

The Potato on Mars

Jan Kreuze, David A. Ramírez, Walter Amoroz, Julio Valdivia-Silva, Sady Garcia, Elisa Salas, Wendy Yactayo

Dublin, June 1, 2022

Enteina: 96 a 10 color 96 a 123 Kcal 16 a 40 mg Magnesio Energía Almidón 16 a 20 g Hierro 0.29 a 0.69 mg Proteina 1.76 a 2.95 g Zinc 0.29 a 0.48 mg Lípidos Vitamina C

0.1 a 0.5 g 7.8 a 20.6 mg Fibra dietaria 1.8 g a 2.1 g Vitamina B6 0.299 mg Ácido clorogénico 19 a 399 mg 150 a 1386 mg Glicoalcaloides 42 a 120 mg 0.7 to 18.7 mg

Burgos et al. (2020) The Potato and Its Contribution to the Human Diet and Health. In: The Potato Crop.

Potasio

Fósforo

Partition Efficiency

Plant Type	Crop Type	Crop	ε_p
	Perennial grass	Sugarcane	81.2
C4	Grain	Maize	47.1
	Grain	Sorghum	20.0
	Grain	Winter wheat	44.0
	Grain	Rice	62.0
	Leguminous	Soybean	60.0
C3	Tuber root	Sugar beet	86.0
	Tuber root	Cassava	70.5
	Tuber root	Sweetpotato	46.0
	Tuber	Potato	87.0 +

Nutritional Productivity

	Cal	Prot	Fat	Calcium
	(kcal/m ³)	(g/m^3)	(g/m ³)	(mg/m ³)
Wheat	2279	74	9	279
Rice	1989	49	5	132
Maize	3856	77	17	63
Potatoes	5626	150	9	543
Sugar beet	2520	0	0	574
Pulses (beans)	1188	76	4	473
Treenut	521	14	45	79
Groundnut	2382	111	206	296
Soybean oil	547	0	62	0
Cotton seed oil	721	0	81	0
Tomatoes	1416	65	11	200
Onions	2259	85	0	1673
Orange	663	13	0	556
Lemon	504	0	0	423
Grapefruit	553	0	0	204
Banana	432	11	0	29
Apple	1140	6	6	141
Pineapple	1136	0	0	168
Dates	731	0	0	87
Grape	1356	14	0	202
Bovine meat	102	10	7	3
Pork meat	408	21	35	7
Poultry meat	330	33	21	14
Eggs	519	41	36	166
Milk	659	40	38	1233
Butter	404	1	45	11

Renault et al. (2000). Nutritional water productivity and diets. Agric. Wat. Man. 40

41

Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 75 (2011) 1975–1991

Geochimica et Cosmochimica Acta

Multidisciplinary approach of the hyperarid desert of Pampas de La Joya in southern Peru as a new Mars-like soil analog

Julio E. Valdivia-Silva^{a,b,*}, Rafael Navarro-González^a, Fernando Ortega-Gutierrez^c, Lauren E. Fletcher^b, Saúl Perez-Montaño^d, Reneé Condori-Apaza^b, Christopher P. McKay^b

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA facultad de agronomia - departamento de suelos

LABORATORIO DE ANALISIS DE SUELOS, PLANTAS, AGUAS Y FERTILIZANTES

ANALISIS DE SUELOS : SALINIDAD

	Númer	o de M	uestra		C.E.		Análi	sis Meca	ánico			19.10	-		2.091		Cation	es Cambiables Suma Suma
ab.		Car	npo		dS/m	Arena	Limo	Arcilla	Tex	tura	pH	CaCO ₃	M.O.	Р	К	CIC	Ca ²⁺ Mg	g ²⁺ K [*] Na ⁺ Al ⁺³ + H ⁺ de de
00		- Cuio	10.1		1:1	%	%	%	54		1:1	%	%	ppm	ppm	0.70	m	neq/100g Cationes Bases
20		Sue	10 1		19.33	12	22	0	FI	.A.	0.90	- 00	0.32	13.0	0/8	0.72	5.74 0.	18 0.51 0.29 0.00 6.72 6.72
\rena	a ; A.Fr. =	Arena F	ranca ; Fr	r.A. = Fra	anco Aren	oso ; Fr. =	Franco ;	Fr.L. = Fr	anco Lim	ioso ; L :	= Limoso	Fr.Ar.A.	= Franco	Arcillo Are	noso ; Fr.A	r. = Franc	co Arcilloso;	Saline – Sodic
.L. =	Franco A	Arcillo Lin	noso ; Ar.	A. = Arci	llo Arenos	o ; Ar.L. =	Arcillo Lin	moso ; Ar.	= Arcillo	SO								
	0		0.5			0.1.11			-		-							Conductivity > 4
0 act	Satu-	Pasta	C.E.		Cationes	Soluble	es (meq	/L)		Anio	nes So	lubles (r	meq/L)		Boro	Yeso	129	
b	%	Sat	dS/m	Ca ²⁺	Mg ²⁺	K⁺	Na⁺	SUMA	NO ₂	CO22-	HCO ₂	SO,2-	CI	SUMA	nom	%	1-51	pH < 8.5
66	33	6.70	52.60	76.00	198.36	23.85	403.39	701.60	44.24	0.00	2.56	74.79	580.00	701.59	23.64	0.04	4.27	Sodium
									8, 1	0	1	Bu	and al	_				Soulum
	Númer	o de M	uestra				1000		1	1				1	S	S		Absorption Rate
D.		Car	npo		B	Cu nom	Fe	Mn	Zn	1.	PD	Cd	Cr	100	Disp.	l otal		
66		Sue	lo 1		13.32	3.90	7.80	1.00	2.50	1.00	10.02	0.97	19.08		1004.17	0.17	1	9
								Stran :	18. 1		Bau La	100 M				-	-	$\langle \gamma \rangle$ (
Aolir	na, 17 d	de May	o del 20	16											~	38410	R.	
															131	1	V2 PI	Sady García Bendezú
															121-		fiel	Jefe de Laboratorio
															<[L	ASP	AF 2	
															21-	and the owner where the owner w	1 - 1	

Av. La Molina s/n Campus UNALM - Telf.: 614-7800 Anexo 222 Teléfono Directo: 349-5622 e-mail: labsuelo@lamolina.edu.pe

Soil in good conditions (<2 dS/m) / Soil with problems (4 dS/m) / See water (44 dS/m)

Larcher, W. 2003. Physiological plant ecology, Ecophysiology and Stress Physiology of Functional Groups. 4th Edition. Springer

Salt resistance of various economic plants. The species are placed above the soil salt content at which 50% less yield is to be expected

Is potato salt sensitive or tolerant?

FIG. 2. A, Growth responses of different species to salinity. Growth was determined after 1 to 6 months at high [Cl⁻]_{ext}. Curve 1 represents extreme halophytes (Group IA). Curve 2 represents halophytes (Group IB). Curve 3 represents plants whose growth is reduced substantially by 100 mM [Cl⁻]_{ext} (Group II). Curve 4 represents very salt-sensitive non-halophytes (Group III). Figure redrawn from Greenway and Munns (1980).
B, Divisions for classifying crop tolerance to salinity based on the relationship between relative crop yield and salinity (expressed in terms of electrical conductivity at 25 °C). Redrawn from Maas and Hoffman (1977).

White and Broadley (2001). Chloride in soils and its uptake movement whitin plants: a review. Annals of Botany 88:967-988

Sowing of botanical seeds

Sprouts from tubers

In-vitro plantlets grown in "jiffy pellets" and after transferred to salty substrate

Experimental Design

65 genotypes x 3 blocks x 1 sample

(38 Advance clones + 22 natives + 5 improved varieties)

Stomatal conductance as key indicator of the water status in plants

Corredor

Tuber yield of the survivor potatoes genotypes growing in high salinity soil condition expressed as: - Average dry tuber yield (A), and - Average percentage of tuber yield in in relation to the yield under standard soil (B).

CIP397099.4 - WA.073						
(392822.3 (LR93.073) X 391207.2 (LR93.050))						
	Population	n: LTVR				
Tuber skin predominant color	White-cream	Tuber flesh predominant color	Cream			
Tuber skin secondary color	Absent	Tuber flesh secondary color	Absent			
Tuber skin secondary color distribution	Absent	Tuber flesh secondary color distribution	Absent			
Tuber shape	Long-oblong	Tuber shape depth of eyes	Shallow			
Tuber shape unusual	Absent					

2	SE

Resistance t	raits	Post-harvest perfo	ormance
Late blight (LB)	Susceptible	Dry matter (%)	20
Potato virus X (PVX)	Extreme resistance	Oil absorption rate (%)	31
Potato virus Y (PVY)	Extreme resistance	Chipping color	Dark
Potato leaf roll virus (PLRV)	Moderately resistant	Cooking quality	Solid
		Cooking time (min.)	21-25
Agronomical per	formance	After cooking darkening	Moderately dark
Tuber yield (kg/plant)	0,70	Flesh color after cooking	Cream
Adaptability	Lowland tropics		
Growing period lowland	Early		
Growing period highland	Medium		
Dormancy period - DLS highland	94		
Sprouting pattern	Apical dominance		

CIP3	9631	1.1 - C95.276	
(3	391925	.2 X C92.030)	
	Popul	ation: LTVR	
Tuber skin predominant color	Red	Tuber flesh predominant color	Pale yellow
Tuber skin secondary color	Absent	Tuber flesh secondary color	Absent
Tuber skin secondary color distribution	Absent	Tuber flesh secondary color distribution	Absent
Tuber shape	Oblong	Tuber shape depth of eyes	Slightly deep
Tuber shape unusual	Absent		

Resista	ance traits	Post-harvest p	erformance
ate blight (LB)	Highly susceptible	Dry matter (%)	22
otato virus X (PVX)	Extreme resistance	Oil absorption rate (%)	30
otato virus Y (PVY)	Extreme resistance	Chipping color	Moderately dark
otato leaf roll virus	Moderately	Cooking quality	Solid
rLRV)	susceptible	After cooking darkening	Moderately light

Ranks

Minimum Maximum

89,08

88,58

Average

88,83

Agronomical per	formance	Nutrient concentrations in
Tuber yield (kg/plant)	1,10	tubers
Adaptability	Lowland tropics	Vitamin C (mg/100g, dry
Growing period lowland	Early	weight basis)
Growing period highland	Medium	
Dormancy period - DLS highland	109	
Sprouting pattern	Apical dominance	
Reproductive	biology	1
Pollen viability (%)	85,8	

15

CIP 390478.9 - Tacna

Parentage: 720087 X 386287.1

Country of Selection: Peru

Is a variety with extreme resistance to PVY and resistance to PLRV; is also tolerant to draught and salinity. The plant can grow in tropical climate and is insensible to photoperiod; have an early vegetative period with decumbent habit with pale white flowers. The tubers have ovoid shape with cream flesh, with good yield production are good for processing as chips (crisps) and French fry (chips). The variety was realized in Peru in 1993.

Tuber skin predominant color	White-cream	Tuber flesh predominant color	Cream
Tuber skin secondary color	Absent	Tuber flesh secondary color	Absent
Tuber skin secondary color distribution	Absent	Tuber flesh secondary color distribution	Absent
Tuber shape	Ovoid	Tuber shape depth of eyes	Shallow
Tuber shape unusual	Absent		

React	ion traits	Post-harvest pe	erformance
Late blight (LB) Moderately resistant		Use	
Potato virus X (PVX)	Extremely resistant	Dry matter (%)	20
Potato virus Y (PVY)	Extreme Resistance		
Potato leaf roll virus (Pl	.RV) Resistant		
Agronomic	al performance		
Adaptability			
Growing period	Early		
Sprouting pattern	Apical dominance		

"Jizhangshu 8" (China) – "Pskem" (Uzbekistan)

CIP396311.1 - C95.276							
(391925	.2 X C92.030)					
	Popula	ation: LTVR					
Tuber skin predominant color	Red	Tuber flesh predominant color	Pale yellow				
Tuber skin secondary color	Absent	Tuber flesh secondary color	Absent				
Tuber skin secondary color distribution	Absent	Tuber flesh secondary color distribution	Absent				
Tuber shape	Oblong	Tuber shape depth of eyes	Slightly deep				
Tuber shape unusual	Absent						

Extreme resistance	Oil absorption rate (%)	30
Extreme resistance	Chipping color	Moderately dark
Potato leaf roll virus Moderately		Solid
susceptible	After cooking darkening	Moderately light
	Extreme resistance Extreme resistance Moderately susceptible	Extreme resistance Oil absorption rate (%) Extreme resistance Chipping color Moderately susceptible After cooking darkening

Tuber

Adapta

Growin

Growin

Dormar

highlan

Sprouti

Pollen

Agronomical performance		Nutrient	Ranks		
ield (kg/plant)	1,10	tubers	Minimum	Maximum	Average
bility g period lowland	Lowland tropics Early	Vitamin C (mg/100g, dry weight basis)	88,58	89,08	88,83
g period highland	Medium		19	0.00	
ncy period - DLS d	109				
ng pattern	Apical dominance				
Reproductive I	biology	1			
viability (%)	85,8				

Research Article

DE GRUYTER

Open Access

Abdullah Al Mahmud*, Mohammad Hossain, Bimal Chandra Kundu, E.H.M. Shofiur Rahaman, Mohidul Hasan, Monower Hossain, Enamul Haque, Atikur Rahman, Mahabub Alam Patwary, Hafizur Rahman, Shahidul Islam Khan, Abu Kawochar, Biresh Kumar Goswami, Jahangir Hossain, Mohinder Singh Kadian, Merideth Bonierbale

Evaluation of CIP bred clones for expansion of potato production in the coastal areas of Bangladesh

DOI 10.1515/opag-2016-0024

Received November 21, 2016; accepted December 19, 2016

Abstract: A set of International Potato Center (CIP)-bred the National Seed Board in Bangladesh in 2016. potato clones was evaluated for their salt tolerance and

productivity in replicated field trials in three coastal districts of Bangladesh, namely, Chittagong, Patuakhali and Satkhira. In each year of experimentation from 2011 to 2015, salinity levels increased progressively during the season and varied with time and place. Evaluation and selection were carried out using GGE biplot analysis and mean yield across the test sites; and the best performing clones were selected for the next year's trial. Of the original fifteen test clones, two (CIP 301029.18 and CIP 396311.1) were selected for evaluation in the regional yield trial with cvs. Diamant and Asterix as checks. In the regional yield trial, across locations, CIP 301029.18 was the highest (21.8 ton/ha) and CIP 396311.1 (21.3 ton/ha) was the 2nd highest yielder such that CIP 301029.18 produced 64.0% higher yield and CIP 396311.1 produced 32.4% higher yield compare to their corresponding check varieties Diamant and Asterix. Similar ranking was found under farmers' field conditions. Finally, these 2 clones CIP 301029.18 & CIP

396311.1 were found promising for their good productivity under saline conditions and CIP 396311.1 was released by the National Seed Board in Bangladesh in 2016.

Keywords: CIP bred potato clone, salt tolerance, yield, Bangladesh

1 Introduction

Potato is becoming the number one non-grain crop in the world to ensure food security. It gives an exceptionally high yield with more nutrition per unit area per unit time than any other crop. According to FAOSTAT (2013), total potato production in Bangladesh ranks 7th in the world and it is second only to rice in Bangladesh, where about 8.95 million tons of potato was produced from about 0.46 million hectares of land in 2014 (BBS, 2014).

Soil salinity is a worldwide problem and Bangladesh is no exception. In Bangladesh, salinization is one of the major natural hazards hampering crop production. The total area of Bangladesh is 147570 km². The coastal area

BARI Alu-73

Research reveals potential for growing potatoes on Mars, and challenging areas of Earth

February 9, 2018

6 9 🛅

An experiment conducted by researchers at the International Potato Center (CIP) to determine whether potatoes could be grown on Mars not only produced encouraging results for proposals to out people on the Red Planet, it also provided valuable information for CIP's efforts to help farmers produce food on this planet's marginal lands.

The National Aeronautics and Space Administration (NASA) has set a goal of sending people to Mars by 2030, whereas the possibility of establishing a long-term human presence on the Red Planet has end scientists to investigate the feasibility of growing food there. CIP researchers undertook an experiment in 2016 to see if potato could be grown in the harsh soil of Pampas de la Joya – a hyperand section of Peru's coastal desert – that is considered the closest thing to Martian soil available on Earth. The results of that experiment, recently published in the on-line version of the *International lournal of Astrobiology*, are encouraging for both astrobiologists and scientists who are tapping the otato's potential for feeding people on an increasingly hot and crowded Earth.

provide the series of the seri

David Ramirez, a crop ecophysiologist at CIP and the lead author of the article, explains that he and his colleagues placed in-vitro plantlete of 65 different potation

enotypes inside peat pellets, watered them for two weeks, and then transplanted them into pots filled with soil from la Joya, as well as p

International Journal of Astrobiology, Page 1 of 7 doi:10.1017/S1473550417000453 © Cambridge University Press 2017

Extreme salinity as a challenge to grow potatoes under Mars-like soil conditions: targeting promising genotypes

David A. Ramírez^{1,2,3}, Jan Kreuze¹, Walter Amoros¹, Julio E. Valdivia-Silva^{4,5}, Joel Ranck^{1,*}, Sady Garcia², Elisa Salas¹ and Wendy Yactayo¹

 ¹International Potato Center (CIP), Apartado 1558, Lima 12, Peru e-mail: d.ramirez@cgiar.org
 ²Universidad Nacional Agraria La Molina, Av. La Molina sln, Lima 12, Peru
 ³Gansu Key Laboratories of Arid and Crop Science, Crop Genetic and Germplasm Enhancement, Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
 ⁴Universidad de Ingenieria y Tecnologia (UTEC), Apartado 15063, Lima, Peru

⁵Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA

https://cipotato.org/blog/research-reveals-potential-growing-potatoes-mars/

CIP is a research-for-development organization with a focus on potato, sweetpotato and Andean roots and tubers. It delivers innovative sciencebased solutions to enhance access to affordable nutritious food, foster inclusive sustainable business and employment growth, and drive the climate resilience of root and tuber agri-food systems. Headquartered in Lima, Peru, CIP has a research presence in more than 20 countries in Africa, Asia and Latin America.

www.cipotato.org

CIP is a CGIAR research center

CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 research centers in close collaboration with hundreds of partners across the globe.

www.cgiar.org

This publication is copyrighted by the International Potato Center (CIP). It is licensed for use under the Creative Commons Attribution 4.0 International License