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Preliminary Results

Main Takeaways

x

High plateau grasslands and peatlands are great carbon sequesters but highly vulnerable

Most of the efforts have been
mostly addressed soil organic
carbon; however, recalcitrant carbon
and their isopic compositions are
also key variables to pay attention
when taking about climate change

.

In Junin, from 1987 to 2015,Maca
areas increased from 60 ha to 1543
ha,which meant a 55% loss of
pastures (Fig 1).

Land- use change has a significant impact on 
carbon sequestration/emissions, soil fertility, 

livestock, sustainability, among others.

Fig. 1: Evolution of the area planted with maca in Peru. 

Source: Turin et al., 2017 
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Fig. 5: Model efficiencies for total soil organic carbon, recalcitrant carbon and their 
isotopic compositions. RF = random forest, NN = neural networks, and SVM = 
support vector machine. 

Fig. 2: Study area

Soil sampling:
• Sampling sites were defined with the 

Latin hypercube method.
• Soil samples were collected as 

shown in Fig. 3. 
Soil analysis:
• Soil carbon analysis were performed 

at University of Tennessee, USA. 
• Texture and pH at UNALM-Lima, PeruFig. 3: Soil sampling approach

Carbon variables of interest for this study and their abbreviations:
o Soil organic carbon (SOC)
o Isotopic composition of soil organic carbon (δ13C SOC)
o Recalcitrant carbon (Recalc. C)
o Isotropic composition of recalcitrant carbon (δ13C  Recalc. C)

Machine learning modeling approach

Machine learning models
used for comparison:
o Random Forest
o Neural Networks
o Support vector Machine

o

o Complementary to the 
sampling data environmental 
data from remote sensing 
were considered as potential 
drivers of the carbon variables.

Due to the complexity of the 
carbon dynamics, machine 
learning algorithms was 
tested and compared. 
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o The RF and NN models captured non-linear interaction with an 
acceptable performance (except for δ13C SOC), considering that 
majority of land-uses were a kind of pasture in the end.

o Different carbon variables seems to have somewhat different drivers. 
Further research is needed.

o The high spatial heterogeneity of the Andes as well as the small 
plots could not be well represented by remote sensing data. 

Fig. 4: Machine learning 

SOC δ13C SOC Recal. C δ13C Recal. C
SOC 1

δ13C SOC -0.514 1
Recal. C 0.796 -0.276 1

δ13C Recal. C 0.179 -0.001 0.196 1

 Table 1: Pearson  correlation among the carbon variables.

SOC Land-use, NBR, SWIR2, NDMI
δ13C SOC Land-use, NDMI
Recal. C Land-use, pH, Eto

δ13C Recal. C pH, dlake, Tmin, NDMI

Table 2: Most important 
variables found by the models 
for all the carbon variables. 

o Land-use was the most important variable for almost all carbon variables (except 
δ13C Recal. C), followed by pH for both recalcitrant C variables. NDMI was also 
in the top-5 for almost all of the carbon variables.

o δ13C Recal. C had very different top-3 most important variables from the others; 
which is consistent with its lack of correlation with the other carbon variables.

o Both model performance and most important variables agree with other similar 
studies [2,3]
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model components.  
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