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A B S T R A C T   

The ways in which farmers implement conservation agricultural (CA) practices – which entail reduced tillage, 
maintenance of soil cover, and crop rotations – varies considerably in different environments, farming systems, 
and by the intensity with which farmers administer management practices. Such variability requires an efficient 
tool to evaluate the cost-benefit of CA, to inform agricultural policymakers and development priorities to 
facilitate expanded use of CA under appropriate circumstances. Rice-wheat rotation is the principal production 
system in South Asia (SA). Research has shown that CA can be promising in this rotation because of improved 
irrigated water, energy, and labor use efficiencies, in addition to the reduction in atmospheric pollution and 
potentially long term improvements in soil quality. Yield responses to CA are however varying across studies and 
regions. With a nine-year rice-wheat CA experiment in Eastern Gangetic Plains of South Asia, this study pa
rameterizes the Environmental Policy Climate (EPIC) model to simulate five CA and conventional managements 
on the RW cropping system. Information from geospatial datasets and farm surveys were used to parameterize 
the model at the regional scale, increasing the management flexibility and range of localities in the simulation. 
Yield potential of the CAs in the whole SA was thereby explored by utilizing the model with various management 
strategies. Our results demonstrate how geospatial and survey data, along with calibration by a long-term 
experiment, can supplement a regional simulation to increase the model’s ability to capture yield patterns. 
Yield gains from CA are widespread but generally low under current management regimes, with varied yield 
responses among CAs and environments. Conversely, CA has considerable potential in SA to increase rice-wheat 
productivity by up to 38%. Our results highlight the importance of applying an adaptive definition of CA, 
depending on environmental circumstances, while also building the capacity of farmers interested in CA to apply 
optimal management practices appropriate for their environment.   

1. Introduction 

Agricultural productivity in South Asia (SA) faces significant 

challenges to match future food demand while using natural resources 
judiciously (Stevenson et al., 2014). In response, conservation agricul
ture (CA) has been widely promoted as an alternative to tillage-based 
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conventional agriculture and an approach to crop husbandry that can 
reconcile these often competing objectives (Jat et al., 2020). CA is a 
management system of agronomic technologies that allow for minimum 
soil disturbance, maintenance of a permanent soil cover, and spatio
temporal diversification of crop species (Pittelkow et al., 2014). 
Research suggests that CA has multiple benefits, including the saving of 
labor, energy, mineral nitrogen in farming and leading to reduction in 
greenhouse gas emission (Alam et al., 2019), enhanced biological ac
tivity in soils (Naresh et al., 2016), and the long-term yield and pro
ductivity increase as a consequence (Sharma et al., 2012). In the short 
term and irrigated environments, some studies have suggested that CA 
has no yield advantages if not optimally implemented (Pittelkow et al., 
2014). The area under CA in SA is also relatively small compared to 
temperate nations and South America (Somasundaram et al., 2020). The 
coverage of partial CA-based system (at least one crop with no-till, with 
or without residue retention) is estimated around 2.5 million ha in South 
Asia (Jat et al., 2020), equivalent to 1% of total arable land, which re
mains much lower than the proportion in America, Europe, Australia, 
and China (Kassam et al., 2018). 

CA in SA started with the direct seeding of wheat in Punjab states of 
India and Pakistan (Hafeez-Ur-Rehman et al., 2015). Many agronomic 
challenges, including the prevalence of weeds, insect pests, diseases, the 
lack of widespread and suitable systems for managing crop residues, and 
the nonavailability of proper seeding and planting equipment, affect the 
adoption of CA in SA (Jat et al., 2021). Productivity under CA also varies 
considerably among and across the environments, depending on the 
crop, location, climate, management, how many and how long the three 
principles of CA have been applied. Some reviews have shown that 
no-till practices can reduce crop productivity, but no-till with residue 
retention and crop rotation may increase yield (Jat et al., 2020; Kumara 
et al., 2020). While many researchers have generated data across 
cropping systems in different geographical areas, CA’s yield potential 
has not been examined across various agronomic and environmental 
factors. 

The rainy (‘kharif’) season rice winter season (‘rabi’) wheat (RW) 
cropping sequence is the most important and widely adopted rotational 
pattern in SA. It occupies 13.5 million hectares of area, mostly in the 
Indo-Gangetic Plains (IGP) of India, Bangladesh, Nepal, and Pakistan 
(Gupta and Seth, 2007). Conventional RW production system is labor, 
water, capital, and energy-intensive (Bhatt et al., 2016), resulting in 
over-exploitation of groundwater, soil degradation, and increase in at
mospheric pollution (Shyamsundar et al., 2019). Soil with poor physical 
and biological health does not respond either to higher doses of fertil
izers and other agricultural management inputs, nor able to cope with 
the climate change shock. Along with the weed flora shifts, herbicide 
resistance in weeds, outbreak of diseases, insect and pests, lower 
nutrient use efficiency, labor shortage, multinutrient deficiencies are 
other sustainability issues causing yield stagnation in RW system (Bhatt 
et al., 2016; Ladha et al., 2003; Timsina and Connor, 2001). To over
come these emerging constraints of yield plateau, increasing cost of 
labor, water, and energy and declining farm profitability, farmers have 
been encouraged to explore alternative options for tillage, crop estab
lishment, and management practices (Bhan and Behera, 2014). Various 
experiments have been conducted to address the optimization of RW 
systems productivity under CA in SA, with multiple benefits on pro
ductivity, profitability, and environmental sustainability (Sharma et al., 
2018; Singh et al., 2020; Gathala et al., 2011; Choudhary et al., 2018). 
However, long-term experimental studies are difficult to reliably 
implement, in addition being expensive to maintain. Another challenge 
related to long-term experiments concerns the extrapolation of results to 
farmer practice (Su et al., 2021). It is impossible to explore all CA 
practice combinations across the full suite of SA’s diverse soil and cli
mates. Furthermore, the difference in yield outcomes and contrasting 
performance across the treatments may take several years to appear, 
given the varied, primary drivers, of soil and climate. Economic condi
tions such as inputs, energy, and labor cost are also dynamic and change 

by location and with time. Consequently, static treatments compared in 
a long-term field experiment may become inappropriate for application 
in practice by farmers by the time reliable results become available 
(Cabelguenne et al., 1990). In addition, it is increasingly recognized that 
there is no universal template for CA; rather, farmers’ practices require a 
process of adaptation to local conditions and constraints to optimize 
system performance in different environments (Kienzler et al., 2012). 
For example, following rice harvest, the planting window in the 
rice-wheat system and the duration of winter season is relatively shorter 
in the Eastern IGP than Western IGP. So, the yield penalty due to delayed 
planting is higher in the east than in the west with the same practice (Jat 
et al., 2020). Given this difference and wide diversity in agroecological 
conditions across SA, testing and refinement of CA-based cropping 
practices are required for its widespread adaption. This however is 
logistically impossible with most long-term experiments. 

Mathematical models that simulate biophysical processes are one 
means of evaluating complex agricultural systems, such as the RW sys
tem in SA (Timsina and Humphreys, 2006). When applied on a gridded 
spatio-temporal basis, simulation models can offer a quicker and less 
expensive way of investigating the effects of agricultural management 
practices on crop growth across environments. With reliable observed 
field data and precise calibration methods, models have been applied to 
design management strategies (Shahid et al., 2020), test the effective
ness of management practices (Assefa et al., 2020), and examine the 
environmental and social consequences (e.g. economic, labor demand, 
household labor availability) of a production system (Daloglu et al., 
2014). Many models have been improved to simulate crop sequences, 
such as the RW rotation (Kollas et al., 2015; Timsina et al., 1998), and 
some have been used to investigate the impacts of CA (Corbeels et al., 
2016). However, there are relatively few cases in SA where crop models 
have been applied to simulate and explore management options for CA 
across a spatio-temporal gradient of agroecological conditions. This is 
likely attributed to the scarcity of relevant data on diverse management 
practices of CA, the complexity of environments encountered in SA, and 
individual model limitations, such as the requirements of large inputs 
and detailed calibration. 

This study aims to (1) integrate a long-term CA experiment, farm 
survey, and geospatial data to set up a gridded crop model to examine 
the effect of CA on RW system productivity in SA, (2) apply the model 
with five CA strategies with different levels of agronomic interventions 
under the RW system, and (3) to optimize management practices for 
higher crop productivity across diverse environments. 

2. Materials and methods 

As most of the RW cropping system is concentrated in the Indo- 
Gangetic Plains (IGP) spanning India, Pakistan, Nepal, and 
Bangladesh, we set up the simulations across these countries (Fig. 1). 
The simulations were conducted at a 25 km × 25 km grid scale for all 
rice or wheat grids, with daily weather inputs (1981–2019), soil and 
managemental information. First, we set up the RW rotation in the 
model at a regional scale with gridded geospatial data, including 
weather, soil, topography, fertilizer, and crop calendar. These gridded 
datasets have been used by multiple Global Gridded Crop Models 
(GGCMs, e.g. Muller et al., 2017). Second, to improve the model per
formance on CA, we calibrated model’s tillage parameters, with obser
vations from a 9-year CA experiment in India. Third, by using a model 
optimization algorithm and operation information relevant to the CA 
practices in local of CA trials and farm surveys, we optimized model 
managemental parameters in each grid to accommodate the 
location-specific characteristics in crop cultivars and corresponding 
rotation settings. Last, we estimated the yield potentials of the RW 
system for each CA, under different nutrient strategies. These steps and 
data sources are described in Fig. 2 and below. 
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Fig. 1. Simulation domain, the long-term CA experiment site (Jat et al., 2014), the CA trial and farm sites collected in the meta-analysis study (Jat et al., 2020), and 
farm survey villages. 
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2.1. The EPIC model 

The Environmental Policy Integrated Climate (EPIC) model (version 
0810) was originally developed to simulate interactions between soil, 
climate, and management practices and their effects on soil erosion and 
the long-term consequences of soil quality decline on productivity and 
nutrient requirements. The main modules include weather generation, 
crop growth, soil water dynamics and temperature, soil erosion, carbon 
and nutrient cycling (Xiong et al., 2016; Balkovic et al., 2014). The crop 
growth module simulates light interception, radiation conversion to 
biomass, partitioning to roots, shoots and economic yield, and water and 
nutrient uptake. Plant growth is constrained by water, nutrient, air 
temperature, and soil aeration stresses. 

We chose this model because it can simulate the effects of a variety of 
agricultural practices on crops (e.g. wheat, rice, maize), including 
various tillage methods (Le et al., 2018). EPIC can also simulate multiple 
crops grown in complex rotations and has been used to examine the 
effects of conservation tillage practices, interactions between tillage and 
residue management, irrigation, liming, and application of fertilizer N 
and P (Le, 2017; Le et al., 2018). The model’s economics module uses a 
crop budget to calculate production costs. Income is determined from 
input market prices and simulated annual yield for crops and forages. 
The EPIC tillage module was conversely designed to simulate the mixing 
of nutrients and crop residues within the plow depth that affects bulk 
density, and to represent the conversion of standing stubbles into flat
tened residues. Within the modeling environment, tillage operations 
affect ridge height, surface roughness, bulk density and also mix soil 
layers, nutrients, and plant residues. 

2.2. Data 

Geospatial data used to set up the baseline simulation included 
weather, topography, soil, crop management, land cover, and plant 
parameters. Most datasets came from public sources and were stored at 
the simulation grid scale. 

2.2.1. Climatic data 
Gridded daily weather variables (including maximum and minimum 

temperatures, incoming shortwave radiation, rainfall, vapor pressure 
deficit, relative humidity, and wind speed) were obtained from the 
newest weather product (AgERA5) generated by ECMWF (European 
Centre for Medium-Range Weather Forecasts) for 1981–2019. AgERA5 
is based on hourly ECMWF ERA5 data at sea level. ERA5 is a global 
reanalysis provided at ~30 km resolution, with consistent data se
quences from 1979 onwards at hourly and monthly intervals. AgERA5 is 
generated by downscaling ERA5 at 9 km resolution using a nearest 
neighbor interpolation and correcting biases employing a linear 
approach (ECMWF, 2020). 

2.2.2. Topographic data 
Topographic data were obtained from the global 30 arc-second 

digital elevation model (DEM) (GTOPO30), a 1 km resolution dataset 
made available by the United States Geological Survey (USGS EROS 
Data Center). The high-resolution global Shuttle Radar Topography 
Mission DEM from NASA (Farr et al., 2007), which uses a 3′ spatial 
resolution, was used as a source for calculating slope. 

2.2.3. Soil data 
Soil parameters (soil texture, bulk density, pH, organic carbon con

tent, and the fraction of calcium carbonate for each of five 20 cm thick 
soil layers) were retrieved from the International Soil Profile Dataset 
(WISE) (Batjes, 1995). Soil parameters were allocated to each simulation 
grid cell based on the spatially dominant soil type taken from the digital 
Soil Map of the World (F.A.O., 1990). Soil water retention and hydraulic 
parameters were calculated using pedo-transfer functions (Schaap and 
Bouten, 1996). Parameters for organic contents missing in the WISE 

dataset were adopted from Boogaart et al. (1998). The 5′ spatial reso
lution model on global cropland use produced by You and Wood (2006) 
was used as a source of cropland extent data. 

2.2.4. Crop coverage data 
Crop yields and harvested area were obtained from a gridded dataset 

by combining two products of Monfreda et al. (2008) and the Spatial 
Production Allocation Model (SPAM) (You et al., 2009), reflecting 
production in the year 2000. Cropping calendars were sourced from the 
Center for Sustainability and Global Environment (SAGE). This dataset 
is the result of digitizing and geo-referencing existing observations of 
crop planting and harvesting dates, at a resolution of 5′ (Sacks et al., 
2010). The dataset provides approximate planting and harvesting win
dows for different crops. A 5′ crop-specific gridded dataset representing 
nitrogen, phosphorus, and potash fertilizer application for the year of 
2000 was used in baseline model setup to represent macronutrient 
application rates. This dataset is based on a spatial disaggregation 
approach that fuses national and sub-national fertilizer application data 
from various sources into a unified product (Mueller et al., 2012). 

2.2.5. Data on farmers’ management practices 
Present production characteristics of the RW cropping system in SA 

were developed based on detailed farm surveys that were conducted in 
2019–2020 in India, Bangladesh, and Nepal. The detailed farm surveys 
consisted of 7378 randomly selected farmers, with information charac
terizing field locations, sizes, and land allocated to specific crops, pro
duction inputs (seeds, irrigation, fertilizer, labor, and fuel/energy use), 
management practices (nutrient and agrochemical types, rates, and 
application times, sowing, transplanting and harvesting dates, and the 
cultivar maturity group / approximate duration of cultivars), the 
household structure (size and composition of the family), the land use in 
terms of cropping systems (field size and share for crops), and monetary 
flows. From this comprehensive dataset, we extracted information on 
crop establishment dates, use of nutrients and water, as well as crop 
duration to define the range of management parameters used for crop 
management optimization. 

2.2.6. Data on the performance of conservation agriculture 
EPIC has been well-calibrated and tested at both global and regional 

scales for rice and wheat (Xiong et al., 2014; Wang et al., 2018), but not 
for crop sequence and CA practices. Therefore, we used a nine-year 
conservation agriculture experiment in rice-wheat rotation in SA dur
ing 2006—2014 to calibrate the tillage component of the model. The 
calibration was focused on the RW cropping system, particularly the soil 
nutrient related parameters and the effects caused by tillage. The 
nine-year CA experiment was conducted in the research farm of Rajen
dra Agricultural University, Samastipur, Bihar, India (25̊25′51′′N, 
85̊40′31′′E). The long-term trial was established during monsoon 2006 
involving various combinations of tillage, crop establishment, and res
idue management practices in a rice-wheat rotation (Table 1). The soil of 
the experiment site is clay loam with medium organic matter content 
(0.68%). The climate of the site is characterized by hot and humid 
summers and cold winters with an average annual rainfall of 1344 mm, 
70% of which is received between July to September. For further details 
of the trial and its results refer to Jat et al. (2014). 

An additional data set from a published meta-analysis study of 
conservation agriculture in SA (Jat et al., 2020) was used to benchmark 
our simulation results. The metadata contained 2741 paired compari
sons for rice and wheat under conventional and CA practices, with 
different performance indicators under various CA categories, cropping 
systems, and soil textures. These paired observations were derived from 
155 on-station studies carried out from 2000 to 2018 and a total of 1197 
paired data points from 1097 on-farm studies carried out during 
2003–2018 across SA (Fig. 1). We categorized the paired data points into 
the six categories in the Table 1 according to their experimental de
scriptions. Data that could not be categorized were removed. Finally, 
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simulated yields under CA and conventional practices were compared at 
different locations across the IGP. 

2.3. Model setup, parameterization, and management optimization 

We employed three steps to set up (initialize), calibrate, and optimize 
the rotation management of the RW system in SA. We first set up the 
model for rice and wheat separately in SA at the regional scale by using 
the Global Gridded Crop Models (GGCM) approach. In total, 6073 grid 
cells with either reported rice or wheat area were selected as the 
simulation unit by resampling the reported gridded crop area, in which 
4662 grids were retained as rice pixels and 3645 grids as wheat cells 
(Fig. 1). EPIC had been calibrated and validated for rice and wheat at 
both regional and global scales in prior studies. We adopted the 
parameterization method that was developed for global scale geospatial 
data (Xiong et al., 2014; Balkovic et al., 2014; Wang et al., 2018). For 
example, the middle points of the reported sowing and harvesting 
window from SAGE were used to compute the Potential Heat Unit 
(PHU). The potential Harvest Index (HI) and Biomass-Energy Ratio 
(WA) were adjusted in each grid to decrease the difference between 
simulated and reported mean crop yields. For this baseline simulation, 
rice-wheat rotation in all grids with both rice and wheat area was 
simulated from 1980 to 2019. The first 20 years (1980–1999) was used 
as the spin-up run to reach an equilibrium of soil carbon and nutrient 
because of the unavailability of soil initial conditions. 

Secondly, we calibrated the model for the RW rotation and CA with 
the nine-year CA experimental data by adjusting crop, soil, and tillage 
parameters. Reported yield, biomass, and phenology from the long-term 
trial were used to calibrate the model, with inputs of the gridded 
weather and soil data, observed crop calendar, tillage approach, time 
and amount of fertilizer and chemical application. For this calibration, 
we first varied model parameters of potential heat units (PHU), radiation 
conversion to biomass, and harvest index to decrease the difference 
between observed and reported mean phenology/yield under CTR-CTW 
over the 9 years. EPIC’s option for continuous soil process was chosen 
during the simulation to represent the long-term effects of rotation. For 
the CA simulation, we modified four nitrogen and soil relevant param
eters to improve the simulation of the long-term Soil Organic Carbon 
(SOC) and nitrogen dynamic in tropic and semi-tropic soil. Because the 
long-term experiment lacked SOC and soil nutrient data, this modifi
cation was based on prior SOC calibration conducted in Combodia (Le, 
2017), where the soil and climate are analogous to that in SA. CAs 
involve different tillage practices, including crop establishment, 

plowing, and residue mixing methods. We reflected these differences by 
defining the sequence and type of each tillage operation from the EPIC 
default tillage operations database. We also adjusted five tillage pa
rameters in each tillage operation, including plow depth, changes in 
bulk density, converting ratio of standing residue to flat residues, ridge 
height, and surface roughness. These parameters potentially affect nu
trients and residue use efficiency, resulting in contrasting yield and 
yearly trend for current and subsequent crops. This adjustment was 
conducted manually with a trial and error approach, based on detailed 
description of the CA experiment and expert knowledge. As yield was 
the only available long-term variable in the CA experiment, the aim for 
this adjustment were to decrease the difference between simulated and 
reported yield responses of CA, comparing to the treatment of CTR-CTW, 
and the difference between simulated and reported yield trends (9 years) 
for each CA. Parameter descriptions and the calibration rules are listed 
in Table 2. 

The third step was to optimize the rotation management, including 
cultivar types and combinations associated with sowing and harvesting 
date and fertilizer application. We repeated the simulation with varying 
management combinations until the highest mean yield from 2000 to 
2019 was obtained. The optimization was conducted for each grid, 
resulting in heterogeneous parameters and best management that fit the 
local environment and CA. The first optimization considered crop cal
endars and cultivars, which was accomplished by repeating the simu
lation with various combinations of four indicators – sowing date of rice, 
maturity day of rice, days intervals between rice harvesting and wheat 
sowing, and maturity day of wheat. For example, for direct-seeding rice, 
the optimization gradually decreases rice growth duration and the 
period between rice harvesting and wheat showing, allowing wheat to 
be planted earlier and grow longer. Information extracted from the farm 
surveys was used to define the range for each indicator. PHUs were 
estimated accordingly from the daily weather and the calendars of each 
crop rotational sequence. The purpose of this optimization was to 
identify the best maturity duration of crop cultivars and their combi
nation, with corresponding planting and harvesting dates under CA. This 
optimization was implemented by integrating the EPIC model with a 
global optimization algorithm - differential evaluation (Aridia et al., 
2011). The second optimization considered fertilizer management. 
Across 7378 farmer-observations, the median fertilizer application rate 
was 147 kg/ha N, 76 kg/ha P, 52 kg/ha K for rice, and 140 kg/ha N, 
110 kg/ha P, 33 kg/ha K for wheat. The present, 30th, 50th, 70th, and 
90th percentile of fertilizer application rates were extracted from the 
farm survey data and tested in the simulations, with different 

Table 1 
Abbreviation and description of tillage, crop establishment and residue management protocols under six treatments that chosen in the study.  

S. 
No. 

Treatment 
abbreviation 

Tillage Crop establishment Residue management 

Rice Wheat Rice Wheat Rice Wheat 

1 CTR-CTW 3 passes of dry tillage with 
harrow, 2 passes of 
cultivator in ponded water 

2 passes of harrow, 1 
pass of cultivator 
followed by 1 planking 

Manually 
transplanted, random 
geometry 

Broadcasting, random 
geometry 

All removed All removed 

2 CTR-ZTW Same as CTR-CTW Zero till Same as CTR-CTW Direct drilling on flat 
soil and row geometry 

All removed All removed 

3 ZTDSR-CTW Zero till 2 passes of harrow, 1 
pass of cultivator 
followed by 1 planking 

Direct dry seeding on 
flat soil, row geometry 

Broadcasting, random 
geometry 

All removed All removed 

4 ZTDSR-ZTW Zero till Zero till Direct dry seeding on 
flat soil, row geometry 

Direct drilling on flat 
soil and row geometry 

All removed All removed 

5 ZTDSR-ZTW+R Zero till Zero till Direct dry seeding on 
flat soil, row geometry 

Direct drilling on flat 
soil and row geometry 

50% rice residue 
retained in wheat 
cycle 

25% wheat 
residues retained 
in rice cycle 

6 PBDSR-PBW+R Zero till Zero till and reshaping of 
beds 

Direct dry seeding on 
permanent beds 

Direct drilling on 
permanent beds 

50% rice residue 
retained in wheat 
cycle 

25% wheat 
residues retained 
in rice cycle 

CTR–CTW: conventional till puddled transplanted rice followed by conventional tilled wheat; CTR–ZTW: CTR followed by zero tilled wheat; ZTDSR–CTW: zero-till 
direct seeded rice followed by CTW; ZTDSR–ZTW: ZTDSR followed by ZTW without residues; ZTDSR–ZTW+ R: ZTDSR followed by ZTW with residues; and 
PBDSR–PBW+ R: direct seeded rice followed by wheat both on permanent raised beds. 
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application methods (e.g. broadcasting, incorporating) and timing (split 
into twice or three times). The combination of crop management factors 
that reached the highest productivity level was subsequently identified 
for each grid cell and for each of the five CA treatments. 

3. Results 

3.1. The setup of the regional simulations 

The baseline simulation appropriately captured the spatial pattern of 
reported yields. For both rice and wheat, over half of the grids exhibited 
minor differences (less than 5%) between the simulated (mean for 

Table 2 
Parameters calibrated and their estimating rules for the CA simulation in SA.  

Calibration 
Stage 

Parameters Name Values or estimating rules References 

Default Calibrated/estimating rules 

1 - Initialization PHU Potential heat unit – Gridded based, real-time estimated 
from fixed sowing and harvest date 
of (SAGA) 

Xiong et al. (2014); 
Balkovic et al. (2014); 
Wang et al. (2018) 

HI Harvesting Index 0.45 (winter 
wheat), 0.20 
(rice) 

0.2–0.6 (Gridded and crop based) 

WA Biomass-Energy Ratio 35 (winter 
wheat), 25 (rice) 

30–45 (Gridded and crop based) 

2 - Calibration 
for CAs 

Parms (4) Nitrate leaching ration [0.1–1] 0.5 0.1 Le (2017);Le et al. (2018) 
IOX Oxygen/depth (0) or Kemanian Carbon/clay 

function (1) 
0 1 

ICF C factor calculation equation: (0) use RUSLE C 
factor for all erosion equation; (1) use EPIC C for all 
equations except Rusle. 

0 1 

IDN N2O lost to atmosphere: (1) Armen Kemanian 
denitrification method; (2) original EPIC 
denitrification method 

1 2 

EMX Mixing efficiency Varying dependent on tillage operations. The calibration 
was to decrease the difference between simulated and 
reported yield response of CA comparing to CTR-CTW for 
current and subsequent crop. 

EPIC user’s manual version 
0810, 2013 RR Random surface roughness created by tillage 

operation 
TLD Tillage depth in mm 
RHT Ridge height 
RIN Ridge interval 

3 – CA 
optimization 

Day of 
sowing 

Day of rice and wheat sowing Universal value 
in SA 

Varying across grids  

Day of 
Harvesting 

Day of rice and wheat harvesting Universal value 
in SA 

Varying across grids 

Day interval Days between rice harvesting and wheat sowing 30 10–45, varied depending on 
location 

PHU Potential heat unit Estimated from 
weather 

Estimated from the new calendar 
and weather  

Fig. 3. Comparison between reported and simulated yields. a) rice, b) wheat. Reported yield was obtained from SPAM, for the year around 2000, while simulated 
yield was mean over 1996 – 2005. 
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1996–2005) and reported yields according to the SPAM database, with 
an R2 of 0.71 and 0.61 respectively (Fig. 3). Similarly, the simulations 
produced the highest yield for rice in the IGP region and southern India, 
and the highest wheat yield in western IGP (Fig. 4). These location 
specific high yields mimic the actual yield patterns in SA, given the 
western IGP’s comparatively favorable climate, assured irrigation 
availability, larger fertilizer inputs, and earlier sowing of wheat after 
rice as compared to the eastern IGP. While moving to the east, simulated 
yields were either limited by maximum temperatures or low input ap
plications, resulting in a relatively lower yield, particularly for wheat. 
For some grids, the model failed to generate economic yields, such as 
rice in Bangladesh and parts of Pakistan. This was because of the 
complexity of the crop calendar in these regions and the challenges 
associated with accommodating multiple crops. For example, there are 
three partially overlapping rice seasons (monsoon season ‘aman’ rice, 
winter ‘boro’ rice, and spring ‘aus’ rice) in Bangladesh. We chose the 
‘boro’ season in the simulations as it fits well in the rice-wheat rotation, 
but this configuration tended to produce a low rice yield compared to 
the simulations with the other two rice seasons. In addition, low 

fertilizer input was another factor limiting the yields in some areas, 
particularly in Pakistan. 

3.2. Simulated yield response of CA in the long-term trial 

The yield response of the six treatments compared in the long-term 
experiment was simulated by the EPIC model with gridded weather 
and soil inputs and actual tillage operation (Table 1). In all cases, 
simulated mean yields were not significantly different from observed 
values (p > 0.05) for rice, wheat, and the RW system (Fig. 5). Simulated 
yield trends were similar to the observations for most cases except wheat 
under the ZTDSR-ZTW+R and PBDSR-PBW+R treatments. All five CA 
configurations exhibited yield benefits (average over nine years) 
compared to the control, with the highest yield gain under ZTDSR- 
ZTW+R and the lowest under CTR-ZTW (Fig. 6). Wheat yield exhibited 
small to substantial increases for all the five CA treatments, while rice 
yield decreased under three CA treatments, i.e., ZTDSR-CTW, ZTDSR- 
ZTW, and PBDSR-PBW+R. Although yield pattern was similar between 
the simulations and the experiment, yield variability in the simulations 

Fig. 4. Comparison of spatial pattern between reported and simulated yield. The white color indicates no rice/wheat coverage data.  
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was generally smaller than field observations under the experiments, 
indicated by a smaller standard deviation in all cases. 

There are no spatially explicit and widely distributed reported area 
and yield data for the rice-wheat rotation in SA. We therefore conducted 
a baseline RW simulation in grid cells with the same inputs and pa
rameters as those described in Section 3.1. The simulation applied cur
rent tillage practices represented by CTR-CTW (Table 1), and considered 
the nutrient carryover effects of the crop rotation. The reported gridded 

fertilizer and a fixed crop calendar (the middle points of reported sowing 
and harvesting windows) were used as the driver. Fig. 7 indicates 
simulated yield patterns of the RW system. Mean productivity was 5.9 t/ 
ha for the RW system, with 3.7 t/ha for rice and 2.2 t/ha for wheat. RW 
system yields ranged from 4 t/ha to 14 t/ha. Yield was higher in western 
IGP than in eastern IGP, with the highest simulated yields observed in 
Punjab. For most areas, particularly those with higher productivity, rice 
dominated the system with a much higher yield. However, wheat grown 
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Fig. 5. Simulated and observed yields and trends for six tillage and establishment treatments in long-term CA experiment in Samastipur, Bihar, India. CTR–CTW: 
conventional till puddled transplanted rice followed by conventional tilled wheat; CTR–ZTW: CTR followed by zero tilled wheat; ZTDSR–CTW: zero-till direct seeded 
rice followed by CTW; ZTDSR–ZTW: ZTDSR followed by ZTW without residues; ZTDSR–ZTW+ R: ZTDSR followed by ZTW with residues; and PBDSR–PBW+ R: direct 
seeded rice followed by wheat both on permanent raised beds. 
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Fig. 6. Simulated and observed yield difference 
of the five CA treatments (average over nine 
years) in long-term experiment, compared to the 
control (CTR-CTW). The vertical line in each bar 
denotes the standard deviation of the years. 
CTR–CTW: conventional till puddled trans
planted rice followed by conventional tilled 
wheat; CTR–ZTW: CTR followed by zero tilled 
wheat; ZTDSR–CTW: zero-till direct seeded rice 
followed by CTW; ZTDSR–ZTW: ZTDSR followed 
by ZTW without residues; ZTDSR–ZTW+ R: 
ZTDSR followed by ZTW with residues; and 
PBDSR–PBW+ R: direct seeded rice followed by 
wheat both on permanent raised beds.   
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in the winter generally produced a relatively low yield of around 2 t/ha, 
partly because of the adverse effects of rice’s wet-tillage practices on soil 
physical properties and delay in wheat sowing caused by late harvesting 
of rice and the time taken for land preparation prior to sowing under 
conventional tillage practices. 

Yield changes for each of the five configurations of either partial or 
complete CA practices but keeping current rotation management are 
shown in Fig. 8. In contrast to the experiment, all configurations of CA 
practices resulted in adverse effects on crop yields in simulations, 
although large spatial variabilities existed ranging from negative to 
positive. The mean yield response for the system spanned from –4.9% 
under the partial implementation of CA with CTR-ZTW to –18.1% under 
the full implementation of CA with ZTDSR-ZTW+R. This yield penalty is 
larger for wheat than for rice in these partial CA practices. 

3.3. Optimization of crop phenology 

Optimization of RW rotation through modifications in crop maturity 
duration and corresponding sowing and harvesting date substantially 

increased wheat yield, resulting in a mean increase of 16% for the RW 
system in the simulation under CTR-CTW. Rice and wheat responded 
differently to optimization, with 7.1% and 36.0% increases in simulated 
yield for each crops, respectively, across all RW grid cells over non- 
optimized crop calendar (Fig. 9). Simulated yield response of the 
different configurations of CA and sowing and maturity duration at more 
optimal calendar dates improved phenology and presented contrasting 
results from the baseline simulation with initial parameters, and with 
similar patterns as in the CA experiment. The mean productivity of the 
RW system under all the five CA configurations all showed significant 
increases (p < 0.05), ranging from 4.2% (CTR-ZTW) to 8.3% (ZTDSR- 
ZTW+R) (Fig. 10). Yield increase was more substantial for wheat under 
treatments with dry seeding of rice because of the decreased rice dura
tion. For example, the mean yield of wheat increased by 38.7% under 
the partial CA treatment ZTDSR-CTW. However, rice yield decreased 
under CA, with a mean decrease of 2.1% across the five configurations of 
CA practices. 

As expected, simulated yield of the RW system with optimized 
establishment and maturity duration positively affected interactions 

Fig. 7. Yields of rice, wheat, and RW system in baseline simulation.  

Fig. 8. Simulated yield response of the five CA 
treatments with initial calendar and model pa
rameters across all RW grids. Yield change is 
the relative change (%) compared to the CTR- 
CTW. Boxes indicate the interquartile ranges 
(25–75%) of the data, red lines the medians, 
and whiskers the highest and lowest values of 
yield change. CTR–CTW: conventional till pud
dled transplanted rice followed by conventional 
tilled wheat; CTR–ZTW: CTR followed by zero 
tilled wheat; ZTDSR–CTW: zero-till direct 
seeded rice followed by CTW; ZTDSR–ZTW: 
ZTDSR followed by ZTW without residues; 
ZTDSR–ZTW+ R: ZTDSR followed by ZTW with 
residues; and PBDSR–PBW+ R: direct seeded 
rice followed by wheat both on permanent 
raised beds.   
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between climate and phenology, resulting in highest yield in western 
IGP, with a mean productivity approaching to 14 t/ha. Yield in central 
India was also high because of the relatively cooler climate for wheat 
under higher elevation (Fig. 11). Yield response under the different CA 
treatments had different spatial patterns, and also between crops within 
each configuration (Fig. 11). For example, CA treatments tended to 
decrease rice yield in most areas, with the largest yield loss under the CA 
with zero-till for both crops, such as ZTDSR-ZTW. In contrast, wheat 
yield tended to increase in most locations with the implementation of 
different CA configurations, with the largest increase under the partial 
CA rotation of ZTDSR-CTW in the IGP. When management was opti
mized, however, RW system productivity exhibited small to moderate 
growth in most areas under all configurations of CA, especially in the 
IGP. 

3.4. Optimization of fertilizer application 

According to the farm survey, the 90th percentile of fertilizer doses 

was 220 kg/ha N, 162 kg/ha P, 99 kg/ha K for rice, and 201 kg/ha N, 
177 kg/ha P, 93 kg/ha K for wheat. We assumed them as the maximum 
application rate for the system. We operated the simulations with five 
fertilizer application scenarios (present, 30th, 50th, 70th, and 90th 
percentile of the fertilizer application rates across the farms). Applica
tion time was optimized according to crop requirements by splitting into 
several times. 

Yields under the five CA treatments and five fertilizer application 
scenarios across all RW grids in SA were aggregated into regional mean 
yield, with potential RW areas as the weight factors (Fig. 12). Our results 
suggest that RW productivity in SA can be increased by applying more 
fertilizer, with the highest increase of 43.2% under the maximum fer
tilizer application scenario over CTR-CTW. However, the difference in 
yield benefit due to heightened fertilizer rates and between the 70th and 
the 90th percentile fertilizer rates appears to be small (less than 2%), 
suggesting a decrease in fertilizer recovery efficiency above 70th 
percentile of the dose described above. Considering the five CA treat
ments, CTR-ZTW exhibited the largest yield benefit (+4.9%) averaged 

Fig. 9. Simulated rice-wheat rotation yield with the optimized crop phenology and calendar.  

Fig. 10. Simulated yield response of the five 
CA treatments with current calendar across all 
RW grids. CTR–CTW: conventional till puddled 
transplanted rice followed by conventional til
led wheat; CTR–ZTW: CTR followed by zero 
tilled wheat; ZTDSR–CTW: zero-till direct 
seeded rice followed by CTW; ZTDSR–ZTW: 
ZTDSR followed by ZTW without residues; 
ZTDSR–ZTW+ R: ZTDSR followed by ZTW with 
residues; and PBDSR–PBW+ R: direct seeded 
rice followed by wheat both on permanent 
raised beds.   
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Fig. 11. Simulated yield response of five CA treatments Yield response is the percent compared to the simulated mean yield under CTR-CTW. CTR–CTW: con
ventional till puddled transplanted rice followed by conventional tilled wheat; CTR–ZTW: CTR followed by zero tilled wheat; ZTDSR–CTW: zero-till direct seeded rice 
followed by CTW; ZTDSR–ZTW: ZTDSR followed by ZTW without residues; ZTDSR–ZTW+ R: ZTDSR followed by ZTW with residues; and PBDSR–PBW+ R: direct 
seeded rice followed by wheat both on permanent raised beds. 
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across the four fertilizer scenarios, while PBDSR-PBW+R showed a small 
yield penalty (− 0.2%). 

4. Discussions 

4.1. Modeling the spatial heterogeneity of CA performance 

Process-based models have been increasingly used to investigate the 
consequences of CA, but the majority of studies are limited to a few 
experimental sites where management practices and detailed outcomes 
(e.g. yield, biomass, soil organic carbon) were observed (Devkota et al., 
2015; Ngwira et al., 2014). Modeling studies considering the application 
at large spatial scales are however very scarce, even though gridded 
modeling techniques have substantially advanced (Folberth et al., 2019; 
Muller et al., 2017; Rosenzweig et al., 2014). The lack of effort to apply 
spatially gridded simulation to CA may be due to several factors. First 
among these are the limitations of most modeling frameworks to accu
rately represent the complexity of CA. CA is a general term for a series of 
resource-conserving agricultural practices, like practicing reduced 
tillage, crop rotation, and the maintenance of soil cover through living 
or dead mulches (Kassam et al., 2011). In practice, CA is widely adapted 
as an alternative planting and tillage technique with minimum or zero 
tillage combined with crop residue retention and crop rotation as 
fundamental components. This results in complicated 
crop-soil-management interactions. Many of these interacting factors 
are not sufficiently accounted for in crop simulation models and are 
represented in the model with limited way (Kollas et al., 2015). For 
example, the CA practices of permanent raised-beds have been widely 
studied in the RW systems of SA (Singh et al., 2009). The associated 
temporal change of soil bulk density and water infiltration capacity due 
to tillage and soil cover are poorly represented in models at this time. 
Second, lack of calibration and parameterization of models in long term 
CA experiments involves many temporal changes in soil properties. 
Although long-term experiments exist and have facilitated modeling 

through model calibration and evaluation, accurate simulation at the 
spatially diverse regional level requires experiments at multiple sites 
with coordinated data collection for variables of key interest. Such 
networks are however currently not widely available. 

With the example of CA in SA’s RW system, our results suggest the 
feasibility of the CA simulations using a gridded crop simulation model. 
Based on learnings from our study, three steps appear to be indispens
able to achieve robust regional modeling of CA. These are (1) long-term 
CA experiments to adjust the model parameters relevant to tillage, (2) a 
regional scale dataset for calibration of the cropping system of interest, 
and (3) sufficient farm survey data to represent the diversity of practices 
across farms. Mean yields and yearly trends of the different configura
tions of partial or complete CA in our study were largely captured by the 
model, suggesting that seasonable representation of nutrient carry-over 
and the effects caused by tillage could be appropriately represented. 
There was a slight underestimation, however, in the yield slope for 
wheat under treatment in which residue was maintained as mulch, i.e. 
under PBDSR-PBW+R, likely because of the limited representation of 
mineralization pattern of surface retained residues, nutrient absorption 
and extent of transfer of nutrients from crop residues to soil nutrient 
pools over the season and long run in the model. Over long run, the 
retention of residues on the soil surface can increase soil organic carbon 
content (SOC) and improve the soil physical and functional properties, 
such as reduction in bulk density, increase in water holding capacity and 
hydraulic conductivity (Parihar et al., 2016). These effects, however, 
may be counteracted in the short term through nitrogen immobilization 
and waterlogging events during heavy rainfall or intensive irrigation 
(Turmel et al., 2014). Many of these variables can be parameterized in 
modeling frameworks, but the temporal changes caused by long-term 
covering need specific routines applicable to CA practices that remain 
understudied. 

Besides the calibration of CA practices themselves, regional cali
bration for the RW system is important for the robust evaluation of 
different CA configurations. This is evidenced by the contrasting results 

Fig. 12. Yield response of the six treatments to fertilizer application amount. Max indicates the 90th percentile application amount estimated from the crop cut/ 
survey. 30th, 50th, 70th, denote reduced fertilizer application scenarios, and the current means the actual application amount for wheat and rice in each grid re
ported by Muller et al. (2012). The light-colored legend (top) shows wheat yield, and the dark-colored legend (bottom) shows rice yield. Total length of the bar 
represents system yield. CTR–CTW: conventional till puddled transplanted rice followed by conventional tilled wheat; CTR–ZTW: CTR followed by zero tilled wheat; 
ZTDSR–CTW: zero-till direct seeded rice followed by CTW; ZTDSR–ZTW: ZTDSR followed by ZTW without residues; ZTDSR–ZTW+ R: ZTDSR followed by ZTW with 
residues; and PBDSR–PBW+ R: direct seeded rice followed by wheat both on permanent raised beds. 
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between the baseline simulation and the simulation with management 
optimization. Although the baseline simulation with conventional 
gridded modeling approach reproduced the pattern of reported yields 
for rice and wheat, single crop simulations need to be adjusted/opti
mized to account for the interacting factors like crops, timings, soil, 
weather etc. For example, wheat yield in the baseline simulation was 
much lower than the simulation with optimized sowing/harvesting 
dates and phenology. Yield response of CA was more negative in the 
baseline simulation than the simulation with optimization. This is 
because calibration in conventional gridded models mostly focuses on a 
single crop ( Xiong et al., 2014, Folberth et al., 2019). Such studies 
parameterized the model to represent regional yield patterns with 
specified dates for crop establishment and harvest, and consequent 
phenology as the restricting factor, regardless of the specific re
quirements inherent to rotational cropping systems. In contrast, model 
optimization in this study increased the spatial heterogeneity in man
agement (i.e., cultivar growth duration, calendar), allowing the system 
to accommodate the localized and complicated factors. Examples of 
complicating factors that must be accounted for in gridded crop rota
tional modeling efforts include earlier planting of the first crop, and the 
short window between the harvesting of first crop and the planting of 
the subsequent crop in addition to biophysical limitations including soil 
types and drainage classes that are not widely accounted for in most 
studies. Importantly, because of the coarseness of most gridded datasets, 
including the calendar of crop operations in this study, we employed 
large scale farm survey across India, Nepal and Bangladesh to supple
ment gridded data. This helped to facilitate more appropriate calibration 
and as such substantially increased our ability to more accurately ac
count for and simulate the extreme heterogeneity in management 
practices as they are applied by farmers themselves. 

4.2. Heterogeneity of yield responses under CA configurations 

In agreement with the findings from experimental studies and meta- 
analyses, simulated yield responses in the current study varied widely 
depending on the crop, region, and management interactions. Our 
simulations that aimed to optimize management shows that yields for 
wheat were benefited under CA, with an increase of 8.9% averaged 
across the five CA configurations studied. Observed yield exhibited an 
increasing trend for all six treatments because of nutrient accumulation 
over seasons and due to adoption of long duration variety in the third 
year of the experiment (Jat et al., 2014). Similar findings have been 
reported in many studies that showed higher wheat yield was achieved 
under CA in the RW system, particularly when combined with residue 
intention (Sharma et al., 2018; Samal et al., 2017; Gathala et al., 2011). 
Partial configuration of CA with no-tillage applied to only one of the 
crops in rotation experienced higher yield gains from fertilizer increase. 
For example, CTR-ZTW, ZTDSR-CTW both exhibited larger yield bene
fits with higher fertilizer application scenarios. This suggests decline in 
soil’s nutrient supplying capacity in systems where conventional tillage 
is practiced in between the zero tillage events in RW rotations, for which 
loss of nutrient could be a case. In some long-term experiments in SA, it 
has also been observed that averaged wheat yields under no-till with or 
without residue retention relative to conventional tillage tended to be 
higher (Singh et al., 2020). Yield gains with no-till for wheat were 
largely due to the time saved in land preparation that enabled earlier 
planting of wheat that permits the crop to escape from disruptions to 
flowering, pollination, and grain filling (Krupnik et al., 2015; Gupta and 
Seth, 2007). 

A surprising finding from our results, however, was the large nega
tive effects observed for wheat in the baseline simulation, contradicting 
the results from the optimization simulations and also the experiments. 
This was likely caused by suboptimal planting and harvesting times 
extracted from the SAGE calendar dataset, and specifically by the 
extremely late sowing dates for wheat into later December in much of 
the eastern IGP, and with pockets of potentially unrealistically late 

December sowing also represented in India’s Haryana and Punjab states 
(Sacks et al., 2010). The SAGE data have however been used widely for 
global gridded simulations and was developed from sub-national sta
tistics and existing observations of crop planting and harvesting dates 
for specific crops, although observations indicate that refinement for 
wheat sowing dates in SA might be in order. Using the middle date of the 
sowing and harvest ranges might result in a simulation that would not in 
reality permit appropriate RW rotation as it is practiced in CA, such as 
later or earlier sowing, simulation of crop or cultivar with excessively 
long or short growing duration, or an insufficient or long turn-around 
period between rice and wheat. These observations suggest the impor
tance of refining the SAGE dataset and/or developing additional gridded 
products to represent rotational system crop calendar with much more 
explicit calibration to represent the farmers’ practices and local 
environments. 

In contrast to wheat, rice yield was negatively affected in SA under 
most of the CA configurations, particularly those in which residues were 
exported from the system rather than used as mulch. Rice in SA is 
typically grown under puddled soil conditions, which typically entails 
intensive tillage operations to help maintain flooded conditions during 
the growing season. Puddling has benefits on rice through better weed 
control, reduced percolation loss of water and nutrient, quick estab
lishment of seedling and improvement in nutrient availability due to 
reduced conditions (Gathala et al., 2011). Evidence that no-till and 
conversion from puddling to dry seeding in rice systems entails large 
shift in management and can lead to yield declines has been frequently 
reported (Su et al., 2021; Singh et al., 2020; Sharma et al., 2018). 
However, our data indicate that residue retention can partly offset this 
decline due to the maintenance of soil moisture and increase of nutrient 
availability. 

Regarding spatial heterogeneity in yield response of CA, we simu
lated increased system productivity in the eastern IGP while a small 
decrease or neutral change in western IGP. As most of SA’s RW area is 
located in the IGP, we further investigated the response variation across 
grids in this region (Fig. 13). Similar to the values from experimental 
observations through experiments reported in meta-analysis (Jat et al., 
2020), simulated yield, and especially wheat yield, exhibited relatively 
larger gains in eastern IGP than in western IGP. For most of the CA 
treatments studied, simulated yield responses were close to the mean of 
responses estimated from the 136 CA experiments identified but 
exhibited a much smaller range than the observations. This suggests that 
models can not only be used as an auxiliary tool to reduce the time and 
expenditure required by the CA experiments; they can also decrease 
some of the uncertainty associated with evaluating the adaptation of CA 
practices in different locations. That said, long-term experiments lying 
distributed across environmental gradients between and within regions 
hold good for modeling various ‘calibrations’. 

4.3. Limitations of this study 

We recognize this study has several limitations. First, we calibrated 
the model only for yield and did not account for the fact that CA is often 
adopted by farmers for its cost-saving qualities accrued from reduced 
fuel and labor use (Jat et al., 2014). CA can also have important envi
ronmental advantages not considered in the current study, although 
future modeling efforts should seek to examine the multi-criteria per
formance of CA. For example, dry direct seeding of rice under CA can 
reduce methane emissions and hence limit contributions to greenhouse 
gas by eliminating prolonged soil anaerobic conditions during land 
preparation (Kumara et al., 2020). In addition, rice residue retention 
through no-till practices for wheat planting eliminates the need to burn 
residues to clear fields for tillage, contributing to the improvement of air 
quality in SA (Shyamsundar et al., 2019). As the EPIC was designed to 
evaluate crop-environment interactions, especially the effects on soils 
and emissions (Izaurralde et al., 2006), these environmental and eco
nomic consequences should be included in further studies and evaluated 
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for trade-offs and synergies among configurations of CA using available 
observations of interests from long-term experiments. 

Secondly, our simulations could still benefit from improvement to 
increase the representation of important biophysical procedures rele
vant to CA. For example, in the site calibration for the five configura
tions of CA, the lack of temporal effects of CA, especially those related to 
residue retention and changes in soil physical (e.g., soil structure, bulk 
density), chemical (e.g., Soil pH., soil organic matter, and nutrient 
cycling), and biological (e.g., weed suppression, changes in soil micro
biology, risks of disease propagation) properties could potentially 
explain to some extent the underestimation of crop’s yield and growth 
CA observed in this study. EPIC’s weakness is also obvious for simulating 
specific CA practices, such as permanent raised beds. Improvements 

however can only be made with the help of long-term controlled ex
periments and increased understanding of the interactions between 
crops, soil, water, and the atmosphere. 

5. Conclusions 

While CA has been promoted by international agricultural organi
zations (such as the United Nations Food and Agriculture Organization) 
as a promising practice to increase food production and reduce the 
negative effects of cropping on environment, experimental observations 
of yield penalties have been commonly observed alongside those 
reporting positive results. With the SA’s RW system, we evaluated yield 
response from different configurations of partial and full CA practices on 

Fig. 13. Simulated yield responses of the CA in the IGP under no nutrient limitation, compared with observed yield responses of corresponding CA from the meta- 
study of Jat et al. (2020). 
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the performance of RW system yields across SA. After the calibration of 
the process-based model with long-term experiment and geospatial data, 
we applied a large scale dataset from farm surveys and meta-analysis of 
experiments to fine-tune models and optimize management practices, 
particularly those pertaining to crop establishment and harvesting dates, 
in addition to nutrient management. The resulting regional simulations 
were used to investigate the yield outcomes of five configurations of 
partial or full implementations of the CA principles of no tillage, rota
tion, and soil coverage through residue retention across environments. 
By testing these configurations in SA’s predominant RW rotational 
areas, we confirm that there is the potential for yield gains under the 
region’s RW system – particularly when measured as the sum of yield for 
both crops. However, this potential can only be achieved by modifying 
other system-level management factors, treating CA as a location- 
specific management approach in which fertilizer rate and placement, 
planting and harvesting dates, and cultivar duration need to be carefully 
optimized. There is also the potential of simulating the reduced re
quirements for fertilizers in the future years, on account of increased 
organic carbon with the successive retention of residues. Thus, reducing 
the harmful environmental effects of over-fertilization, caused by 
leaching, volatilization and runoff. While promising, these results must 
also be balanced with appropriate studies of environmental outcomes 
and the socioeconomic and cultural factors that may permit or limit 
farmers’ ability to implement optimal management in practices; with 
lessons from such studies used to balance agronomic and modeling 
studies for real-world feasibility to inform agricultural development and 
policy efforts. 
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