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In-season Crop Yield Forecasting 
in Africa by Coupling Remote 
Sensing and Crop Modeling:  
A Systematic Literature Review 

Abstract 

Timely and accurate estimation of crop yield before harvest is crucial for national 

food policy and security assessments. Crop models and remote sensing techniques 

have been combined and applied in crop yield estimation on a regional scale. 

Previous studies have proposed models for estimating canopy state variables and 

soil properties based on remote sensing data and assimilating these estimated 

canopy state variables into crop models. This paper presents an overview of the 

comparative introduction, latest developments and applications of crop models, 

remote sensing techniques, and data assimilation methods in the growth status 

monitoring and yield estimation of crops, facilitating the improvement of crop 

models and remote sensing coupling approach in Africa. 
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Introduction 

Agriculture is the major land use in Africa and is the primary income source for 

smallholder farmers. However, in many forms, African agriculture remains highly 

sensitive to both climate extremes and variations in climate and trends over a 

range of time series, particularly in regions where rainfed agriculture supports the 

majority of the population and plays crucial roles in national economies like East 

Africa (Ogutu et al., 2018). Improving the resilience of the agriculture sector by 

preparing vulnerable populations for extremes weather variability and developing 

reliable crop production (Matthew et al., 2015) can not only have a positive effect 

on socioeconomic development but also enhance food security through better 

agricultural management and policy formulation that proactively accounts for 

variable climatic conditions (Bahaga et al., 2015).  

Forecasting in-season crop yield, namely estimating several weeks in advance how 

much there will be on the field at harvest, has become increasingly tangible and 

important. Farmers, commodity markets, insurance, seed traders, and logistics 

companies, as well as regional authorities and food aid programs, need outlooks on 

expected harvests to adapt their management of fields, firms, or food balances 

(Schauberger et al., 2020). Examples of the use of forecasts are crop insurance or 

early warning systems, which were ranked as the top adaptation measure with the 

highest economic return on investment (Global Commission on Adaptation, 2019).  

There are a number of systems and techniques to forecast crop yield, both in the 

scientific literature and in practical application. Global and transnational yield 

forecasting systems exist based on models or as exchange platforms that combine 

national forecasts to provide a global outlook (Fritz et al., 2019). In Africa, efforts 

towards improved resilience to extreme climate variability are ongoing through the 
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issuance of pre-season climate forecasts generated by both statistical and dynamic 

methods. For example, in east Africa, the Greater Horn of Africa Climate Outlook 

Forum (GHACOFs) (Martines et al., 2010) brings together scientists to develop a 

consensus on rainfall and temperature forecasts for the coming seasons plus likely 

impacts on climate-sensitive sectors, including agriculture (Hansen et al., 2011). The 

scientists further downscale the consensus seasonal climate outlooks for national 

impacts and other purposes. However, these seasonal climate impact outlooks are 

generally based on subjective expert judgment rather than explicit quantitative 

methods. In addition, gaps exist between the African applications and global 

exercises due to data scarcity, the slow adoption of new technologies, and small 

research teams. Here we present a systematic review of existing approaches in 

Africa from the scientific literature to forecast in-season crop yield. The review 

covers almost the whole continent and major food crops, with a focus on methods 

to link crop models (CMs) and remote sensing (RS), due to their increasing 

importance in forecasting and the objectives of the project. 

This systematic review complements previous reviews on successful applications of 

yield forecast with crop models and remote sensing in Africa. We also compared 

the applications with studies conducted in developed countries and developing 

countries on other continents, reviewed by a number of papers. This review 

provides an overview of the usage data (weather, remote sensing data), method, 

and application examples of in-season yield forecast in Africa, highlighting their 

virtues and deficiencies compared to current development across the world. The 

report is structured as follows. First, we describe the review method used to collect 

the paper and define the questions. Then, we summarize the papers regarding 

research crops, geographical boundaries, and the type of models or data used. In 

the following sections, we discuss the method used in Africa and their advantages 
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and drawbacks, including seasonal climate forecasting methods, crop modeling, 

remote sensing, and linking. In the last section, we draw a conclusion. 

Research Method 

Review methodology 

This systematic literature review helps us to understand the application of remote 

sensing and crop modeling in in-season crop yield prediction. This systematic 

literature review is carried out to highlight the existing research gaps in Africa and 

guide us in utilizing the remote sensing indices and crop models to enable in-

season crop yield forecasting. For the systematic literature review, not only are all 

research studies from journals, conferences, and other electronic databases 

assessed but they are also integrated and presented in correspondence to the 

research questions mentioned in our study.  

A systematic literature review is an exceptional way to evaluate a theory or 

evidence in a specific area or to study the accuracy or validity of a specific theory 

(Muruganantham et al., 2022). The review guidelines given by Kitchenham and 

Charters (2007) are appropriate for our systematic literature review as they provide 

objectivity and transparency. Based on the review guidelines, initially, the research 

questions are formulated. The review is undertaken in accordance with the 

Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) 

statement (Page et al., 2021). Several databases, such as IEEE Explorer, 

ScienceDirect, Scopus, Google Scholar, MDPI, and Web of Science, are used for 

selecting relevant research articles. These research articles are assessed and 
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filtered based on the quality criteria. A complete checklist of PRISMA1 is used for 

conducting and reporting the results of the review. 

Research questions 

The following research questions are developed to guide the systematic review: 

1. “What data products such as weather are used for in-season crop yield 

forecasts in Africa?”  

This question helps us to analyze the weather, remote sensing, field 

observation data availability, advantages, and limitations of different 

datasets.  

2. “What remote sensing technologies are used for crop yield prediction in 

Africa?” 

With various remote sensing technologies in existence, this question helps us 

to understand the suitable remote sensing technology based on the data 

acquisition requirements for the study of crop yield prediction, such as land 

area and crop type.  

3. “What crop models are used for crop yield prediction in Africa?” 

Answering this allows us to understand the advantage and disadvantages of 

crop models when utilizing them in the data scarcity continent - Africa. 

4. “What are the vegetation indices and environmental parameters used in 

coupling the RS and CMs?” 

This question enables us to learn about the various features that are 

influencing the coupling approach and the forecasting accuracy in crop yield 

prediction.  

 

1 See https://prisma-statement.org  

https://prisma-statement.org/
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5. “What are the challenges in using RS and CM for in-season crop yield 

forecasts in Africa?” 

This question helps us to understand the limitations and challenges in the 

existing approaches.   

Procedure for article search 

The approach to searching the articles is designed based on the framed research 

questions and the aim of the systematic literature review. Narrowing down the 

focus from a major concept to the central idea of the review helps in creating an 

effective search strategy. Using “Crop model” or “Remote Sensing” alone as a search 

string will generate a lot of published articles from various application fields that 

are not likely related to the aim of the review and cause the search to be 

complicated. Redefining the search strategy as “crop yield prediction” AND “remote 

sensing” AND “crop model” AND “Africa” can reduce the probability of deviating 

from the scope of the review. Initially, by using these search strings, the articles 

were retrieved from five databases, including IEEE Explorer, Science Direct, Scopus, 

Google Scholar, and MDPI. Further, to include any other relevant studies, the 

following keywords, namely “crop yield prediction” OR “crop yield estimation” AND 

“seasonal” AND “remote sensing” OR “yield forecast” AND “Africa,” were used to 

retrieve the articles from the databases. The articles from the last ten years (2012–

2022) were used for the study. 

Article selection criteria 

The retrieved articles are initially selected based on aspects such as the quality of a 

journal, any type of remote sensing technology and crop models used for the study, 

and the type of coupling approaches adopted. Analyzing the abstracts of articles 
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helps in understanding the keywords and the selection of articles. The exclusion of 

irrelevant articles was carried out based on the following criteria: 

• Articles that belong to the agricultural sector but that do not fall under crop 

yield prediction; 

• Articles that do not cover Africa; 

• Publications that have no open access; 

• Literature search for articles that are published before 2012; 

• Articles in different languages other than English. 

Literatures Overview 

After applying all the exclusion criteria, a total of 41 articles are selected. Further 

removing the repeated articles across the selected databases, 36 articles are 

selected for the review. In Figure 1, we explain the process for article selection and 

rejection from databases for the review based on PRISMA. Figure 1 shows the 

number of articles retrieved after selection criteria are applied and the number of 

articles obtained after excluding the repeated articles from the selected databases. 

The research questions are addressed after all the data from retrieved articles are 

summarized and synthesized. 
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Figure 1 PRISMA flow chart showing the results of searches. 

 

Figure 2 shows the number of articles published between 2012 and 2022. It is 

evident that the study of crop yield forecasts using crop models and remote 

sensing has increased in recent years, particularly in 2022. This is because of the 

availability of free satellite data, such as Landsat, MODIS, Sentinel, and the open-

sourcing campaign of various crop models through global modeling programs, such 
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as the Agricultural Models Intercomparison Program (AgMIP). Studies have been 

conducted in most countries in Africa, most frequently in Ethiopia (9), Burkina Faso 

(5), and South Africa (4). The selected articles on yield forecasting show a wide 

range of crops, including non-staple or horticultural crops. Maize is the most crop 

that is studied in the literature, followed by wheat, sugarcane, millet, and sorghum.  

 

 

Figure 2 Distribution of articles between 2012 and 2022. 

 

In terms of crop models, although a wide range of model types and specific models 

are used for forecasting, more than half of the studies employ machine learning or 

statistical models because of their straightforward nature and less requirement for 

inputs. Processed-based crop models are also frequently used in Africa to forecast 

crop yields, including the widely used crop models APSIM (n=2), AquaCrop (n=1), 

CROPWAT (n=1), DSSAT (n=2), SARRA (n=3), and WOFOST (n=2). All these models are 

developed in developed countries, with training data from environments that are 
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different from Africa. A small number of studies (<10) tested or validated the 

models in African environments with real field observations. 

 

 

Figure 3 Types of crop models have been used in the publications. 

 

Seasonal Climate Forecasts for Africa 

Seasonal climate forecasts are currently routinely issued up to 12 months before 

the start of seasons (lead-time) by numerous operational global forecast centers. 

With sufficient lead time before the start of a growing season, different adaptation 

options are possible (e.g., choosing different crops or varieties, heavy or low 

investment in farm inputs) as opposed to forecasts issued after crops are planted. 

The exactness of lead times indicated in the studies varies, with six studies 

mentioned only that a forecast before the harvest was performed, but the actual 
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lead time is not stated. The most frequent lead times are several months to one 

month.  

Table 1 Overview of weather products useful for yield forecasting. 

Name Time 

period 

Latency Temporal 

resolution 

Spatial 

resolution, 

coverage 

Variables2 If used in 

Africa 

Global near real-time products 

NASA POWER 1981-present 1-7 days Daily 0.5º global T, P, H, SW, 

LW, W 

Yes 

NASA POWER – 

GEWEX SRB 3.0 

1983-2007, 

2008-present 

7-8 days 3 - hly 1º global SW, LW No 

NASA POWER – 

MERRA 2 

1981 to 

present 

Few months hourly 0.5º x 0. 625º 

global 

T, P, SW, LW Yes 

NASA POWER – 

GEOS FP 

End of 

MERRA 2 to 

near-real 

time 

4 h hourly 0.25º x 0. 

3125º global 

T, P, SW, LW No 

ERA5 (ECMWF 

ReAnalysis) 

1980 to 

present 

3 months hourly 0.25º global T, P, SW, LW, 

W 

Yes 

NCEP/NCAR 1948 to 

present 

1 days hourly 0.25º global T, P, H, W Yes 

NASA GLDAS 1948 to 

present 

A month 3 - hly 0.25º global T, P, SW, LW No 

CHIRPS 1981 to 

present 

2 days daily 0.05º global P Yes 

CHIRTS 1983 to 2016  daily 0.05º global Tmax, Tmin Yes 

Global short-term to season forecasts 

NCEP GFS 8 days 6 h 3 -hly 0.5º global T, P, H, W No 

TIGGE 1 to 15 days 48 h 6 -hly  T, P, SW  

ECMWF - HRES 10 and 15 

days 

 Twice daily 9 and 19 km T, P, H, SW, 

W 

No 

ECMWF 46 days and 

7 months 

 Twice weekly 

and monthly 

36 km T, P, H, SW, 

W 

Yes 

S2S Up to 60 

days 

Updated 

daily with a 

21-day delay 

Weekly 

anomalies 

Global T, P No 

NCEP – CFSv4 45 days to 6 

months 

6 h 6 -hly 0.5º global T, P, SW, LW No 

JMA/MR1-CPS2 Up to 7 

months 

few days daily 0.5º global T, P, W, H No 

 

2 Variables codes are 2 m air temperature (T), precipitation (P), humidity (H), shortwave (SW), longwave surface 

radiation (LW), and wind (W). A detailed description of each weather data product, see Schauberger et al. (2020). 
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Forecasts are provided at various growth stages, with the longest lead times 

observed for sugarcane. 

The short-term and seasonal weather forecasts that have been used in the 

publications were mainly based on products produced by developed countries like 

Europe. Schauberger et al. (2020) provide an overview of near-real-time 

observation-based weather products. Many have been used in Africa to conduct 

crop yield forecasts (Table 1). NASA POWER (Prediction Of Worldwide Energy 

Resources) is a prominent near-real-time product with a latency of a few days for 

most variables, combining solar radiation data based on radiative transfer models 

from satellite observations with meteorological data from MERRA2 (Modern-Era 

Retrospective analysis for Research and Application). The time gap (latency of a few 

months) until MERRA 2 becomes available is bridged with GEO FP (Global Earth 

Observing System Forward-Processing) to provide near-real data. ERA5 is the new 

ECMWF (European Centre for Medium-Range Weather Forecasts) near-real-time 

reanalysis product, replacing ERA-Interim reanalysis. CHIRPS (Climate Hazards 

Infrared Precipitation with Stations) and CHIRTS (Climate Hazards Infrared 

Temperature with Stations) are new high-resolution products at 3-arcmin global 

coverage, combining satellite observations with station data. These products 

provide an advantage, especially in Africa, with scarce station data.  

Several options are available to continue yield simulations after the forecasting day 

throughout the growing season. These include historical weather data, employing a 

weather generator, or using weather predictions. Table 1 is the overview of the 

most common weather forecast products currently available. General short-term 

weather forecasts (up to 2 weeks) can be continued with sub-seasonal (up to 3 

months) and seasonal outlooks, but forecast skill beyond ten days is as yet 

generally marginal. Prominent short-term products used in Africa include ECEP’s 
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GFS and the ECMWF ensemble. Several studies in our literature data use historical 

climate as a proxy for unobserved weather in the future. This can be achieved via 

trend extrapolation, historical averages, or more sophisticated choices where the 

observed weather during the season of interest until the forecasting day is used to 

identify historical weather analogues to prescribe a weather trajectory until the end 

of the season.  

Global Climate Model (GCM) based seasonal climate forecasts have been used in 

agricultural impacts modeling globally and in Africa with varied results, suggesting 

variations in skill due to factors like spatiotemporal scales used, level of surface 

heterogeneity, crop management practices, and model initialization, amongst 

others. Driving crop models with skillful seasonal climate forecasts may not 

guarantee good yield forecasts (Shin et al., 2010), but the reverse, i.e., better skill in 

crop forecast than in the meteorological forecast, has also been reported (McIntosh 

et al., 2005). In addition, whether a crop in a certain region experiences 

temperature or moisture limitations affects yield predictability differently. For 

example, since temperature influences crop phenological development and its 

predictability is generally higher than for precipitation (Ogutu et al., 2016), its 

predictability influences yield predictability differently. Finally, the time of the year 

in which a forecast is useful depends on the crop and region (McIntosh et al., 2007), 

depending on the local cropping calendars. 

Crop Yield Forecast 

Several tools have been developed over the years to assess the production and 

distribution of food resources across Africa as part of the food security 

assessments. To satisfy the long-term requirement for crop yield forecasting, many 

methods have been developed to provide information in advance about potential 
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crop production. These methods can be grouped into (i) physical field and survey-

based assessment, (ii) time trend analysis, (iii) crop growth simulation models, and 

(iv) remote sensing-based methods. 

Physical field and survey-based assessments 

Field-based or survey-based methods are the traditional way of conducting crop 

yield estimates where trained and experienced field or survey staff sample and 

qualitatively score sampled crop fields to estimate crop yield and quality. This is the 

commonly used approach in many countries in sub-Saharan Africa, where 

ministries use their dense network of field extension officers to report on the 

quantity of the season based on these field reports (Chitsiko et al., 2022). It is, 

therefore, widely utilized, well-accepted, and an official approach to estimating crop 

yields in many counties. This method is based on field-observed data and relies on 

verified actual crop fields for prediction. In addition, with experience, the quality of 

the forecasts increases as the field officers become more accurate, resulting in 

better decision-making. Field-based methods based on estimating crop yield rely on 

currently established networks to provide crop yield estimates, and therefore there 

are little to no establishment and operational costs. However, these methods also 

come with challenges. 

Among the greatest setbacks of field-based forecasting is the reliance on subjective 

judgments by the individual, which gives different scores for the same condition 

(Kuri et al., 2014). They also require extensive fieldwork to produce representative 

results, and this makes it not only grueling and time-consuming but also very 

expensive. In addition, given the different planting dates in different regions, it is 

very difficult to harmonize the crop yield estimates based on different crop stages. 

Related to that is that the results from these estimates are not instantaneous as it 
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can take a long time to complete the assessments across large areas. It is also a 

paradox that the estimate relies on field extension officers employed and expected 

to increase crop productivity in their areas of jurisdiction. There is, therefore, a 

general temptation for field officers to overstate the crop yield estimates in order to 

be considered effective, thereby compromising the results.   

Time trend analysis 

Time trend analysis is another method used in estimating crop yields. The method 

estimates yields using statistical analysis of historical trends and adjusts for other 

variables such as weather, soils, and markets. The model is parameterized at 

different spatial and temporal scales, and when the relationship between the 

variables and yield is established, then the yield estimate can be predicted for a 

season or for many years. The method is widely used as the FAO’s Early Warming 

System (GIEWS) for yield estimation. In time trend analysis, the field reports on crop 

yield data area regressed against known influential meteorological parameters 

such as the start of the rainfall season, total rainfall, and mean monthly 

temperature of the agricultural season to generate a functional model. An example 

of time trend analysis was done by Monatsa (2011), where they used long-term 

rainfall data as input into a crop water balance model to calculate the water 

requirement satisfaction index (WRSI) for maize in Zimbabwe.  

Yield forecast using agrometeorological inputs and time series yield data into a 

statistical regression is another common method and is used in many yield forecast 

research and programs. In general, a simple statistical model is built using a matrix 

with historical yield and several agrometeorological parameters (e.g., temperature 

and rainfall). Then, a regression equation is derived between yields as a function of 

one or several agrometeorological parameters. For example, Davenport (2019) 
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utilized the long-term yield data and environmental data in developing a statistical 

yield forecast model and forecast for 56 regions located in two severely food 

insecure countries: Kenya and Somalia.   

Time trend analysis or a statistical model has many advantages in crop yield 

prediction, especially when compared to field-based methods. This approach does 

not necessarily require extensive fieldwork, and it is thus cheaper. The calculation is 

easy, less time is required to run the model, and the data required are limited. In 

addition, the approach can be easily extended and extrapolated beyond the areas 

where data was available or not available and produce robust results. Since the 

approach is statistical in nature, there is more confidence in its application as there 

are established standardized measures of model performance that are used to 

evaluate the accuracy of the model before use. Given the recent improvements in 

computational powers and Machine Learning approach, these methods are also 

faster to implement for decision making.  

Time trend analysis or statistical model, however, has challenges. They are limited 

in the information they can provide outside the range of values for which the model 

is parameterized. Also, the output of such models might not have any agronomic 

meaning while they are still statistically legitimate. In addition, they do not take into 

consideration the soil-plant-atmosphere continuum, which is important when 

dealing with regions having different soil types. For example, the response of a crop 

to a given amount of rainfall on sandy soil is different than a crop on clay soil. The 

timing of the water stress occurring during the growing season is also important 

and often ignored. For example, heat stress occurring at flowering will reduce yields 

more than heat stress happening during the vegetative phase. This is important for 

correctly forecasting yield and for giving farmers important agronomic advice.  
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In Africa, one of the big downsides of the time trend analysis and statistical model is 

mainly related to the availability and quality of input data used in the time trend 

analysis. In many African countries, there is a paucity of data. Most of the available 

data on yield is at a localized scale, and in a few cases where this data is available, 

the quality is often poor. In addition, the approach is dependent on the availability 

of a dense network of meteorological stations, which are non-existent in many 

areas, particularly those facing severe food shortages. This is so because many 

meteorological stations are located in urban areas, and their representativeness of 

communal areas where much questionable. In addition, with climate change and 

variability, the validity of relying on long-term weather data trends to make yield 

predictions is becoming less reliable. For example, mid-season droughts can 

significantly reduce yields in a season when the rainfall totals received in a season 

remain relatively unchanged. Thus using the total rainfall for yield prediction 

becomes less accurate under these conditions.  

Crop growth simulation models (CSM) 

Crop growth simulation is another family of yield estimation methods. 

Agroecosystems are complex entities where crop yield is the result of many 

interactions, such as soil, atmosphere, water, and socioeconomic factors. CSMs are 

built with the aim of considering the continuum soil-plant-atmosphere and its daily 

changes on the daily accumulation of biomass and nitrogen. These models 

estimate crop yields based on the known characteristics of crop growth, the 

biophysical environment, management practices, and other factors. There are 

many CSM around the world, such as CERES, APSIM, and AquaCrop. Crop growth 

simulation models such as CERES, WOFOST, AquaCrop, and SWAP capture the most 

likely production potential of an area by weighing the constraints against the 

factors promoting production to obtain the most likely production potential. Unlike 
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the time trend analysis approach that relies mostly on historical data, crop growth 

simulation models are able to provide in-season forecasts by relating crop 

conditions at particular physiological stages to the yield of the crop for each land 

use system, management regime, and other related production factors. There are a 

number of crop growth simulation models that have been utilized over the years 

for use in yield modeling. Examples of such models include those that relate to 

probabilistic maize yield prediction in Kenya, Ethiopia, and Tanzania with dynamic 

ensemble seasonal climate forecasts (Ogutu et al., 2018), yield reduction, and water 

management in Ethiopia (Eze et al., 2020). Others link soil moisture condition to the 

potential yield assuming that soil moisture is the most limiting condition for yield in 

certain land use systems (Luciani et al., 2019). 

Crop growth simulation models tend to be very accurate for localized applications 

when compared to other methods when properly parameterized. They also have 

fewer data needs and are, therefore, less complex, meaning that they satisfy the 

parsimony requirement for models. They are also based on field observations 

making them more empirical and data-driven. In addition, they are also able to 

adjust according to different significant factors that affect crop yields, such as crop 

varieties, soil conditions, water supply, management commitment, and other 

factors. However, crop growth simulation models are based on experimental data, 

which significantly differs from actual field conditions for crop production. They 

also produce an indication of the production potential of a particular land use 

system but not necessarily the actual production.  

The difficulties of adopting CSM have usually been associated with the intensive 

data for models’ parameterization. The need for calibration can be quite data-

extensive and not applicable to some developing countries. In fact, it has been 

argued that several variables are needed to calibrate/evaluate the CSMs, 
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concluding the usefulness of CSMs in some “real” situations because of the 

impossibility of gathering inputs and calibration datasets. However, a close look at 

the literature and the work done by other researchers points out that the CSM can 

be run using “Minimum Data Set” inputs. Models, like the SARRA example used in 

Mali, have shown to be easy to use by anyone but still maintain their robustness in 

yield predictions. It has been pointed out that another limitation of the CSM is that 

they are “point-based” and inadequate to run at a regional/national scale. However, 

gridded crop models have developed and can be run at regional and national scales 

with fewer demands on inputs and calibration datasets.  

Remote sensing-based methods 

Remote sensing-based methods are gaining momentum and gain acceptance in 

crop yield estimations. Remote sensing systems capture radiation in different 

wavelengths reflected/emitted by the earth’s surface features, which are recorded 

by sensors to generate images. Over time, the biophysical understanding, 

algorithms for data handling, data storage capacity, and sensor technology have 

grown, resulting in many applications of remote sensing methods in crop yield 

estimations. Remote sensing-based methods have thus been used to predict crop 

condition and yields in agriculture through directly assessing crop growth and vigor 

and indirectly through estimation of leaf nutrient status, weed pressure, disease 

severity, insect attach, and other useful biophysical crop properties related to 

yields. 

Prospects for yield modeling using remote sensing are high, considering the fast 

research developments in this area. There are many methods used to forecast crop 

growth and yield from RS, such as the empirical regression model, the biomass 

production model as a function of absorbed or intercepted solar radiation, and the 
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stress-degree-day model. The meteorological variables used for forecasting yield 

are mainly based on two variables, temperature and precipitation, since they are 

related to crop yields and can be easily obtained from meteorological stations or 

from satellite measurements. For example, Kuri et al. (2014) successfully developed 

an approach that uses SPOT VGT-derived dry dekads to predict crop yields at the 

national level for drought early warming and yield estimation. Dutta et al. (2015) 

applied a normalized NDVI to get the vegetation condition index that indicates 

changes in maize crop conditions related to drought. Abebe et al. (2022) calculated 

vegetation indices from the Landsat 8 and Sentinel 2A observations to estimate 

sugarcane yield in Ethiopia. Table 3 summarizes the remote sensing data and 

method used in the reviewed studies. 

Remote sensing-based methods have many advantages compared to other crop 

yield estimation methods. Remote sensing can instantaneously provide estimates 

from large areas covering countries and entire regions, significantly reducing the 

costs of doing such exercises. Results from remote sensing are also timely as 

indications can be obtained in advance, enabling planners and policymakers to 

efficiently make decisions in advance. In addition, when appropriately analyzed, 

satellite data provides not just estimates of the quantity but of the quality of the 

yields (Davis et al., 2016). This is because it is able to integrate the effect of soil type, 

relief, climate, varieties, and other socioeconomic factors that influence crop 

performance at different locations, making results more representative and 

accurate. However, the learning curve and establishment costs of remote sensing 

applications are high, making their uptake limited in developing countries. Remote 

sensing estimations are confounded by clouds and non-crop areas, and thus, their 

success may be limited in many subtropical areas. 
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Table 2 Summary of strengths and weakness of crop yield prediction methods. 

Method Strengths for application 

in crop yield estimation 

Weaknesses for application Potential for use with 

other methods 

Physical Field 

and Survey 

assessments 

Well-accepted as the 

standard 

There is already experience 

with this method as it has 

been used for a long time 

Based on field observation 

and survey data and can be 

verified 

Rely on currently 

established networks, and 

therefore there are little to 

no establishment and 

operational costs. 

Relies on subjective assessment 

by individuals, which gives 

different scores for the same 

condition 

Require extensive fieldwork to 

produce representative results 

Tedious, time-consuming, and 

expensive 

Results affected by planting 

dates 

 

Used mainly as a 

parameter for 

evaluating or calibrating 

other assessment 

methods 

Little potential for 

integration with other 

methods. 

 

Time trend 

analysis 

Does not require extensive 

fieldwork and is, therefore, 

cheaper and quicker 

The method can be easily 

extended and extrapolated 

beyond the areas where 

data was available or not 

available and produce 

robust results 

The statistical approach is 

good for ensuring 

confidence 

It is faster to implement for 

decision-making. 

No quality data is available at 

the required disaggregated level 

The approach is dependent on 

the availability of a dense 

network of meteorological 

stations which are not there in 

many countries 

the statistical relationships are 

changing with climate change 

Can be integrated with a 

remote sensing 

approach where remote 

sensing can provide 

long-term data on the 

condition, yield, or other 

parameters 

Can be used with field-

based methods where 

the field data is used to 

determine the required 

statistical relationships. 

Crop Growth 

Simulation 

Models 

Can be very accurate for 

localized application 

They have fewer data needs 

and are, therefore, less 

complex 

Based on field observations 

making them more 

empirical and actual data-

driven 

Can adjust according to 

different significant factors 

that affect maize yields. 

Based on experimental data, 

which significantly differs from 

actual field conditions for crop 

production 

Conditions for their 

development have since 

changed from now which 

affects their use 

More useful for production 

potential than the actual 

production estimation. 

 

Can be integrated with 

remote sensing 

methods as sources of 

meteorological data 

required in running the 

models 

Remote 

Sensing-

Based 

Methods 

Instantaneously provide 

estimates from large areas 

covering countries and 

entire regions, significantly 

The learning curve and 

establishment costs of remote 

sensing applications are high 

Can be integrated with 

both statistical yield 

forecasting and crop 

simulation models. 
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reducing the costs of doing 

such exercises 

Results are timely as 

indication can be obtained 

in advance 

Provide both the quantity 

and quality of the crop 

yields. 

Remote sensing estimations are 

confounded by clouds and non-

crop areas. 

 

Seasonal crop yield forecasts have been derived from either historical statistical 

relationships with rainfall or large-scale climate indices such as the El Nino 

Southern Oscillation (ENSO) Index (Iizumi et al., 2014; Hansen et al., 2009) and its 

influence on seasonal rainfall in some parts of the world such as eastern and 

southern Africa. These statistical methods are successful at broader spatial extents 

like national boundaries or regions and may not suffice for smaller spatial scales 

where heterogeneities exist. For example, normal rainfall season may result in low 

yields related to nutrient leaching depending on soil types. High rainfall variability 

exists in small regional extents even in an otherwise “good rainfall season,” and 

statistical relationships do not capture rainfall characteristics (such as distribution 

during a season and frequency) that are important for crop yields. In addition, poor 

records of historical yields on which the statistical models are calibrated also 

influence prediction skills. 

Confronted with the current climate change and variability together with climate 

teleconnections between a region of interest and other parts of the globe, any past 

statistical relationships between yields and climate indices may no longer hold true 

because the future will be under climate regimes not observed before. It is not clear 

if the relationships between phenological observations and satellite-derived 

vegetation indices will hold true since observation will also vary under different 

climate regimes (for example, higher temperatures than in the historical period), 
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and since crop response to climate is not linear; hence historical observations may 

not suffice. 

Crop Yield Forecast by Coupling CM and RS 

The integration of RS and CSM for crop yield forecasting has been researched for 

almost three decades. The RS can quantify crop status at any given time during the 

growing season, while CSM can describe crop growth every day throughout the 

season. RS can indirectly provide a measure for canopy variables which can then be 

used to adjust the model simulation. Since the first satellite information became 

variable to scientists, they have developed algorithms to estimate canopy state 

variables, such as LAI, vegetation fraction, and a fraction of APRR. One of the main 

integration procedures between RS and CSM focuses on adjusting the LAI simulated 

with the crop models against the one estimated through R. LAI is an important 

agronomic parameter between leaves where water and CO2 are exchanged 

between the plant and atmosphere; in addition, the LAI is used to model crop 

evapotranspiration, biomass accumulation, and final yield. Researchers working on 

such integrations generally adopted three steps: (1) estimate canopy variables with 

RS; (2) run the CSM; (3) use a proper integration method to adjust model runs. The 

first step can affect the subsequent results of the integration because if the crop 

variable is not properly estimated, then adjusting the model with a biased variable 

will lead to a wrong model evaluation. There are two ways of using RS for the 

estimation of canopy variables: through the use of statistical/empirical 

relationships; and the Physical Reflectance Models that simulate the interactions 

between the solar beam and the various canopy components through the use of 

physical laws in which the LAI can be entered as the input obtained from the crop 

model.  
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The important step in the integration of the crop model and RS is the technique 

used to combine them, both in space and time, canopy state variables with various 

information using remote sensing methods for optimizing crop parameters in the 

crop model. In the integration, one has to first distinguish observed variables (from 

remote sensing data resources), state variables (from a complete crop model 

system), and model parameters (described relationships between the observed 

variables and state variables). Several methods have been described in detail and 

applied for combining remote sensing data and crop models in different papers. Jin 

et al. (2018) summarized the methods into three types, namely crop model 

calibration, forcing methods, and updating methods. Some of the methods have 

been used in Africa. 

1. Calibration method. The initial parameters of crop models are adjusted to 

optimal consistency between the remote sensing data and the simulated 

state variables (the simulation data of the crop model). Crop models are 

manually or automatically run using a realistic scope of different integration 

parameter values to calibrate the sensitivity and uncertainty of crop model 

parameters. Many studies have been carried out using the data assimilation 

of crop models and remote sensing data using calibration methods. There 

are various specific algorithms, including the simplex search algorithm (Ma et 

al., 2013), Maximum Likelihood Solution (MLS), Least Squares Methods (LSM) 

(Zhao et al., 2013), Very Fast Annealing Algorithm (VFSA) (Dong et al., 2013), 

Powell’s conjugate direction method (PCDM) (Huang et al., 2015), and Particle 

Swarm Optimization Algorithm (VDSA) (Liu et al., 2015). The calibration 

method was used to minimize differences between the remote sensing data 

acquisition date and the date of crop model simulations using an 

optimization algorithm. In our selected literature, Jin et al. (2017) successfully 
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used this method to predict maize yield in Eastern Africa. This method has 

also been used to derive new values of LAI and used to calibrate the model 

for forecast crop yield in Ethiopia (Abebe et al., 2022). 

2. Forcing methods. Forcing methods use remote sensing data to replace the 

crop model simulation data. The remote sensing data is directly used to 

prescribe the simulation data that required the feasibility of the remote 

sensing data at each crop time step, which is daily, weekly or monthly in 

most crop models. Under normal circumstances, satellite transit frequency is 

less than the time step of the crop model. To drive remote sensing data at 

the time step in the simulation data of crop models, linear interpolation, fast 

Fourier transform, and wavelet methods are used to fill the gaps between 

remote sensing data observations. The estimated LAI from remote sensing 

data was mainly used as a state variable and was input into crop models. Yao 

et al. (2015) have estimated LAI using different remote sensing data, and the 

simulated results of crop models were directly replaced by the estimated LAI 

to improve the simulated LAI, aboveground biomass, yield, or crop 

transpiration of crop models. Based on the forcing method, the data 

assimilation of crop models and remote sensing data is easy to operate, but 

strictly speaking, it does not involve data assimilation methods. The 

simulated state variables or initial input data of crop models were only 

replaced by the estimated state variables or initial input data of remote 

sensing data. Remote sensing provided the state variables with high 

precision and enabled good estimated results to be obtained. Because the 

forcing method needs comprehensive knowledge of crop models and 

processing the model code, there is a limited number of studies using this 

method in Africa, at least in the selected literature.  
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3. Updating methods. When obtaining remote sensing data is feasible, the 

updating method includes continuously updating crop model simulation 

data. This is based on the assumption that better simulation data on day t 

will improve the accuracy of the simulation data on succeeding days. 

Updating method is usually called data assimilation, and a number of 

algorithms have been applied to the assimilation of remote sensing data and 

crop models. With in-depth research on data assimilation and the 

development of computer technology, data assimilation has been widely 

applied to combine remote sensing data and crop models. The EnKF, 4DVar, 

PF, the proper orthogonal decomposition technique into 4DVar, and 

ensemble square root filter methods were used to combine the state 

variables of remote sensing data and crop models and estimated soil 

moistures, AGB, LAI, and yield (Eze et al., 2020).  

In the case of the forcing method, crop models do not use their own information 

but follow the observed state variables, which include some errors. Remote sensing 

observation data have errors, and these errors will be introduced into crop models 

when the assimilation is completed by the forcing method. The calibration and 

updating methods have greater flexibility, and their minimization errors are 

brought into the crop model when remote sensing data is used in the assimilation 

process. The calibration method is hoped to get more representative input crop 

parameters into crop models and improve its prediction accuracy. Remote sensing 

observation data are used to calibrate crop models if there are sufficient 

observations, and the observation error is small. To a certain extent, this method 

could be used to reduce the accumulation and spread of remote-sensing data 

errors during the process of assimilation. Compared with the forcing and updating 

method, theoretically, the calibration method is better than the forcing and 
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updating methods, but the main drawback of this method is that it requires a lot of 

optimization iterations, resulting in more computing time. Compared to the 

calibration methods, the updating method significantly reduces the computation 

time because only the crop model is run. However, this method can be also flawed 

because it requires the most expensive calculation and measurement uncertainty. 

In addition, the updating method requires adjusting the crop parameters variables 

when running the crop model. The date of selected remote sensing images is an 

important factor affecting estimation accuracy using the updating method. 

Conclusions 

The review consolidates lessons from previous research on the tools, approaches, 

and applications by researchers who couple remote sensing with crop models to 

forecast in-season crop yields as an approach to enhance climate variability 

management in smallholder farming systems in Africa. The review shows that the 

most recent work on the integration of remote sensing with crop models has been 

predominantly over West and Eastern Africa, with limited work being done in other 

regions of Africa. Specifically, there is a need for more research in central and north 

and south-western Africa, where no studies have been recorded in recent times. 

Cereals crop, particularly maize, dominates research on the integration of remote 

sensing and crop models, but this provides a foundation to focus research on other 

crops of economic interest. This also includes an increased focus on drought-

tolerant crops as well as widening cropping systems, with emphasis on planting 

dates and fertilizer application. The study realized limited research related to 

integrating remote sensing into crop models for policy development. The widening 

of the interdisciplinary nature and scope of the studies through the involvement of 

social scientists, as well as agricultural economists, will improve the scope and aim 
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of such studies in policymaking. The application of research towards policymaking 

is critical for governments to steer human and financial resources toward the 

application of integrated crop and seasonal forecast information. This can be 

beneficial in smallholder farming systems, which are the most vulnerable to climate 

fluctuations. 

For in-season yield forecasts, statistical models are simple in their usage and less 

parameter-intensive, but they are limited in the information they can provide 

outside the range of values for which the model is parameterized. They do not take 

into consideration the soil-plant-atmosphere continuum and the timing of the 

stresses occurring during the growing season and do not give farmers any 

important agronomic advice (e.g., timing and amount of fertilizer, time of sowing, 

irrigation, and so on). Crop simulation models vary greatly between them. Some of 

them are rather hard to use and parameterize. The need for calibration can be 

quite data-extensive and not applicable to some developing countries. RS 

techniques have been extensively used in research for yield forecast but might not 

be suitable in developing countries because of their stratified agricultural systems 

and very small farm sizes. However, this problem will be hard to overcome in the 

near future because of the inability of RS to estimate yield in mixed agriculture. But, 

the increased availability of high-spatial-resolution RS at a reasonable cost makes 

this technique a possible interesting alternative for yield forecast. In fact, RS is often 

used in Early Warning Systems in Africa. The integration of RS and CSM represents 

an interesting alternative in crop yield forecasting. RS can quantify crop status at 

any given time during the growing season in a spatial context, while CSM can 

describe crop growth every day throughout the season (Maas, 1988). RS indirectly 

can provide a measure for canopy state variables used by the CSM as well as both 

spatial and temporal information about those variables, which can then be used to 
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adjust the model simulation. However, the integration of RS and crop models for in-

season yield forecasts are still rare in Africa compared to other continents. 

Significant investment should be aligned to this area and target in Africa. 
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