each b from B
there exists a tuple (a, b) in R. If RXS =
T, then T÷R=S and T÷S =R.
Calculation rules:

1) T1=∏A (R);
2) T2=T1 XS;
3) T3 = T2 – R;
4) T = T1 -∏A (T3)

 PostgreSQL Data Analysis using SQL Select operator

In PostgreSQL, the SELECT command is the core command used to retrieve data

from a database table, and the data is returned in the form of a result table, which

is called result-sets.

The select command contains several clauses that we can use to write a query

easily. The basic task while performing the select command is to query data from

tables within the database.

The various clauses of SELECT command are as follows:

• Sort rows with the help of the ORDER BY clause.

• Group rows into groups using GROUP BY clause

• Filter the rows with the help of the WHERE clause.

• Filter the groups with the help of the HAVING clause.

• Select separate rows with the help of a DISTINCT operator.

• Perform set operations with the help of UNION, INTERSECT, and

EXCEPT.

• Join with other tables with joins such as LEFT JOIN, INNER JOIN,

CROSS JOIN, FULL OUTER JOIN conditions.

 Syntax of PostgreSQL Select command

The SELECT command is used to recover data from a single table.

The syntax of the SELECT command is as follows:

SELECT select_list

26

FROM table_name;

The following are the parameters used in the above syntax:

Parameters Description

Select_list It is used to define a select list which can be a column or a

list of columns in a table from which we want to retrieve the

data

Table_name In this, we will define the name of the table from which we

want to query data.

Note: If we describe a list of columns, we can use a comma to separate between

two columns. If we do not need to select data from all the columns in the table,

we can use an asterisk (*) instead of describing all the column names because the

select list can have the exact values or the expressions.

The SQL language is case insensitive, which means select or SELECT has the

same result.

 Other syntax of PostgreSQL select command

SELECT column1, column2,

……

columnN

FROM table_name;

Here we use the below parameter:

Parameters Description

column1,

column2,….columnN

These are used to describe the columns from

where we retrieve the data.

If we want to retrieve all the fields from the table, we have to use the following

syntax:

27

SELECT * FROM table_name;

 Examples of Select command in PostgreSQL

Here, we will understand the use of Select command in PostgreSQL with the

following examples.

We will use the Employee table for better understanding.

To query data from one column using the SELECT command

In this example, we will find the names of all Employee's from the employee

table with SELECT command's help:

Select name

from "Company".employee;

Output

Once we perform the above query, we will get the below result:

Note:

To separate two SQL statements, we will use the semicolon (;).

28

In this above query, at the end of the select command, we added a semicolon (;).

At this point, the semicolon is not a part of the SQL declaration as it is used to

indicate PostgreSQL the end of an SQL command.

To query data from multiple columns using the SELECT command

If we want to see the data of multiple columns of a particular table, we can

execute the below query.

For example, let us assume that we need to get the employee's name, age,

and address. Therefore, we can define these column names in the SELECT

command as we see in the below query:

select

name,

age,

address

from "Company".employee;

Output

After executing the above command, we will get the below outcome:

To query data in all columns of a table using the Select Command

If we want to get all the columns data in a particular table, we can execute the

below query.

Here, we select all the columns and rows from an employee table under

the Company schema with the below query's help:

AD

29

SELECT

 *

FROM

"Company".employee;

Output

After executing the above query, we will get the following result:

In the above example, we used the (*) asterisk symbol rather than writing all the

column's names in the select command. Sometimes we have n-numbers of

columns in the table, and writing all the column names became a tedious

process.

But sometimes it is not a good process to use the asterisk (*) in the SELECT

command.

If we are using the embedded SQL statements in the code because of the

following reasons:

We have one table with several columns, and it is not necessary to use the SELECT

command with an asterisk (*) shorthand for recovering the data from all columns

of the table.

Besides that, if we retrieve the database's unimportant data, it will enhance the

load between the database and application layers. And the output of our

applications will be less accessible and deliberate. Thus, it is the best approach

to describe the column names openly in the SELECT clause because every time,

it is likely to get only needed data from a table.

30

Using the SELECT command with expressions

In the below example, we will return the full name and address of all the

employee with the help of select command:

SELECT

name AS full_name,

address

FROM

 "Company".employee;

In the above query, we will use a column alias AS full_name to assign a column

heading to the name expression.

Output

After executing the above query, we will get the below result:

31

Using the SELECT command with expressions

Here, we will perform the select command with an expression where we skip

the From clause into the select command, as the command does not refer to any

table.

SELECT 4*2 AS result;

Output

We will get the below output once we execute the above command:

 Database implementation using PostgreSQL

PostgreSQL is one of the most advanced general-purpose object-relational

database management system and is open-source. Being an open-source

software, its source code is available under PostgreSQL license, a liberal open

source license. Anyone with the right skills is free to use, modify, and distribute

PostgreSQL in any form. As it is highly stable, very low effort is required to

maintain this DBMS.

The key features that make PostgreSQL a reliable and user-friendly are listed

below:

• User-defined types

• Table inheritance

• Sophisticated locking mechanism

• Foreign key referential integrity

• Views, rules, subquery

32

• Nested transactions (savepoints)

• Multi-version concurrency control (MVCC)

• Asynchronous replication

• Native Microsoft Windows Server version

• Tablespaces

• Point-in-time recovery

We will be installing PostgreSQL version 11.3 on Windows 10 in this article.

There are three crucial steps for the installation of PostgreSQL as follows:

1. Download PostgreSQL installer for Windows

2. Install PostgreSQL

3. Verify the installation

You can download the latest stable PostgreSQL Installer specific to your Windows

by clicking here.

 Installing the PostgreSQL

After downloading the installer double click on it and follow the below steps:

Step 1: Click the Next button

file:///E:/Andrii/kpi/2022/System%20modelling%20and%20design/guidelines/You%20can%20download%20the%20latest%20stable%20PostgreSQL%20Installer%20specific%20to%20your%20Windows%20by%20clicking%20here

33

Step 2: Choose the installation folder, where you want PostgreSQL to be

installed, and click on Next.

Step 3: Select the components as per your requirement to install and click the

Next button.

34

Step 4: Select the database directory where you want to store the data an click

on Next.

Step 5: Set the password for the database superuser (Postgres)

35

Step 6: Set the port for PostgreSQL. Make sure that no other applications are

using this port. If unsure leave it to its default (5432) and click on Next.

Step 7: Choose the default locale used by the database and click the Next

button.

36

Step 8: Click the Next button to start the installation.

Wait for the installation to complete, it might take a few minutes.

37

Step 9: Click the Finish button to complete the PostgreSQL installation.

 Verifying the Installation of PostgreSQL

There are couple of ways to verify the installation of PostgreSQL like connecting

to the database server using some client applications like pgAdmin or psql.

The quickest way though is to use the psql shell. For that follow the below steps:

Step 1: Search for the psql shell in the windows search bar and open it.

38

Step 2: Enter all the necessary information like the server, database, port,

username, and password and press Enter.

Step 3: Use the command SELECT version(); you will see the following result:

 Database design using pgAdmin 4

pgAdmin 4 a very popular open source platform fully dedicated to PostgreSQL

and has a graphical user interface administration tools to manage your relational

databases. Some features include a query tool for SQL statements and

importing/exporting csv files.

The Entity-Relationship Diagram (ERD) tool is a database design tool that

provides a graphical representation of database tables, columns, and inter-

relationships. ERD can give sufficient information for the database administrator

to follow when developing and maintaining the database. The ERD Tool allows

you to:

- Design and visualize the database tables and their relationships.

- Add notes to the diagram.

- Auto-align the tables and links for cleaner visualization.

- Save the diagram and open it later to continue working on it.

- Generate ready to run SQL from the database design.

- Generate the database diagram for an existing database.

- Drag and drop tables from browser tree to the diagram.

PgAdmin will use your preferred web browser to display a graphical user

interface. You don’t need internet to view local servers. It will prompt you for a

master password every time you open pgAdmin to get access. After getting access

39

click Servers(1) on the left side to open up your PostgreSQL 12 server. If you don’t

see a server, try restarting pgAdmin.

Figure 4.1 Main window of pgAdmin 4 tool.

After you open up your database you’ll get a tree view menu according to the

picture below. You will see a database named postgres. Selecting the database

will bring up an activity dashboard to view traffic information (Figure 4.2).

Figure 4.2 A tree of objects of Postgresql

You have access to useful tools by right-clicking on any object in the tree view

menu. We can create a new database, schema, and tables. As well as viewing

individual table data and customizing an existing table.

 Create Table Example

Let’s create a table by right clicking on Tables and click Table…

40

Figure 4.3 Creation of a table

Give your table a name and then click Columns

Figure 4.4 Entering column data

Click the + symbol to add columns

41

Figure 4.5 Insertion of a column

Name your column, select the data type, and give a length if needed. Then

click Save

Figure 4.6 Saving columns data

42

Now that you have created a table, view it under the Tables object. Right click

and refresh if it didn’t update.

 Query Tool Example

When an object is selected under the database tree view menu, you can click

the Tools tab and click Query Tool. Query tool brings up an editor to execute

SQL statements. You can also right click the database and click Query Tool …

Figure 4.7 A Query tool

A tab called query editor will open up on the right. You can write SQL

statements and click the play button to execute. Your results will show below

the editor on the Data Output tab.

43

Figure 4.8 A query execution results

 pgAdmin 4 ERD Tool

The Entity-Relationship Diagram (ERD) tool is a database design tool that

provides a graphical representation of database tables, columns, and inter-

relationships. ERD can give sufficient information for the database administrator

to follow when developing and maintaining the database. The ERD Tool allows

you to:

- Design and visualize the database tables and their relationships.

- Add notes to the diagram.

- Auto-align the tables and links for cleaner visualization.

- Save the diagram and open it later to continue working on it.

- Generate ready to run SQL from the database design.

- Generate the database diagram for an existing database.

- Drag and drop tables from browser tree to the diagram.

44

Toolbar¶

The ERD Tool toolbar uses context-sensitive icons that provide shortcuts to

frequently performed tasks. The option is enabled for the highlighted icon and is

disabled for the grayed-out icon.

Figure 4.9 ERD toolbar

Hover over an icon on Toolbar to display a tooltip that describes the icon’s

functionality.

Table Dialog

Figure 4.10 Table dialog

The table dialog allows you to:

• Change the table structure details.

• It can be used edit an existing table or add a new one.

• Refer table dialog for information on different fields.

https://www.pgadmin.org/docs/pgadmin4/6.9/erd_tool.html#toolbar

45

Figure 4.11 Table attributes

The table node (Figure 4.11) shows table details in a graphical representation:

• The top bar has a details toggle button that is used to toggle column details

visibility. There is also a note button that is visible only if there is some note

added. you can click on this button to quickly change the note.

• The first row shows the schema name of the table. Eg. public in above

image.

• The second row shows the table name. Eg. users in above image.

• All other rows below the table name are the columns of the table along with

data type. If the column is a primary key then it will have lock key icon eg.

id is the primary key in above image. Otherwise, it will have column icon.

• you can click on the node and drag to move on the canvas.

• Upon double click on the table node or by clicking the edit button from the

toolbar, the table dialog opens where you can change the table details.

Refer table dialog for information on different fields.

46

The One to Many Link Dialog

Figure 4.12 One to many relation

The one to many link dialog allows you to:

• Add a foreign key relationship between two tables.

• Local Table is the table that references a table and has the many end point.

• Local Column the column that references.

• Referenced Table is the table that is being referred and has the one end

point.

• Referenced Column the column that is being referred.

The Many to Many Link Dialog

Figure 4.13 Many to many relation

47

The many to many link dialog allows you to:

• Add a many to many relationship between two tables.

• It creates a relationship tables having columns derived from the two tables

and link them to the tables.

• Left Table is the first table that is to be linked. It will receive

the one endpoint of the link with the new relation table.

• Left Column the column of the first table, that will always be a primary key.

• Right Table is the second table that is to be linked. It will receive

the one endpoint of the link with the new relation table.

• Right Column the column of the second table, that will always be a primary

key.

The Table Link

Figure 4.14 The table link

The table link shows relationship between tables:

• The single line endpoint of the link shows the column that is being referred.

• The three line endpoint of the link shows the column that refers.

• If one of the columns that is being referred or that refers is removed from

the table then the link will get dropped.

• you can click on the link and drag to move on the canvas.

 PostgreSQL – Data Types

The following data types are supported by PostgreSQL:

Boolean

48

Character Types [such as char, varchar, and text]

Numeric Types [such as integer and floating-point number]

Temporal Types [such as date, time, timestamp, and interval]

UUID [for storing UUID (Universally Unique Identifiers)]

Array [for storing array strings, numbers, etc.]

JSON [stores JSON data]

hstore [stores key-value pair]

Special Types [such as network address and geometric data]

Now let’s get an overview of the above-mentioned data types.

Boolean

In PostgreSQL, the “bool” or ”boolean” keyword is used to initialize a Boolean

data type. These data types can hold true, false, and null values. A boolean data

type is stored in the database according to the following:

1, yes, y, t, true values are converted to true

0, no, false, f values are converted to false

When queried for these boolean data types are converted and returned according

to the following:

t to true

f to false

space to null

Characters

PostgreSQL has three character data types namely, CHAR(n), VARCHAR(n),

and TEXT.

CHAR(n) is used for data(string) with a fixed-length of characters with padded

spaces. In case the length of the string is smaller than the value of “n”, then the

rest of the remaining spaces are automatically padded. Similarly for a string with

a length greater than the value of “n”, PostgreSQL throws an error.

49

VARCHAR(n) is the variable-length character string.Similar to CHAR(n), it can store

“n” length data. But unlike CHAR(n) no padding is done in case the data length is

smaller than the value of “n”.

TEXT is the variable-length character string. It can store data with unlimited

length.

Numeric

PostgreSQL has 2 types of numbers namely, integers and floating-point

numbers.

1. Integer

Small integer (SMALLINT) has a range -32, 768 to 32, 767 and has a size of 2-byte.

Integer (INT) has a range -2, 147, 483, 648 to 2, 147, 483, 647 and has a size of 4-

byte.

Serial (SERIAL) works similar to the integers except these are automatically

generated in the columns by PostgreSQL.

Floating-point number

float(n) is used for floating-point numbers with n precision and can have a

maximum of 8-bytes.

float8 or real is used to represent 4-byte floating-point numbers.

A real number N(d,p) meaning with d number of digits and p number of decimal

points after, are part of numeric or numeric(d, p). These are generally very precise.

Temporal data type

This data type is used to store date-time data. PostgreSQL has 5 temporal data

type:

DATE is used to store the dates only.

TIME is used to stores the time of day values.

TIMESTAMP is used to stores both date and time values.

TIMESTAMPTZ is used to store a timezone-aware timestamp data type.

INTERVAL is used to store periods of time.

50

Arrays

In PostgreSQL, an array column can be used to store an array of strings or an array

of integers etc. It can be handy when storing data likes storing days of months, a

year, or even a week, etc.

JSON

PostgreSQL supports 2 types of JSON types namely JSON and JSONB(Binary

JSON). The JSON data type is used to store plain JSON data that get parsed every

time it’s called by a query. Whereas the JSONB data type is used to store JSON

data in a binary format. It is one hand makes querying data faster whereas slows

down the data insertion process as it supports indexing of table data.

UUID

The UUID data type allows you to store Universal Unique Identifiers defined by

RFC 4122. The UUID values guarantee a better uniqueness than SERIAL and can

be used to hide sensitive data exposed to the public such as values of id in URL.

The UUID stands for Unique Universal Identifiers. These are used to give a unique

ID to a data that is unique throughout the database. The UUID data type are used

to store UUID of the data defined by RFC 4122. These are generally used to protect

sensitive data like credit card information and is better compared to SERIAL data

type in the context of uniqueness.

Special data types

In addition to the primitive data types, PostgreSQL also supports some special

data types that are related to network or geometric. These special data types are

listed below:

box: It is used to store rectangular box.

point: It is used to store geometric pair of numbers.

lseg: It is used to store line segment.

point: It is used to store geometric pair of numbers.

polygon: It is used to store closed geometric.

inet: It is used to store an IP4 address.

macaddr: It is used to store a MAC address.

51

 Basics of SQL language in PostgreSQL

One of the most common tasks, when you work with the database, is to query

data from tables by using the SELECT statement.

The SELECT statement is one of the most complex statements in PostgreSQL. It

has many clauses that you can use to form a flexible query.

The SELECT statement has the following clauses:

• Select distinct rows using DISTINCT operator.

• Sort rows using ORDER BY clause.

• Filter rows using WHERE clause.

• Select a subset of rows from a table using LIMIT or FETCH clause.

• Group rows into groups using GROUP BY clause.

• Filter groups using HAVING clause.

• Join with other tables using joins such as INNER JOIN, LEFT JOIN, FULL

OUTER JOIN, CROSS JOIN clauses.

• Perform set operations using UNION, INTERSECT, and EXCEPT.

 PostgreSQL SELECT examples

Let’s take a look at some examples of using PostgreSQL SELECT statement.

We will use the following customer table in the sample database for the

demonstration.

Figure 5.1 The sample table

52

 Using PostgreSQL SELECT statement to query data from all columns of a

table example

The following query uses the SELECT statement to select data from all columns

of the customer table:

SELECT * FROM customer;

Figure 5.2 Select from all columns

In this example, we used an asterisk (*) in the SELECT clause, which is a shorthand

for all columns. Instead of listing all columns in the SELECT clause, we just used

the asterisk (*) to save some typing.

However, it is not a good practice to use the asterisk (*) in the SELECT statement

when you embed SQL statements in the application code like Python, Java,

Node.js, or PHP due to the following reasons:

• Database performance. Suppose you have a table with many columns and

a lot of data, the SELECT statement with the asterisk (*) shorthand will

select data from all the columns of the table, which may not be necessary

to the application.

• Application performance. Retrieving unnecessary data from the database

increases the traffic between the database server and application server.

In consequence, your applications may be slower to respond and less

scalable.

Because of these reasons, it is a good practice to explicitly specify the column

names in the SELECT clause whenever possible to get only necessary data from

the database.

And you should only use the asterisk (*) shorthand for the ad-hoc queries that

examine data from the database.

53

 Using PostgreSQL SELECT statement with expressions example

The following example uses the SELECT statement to return full names and

emails of all customers:

SELECT

 first_name || ' ' || last_name,

 email

FROM

 customer;

In this example, we used the concatenation operator || to concatenate the first

name, space, and last name of every customer.

Figure 5.3 Select with concatenation

 PostgreSQL ORDER BY clause

When you query data from a table, the SELECT statement returns rows in an

unspecified order. To sort the rows of the result set, you use the ORDER BY clause

in the SELECT statement.

The ORDER BY clause allows you to sort rows returned by a SELECT clause in

ascending or descending order based on a sort expression.

The following illustrates the syntax of the ORDER BY clause:

54

SELECT

 select_list

FROM

 table_name

ORDER BY

 sort_expression1 [ASC | DESC],

 ...

 sort_expressionN [ASC | DESC];

In this syntax:

• First, specify a sort expression, which can be a column or an expression,

that you want to sort after the ORDER BY keywords. If you want to sort the

result set based on multiple columns or expressions, you need to place a

comma (,) between two columns or expressions to separate them.

• Second, you use the ASC option to sort rows in ascending order and the

DESC option to sort rows in descending order. If you omit the ASC or DESC

option, the ORDER BY uses ASC by default.

 Using PostgreSQL ORDER BY clause to sort rows by one column

The following query uses the ORDER BY clause to sort customers by their first

names in ascending order:

SELECT

 first_name,

 last_name

FROM

 customer

ORDER BY

 first_name ASC;

55

Figure 5.4 Select with ORDER BY

 Using PostgreSQL ORDER BY clause to sort rows by one column in

descending order

The following statement selects the first name and last name from the customer

table and sorts the rows by values in the last name column in descending order:

SELECT

 first_name,

 last_name

FROM

 customer

ORDER BY

 last_name DESC;

56

Figure 5.5 Select with ORDER BY descending

 Using PostgreSQL ORDER BY clause to sort rows by multiple columns

The following statement selects the first name and last name from the customer

table and sorts the rows by the first name in ascending order and last name in

descending order:

SELECT

 first_name,

 last_name

FROM

 customer

ORDER BY

 first_name ASC,

 last_name DESC;

57

Figure 5.6 Select with ORDER BY two columns

In this example, the ORDER BY clause sorts rows by values in the first name

column first. And then it sorts the sorted rows by values in the last name column.

As you can see clearly from the output, two customers with the same first name

Kelly have the last name sorted in descending order.

 PostgreSQL WHERE clause

The syntax of the PostgreSQL WHERE clause is as follows:

SELECT select_list

FROM table_name

WHERE condition

ORDER BY sort_expression

58

The WHERE clause appears right after the FROM clause of the SELECT statement.

The WHERE clause uses the condition to filter the rows returned from the SELECT

clause.

The condition must evaluate to true, false, or unknown. It can be a boolean

expression or a combination of boolean expressions using the AND and OR

operators.

The query returns only rows that satisfy the condition in the WHERE clause. In

other words, only rows that cause the condition evaluates to true will be included

in the result set.

If you use column aliases in the SELECT clause, you cannot use them in the

WHERE clause.

Besides the SELECT statement, you can use the WHERE clause in the UPDATE and

DELETE statement to specify rows to be updated or deleted.

To form the condition in the WHERE clause, you use comparison and logical

operators:

Table 5.1 SELECT WHERE condition operators

Operator Description

= Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

<> or != Not equal

AND Logical operator AND

OR Logical operator OR

IN Return true if a value matches any
value in a list

BETWEEN Return true if a value is between a

range of values

LIKE Return true if a value matches a

pattern

IS NULL Return true if a value is NULL

NOT Negate the result of other operators

59

 Using WHERE clause with the equal (=) operator example

The following statement uses the WHERE clause customers whose first names are

Jamie:

SELECT

 last_name,

 first_name

FROM

 customer

WHERE

 first_name = 'Jamie';

Figure 5.7 Filter by ‘Jamie’

 Using WHERE clause with the AND operator example

The following example finds customers whose first name and last name are

Jamie and rice by using the AND logical operator to combine two Boolean

expressions:

SELECT

 last_name,

 first_name

FROM

 customer

WHERE

 first_name = 'Jamie' AND

 last_name = 'Rice';

60

Figure 5.8 Filter by ‘Rice’

 Using the WHERE clause with the LIKE operator example

To find a string that matches a specified pattern, you use the LIKE operator. The

following example returns all customers whose first names start with the string

Ann:

SELECT

 first_name,

 last_name

FROM

 customer

WHERE

 first_name LIKE 'Ann%'

Figure 5.9 Filter using ‘LIKE’ operator

 PostgreSQL Joins

PostgreSQL join is used to combine columns from one (self-join) or more tables

based on the values of the common columns between related tables. The

common columns are typically the primary key columns of the first table and

foreign key columns of the second table.

PostgreSQL supports inner join, left join, right join, full outer join, cross join,

natural join, and a special kind of join called self-join.

61

Setting up sample tables

Suppose you have two tables called basket_a and basket_b that store fruits:

CREATE TABLE basket_a (

 a INT PRIMARY KEY,

 fruit_a VARCHAR (100) NOT NULL

);

CREATE TABLE basket_b (

 b INT PRIMARY KEY,

 fruit_b VARCHAR (100) NOT NULL

);

INSERT INTO basket_a (a, fruit_a)

VALUES

 (1, 'Apple'),

 (2, 'Orange'),

 (3, 'Banana'),

 (4, 'Cucumber');

INSERT INTO basket_b (b, fruit_b)

VALUES

 (1, 'Orange'),

 (2, 'Apple'),

 (3, 'Watermelon'),

 (4, 'Pear');

The tables have some common fruits such as apple and orange.

The following statement returns data from the basket_a table:

62

Figure 5.10 Basket_a table

And the following statement returns data from the basket_b table:

Figure 5.11 Basket_b table

 PostgreSQL inner join

The following statement joins the first table (basket_a) with the second table

(basket_b) by matching the values in the fruit_a and fruit_b columns:

SELECT

 a,

 fruit_a,

 b,

 fruit_b

FROM

 basket_a

INNER JOIN basket_b

 ON fruit_a = fruit_b;

Figure 5.12 The Inner Join example

63

The inner join examines each row in the first table (basket_a). It compares the

value in the fruit_a column with the value in the fruit_b column of each row in the

second table (basket_b). If these values are equal, the inner join creates a new

row that contains columns from both tables and adds this new row the result set.

 PostgreSQL left join

The following statement uses the left join clause to join the basket_a table with

the basket_b table. In the left join context, the first table is called the left table

and the second table is called the right table.

SELECT

 a,

 fruit_a,

 b,

 fruit_b

FROM

 basket_a

LEFT JOIN basket_b

 ON fruit_a = fruit_b;

Figure 5.13 The LEFT JOIN example

The left join starts selecting data from the left table. It compares values in the

fruit_a column with the values in the fruit_b column in the basket_b table.

If these values are equal, the left join creates a new row that contains columns of

both tables and adds this new row to the result set. (see the row #1 and #2 in the

result set).

In case the values do not equal, the left join also creates a new row that contains

columns from both tables and adds it to the result set. However, it fills the

64

columns of the right table (basket_b) with null. (see the row #3 and #4 in the result

set).

 PostgreSQL right join

The right join is a reversed version of the left join. The right join starts selecting

data from the right table. It compares each value in the fruit_b column of every

row in the right table with each value in the fruit_a column of every row in the

fruit_a table.

If these values are equal, the right join creates a new row that contains columns

from both tables.

In case these values are not equal, the right join also creates a new row that

contains columns from both tables. However, it fills the columns in the left table

with NULL.

The following statement uses the right join to join the basket_a table with the

basket_b table:

SELECT

 a,

 fruit_a,

 b,

 fruit_b

FROM

 basket_a

RIGHT JOIN basket_b ON fruit_a = fruit_b;

Here is the output:

Figure 5.14 The Right Join example

65

 PostgreSQL full outer join

The full outer join or full join returns a result set that contains all rows from both

left and right tables, with the matching rows from both sides if available. In case

there is no match, the columns of the table will be filled with NULL.

SELECT

 a,

 fruit_a,

 b,

 fruit_b

FROM

 basket_a

FULL OUTER JOIN basket_b

 ON fruit_a = fruit_b;

Code language: SQL (Structured Query Language) (sql)

Output:

Figure 5.15 The Full Outer join example

 PostgreSQL GROUP BY clause

The GROUP BY clause divides the rows returned from the SELECT statement into

groups. For each group, you can apply an aggregate function e.g., SUM() to

calculate the sum of items or COUNT() to get the number of items in the groups.

The following statement illustrates the basic syntax of the GROUP BY clause:

66

SELECT

 column_1,

 column_2,

 ...,

 aggregate_function(column_3)

FROM

 table_name

GROUP BY

 column_1,

 column_2,

 ...;

In this syntax:

First, select the columns that you want to group e.g., column1 and column2, and

column that you want to apply an aggregate function (column3).

Second, list the columns that you want to group in the GROUP BY clause.

The statement clause divides the rows by the values of the columns specified in

the GROUP BY clause and calculates a value for each group.

It’s possible to use other clauses of the SELECT statement with the GROUP BY

clause.

PostgreSQL evaluates the GROUP BY clause after the FROM and WHERE clauses

and before the HAVING SELECT, DISTINCT, ORDER BY and LIMIT clauses

 Using PostgreSQL GROUP BY without an aggregate function example

You can use the GROUP BY clause without applying an aggregate function. The

following query gets data from the payment table and groups the result by

customer id.

SELECT

 customer_id

67

FROM

 payment

GROUP BY

 customer_id;

Figure 5.16 GROUP BY without aggregation

 Using PostgreSQL GROUP BY with SUM() function example

The GROUP BY clause is useful when it is used in conjunction with an aggregate

function.

For example, to select the total amount that each customer has been paid, you

use the GROUP BY clause to divide the rows in the payment table into groups

grouped by customer id. For each group, you calculate the total amounts using

the SUM() function.

The following query uses the GROUP BY clause to get total amount that each

customer has been paid:

SELECT

 customer_id,

 SUM (amount)

FROM

68

 payment

GROUP BY

 customer_id;

Figure 5.17 GROUP BY with aggregation

 Common Table Expressions

A common table expression is a temporary result set which you can reference

within another SQL statement including SELECT, INSERT, UPDATE or DELETE.

WITH cte_name (column_list) AS (

 CTE_query_definition

)

statement;

Example:

with a1 (name, pages) as (select * from book) select max(pages) from a1;

The advantages of Common Table Expressions are:

The following are some advantages of using common table expressions or CTEs:

• Improve the readability of complex queries.

69

• Ability to create recursive queries. Recursive queries are queries that

reference themselves. The recursive queries come in handy when you want

to query hierarchical data such as organization chart or bill of materials.

• Use in conjunction with window functions. You can use CTEs in conjunction

with window functions to create an initial result set and use another select

statement to further process this result set.

WITH provides a way to write auxiliary statements for use in a larger query.

These statements, which are often referred to as Common Table Expressions

or CTEs, can be thought of as defining temporary tables that exist just for one

query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,

UPDATE, or DELETE; and the WITH clause itself is attached to a primary

statement that can also be a SELECT, INSERT, UPDATE, or DELETE.

 Recursive Queries

The optional RECURSIVE modifier changes WITH from a mere syntactic

convenience into a feature that accomplishes things not otherwise possible in

standard SQL. Using RECURSIVE, a WITH query can refer to its own output. A

very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (

 VALUES (1)

 UNION ALL

 SELECT n+1 FROM t WHERE n < 100

)

SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term,

then UNION (or UNION ALL), then a recursive term, where only the recursive

term can contain a reference to the query's own output. Such a query is

executed as follows:

1. Evaluate the non-recursive term. For UNION (but not UNION ALL),

discard duplicate rows. Include all remaining rows in the result of the

recursive query, and also place them in a temporary working table.

2. So long as the working table is not empty, repeat these steps:

70

a. Evaluate the recursive term, substituting the current contents of

the working table for the recursive self-reference. For UNION (but

not UNION ALL), discard duplicate rows and rows that duplicate

any previous result row. Include all remaining rows in the result

of the recursive query, and also place them in a temporary

intermediate table.

b. Replace the contents of the working table with the contents of the

intermediate table, then empty the intermediate table.

Note. While RECURSIVE allows queries to be specified recursively, internally

such queries are evaluated iteratively.

 PostgreSQL recursive queries example (Factorial)

Factorial is a non-negative integer. It is the product of all positive integers less

than or equal to that number you ask for factorial. It is denoted by an exclamation

sign (!).

Example:

n! = n* (n-1) * (n-2) *........1

4! = 4x3x2x1 = 24

The factorial value of 4 is 24.

The recursive Select allows to calculate Factorial values:

Figure 5.18 Recursive Queries

71

Recursive queries are typically used to deal with hierarchical or tree-structured

data. A useful example is this query to find all paths in a tree:

 A Tree example

Let’s consider a tree of the following structure:

Figure 5.19 The tree example

It can be represented as the following table:

Figure 5.20 Tree as a table

To find all paths to the root as array we can create the query:

WITH RECURSIVE test AS (

 SELECT id, ARRAY[]::INTEGER[] AS ancestors

 FROM tree WHERE pid IS NULL

 UNION ALL

72

 SELECT tree.id, test.ancestors || tree.pid

 FROM test, tree

 WHERE tree.pid = test.id

)

SELECT * FROM test WHERE 1 = ANY(test.ancestors);

 The result is here:

Figure 5.21 Result of the recursive query

To find the Nodes of the Level 2 (starting from 0) we can perform the next

query:

WITH RECURSIVE test AS (

 SELECT id, ARRAY[]::INTEGER[] AS ancestors, 0 depth

 FROM tree WHERE pid IS NULL

 UNION ALL

 SELECT tree.id, test.ancestors || tree.pid, depth+1

 FROM test, tree

 WHERE tree.pid = test.id

) SELECT * FROM test WHERE 1 = ANY(test.ancestors) and depth=2;

The result is here:

73

Figure 5.22 The paths of the length 2

 SQL: Data Manipulation Commands

Data Manipulation Language or DML is a subset of operations used to insert,

delete, and update data in a database. A DML is often a sublanguage of a more

extensive language like SQL; DML comprises some of the operators in the

language. Selecting read-only data is closely related and is sometimes also

considered a component of a DML, as some users can perform both read and

write selection.

DML represents a collection of programming languages explicitly used to make

changes to the database, such as:

• CRUD operations to create, read, update and delete data.

• Using INSERT, SELECT, UPDATE, and DELETE commands.

• DML commands are often part of a more extensive database language, for

example, SQL (structured query language). These DMLs can have a specific

syntax to handle data in that language.

DML has two main classifications which are procedural and non-procedural

programming, which is also called declarative programming. The SQL dealing

with the manipulation of data present in the database belongs to the DML or Data

Manipulation Language, including most of the SQL statements.

 PostgreSQL INSERT statement

The PostgreSQL INSERT statement allows you to insert a new row into a table.

The following illustrates the most basic syntax of the INSERT statement:

INSERT INTO table_name(column1, column2, …)

VALUES (value1, value2, …);

In this syntax:

First, specify the name of the table (table_name) that you want to insert data after

the INSERT INTO keywords and a list of comma-separated columns (colum1,

column2,).

74

Second, supply a list of comma-separated values in a parenthesis (value1, value2,

...) after the VALUES keyword. The columns and values in the column and value

lists must be in the same order.

RETURNING clause

The INSERT statement also has an optional RETURNING clause that returns the

information of the inserted row.

If you want to return the entire inserted row, you use an asterisk (*) after the

RETURNING keyword:

INSERT INTO table_name(column1, column2, …)

VALUES (value1, value2, …)

RETURNING *;

If you want to return just some information of the inserted row, you can specify

one or more columns after the RETURNING clause.

For example, the following statement returns the id of the inserted row:

INSERT INTO table_name(column1, column2, …)

VALUES (value1, value2, …)

RETURNING id;

 INSERT statement examples

The following statement creates a new table called users for the demonstration:

DROP TABLE IF EXISTS users;

CREATE TABLE users (

 id SERIAL PRIMARY KEY,

 name VARCHAR(255) NOT NULL,

 description VARCHAR (255),

);

INSERT – Inserting a single row into a table

The following statement inserts a new row into the users table:

INSERT INTO users (name)

75

VALUES('User1',Description for a user');

The statement returns the following output:

INSERT 0 1

To insert character data, you enclose it in single quotes (‘) for example

'PostgreSQL Tutorial'.

If you omit required columns in the INSERT statement, PostgreSQL will issue an

error. In case you omit an optional column, PostgreSQL will use the column

default value for insert.

In this example, the description is an optional column because it doesn’t have a

NOT NULL constraint. Therefore, PostgreSQL uses NULL to insert into the

description column.

PostgreSQL automatically generates a sequential number for the serial column

so you do not have to supply a value for the serial column in the INSERT

statement.

 UPDATE statement

The PostgreSQL UPDATE statement allows you to modify data in a table. The

following illustrates the syntax of the UPDATE statement:

UPDATE table_name

SET column1 = value1,

 column2 = value2,

 ...

WHERE condition;

In this syntax:

First, specify the name of the table that you want to update data after the UPDATE

keyword.

Second, specify columns and their new values after SET keyword. The columns

that do not appear in the SET clause retain their original values.

76

Third, determine which rows to update in the condition of the WHERE clause.

The WHERE clause is optional. If you omit the WHERE clause, the UPDATE

statement will update all rows in the table.

When the UPDATE statement is executed successfully, it returns the following

command tag:

UPDATE count

The count is the number of rows updated including rows whose values did not

change.

Returning updated rows

The UPDATE statement has an optional RETURNING clause that returns the

updated rows:

UPDATE table_name

SET column1 = value1,

 column2 = value2,

 ...

WHERE condition

RETURNING * | output_expression AS output_name;

Code language: SQL (Structured Query Language) (sql)

 UPDATE examples

Let’s update the rows from the ‘users’ table:

UPDATE users

SET description = 'a new description'

WHERE id = 1;

It modifies the description field of a user having id=1.

77

 DELETE statement

The PostgreSQL DELETE statement allows you to delete one or more rows from a

table.

The following shows basic syntax of the DELETE statement:

DELETE FROM table_name

WHERE condition;

In this syntax:

First, specify the name of the table from which you want to delete data after the

DELETE FROM keywords.

Second, use a condition in the WHERE clause to specify which rows from the table

to delete.

The WHERE clause is optional. If you omit the WHERE clause, the DELETE

statement will delete all rows in the table.

The DELETE statement returns the number of rows deleted. It returns zero if the

DELETE statement did not delete any row.

To return the deleted row(s) to the client, you use the RETURNING clause as

follows:

DELETE FROM table_name

WHERE condition

RETURNING (select_list | *)

The asterisk (*) allows you to return all columns of the deleted row from the

table_name.

To return specific columns, you specify them after the RETURNING keyword.

Note that the DELETE statement only removes data from a table. It doesn’t modify

the structure of the table. If you want to change the structure of a table such as

removing a column, you should use the ALTER TABLE statement.

DELETE statement examples

Let’s delete all the rows from the ‘users’ table:

78

DELETE FROM users;

If we going to delete a part of rows, we provide a WHERE condition for that

purpose:

DELETE FROM users WHERE id=1;

 PostgreSQL Schema

A database contains one or more named schemas, which in turn contain tables.

Schemas also contain other kinds of named objects, including data types,

functions, and operators. The same object name can be used in different schemas

without conflict; for example, both schema1 and myschema can contain tables

named mytable. Unlike databases, schemas are not rigidly separated: a user can

access objects in any of the schemas in the database they are connected to, if

they have privileges to do so.

There are several reasons why one might want to use schemas:

• To allow many users to use one database without interfering with each

other.

• To organize database objects into logical groups to make them more

manageable.

• Third-party applications can be put into separate schemas so they do not

collide with the names of other objects.

Schemas are analogous to directories at the operating system level, except that

schemas cannot be nested.

 Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name

of your choice. For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the

schema name and table name separated by a dot:

schema.table

79

This works anywhere a table name is expected, including the table modification

commands and the data access commands discussed in the following chapters.

(For brevity we will speak of tables only, but the same ideas apply to other kinds

of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL

standard. If you write a database name, it must be the same as the database you

are connected to.

So, to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

 ...

);

To drop a schema if it's empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

The Public Schema

In the previous sections we created tables without specifying any schema names.

By default such tables (and other objects) are automatically put into a schema

named “public”. Every new database contains such a schema. Thus, the following

are equivalent:

CREATE TABLE products (...);

and:

CREATE TABLE public.products (...);

 PostgreSQL Schema Objects

The Schema is a namespace which provides several objects such as tables, views,

indexes, data types, functions, stored procedures and operators.

80

• Views/Materialized Views (alternative data view)

• PL/pgSQL (user-defined functions, procedures)

• Triggers (DML and Event Triggers are event handlers)

• Indexes (speed up query execution)

 PostgreSQL Views
A view is a named query that provides another way to present data in the

database tables. A view is defined based on one or more tables which are known

as base tables. When you create a view, you basically create a query and assign a

name to the query. Therefore, a view is useful for wrapping a commonly used

complex query.

Note that regular views do not store any data except the materialized views. In

PostgreSQL, you can create special views called materialized views that store

data physically and periodically refresh data from the base tables. The

materialized views are handy in many scenarios, such as faster data access to a

remote server and caching.

A view can be very useful in some cases such as:

• A view helps simplify the complexity of a query because you can query a

view, which is based on a complex query, using a simple SELECT statement.

• Like a table, you can grant permission to users through a view that contains

specific data that the users are authorized to see.

• A view provides a consistent layer even the columns of underlying table

changes.

 Views examples

create view factorial_view as

WITH RECURSIVE t(n,m) AS (

 VALUES (1,1)

 UNION ALL

 SELECT n+1, m*(n+1) FROM t WHERE n < 7

)

SELECT n,m FROM t;

81

Figure 6.1 The usage of a view

 View example: access restriction

In order to illustrate access restriction of a view we need to do the following.

Create a sensitive table:

create table private_data(id serial primary key, name varchar(30), salary money);

Insert some public & private data:

insert into private_data(name, salary) values ('john', 10000), ('paul', 15000);

Create a public oriented view:

create view public_data as select name from private_data;

Create a user with restricted access:

create role restricted_user with noinherit login password 'pwd';

Grant a permission to access the view only:

GRANT SELECT ON public_data TO restricted_user;

Assume the “restricted_user” signed in.

Figure 6.2 User without needed permissions

82

On the other hand, if a user make a query to the `public_data`, he will get:

Figure 6.3 User with needed permissions

 Updatable & Temporary Views

A PostgreSQL view is updatable when it meets the following conditions:

The defining query of the view must have exactly one entry in the FROM clause,

which can be a table or another updatable view.

The defining query must not contain one of the following clauses at the top level:

GROUP BY, HAVING, LIMIT, OFFSET, DISTINCT, WITH, UNION, INTERSECT, and

EXCEPT.

The selection list must not contain any window function , any set-returning

function, or any aggregate function such as SUM, COUNT, AVG, MIN, and MAX.

Temporary views are automatically dropped at the end of the current session. If

any of the tables referenced by the view are temporary, the view is created as a

temporary view. (create temp view ...)

 Materialized Views

PostgreSQL materialized views that allow to store result of a query physically and

update the data periodically.

CREATE MATERIALIZED VIEW view_name

AS

query

83

WITH [NO] DATA;

REFRESH MATERIALIZED VIEW view_name;

PostgreSQL locks the entire table therefore you cannot query data against it. To

avoid this, you can use the CONCURRENTLY option.

MATERIALIZED VIEW provides some additional features that VIEW lacks:

• providing a consistent snapshot of data for users to work with

• giving users the ability to index the underlying snapshot.

 Materialized Views Example

Assume we have a table ‘a’ containing just only one field and would like to create

a materialized view for it:

create materialized view mv_a as select * from a ;

select * from mv_a; -- the same as table ‘a’

Figure 6.4 A materialized view before INSERT a value ‘7’ into the table

insert into a values (7) -- (1)

refresh materialized view mv_a;-- (2)

select * from mv_a; -- the same as table ‘a’

84

Figure 6.5 A materialized view after INSERT a value ‘7’ and REFRESH into the table

 Triggers

A PostgreSQL trigger is a function invoked automatically whenever an event

associated with a table occurs. An event could be any of the following: INSERT,

UPDATE, DELETE or TRUNCATE.

A trigger is a special user-defined function associated with a table. To create a

new trigger:

• define a trigger function first,

• bind this trigger function to a table.

The difference between a trigger and a user-defined function is that a trigger is

automatically invoked when a triggering event occurs.

Main types of triggers:

• Row-level (on every row affected);

• Statement-level triggers (just only once per statement).

Time when the trigger is invoked:

• before event (skip the operation for the current row or even change the row

being updated or inserted);

• after an event (all changes are available to the trigger);

• instead of.

85

Triggers in PostgreSQL has some specific features:

• PostgreSQL fires trigger for the TRUNCATE event.

• PostgreSQL allows you to define the statement-level trigger on views.

• PostgreSQL requires you to define a user-defined function as the action of

the trigger, while the SQL standard allows you to use any SQL commands.

Triggers’ use cases:

• to maintain complex data integrity rules;

• perform additional actions when data being changed (custom log,

versioning)

Syntax of Triggers:

CREATE FUNCTION trigger_function()

 RETURNS TRIGGER

 LANGUAGE PLPGSQL

AS $$

BEGIN

 -- trigger logic

END; $$

A trigger function receives data about its calling environment:

When a PL/pgSQL function is called as a trigger, several special variables are

created automatically in the top-level block. They are:

NEW

Data type RECORD; variable holding the new database row for INSERT/UPDATE

operations in row-level triggers. This variable is null in statement-level triggers

and for DELETE operations.

OLD

Data type RECORD; variable holding the old database row for UPDATE/DELETE

operations in row-level triggers. This variable is null in statement-level triggers

and for INSERT operations.

TG_NAME

86

Data type name; variable that contains the name of the trigger actually fired.

TG_WHEN

Data type text; a string of BEFORE, AFTER, or INSTEAD OF, depending on the

trigger's definition.

TG_LEVEL

Data type text; a string of either ROW or STATEMENT depending on the trigger's

definition.

TG_OP

Data type text; a string of INSERT, UPDATE, DELETE, or TRUNCATE telling for

which operation the trigger was fired.

TG_RELNAME

Data type name; the name of the table that caused the trigger invocation. This is

now deprecated, and could disappear in a future release. Use TG_TABLE_NAME

instead.

TG_TABLE_NAME

Data type name; the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name; the name of the schema of the table that caused the trigger

invocation.

CREATE TRIGGER Syntax

CREATE TRIGGER trigger_name

 {BEFORE | AFTER | INSTEAD OF} { event }

 ON table_name

 [FOR [EACH] { ROW | STATEMENT }]

 EXECUTE PROCEDURE trigger_function

CREATE TRIGGER Example

CREATE OR REPLACE FUNCTION Mul1000()

 RETURNS trigger AS

87

$mycode$

BEGIN

 IF OLD.id = '100' THEN

 NEW.ID := NEW.ID || '1000';

 END IF;

 RETURN NEW;

END;

$mycode$ LANGUAGE plpgsql;

drop trigger

drop trigger if exists last_name_changes on test;

CREATE TRIGGER last_name_changes

 BEFORE UPDATE ON test

 FOR EACH ROW

 EXECUTE PROCEDURE Mul1000();

update test set id='101' where id='100';

select * from test;

 Indexing

In PostgreSQL, Indexes is the special tool used to enhance the retrieval of data

from the databases.

A database index is parallel to the index of a book. An index creates an access for

all the values, which displays on the indexed columns.

The indexes tend to help the database server to identify the defined rows much

faster than it could do without indexes. We have to use the Indexes properly to

get the significant result.

Features of PostgreSQL indexes

Some of the essential features of the PostgreSQL indexes are as follows:

88

• An index is used to enhance the data output with SELECT and WHERE

• If we are using the INSERT and UPDATE commands, it slows down data

input.

• Without affecting any of the data, we can CREATE and DROP the

• We can generate an index with the CREATE INDEX command's help by

defining the index name and table or column name on which the index is

created.

• We can also create a unique index, which is similar to the UNIQUE

constraint.

 Types of PostgreSQL Indexes

All the index type uses various algorithm and storage structure to manage

different types of commands.

In PostgreSQL, the indexes can be categorized into various parts, which are as

follows:

Hash indexes

When an indexed column is included in the table and compared to the equal (=)

operator, the Hash indexes can cope only with simple equality comparison (=)

operator.

B-tree indexes

The most important used indexes in PostgreSQL is B-tree indexes.

The B-Tree index is a balance tree, which keeps the sorted data and permits the

insertions, searches, deletions, and sequential access in logarithmic time.

The PostgreSQL developer will consider using a B-tree index when index columns

are included in an assessment, which uses one of the below operators list:

<

<=

=

>=

BETWEEN

89

IN

IS NULL

IS NOT NULL

Furthermore, for the pattern matching operator LIKE and ~ commands, the query

developer can use a B-tree index.

GIN indexes

The next type of PostgreSQL indexes is GIN, which stands for Generalized Inverted

Indexes, and it is usually denoted as GIN.

If we have several values stored in a single column such as range type, array,

jsonb, and hstore, the GIN indexes are most beneficial.

GiST Indexes

The GiST indexes are most commonly used for indexing in full-text search and

geometric data types.

The Generalized Search Tree denotes GiST indexes, which provides a building of

general tree structures.

SP-GiST indexes

The Space-Partitioned GiST is denoted as SP- GiST that keeps up partitioned

search trees, which enable the development of an extensive range of dissimilar

non-balanced data structures.

The data which contains a natural clustering element is also not an equally

balanced tree, like, multimedia, GIS, IP routing, phone routing, and IP routing, in

such cases, we can use the SP-GiST

BRIN

The BRIN indexes can be maintained easily as it is less costly and much smaller

as compared to the B-tree index, and it stands for Block Range Indexes.

Regularly, the BRIN indexes are used on a column, which contains a linear sort

order, such as the generated date column of the sales order

In PostgreSQL indexes, the BRIN allows the use of an index on a huge table, which

would earlier be unusable with B-tree without parallel partitioning.

90

Disadvantages of using the PostgreSQL Indexes

We have the following reasons for avoiding the PostgreSQL Indexes:

• The PostgreSQL Indexes should not be used on columns, which include a

large number of NULL values.

• The PostgreSQL indexes cannot be used with the small tables.

• We do not create indexes for columns, which are often deployed.

• We do not create indexes for tables, with frequent, large batch update or

insert operations.

 PostgreSQL Create Index

The syntax of creating an Indexes command is as follows:

CREATE INDEX index_name ON table_name [USING method]

(

 column_name [ASC | DESC] [NULLS {FIRST | LAST}],

 ...

);

In the above syntax, we have used the following parameters, as shown in the

below table:

Table 6.1 Create index command

Parameters Description

Index_name It is used to define the name of the index.

And it should be written after the CREATE INDEX

Here, we should try to give the easier and significant name of the

index, which can be easily recalled.

Table_name The table_name parameter is used to define the table name, which is

linked with the Indexes.

And it is specified after the ON keyword.

91

Using[method] It is used to specify the index methods, such as B-tree, GIN, HASH,

GiST, BRIN, and SP-GiST.

By default, PostgreSQL uses B-tree Index.

Column_name The column_name parameter is used to define the list if we have

several columns stored in the index.

The ASC and DESC are used to define the sort order. And by default,

it is ASC.

The NULLS FIRST or NULLS LAST is used to describe the nulls sort

before or after non-null values.

When DESCis defined, then the NULLS FIRST is considered as the

default.

And when DESC is not defined, then NULLS LAST is considered as

default.

 Disadvantages of using the PostgreSQL Indexes

We have the following reasons for avoiding the PostgreSQL Indexes:

The PostgreSQL Indexes should not be used on columns, which include a large

number of NULL values.

The PostgreSQL indexes cannot be used with the small tables.

We do not create indexes for columns, which are often deployed.

We do not create indexes for tables, with frequent, large batch update or insert

operations.

 PL/pgSQL procedural language

PL/pgSQL procedural language adds many procedural elements, e.g., control

structures, loops, and complex computations, to extend standard SQL. It allows

you to develop complex functions and stored procedures in PostgreSQL that may

not be possible using plain SQL.

PL/pgSQL procedural language is similar to the Oracle PL/SQL. The following are

reasons to learn PL/pgSQL:

92

• PL/pgSQL is easy to learn and simple to use.

• PL/pgSQL comes with PostgreSQL by default. The user-defined functions

and stored procedures developed in PL/pgSQL can be used like any built-

in functions and stored procedures.

• PL/pgSQL inherits all user-defined types, functions, and operators.

• PL/pgSQL has many features that allow you to develop complex functions

and stored procedures.

• PL/pgSQL can be defined to be trusted by the PostgreSQL database server.

PL/pgSQL allows you to extend the functionality of the PostgreSQL database

server by creating server objects with complex logic.

PL/pgSQL was designed to:

Create user-defined functions, stored procedures, and triggers.

Extend standard SQL by adding control structures such as if, case, and loop

statements.

Inherit all user-defined functions, operators, and types.

 PL/pgSQL Block Structure

PL/pgSQL is a block-structured language, therefore, a PL/pgSQL function or

stored procedure is organized into blocks.

The following illustrates the syntax of a complete block in PL/pgSQL:

[<<label>>]

[declare

 declarations]

begin

 statements;

 ...

end [label];

Let’s examine the block structure in more detail:

• Each block has two sections: declaration and body. The declaration section

is optional while the body section is required. A block is ended with a

semicolon (;) after the END keyword.

93

• A block may have an optional label located at the beginning and at the end.

You use the block label when you want to specify it in the EXIT statement

of the block body or when you want to qualify the names of variables

declared in the block.

• The declaration section is where you declare all variables used within the

body section. Each statement in the declaration section is terminated with

a semicolon (;).

• The body section is where you place the code. Each statement in the body

section is also terminated with a semicolon (;).

Supported Argument and Result Data Types

PL/pgSQL allows:

• accept as arguments any scalar or array data type supported by the server,

and they can return a result of any of these types;

• return a “set” (or table) of any data type. Such a function generates its

output by executing RETURN NEXT for each desired element of the result

set, or by using RETURN QUERY to output the result of evaluating a query;

• accept or return any composite type (row type);

• RETURNS TABLE notation can also be used in place of RETURNS SETOF in

order to return set of rows.

Examples of Variables

num1 integer;

val3 numeric(5);

title varchar;

myrow tablename%ROWTYPE;

myfield tablename.columnname%TYPE;

arow RECORD;

qty integer DEFAULT 1;

roll_no CONSTANT integer := 10;

url varchar := 'http://example.com';

94

 Basic examples of functions

The following function ‘coeff’ gets a real variable and multiplies it by 0.06:

CREATE FUNCTION coeff(real) RETURNS real AS $a1$

DECLARE

 subtotal ALIAS FOR $1;

BEGIN

 RETURN subtotal * 0.06;

END;

$a1$ LANGUAGE plpgsql;

====

CREATE FUNCTION TODAY_IS () RETURNS CHAR(22) AS '

BEGIN

 RETURN ''Today''''is '' || CAST(CURRENT_DATE AS CHAR(10));

END;

'

LANGUAGE PLPGSQL

The next functions show how to work with date and how to pass variables IN and

OUT:

CREATE FUNCTION FUN_TO_TEST(dt DATE, ing INTEGER)

RETURNS DATE AS $test$

DECLARE ss ALIAS FOR dt;

 ff ALIAS FOR ing;

BEGIN

 RETURN ss + ff * INTERVAL '2 DAY';

END;

$test$

LANGUAGE PLPGSQL

95

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$

BEGIN

 sum := x + y;

 prod := x * y;

END;

$$ LANGUAGE plpgsql;

The next examples show EXCEPTION Handling syntax of the language:

BEGIN

 SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 RAISE EXCEPTION '% not found', myname;

 WHEN TOO_MANY_ROWS THEN

 RAISE EXCEPTION '% already exists', myname;

END;

 SQL EXPLAIN

The EXPLAIN statement returns the execution plan which PostgreSQL planner

generates for a given statement.

The EXPLAIN shows how tables involved in a statement will be scanned by index

scan or sequential scan, etc., and if multiple tables are used, what kind of join

algorithm will be used.

The most important and useful information that the EXPLAIN statement returns

are start-cost before the first row can be returned and the total cost to return the

complete result set.

The syntax of the EXPLAIN command looks as the following:

EXPLAIN [(option [, ...])] sql_statement;

96

where option can be one of the following:

ANALYZE [boolean]

VERBOSE [boolean]

COSTS [boolean]

BUFFERS [boolean]

TIMING [boolean]

SUMMARY [boolean]

FORMAT { TEXT | XML | JSON | YAML }

The ANALYZE statement actually executes the SQL statement and discards the

output information, therefore, if you want to analyze any statement such as

INSERT, UPDATE, or DELETE without affecting the data, you should wrap the

EXPLAIN ANALYZE in a transaction, as follows:

BEGIN;

 EXPLAIN ANALYZE sql_statement;

ROLLBACK;

VERBOSE

The VERBOSE parameter allows you to show additional information regarding

the plan. This parameter sets to FALSE by default.

COSTS

The COSTS option includes the estimated startup and total costs of each plan

node, as well as the estimated number of rows and the estimated width of each

row in the query plan. The COSTS defaults to TRUE.

BUFFERS

This parameter adds information to the buffer usage. BUFFERS only can be used

when ANALYZE is enabled. By default, the BUFFERS parameter set to FALSE.

TIMING

This parameter includes the actual startup time and time spent in each node in

the output. The TIMING defaults to TRUE and it may only be used when ANALYZE

is enabled.

97

SUMMARY

The SUMMARY parameter adds summary information such as total timing after

the query plan. Note that when ANALYZE option is used, the summary

information is included by default.

FORMAT

Specify the output format of the query plan such as TEXT, XML, JSON, and YAML.

This parameter is set to TEXT by default.

 EXPLAIN select example

Let’s create a table filled out with random values:

create schema opt;

create table opt.big as

select g, md5(random()::text) from generate_series(1,1000000) g;

Figure 8.1 The table initialization

Let’s select some data:

98

Figure 8.2 Top 5 rows from the BIG table

Let’s apply the EXPLAIN Command:

Figure 8.3 Explain command results (Limiting 5 rows)

Figure 8.4 Explain command results (All rows)

99

Figure 8.5 EXPLAIN ANALYZE = real execution

How to read the EXPLAIN Command results:

Estimated start-up cost. This is the time expended before the output phase can

begin, e.g., time to do the sorting in a sort node.

Estimated total cost. This is stated on the assumption that the plan node is run to

completion, i.e., all available rows are retrieved. In practice a node's parent node

might stop short of reading all available rows (see the LIMIT example above).

Estimated number of rows output by this plan node. Again, the node is assumed

to be run to completion.

Estimated average width of rows output by this plan node (in bytes).

 EXPLAIN Estimations

Rows

number of rows: 1 000 000

Figure 8.6 RelPages and RelTuples

Width

average width of a row in bytes: 36 (~37)

100

Figure 8.7 Width in bytes of a row in the table

Explain Cost

Cost:

cost to get the first row: 0.00

cost to get all rows: 18334.00

The configuration of the PostgreSQL server allows to change some of the

parameters in the postgresql.conf file:

101

Figure 8.8 The configuration file

seq_page_cost - to read one sequential page

cpu_tuple_cost - to check every row

Explain analyze in details

Figure 8.9 Explain analyze in details

Extra information:

real execution time in milliseconds = “actual time”

real number of lines = “rows”

number of loops = “loops”

Explain analyze – buffers

102

Figure 8.10 Buffers

hit=32 (32*8Kb=256Kb) - taken from the shared_buffer = memory

read=8302 (8302*8Kb=66416Kb) - taken from the disk = disk

After 10+ executions:

Figure 8.11 Buffers after 10 executions

EXPLAIN: Select with Where

Cost is: 00..20834

103

Figure 8.12 EXPLAIN with WHERE

 EXPLAIN and Functional Indexes

We can create an index based on an expression that involves table columns. This

index is called an index on expression or functional-based indexes.

Note that indexes on expressions are quite expensive to maintain because

PostgreSQL has to evaluate the expression for each row when it is inserted or

updated and use the result for indexing.

Example:

create index on opt.big(abs(g));

Figure 8.13 Explain and functional indexes

 EXPLAIN and Partial indexes

PostgreSQL partial index even allows us to specify the rows of a table that should

be indexed. This partial index helps:

104

speed up the query and

reducing the size of the index.

create index on opt.big(g) where g < 500001;

Figure 8.14 Partial indexes when g < 500 000 (Index is used)

Figure 8.15 Partial indexes when g < 500 000 (Index is NOT used)

 Table Scan Modes and Joins

In PostgreSQL it is required to generate a best possible plan which corresponds

to the execution of the query with least time and resources.

105

Currently, PostgreSQL supports below scan methods by which all required data

can be read from the table:

• Sequential Scan

• Index Scan

• Index Only Scan

• Bitmap Scan

• TID Scan

Each of these scan methods are equally useful depending on:

• the query itself

• table cardinality (the uniqueness of data values: id has high, gender has

low and name has normal cardinality)

• table selectivity (the number of rows with that value, divided by the total

number of rows. A lower selectivity value is better)

• disk I/O cost

• random I/O cost

• sequence I/O cost

• CPU cost etc

 Sequential Scan

In order for the sequential scan to be used at-least below criteria should match:

1. No Index available on key, which is part of the predicate (where part).

2. Majority of rows are getting fetched as part of the SQL query.

Figure 9.1 Seq scan example

106

 Index Scan

It works well when number of rows selected is small.

Figure 9.2 Index Scan

So there are two steps for index scan:

1. Fetch data from index related data structure. It returns the TID of

corresponding data in heap.

2. Then the corresponding heap page is directly accessed to get whole data.

This additional step is required for the below reasons (compare to index

only scan):

a. Query might have requested to fetch columns more than whatever

available in the corresponding index (Random I/O is involved!).

b. Visibility information is not maintained along with index data. So in

order to check the visibility of data as per isolation level, it needs to

access heap data.

 Index Only Scan

Index Only Scan is similar to Index Scan except for the second step i.e. as the

name implies it only scans index data structure.

There are two additional pre-condition in order to choose Index Only Scan

compare to Index Scan:

Query should be fetching only key columns which are part of the index.

All tuples (records) on the selected heap page should be visible because index

data structure does not maintain visibility information so in order to select data

107

only from index we should avoid checking for visibility and this could happen if

all data of that page are considered visible.

Figure 9.3 Index only scan

 Bitmap Scan

Bitmap scan is a mix of Index Scan and Sequential Scan. It tries to solve the

disadvantage of Index scan but still keeps its full advantage: bitmap scan method

leverage the benefit of index scan without random I/O.

This works in two levels as below:

Bitmap Index Scan: First it fetches all index data from the index data structure and

creates a bit map of all TID: this bitmap contains a hash of all pages (hashed based

on page no) and each page entry contains an array of all offset within that page.

Bitmap Heap Scan: it reads through bitmap of pages and then scans data from

heap corresponding to stored page and offset. At the end, it checks for visibility

108

and predicate etc and returns the tuple based on the outcome of all these checks.

Figure 9.4 Bitmap Scan: 30% selected

Figure 9.5 Bitmap Scan (~40%) -- > SeqScan

Auxiliary [scan] nodes

Some of the auxiliary nodes generated by the PostgreSQL query optimizer are as

below:

• Sort

• Aggregate

• Group By Aggregate

• Limit

• Unique

• LockRows

• SetOp

109

Figure 9.6 Sort node

Figure 9.7 Aggregate node

Figure 9.8 GroupAggregate/HashAggregate node

110

 Joins implementation

PostgreSQL supports the below kind of joins:

Nested Loop Join (‘=’,’<’,’>’...)

Hash Join (only ‘=’)

Merge Join (only ‘=’)

Each of these Join methods are equally useful depending on the query and other

parameters e.g. query, table data, join clause, selectivity, memory etc.

 Nested Loop Join

Nested Loop Join (NLJ) is the simplest join algorithm wherein each record of

outer relation is matched with each record of inner relation. The Join between

relation A and B with condition A.ID < B.ID can be represented as below:

For each tuple r in A

 For each tuple s in B

 If (r.ID < s.ID)

 Emit output tuple (r,s)

Nested Loop Join (NLJ) is the most common joining method and it can be used

almost on any dataset with any type of join clause. Since this algorithm scan all

tuples of inner and outer relation, it is considered to be the most costly join

operation:

create table opt.tab1 as select (random()*10000)::int as id from

generate_series(1,10000);

create table opt.tab2 as select (random()*1000)::int as id from

generate_series(1,1000)

111

Figure 9.9 Nested loop

 Hash Join

This algorithm works in two phases:

Build Phase: A Hash table is built (in main memory!) using the inner relation

records. The hash key is calculated based on the join clause key.

Probe Phase: An outer relation record is hashed based on the join clause key to

find matching entry in the hash table.

The join between relation A and B with condition A.ID = B.ID can be represented

as below:

Build Phase

For each tuple r in inner relation B

Insert r into hash table HashTab with bucket number hash(r.ID)

Probe Phase

For each tuple s in outer relation A

For each tuple r in bucket number hash(s.ID)

If (s.ID = r.ID)

Emit output tuple (r,s)

112

Figure 9.10 Hash Join

 Merge Join

Merge Join is an algorithm wherein each record of outer relation is matched with

each record of inner relation until there is a possibility of join clause matching.

This join algorithm is only used:

• if both relations are sorted and

• join clause operator is “=”.

The join between relation A and B with condition A.ID = B.ID can be represented

as below:

For each tuple r in A

 For each tuple s in B

 If (r.ID = s.ID)

 Emit output tuple (r,s)

 Break;

 If (r.ID > s.ID)

 Continue;

 Else

 Break;

113

Figure 9.11 Merge Join (one index)

Figure 9.12 Merge Join (two indexes)

PostgreSQL joins settings

Below are the planner configuration parameters specific to join methods.

enable_nestloop: It corresponds to Nested Loop Join.

enable_hashjoin: It corresponds to Hash Join.

enable_mergejoin: It corresponds to Merge Join.

For example: set enable_hashjoin to off;

114

 Transactions and Concurrency Control

A Database Transaction is a logical unit of processing in a DBMS which entails one

or more database access operation (set of Select, Insert, Update and Delete

operations).

All Select & DML commands which are held between the beginning and end

transaction statements are considered as a single logical transaction in DBMS.

During the transaction the database may be inconsistent.

Only once the database is committed the state is changed from one consistent

state to another.

Transaction features

• A transaction is a program unit whose execution may or may not change

the contents of a database.

• The transaction concept in DBMS is executed as a single unit.

• If the database operations do not update the database but only retrieve

data, this type of transaction is called a read-only transaction.

• DBMS transactions must be atomic, consistent, isolated and durable

(ACID);

• If the database were in an inconsistent state before a transaction, it would

remain in the inconsistent state after the transaction.

Transactions and Concurrent Access

A database is a shared resource so it is used by many users and processes

concurrently.

For example, the banking system, railway, and air reservations systems, stock

market monitoring, supermarket inventory, and checkouts, etc.

Not managing concurrent access may create issues like:

Hardware failure and system crashes

Concurrent execution of the same transaction, deadlock, or slow performance

 States of Transactions

The various states of a transaction concept in DBMS are listed below:

115

Table 10.1 States of transactions

State Transaction types

Active
A transaction is said to an active state if the instruction is

executing.

Partially

Committed

Partially committed state means that all the instructions are

executed but changes are temporary and not updated in the

database.

Committed
When changes are made permanent than it is said to be

committed.

Failed

If any problem is detected either during active state or

partially committed state than transaction enters in a failed

state.

Aborted

Aborted state means all the changes that were in the local

buffer are deleted. Either we are committed or aborted

database is consistent.

Graphically they can be represented as the following:

Figure 10.1 State transitions of transaction

116

 ACID: Properties of Transaction

ACID properties in DBMS make the transaction over the database more reliable

and secure. This is one of the advantages of the database management system

over the file system.

In the context of transaction processing, the acronym ACID refers to the four key

properties of a transaction: atomicity, consistency, isolation, and durability.

Atomicity

All changes to data are performed as if they are a single operation. That is, all the

changes are performed, or none of them are.

For example, in an application that transfers funds from one account to another,

the atomicity property ensures that, if a debit is made successfully from one

account, the corresponding credit is made to the other account.

Let’s check ACID properties in DBMS with examples.

Here, the set of operations are:

1. Deduct the amount of $100 from Alice’s account.

2. Add amount $100 to Bob’s account.

All operations in this set should be done.

If the system fails to add the amount in Bob’s account after deducting from Alice’s

account, revert the operation on Alice’s account.

Consistency

Data is in a consistent state when a transaction starts and when it ends.

For example, in an application that transfers funds from one account to another,

the consistency property ensures that the total value of funds in both the

accounts is the same at the start and end of each transaction.

Example:

The total amount in Alice’s and Bob’s account should be the same before and

after the transaction. The sum of the money in Alice and Bob’s account before

and after the transaction is $200. So, this transaction preserves consistency ACID

properties in DBMS.

117

Isolation

The intermediate state of a transaction is invisible to other transactions. As a

result, transactions that run concurrently appear to be serialized.

For example, in an application that transfers funds from one account to another,

the isolation property ensures that another transaction sees the transferred

funds in one account or the other, but not in both, nor in neither.

Example:

If there is any other transaction (between Mac and Alice) going, it should not

make any effect on the transaction between Alice and Bob. Both the transactions

should be isolated.

Durability

After a transaction successfully completes, changes to data persist and are not

undone, even in the event of a system failure.

For example, in an application that transfers funds from one account to another,

the durability property ensures that the changes made to each account will not

be reversed.

The changes made during the transaction should exist after completion of the

transaction.

Sometimes it may happen as all the operation in the transaction completed but

the system fails immediately. In that case, changes made while transactions

should persist. The system should return to its previous stable state.

Example:

It may happen. A system gets crashed after completion of all the operations. If

the system restarts it should preserve the stable state. An amount in Alice and

Bob’s account should be the same before and after the system gets a restart.

 Transaction Isolation Levels (Phenomena)

Isolation levels define the degree to which a transaction must be isolated from

the data modifications made by any other transaction in the database system. A

transaction isolation level is defined by the following phenomena:

1. Dirty reads occur when:

Transaction A inserts a row into a table.

118

Transaction B reads the new row.

Transaction A rolls back.

Transaction B may have done work to the system based on the row inserted by

transaction A, but that row never became a permanent part of the database.

2. Non Repeatable reads occur when:

Transaction A reads a row.

Transaction B changes the row.

Transaction A reads the same row a second time and gets the new results.

Phantom reads occur when:

Transaction A reads all rows that satisfy a WHERE clause on an SQL query.

Transaction B inserts an additional row that satisfies the WHERE clause.

Transaction A re-evaluates the WHERE condition and picks up the additional row.

3. Phantom reads occur when:

Transaction A reads all rows that satisfy a WHERE clause on an SQL query.

Transaction B inserts an additional row that satisfies the WHERE clause.

Transaction A re-evaluates the WHERE condition and picks up the additional row.

4. Serialization anomaly (Write Skew)

Assume that we have several concurrent transactions in progress, both do some

reading and writing with a table. In case if the final table state will depend on the

order of running and committing these transactions, then it is Serialization

anomaly.

Snapshot Isolation (SI) is for REPEATABLE READ

Serializable Snapshot Isolation (SSI) is for SERIALIZABLE.

 Black and White Example

The example is from SSI (PostgreSQL Wiki):

create table dots

 (

 id int not null primary key,

https://wiki.postgresql.org/wiki/SSI

119

 color text not null

);

insert into dots

 with x(id) as (select generate_series(1,10))

 select id, case when id % 2 = 1 then 'black'

 else 'white' end from x;

Let’s run transactions T1 and T2:

Figure 10.2 Commands of Transaction T1

120

Figure 10.3 Commands of Transaction T2

Figure 10.4 Commit command’s result of T1

121

Figure 10.5 Commit command’s result of T2

 Four Isolation Levels

Read Uncommitted is the lowest isolation level. In this level, one transaction

may read not yet committed changes made by other transaction, thereby

allowing dirty reads. In this level, transactions are not isolated from each other.

PostgreSQL does not support it.

Read Committed guarantees that any data read is committed at the moment it

is read. Thus, it does not allow dirty read. The transaction holds a read or write

lock on the current row, and thus prevent other transactions from reading,

updating or deleting it.

Repeatable Read is the most restrictive isolation level. The transaction holds

read locks on all rows it references and writes locks on all rows it inserts, updates,

or deletes. Since other transaction cannot read, update or delete these rows,

consequently it avoids non-repeatable read.

Serializable is the highest isolation level. A serializable execution is guaranteed

to be serializable. Serializable execution is defined to be an execution of

operations in which concurrently executing transactions appears to be serially

executing.

122

Figure 10.6 Isolation levels

 Schedule (Serialization)

A Schedule is a process creating a single group of the multiple parallel

transactions and executing them one by one.

It should preserve the order in which the instructions appear in each transaction.

If two transactions are executed at the same time, the result of one transaction

may affect the output of other.

Example:

Initial Value is 10

Transaction 1: Update Value to 20

Transaction 2: Read Product Quantity

 Concurrency Control

Concurrency Control in Database Management System is a procedure of

managing simultaneous operations without conflicting with each other.

It ensures that Database transactions are performed concurrently and accurately

to produce correct results without violating data integrity of the respective

Database.

Concurrent access is easy if all users are just reading data.

DBMS Concurrency Control is used to address conflicts of Read/Write operations,

which mostly occur with a multi-user system.

 Concurrency Control techniques

Lock-Based Protocols is a mechanism in which a transaction cannot Read or

Write the data until it acquires an appropriate lock (pessimistic).

123

Two Phase Locking Protocol (2PL) is a method of concurrency control that

ensures serializability by applying a lock to the transaction data which blocks

other transactions to access the same data simultaneously.

This locking protocol divides the execution phase of a transaction into three

different parts: 1) when the transaction begins to execute, it requires permission

for the locks it needs; 2) where the transaction obtains all the locks. When a

transaction releases its first lock, then 3) the transaction cannot demand any new

locks. Instead, it only releases the acquired locks.

Strict 2PL: never releases a lock after using it. It holds all the locks until the

commit point where all locks are released.

Timestamp-Based Protocols is an algorithm which uses the System Time or

Logical Counter as a timestamp to serialize the execution of concurrent

transactions. The Timestamp-based protocol ensures that every conflicting read

and write operations are executed in a timestamp order.

Validation-Based Protocols also known as Optimistic Concurrency Control

Technique is a method to avoid concurrency in transactions. In this protocol, the

local copies of the transaction data are updated rather than the data itself, which

results in less interference while execution of the transaction. There are three

phases: Read Phase (locally, then changes), Validation Phase (checks if no

conflicts), Write Phase (writes or rollbacks).

Multi Version Concurrency Control (MVCC)

MVCC is an algorithm to provide fine concurrency control by maintaining multiple

versions of the same object so that READ and WRITE operation do not conflict.

WRITE means UPDATE and DELETE, as newly INSERTed record anyway will be

protected as per isolation level.

Each WRITE operation produces a new version of the object and each concurrent

read operation reads a different version of the object depending on the isolation

level.

Since read and write both operating on different versions of the same object so

none of these operations required to completely lock and hence both can operate

concurrently.

The only case where the contention can still exist is when two concurrent

transaction tries to WRITE the same record.

124

REFERENCES

1. “PostgreSQL Tutorial - Learn PostgreSQL From Scratch.” PostgreSQL

Tutorial - Learn PostgreSQL From Scratch, www.postgresqltutorial.com .

Accessed 11 Nov. 2022.

2. “pgAdmin 4 — pgAdmin 4 6.15 Documentation.” pgAdmin 4 — pgAdmin 4

6.15 Documentation,

www.pgadmin.org/docs/pgadmin4/latest/index.html. Accessed 11 Nov.

2022.

3. “PostgreSQL: Documentation.” PostgreSQL: Documentation,

www.postgresql.org/docs . Accessed 11 Nov. 2022.

4. “Learn PostgreSQL Tutorial - Javatpoint.” www.javatpoint.com,

www.javatpoint.com/postgresql-tutorial . Accessed 11 Nov. 2022.

5. Forta, Ben. SQL in 10 Minutes a Day, Sams Teach Yourself. 5th ed., Pearson

Education, 2019.

6. Vasilik, Sylvia Moestl. SQL Practice Problems: 57 Beginning, Intermediate,

and Advanced Challenges for You to Solve Using a Learn-by-Doing Approach.

2017.

7. Beaulieu, Alan. Learning SQL. 2nd ed., O’Reilly Media, 2009.

8. Beighley, Lynn. Head First SQL: Your Brain on SQL -- A Learner’s Guide.

O’Reilly Media, 2007.

9. Regina, and Leo Hsu. PostgreSQL - Up and Running 3e. O’Reilly Media,

2017.

10. Dombrovskaya, Henrietta, et al. PostgreSQL Query Optimization: The

Ultimate Guide to Building Efficient Queries. 1st ed., APress, 2021.

11. Kumar, Vallarapu Naga Avinash. PostgreSQL 13 Cookbook: Over 120

Recipes to Build High-Performance and Fault-Tolerant PostgreSQL

Database Solutions. Packt Publishing, 2021.

12. Stones, Richard, and Neil Matthew. Beginning Databases with PostgreSQL:

From Novice to Professional. 2nd ed., APress, 2005.

13. Debarros, Anthony. Practical Sql, 2nd Edition: A Beginner’s Guide to

Storytelling with Data. No Starch Press, 2022.

14. Bagui, Sikha Saha, and Richard Walsh Earp. Database Design Using Entity-

Relationship Diagrams. 3rd ed., Taylor & Francis, 2022.

15. Harrington, Jan L. Relational Database Design and Implementation. 4th

ed., Morgan Kaufmann, 2016.

http://www.postgresqltutorial.com/
http://www.pgadmin.org/docs/pgadmin4/latest/index.html.%20Accessed%2011%20Nov.%202022
http://www.pgadmin.org/docs/pgadmin4/latest/index.html.%20Accessed%2011%20Nov.%202022
http://www.postgresql.org/docs
http://www.javatpoint.com/postgresql-tutorial

