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Abstract: The understanding of macrophages and their pathophysiological role has dramatically
changed within the last decades. Macrophages represent a very interesting cell type with regard
to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a
crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better
understanding of the functionality of macrophages opens perspectives for potential guidance and
modulation to turn inflammation into regeneration. Such knowledge may help to improve not only
the biocompatibility of scaffold materials but also the integration, maturation, and preservation
of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two
subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory
properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory
properties. The present narrative review gives an overview of the different functions of macrophages
and summarizes the recent state of knowledge regarding different types of macrophages and their
functions, with special emphasis on tissue engineering and tissue regeneration.
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1. Introduction

In the 19th century, the Russian zoologist Ilja (Elie) Metchnikow [1] described a cell,
which was able to engulf other cells, bacteria, or solid particles respectively [2–5]. He called
this process phagocytosis. Based on the relatively large diameter of these “eating cells”, the
early biologists called them macrophages. After cellular uptake, macrophages kill engulfed
cells or organisms. Within the inflammatory process, macrophages, along with neutrophilic
granulocytes, are the first line of cellular defense. Metchnikow hypothesized that the
inflammatory reaction underwent evolutionary changes like any other biological process.
Since macrophages can migrate on their own and integrate foreign bodies, Metchnikow set
these cells as the first step in the inflammatory reaction [1]. According to this evolutionary
hypothesis, the inflammatory reaction is developed step by step by the involvement of
lymphocytes and granulocytes, the cascade of humoral factors of the complement system,
and as the latest step, the production of antibodies [6].

Nowadays, our understanding of inflammation and the role of macrophages has
dramatically changed. Macrophages are widely accepted to secrete pro-inflammatory or
anti-inflammatory cytokines to achieve the orchestration between the different immune
cells [7–9]. Cytokines are small protein signaling molecules that regulate cells’ growth,
differentiation, and function [10]. Today, the term macrophage describes a heterogeneous
group of cells with various functions in diverse cellular processes [7]. The first evidence
for their heterogeneity was given by Aderem et al., who discovered that macrophages
respond to bacterial lipopolysaccharide (LPS) without inducing an inflammatory response
via T-cells [11]. Another milestone was the identification of a macrophage subpopulation
called “alternatively activated macrophages” (AAM) [12]. Recent studies have shown that
macrophages are also involved in synthesizing extracellular matrix (ECM) [13]. Mosser hy-
pothesized that the potency of macrophages to synthesize ECM components gives evidence
that these cells potentially have a primary role in tissue repair and not microbial killing [7].
These initial statements give insight into the concept that macrophages play a crucial role
in the immune response to pathogens, tissue homeostasis and inflammation, as well as
in regeneration and repair [13–15]. The present review gives an overview of the different
functions of macrophages and summarizes the current state of the literature regarding
different types of macrophages and their functions without claiming to be exhaustive.

2. The Origin and Formation of Macrophages

The origin of macrophages has been a matter of debate in recent years. Traditionally,
macrophages were seen as descendants of monocytes [16,17]. Monocytes represent a group
of white blood cells derived from the myelopoietic stem cells in the bone marrow as all
other types of blood and immune cells [18–20]. Monocytes are primarily encountered in
the blood as circulating cells, but also in the bone marrow and spleen and are incapable of
steady state proliferation in these surroundings [21,22]. After their formation in the bone
marrow, monocytes enter the blood, where they circulate [10,23] and migrate into various
tissues reacting to different stimuli. Such stimuli for monocytic migration may either derive
from inflammation or as a result of trauma. After migration into the tissue, monocytes
form colonies under the action of chemotactic stimuli (Figure 1) [24].
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Figure 1. Formation and differentiation of macrophages. Schematic depiction of the differentiation 
of monocytes during embryonic development unfolding in three sequential waves and adulthood 
as well as their further differentiation to different subpopulations of macrophages in the tissue [25] 
(AGM region: aorta-gonad-mesonephros region; EMP: Erythro-Myeloid Progenitors, YS: yolk sac), 
modified after Corliss et al. [26]. 

The classical assumption that all macrophages originate from circulating monocytes 
was discarded years ago. Nowadays, it is well-accepted that hematopoiesis unfolds in 
three sequential waves, and macrophages undergo self-renewal within the tissue they 
reside [25]. The comprehensive debate about the origin of macrophages is not focused on 
in this review and is well demonstrated elsewhere [25,27,28]. 

3. Polarization of Macrophages 
Once it became apparent that macrophages not only phagocytize but also express 

other functions, it was necessary to categorize them further. There is evidence that 
macrophages are a cell type that can assume various phenotypes based on the stimuli to 
which they are exposed. Because these cells respond differently to environmental signals 
[29], the classification centers on their activation mode [14,30–33]. In this context, 
macrophages have been categorized into the following subpopulations [31]: 
1. Classically activated macrophages (CAM, M1-macrophages) 
2. Alternatively activated macrophages (AAM, M2-macrophages) 

In 2008, Mosser proposed an alternative classification of macrophages based on three 
homeostatic activities, which are host defense, wound healing, and immune regulation 
[22,34]. Furthermore, tumor-associated macrophages have also been identified as a 
separate group extensively studied in the last few years [35–37]. 

  

Figure 1. Formation and differentiation of macrophages. Schematic depiction of the differentiation
of monocytes during embryonic development unfolding in three sequential waves and adulthood
as well as their further differentiation to different subpopulations of macrophages in the tissue [25]
(AGM region: aorta-gonad-mesonephros region; EMP: Erythro-Myeloid Progenitors, YS: yolk sac),
modified after Corliss et al. [26].

The classical assumption that all macrophages originate from circulating monocytes
was discarded years ago. Nowadays, it is well-accepted that hematopoiesis unfolds in three
sequential waves, and macrophages undergo self-renewal within the tissue they reside [25].
The comprehensive debate about the origin of macrophages is not focused on in this review
and is well demonstrated elsewhere [25,27,28].

3. Polarization of Macrophages

Once it became apparent that macrophages not only phagocytize but also express other
functions, it was necessary to categorize them further. There is evidence that macrophages
are a cell type that can assume various phenotypes based on the stimuli to which they
are exposed. Because these cells respond differently to environmental signals [29], the
classification centers on their activation mode [14,30–33]. In this context, macrophages
have been categorized into the following subpopulations [31]:

1. Classically activated macrophages (CAM, M1-macrophages)
2. Alternatively activated macrophages (AAM, M2-macrophages)

In 2008, Mosser proposed an alternative classification of macrophages based on
three homeostatic activities, which are host defense, wound healing, and immune reg-
ulation [22,34]. Furthermore, tumor-associated macrophages have also been identified as a
separate group extensively studied in the last few years [35–37].
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3.1. The Plasticity of Macrophages

The mechanisms resulting in the different macrophage phenotypes are crucial to
understanding macrophage subpopulations. This process is called “plasticity” [5] and
describes the ability of cells to respond to different microenvironmental influences by dis-
playing diverse functional phenotypes [38,39]. Thus, plasticity results in a polarization of
macrophages into different phenotypes assigned to the different subpopulations [14,30,40].
Taking these facts together, it is essential to realize that unlike other cells, which lose
their heterogeneity during maturation, macrophages retain their plasticity and transform
according to environmental signals [20,29]. Furthermore, there is evidence that the phe-
notype of polarized M1 and M2 macrophages could be reversed not only experimentally
in vitro and in vivo but also in situ (Figure 2) [41–44]. For instance, in vitro analyses clearly
demonstrated the capacity of macrophages to switch between M1 and M2 macrophages
using different recombinant cytokines and biologically active substances measured by their
CD163 and CD206 expression and their CCL18 and CCL3 production [41]. Furthermore, a
switch from M1 to M2 polarized macrophages is described in experimental and human
parasite infections [45,46].
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Figure 2. Plasticity of macrophages: a brief schematic depiction of the plasticity of macrophages
from an inactive macrophage (MΦ) into either an M1-macrophage or M2-macrophage according
to different stimuli. The scheme represents macrophages as an activations state of cells that can be
changed along a continuum into the different sub-populations according to various stimuli in the
environment. In addition, M1 and M2 macrophages can be turned into inactivated macrophages if
there is a lack of stimuli.
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In living organisms, the phenomenon of macrophage plasticity ensures that when M1-
macrophages have completed the clearance of pathogens and any destroyed surrounding
tissue, they transform into M2-macrophages to produce components of the extracellu-
lar matrix and simultaneously activate and induce other cells, such as fibroblasts, which
also contribute to the formation of extracellular matrix, and thus initiate tissue regenera-
tion [31,47,48]. Another important aspect regarding the plasticity of macrophages concerns
their relationship to the modulation of chronic disease and autoimmunity [49]. For a long
time, it was taken as a matter of fact that the incomplete or failed switching from one phe-
notype to another had an impact on chronic inflammation and autoimmune disorders [42].
In chronic venous ulcers, for example, it was shown that macrophages infiltrating the tissue
fail to switch from an M1 to an M2 state due to iron overload. Therefore, ROS-mediated
DNA damage, fibroblast cellular senescence, and defective tissue repair occur [50]. More
recently, it has been demonstrated that even effective macrophage phagocytosis of apop-
totic cells is crucially involved in the modulation of chronic inflammatory and autoimmune
diseases, which underlines the active regulatory role of macrophages in these pathomecha-
nisms [3,31].

Depending on their phenotype, macrophages differ regarding their metabolism being
able to switch from an aerobic to an anaerobic state and vice versa. M1-macrophages use
glycolysis and pentose phosphate pathways to meet their energy needs. The tricarboxylic
acid cycle (TCA) is broken at two points, and itaconate and succinate accumulate. Besides,
oxidative phosphorylation and fatty acid oxidation are downregulated. In contrast, M2
macrophages have an intact TCA and increased fatty acid oxidation and oxidative phos-
phorylation [51]. Another prime example demonstrating the importance of the plasticity
of macrophages for their functionality is given by arginine metabolism in the differently
polarized macrophages. M1 and M2 macrophages use different arginine-catabolizing en-
zymes. M1-macrophages metabolize arginine via inducible nitric oxide synthase (iNOS)
into nitric oxide (NO) and citrulline, whereas arginase hydrolyzes arginine to ornithine
and urea in M2-macrophages. In further downstream pathways, ornithine is broken down
into polyamine and proline, which are essential for cellular proliferation and tissue re-
pair [30,52]. M1 and M2 macrophages also differ in their iron metabolism, associated with
the respective macrophage function. Iron is essential for bacterial growth as some bacteria
obtain energy from the oxidation of divalent iron. Inflammatory M1 macrophages express
low levels of hemoglobin receptors (CD163 and CD91), leading to a smaller heme pool
within the macrophage. Also, they show high levels of ferritin, an iron storage protein, and
low levels of ferroportin, an iron exporting channel affiliated with iron retention resulting
in a bacteriostatic effect. In contrast, M2 macrophages express low ferritin levels and
high ferroportin levels. The resulting iron release is linked to tissue repair, angiogene-
sis, and tumor promotion [8,53–55]. Therefore, metabolic adaption is a crucial feature of
macrophage polarization.

3.2. Classically Activated Macrophages (CAM or M1-Macrophages)

CAMs or M1-macrophages are the best-characterized macrophage subpopulation.
These cells represent the classical phagocyte [15]. The term “classically activated macrophages”
describes those macrophages rising during cell-mediated immune responses [20]. These
cells can elicit an effective innate immune response [31].

3.2.1. The Activation Process of Classically Activated Macrophages

One of the main activators of M1-macrophages is interferon-gamma (IFN-γ) [56,57].
This cytokine was originally called macrophage-activating factor (MAF). However, to-
day the term MAF is not restricted to IFN-γ but also includes other cytokines and active
molecules. IFN-γ has a variety of functions. Thus, it is involved in eliminating viral and
intracellular bacterial infections and the mechanisms of tumor control. IFN-γ is an im-
munomodulator, an immunestimulus, and also can inhibit viral replication directly [58]. In
innate immunity, IFN-γ is produced by natural killer T-lymphocytes (NKT) and natural
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killer (NK) cells. During an antigen-specific immunoreaction, IFN-γ is synthesized by
CD8-positive cytotoxic T-lymphocytes (CTL) and CD4-positive TH1-T-helper cells. IFN-γ
activates the transcription factors STAT-1 and STAT-2, which bind to gamma-activated se-
quences (GAS) at various immunological effector genes. As a result, activated macrophages
secrete pro-inflammatory cytokines as well as oxygen and nitrogen radicals [7,59–64].
Another important activating molecule for macrophages is tumor necrosis factor-alpha
(TNF-α), formerly known as cachectin. This molecule is produced by macrophages and is a
member of the cytokine family of polypeptide mediators, which also contain interferons
and interleukins. TNF-α is an important mediator during inflammation, immune responses,
and infectious phenomena. One of the effects of TNF is the initiation of apoptosis, including
in tumor cells [65–69].

The activation process in classically activated macrophages occurs either in the pres-
ence of IFN-γ alone or in combination with other co-stimulating factors [70]. However,
a second stimulus is mandatory after the initial stimulation with IFN-γ. In these second
stimulating processes, ligands to Toll-like receptors (TLRs) are intimately involved. TLRs
bind several microbial components. After ligand-binding, the activated receptor initiates
a signal transduction pathway which triggers the production of gene products, which
control innate immune responses and further instruct the development of antigen-specific
acquired immunity [71–73]. The ligands for TLRs are expressed on microorganisms and are
known as so-called “pathogen-associated molecular patterns” (PAMPs) [60]. The PAMPs
are defined as molecules associated with groups of pathogens that are recognized by cells
of the innate immune system. These molecules can be described as low molecular weight
signals in a class of microbes. TLRs and other pattern recognition receptors (PRRs) can
recognize these PAMP molecules. PAMPs are concerned with the activation of innate
immune responses. Essential components of the PAMP molecular family are endotoxins
found on the cell membrane of gram-negative bacteria, also known as LPS [74–76].

The activation of TLRs induces the synthesis of TNF-α, which can act in an autocrine
manner to amplify the stimulation of macrophages [77]. Some other TLR-Ligands are
able to induce endogenous production of IFN-β [78], which can substitute for IFN-γ [20].
Therefore, after the first activation of CAMs with IFN-γ and LPS, the CAMs are further
activated from the endogenously produced TNF-α and IFN-β (Figure 3) [20].
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Figure 3. Activation of classically activated macrophages. In the presence of INF-γ-receptor ligands
or PAMP, the macrophages adopt the M1 phenotype, which is characterized by the expression of
INF-β and TNF-α –receptors. Furthermore, these cells are now capable of synthesizing TNF-α and
INF-β and thus achieving self-activation.
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M1-macrophages are co-stimulated by additional pro-inflammatory cytokines such as
IL-1, IL-12, or other stress signals [48,77]. Stress signals are endogenous factors released
from damaged or stressed tissue [79], such as heat-shock proteins, fibronectin fragments,
hyaluronan or high-mobility group box 1 proteins [80,81]. Heat-shock proteins, so-called
chaperone molecules, are expressed as a reaction to several stressful conditions, such as
infections or malignancies [82–84]. They are molecules, that detect proteins that had failed
to fold or lost their native functional conformation in the cell preventing the aggregation
of these proteins [85–87]. This phenomenon is described as the stress response [88–90].
Fibronectin fragments represent a cleavage product of the extracellular matrix due to the
action of metalloproteinases, which are secreted by monocytes during inflammation [91,92].
Fibronectin is a macrophage activator [93]. Hyaluronan is a significant component of the
ECM and modulates the inflammatory response [94–96]. In this context, larger polysaccha-
ride chains promote anti-inflammatory activity, and smaller to medium size polysaccharide
chains have pro-inflammatory properties [90,97–99]. High-mobility group box 1 (HMGB-1)
is a structural co-factor critical for proper transcriptional regulation in somatic cells and is
typically located in the nucleus [100,101]. This molecule, among others, induces inflamma-
tion, proliferation, and migration of cells [102–104]. HMGB-1 is also passively released by
necrotic but not apoptotic cells. Furthermore, it is secreted by activated macrophages [105].
Besides the stimulating stress signals described above, classically activated macrophages
can also be co-stimulated by a variety of other molecules [8,16] and hypoxia [106–110].

3.2.2. The Function of Classically Activated Macrophages (CAMs)

The best-described function of M1-macrophages or CAMs is the phagocytosis of
pathogens [4,20,111–113]. Metchnikoff first described this function more than a hundred
years ago [114,115]. Phagocytic activity and the synthesis of toxic agents, such as reactive
oxygen and nitrogen species, are reasons why classically activated macrophages belong to
the “microbicidal” repertoire of the organism [116,117]. It is important to underline that
CAMs express an isoform of iNOS that cannot be detected until the CAMs are activated
via IFN-γ and LPS [116,118]. iNOS is an enzyme that synthesizes NO by oxidation of the
amino acid L-arginine. NO represents a critical mediator which reacts with superoxide
anion (O2), resulting in the production of peroxynitrite (ONOO−), and these radicals are
responsible for the subsequent oxidative damage [119–122].

To effectively fulfill their function in hostdefense, CAMs secrete various pro-inflammatory
cytokines, such as TNFα, IL-1, IL-6, IL-12, and IL-23 [22,123–127]. It is interesting to realize
that especially IL-23 [128] but also IL-1 [129–132], and IL-6 [129,133] have been described as
playing an important role in the development of the T-helper cell type 17 (Th17). These cells
produce IL-17 [134], which triggers cascades involved in the induction of inflammation
and autoimmunity [113,135–139]. In addition to the elimination of pathogens, classically
activated macrophages also can present antigens via the MHC-II pathway [7].

As mentioned above, CAMs are also involved in destroying extracellular matrix and
tissue reorganization during inflammation or trauma. To achieve this, CAMs produce
and secrete various enzymes such as matrix-metalloproteinases (MMPs), macrophage
metalloelastase (MMP12), collagenase and hyaluronidase [2,140–144]. MMPs form a group
of zinc-dependent proteolytic endoproteinases, which degrade extracellular matrix proteins
to support normal tissue remodeling and contribute to tissue destruction during various
pathological conditions such as cell-material interactions and tumor cell invasion [145].
Some MMPs also play a role in macrophage polarization. For example, MMP8 has been
shown to induce the M2 phenotype via the regulation of TGF-β expression [146,147]. The
most important effect of extracellular matrix degradation is the support of macrophage
migration through the inflamed tissue to facilitate their functions in clearing cell debris and
pathogens (Figure 4).
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3.3. M2-Macrophages

M2-macrophages are a subpopulation of macrophages that are not activated by the
classical pathway via IFN-γ and TNF-α. Gordon et al. introduced the term “alternatively
activated macrophages” to characterize a population of macrophages that have to be
exposed to IL-4 for activation [60,148]. Also, extracellular nucleotides can influence the
differentiation of macrophages into M2-macrophages [149]. M2-macrophages play an
important role in various conditions, including immunoregulation, infections, wound
healing, and modification of the extracellular matrix by the secretion of proteases and
growth factors [150,151]. The group of M2-macrophages includes a minimum of three
subpopulations [152,153], which are categorized based on their in vitro activation and
polarization pathway:

1. M2a-Macrophages (alternatively activated macrophages, AAM)
2. M2b-macrophages (Type 2—macrophages)
3. M2c-macrophages (deactivated macrophages)

M2-macrophages are capable of releasing the anti-inflammatory cytokine IL-10, thus
achieving a Th2-Response [31]. IL-10 is a cytokine with anti-inflammatory activity [154],
which has been unequivocally established in various models of infection, inflammation, and
even in cancer [155–157]. It is a potent inhibitor of antigen presentation and inhibits major
histocompatibility complex class II expression and the upregulation of the co-stimulatory
molecules CD80 and CD86 [158].

3.3.1. M2a-Macrophages

This subgroup of M2-macrophages is also termed “alternatively activated macrophages”
(AAM) [12,159]. These macrophages are characterized by their low expression level of
IL-12 [70,159]. In vitro monocytes transform into M2a-macrophages after treatment with
IL-4 and IL-13 [14,159–165]. IL-13 shares a common receptor with IL-4 and exerts similar
effects on macrophages [45,166]. IL-4 and IL-13 are cytokines released from various cell
sources, including basophils, mast cells, Th2-T-Cells, and innate lymphoid cells. The two
interleukins, IL-4 and IL-13, share several structural characteristics and both molecules
antagonize the actions of IFN-γ [148,166,167] (Figure 5). After activation by IL-4 and
IL-13, M2a-macrophages produce and release IL-1 receptor antagonists, which inhibit IL-1
function [168].

M2a-macrophages are further characterized by their abundant levels of non-opsonic
receptors (such as mannose receptor, which is also known as CD206) and the failure
(incompetence) to produce NO [45] via the induction of arginase [169], which leads to
the generation of ornithine and polyamines [51,70]. They are also characterized by the
production of low levels of pro-inflammatory cytokines (IL-1, TNF, and IL-6) and the low
expression of the co-stimulatory molecule CD86 [170].
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Functionally, macrophages are key regulators of fibrosis and resolution. This crucial
mechanism is mediated by stabilin-1, a transmembrane glycoprotein expressed by endothe-
lial cells and a subtype of macrophages. It was demonstrated that stabilin-1 expressed by
macrophages regulates fibrosis in liver injury [171,172]. In this context, M2a-macrophages
have also been described to have a pro-fibrotic potential [167]. In this context, in vitro
studies demonstrated that after activation of macrophages with IL-4 or TGF-β, consec-
utively added myofibroblasts showed an increase in proliferation and the production
of fibronectin and collagen I [173–175]. However, IL-4-activated macrophages can pro-
duce fibronectin and additional matrix proteins, including the TGF-ß-inducible gene H3
(bIG-H3), to a higher degree than classically activated macrophages. Furthermore, the
“alternatively activated” macrophages that differentiate in response to IL-4 and IL-13 are
involved in Th2-type responses (production of IL-10), including humoral immunity and
wound healing [176]. An interesting finding was that activation through IL-4 could lead to
an induction of a fusogenic status. This means these macrophages can build multinucleated
giant cells (MNGCs) in the presence of other functional components [177,178] (Figure 6).
Although some studies show that MNGCs express an M2 rather than M1 phenotype, the
exact correlation between macrophage polarization and MNGC formation remains to be
further investigated [179,180].

3.3.2. M2b-Macrophages

To achieve the M2b-macrophage polarization, the macrophages need to be exposed to
lipopolysaccharides (agonists of TLR) [181] in the presence of IgG-immune complexes [182–184]
(Figure 7). Macrophages which, by the time of activation, are exposed to IgG-immune
complexes, synthesize large amounts of IL-10 but do not produce IL-12 [182,185].

Despite their high production of inflammatory cytokines and toxic molecules, it could
be shown in animal studies that M2b macrophages protect mice against LPS toxicity. More-
over, they promote Th2 differentiation and humoral antibody production [7,70,186,187].
Thus, the M2b-macrophages are more similar to M1 macrophages than alternatively ac-
tivated macrophages. The M2b are capable of synthesizing NO and have a low arginase
activity compared to M2a- und M2c-macrophages. On the other hand, they express the
CD86-receptor on their membrane and produce pro-inflammatory cytokines such as TNF,
IL-1 and IL-6. One of the basic differences between the M1- and M2b- phenotype is that
M2b are able to induce a Th2-response due to the production of IL-10 [20,183], whereas
M1-subpopulations induce a Th1-response following their production of IL-12 [188].
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3.3.3. M2c-Macrophages

IL-10, TGFβ, or glucocorticoids are required to polarize a macrophage population into
the M2c-subgroup [160,162]. After polarization, the M2c-macrophages can produce IL-10
and TGFβ for self-stimulation (autocrine effect). The basic functions of M2c-macrophages
are immunosuppression, remodeling of ECM, including matrix deposition, and tissue
remodeling [34,189]. Furthermore, the induction of fibrosis triggered by M2c-macrophages
has also been reported [31]. Fibrogenesis is a dynamic process in which the synthesis
and deposition of ECM components occur as an answer to parenchymal tissue injury.
This process plays a pivotal role in multiple physiological and pathological conditions,
such as the granulation of wound healing, atherosclerosis, and chronic inflammation [174].
Fibrosis is characterized by the extensive proliferation and activation of tissue fibroblasts,
the primary producers of extracellular components [190]. One of the important mediators
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to modulate proliferation and consecutive ECM components are transforming growth
factor β 1 (TGFβ-1) (Figure 8) [191,192].
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3.4. Tumor-Associated Macrophages

In addition to the functions mentioned above, macrophages are essential players in
tumorigenesis, tumor promotion, and metastases as they orchestrate cancer-related inflam-
mation and support angiogenesis [193]. During carcinogenesis, circulating monocytes and/
or tissue-resident macrophages are recruited to the tumor niche by mediators secreted by
tumor cells and cells of the tumor microenvironment (TME) [193–196]. These so-called
Tumor-Associated Macrophages (TAMs) are a highly plastic, heterogeneous subpopulation
of macrophages that cannot be fully captured by the traditional M1/M2 dichotomy [197].
Often, TAMs are referred to as M2d or M2-like macrophages, which might lead to the
assumption that only the M2 phenotype occurs in TME. However, M1-like and M2-like
macrophages coexist within the TME, secreting opposing factors resulting in their distinct
functions [198]. Remarkably, the TAM phenotype is not static and may switch from M1
to M2 as TAMs are sensitive to factors secreted by the TME. One possible explanation for
the switch from M1 to M2-like is the expression of adenosine A2A receptors (A2AR) on
the surface of M1 macrophages under hypoxic conditions. Adenosine binds to the A2AR
suppressing the pro-inflammatory cytokine production (TNF-α, IL-12) and enhancing the
secretion of anti-inflammatory and pro-angiogenic factors such as IL-10 and VEGF [187,199].
Furthermore, TAM subsets show a co-expression of M1 and M2 gene signatures, which
underlines their broad phenotype spectrum [200].

As described earlier, phenotypical polarization to M1 occurs due to the effect of IFN-y,
TNF-α, LPS, and others. The antitumor potential of M1-like TAMs is based on the lysis of
tumor cells after phagocytosis or on the secretion of immunostimulatory cytokines and
chemokines (e.g., IL-6, IL-12, TNF) which induce inflammation and thus tumor suppres-
sion [201]. In contrast, M2-like TAMs are more abundant in the TME and are accepted to
be tumor-promoting. As described previously, M2-like TAMs are polarized by IL-4, IL-10,
TGFβ-1, and PGE2. Across many cancer entities, the occurrence of M2-like TAMs is linked
to numerous tumor-supportive properties such as enhanced tumor cell proliferation, angio-
genesis, metastasis, immune suppression, drug resistance, and poor prognosis [202]. The
role of TAMs is an extensively reviewed topic in the literature and remains an ongoing field
of research. To complete the picture of macrophage heterogeneity, TAMs are mentioned
very briefly in the present review but without the claim to be exhaustive.
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4. Macrophages and Their Role in Tissue Regeneration

The changing view on macrophages and their different functions in inflammation,
wound healing, and regeneration has begun to influence our understanding of their role
in different cellular mechanisms in tissue engineering. This concerns not only the biocom-
patibility of scaffold materials but also the integration, maturation, and preservation of
cell-scaffold constructs or induced regeneration. Macrophages are regulators in inflamma-
tory and immunological processes within the tissue, and there are several aspects of tissue
engineering in which macrophages play a pivotal role with respect to biomaterials. Relevant
examples are the induction of inflammation and host responses as a reaction to biomaterial
implants [8,31,48,203,204]. In this context, it is generally accepted that the macrophage is a
central element of the inflammatory response, which is practically universally involved in
the tissue reaction to implanted biomaterials [205].

4.1. Immunomodulatory Potential of IL-4

The role of macrophages is regulatory since the phenotypic differentiation to M1 or
M2 macrophages is decisive for the secretion of pro- or anti-inflammatory cytokines. As
the anti-inflammatory M2 phenotype is associated with improved tissue regeneration,
biomaterials should be modified to avoid disadvantageous tissue reactions. Examples of
disadvantageous tissue reactions are stenosis in grafts as a result of intima hyperplasia by
excessive macrophage infiltration within tissue-engineered vascular grafts [206], but also
the formation of peritoneal adhesions or fibrosis after surgical treatment and implantation
of biomaterials within the peritoneal cavity [207]. Tan et al. could achieve advantageous
tissue reactions in mice by using a bioactive vascular graft coated with IL-4 pushing
macrophage polarization toward the M2 phenotype. Consequently, they observed a reduc-
tion of foreign body encapsulation and inhibition of neointimal hyperplasia compared to
the control group [208]. Recently, resident peritoneal murine macrophages were found to
represent an anti-adhesion cell barrier by forming a shield around surgery-induced fibrin
clots. Nevertheless, this barrier is frequently inadequate, allowing adhesions to form. By
injecting IL-4c, the macrophage barrier was strengthened, and post-operative adhesions
were effectively prevented [209]. In the context of macrophage polarization, IL-4 seems
to be a promising agent, and further research needs to be performed to establish it in
clinical practice.

4.2. Importance of Nanomaterial Characteristics

With a view to the use of various biomaterials as cell carriers, scaffolds, or release
systems for signaling molecules and growth factors to trigger tissue regeneration, there is a
need to understand the role played by macrophages in the biocompatibility and biodegra-
dation of such implanted materials. If the material is incompatible with the organism, either
a severe inflammatory reaction or a foreign body reaction (FBR) is induced, in both of which
macrophages are of pathogenetic importance [203]. For instance, Barsch et al. examined
whether inflammation and FBR were significantly influenced by the 3D biomaterial design
by comparing filamentous fleece and sponge-like biomaterial in a porcine model. Although
no statistically significant difference could be found regarding FBR, the sponge-like syn-
thetics showed a significantly lower inflammatory reaction which was quantified based on
the density of polymorph-nucleated cells [210]. A further component of biocompatibility
is the degradation of biomaterials and the tissue reaction to the degradation products. In
this context, macrophages first trigger early acute inflammation, which is mandatory for
the elimination of damaged molecules, and then they initiate and regulate the regenerative
process [8,211–214]. However, macrophages are also involved in pathological processes
resulting from disturbed wound healing, such as scar formation or delayed and failed re-
generation [151]. Taking this pathophysiological function into account, recent strategies are
aimed at controlling or modulating macrophages for tissue repair and regeneration. Garash
et al. suggest strategies, which include controlled delivery of anti-inflammatory drugs,
delivery of macrophages as a component of cellular therapy, controlled release of cytokines
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that modulate the macrophage phenotype and the design of nanoparticles that exploit
the inherent phagocytic character of macrophages [215]. Nanomaterials are an emerging
field of interest, but the potential of nanoparticles (NPs) as macrophage regulators has yet
to be fully exploited. Ni et al. identified gold NPs as a potential periodontitis treatment
option since injection of 45 nm NPs in induced periodontitis in rats resulted in significant
anti-inflammatory effects such as M2 polarization [216].

4.3. Role of Hydrogels and Water-Soluble Substances

Furthermore, Kim and Tabata suggest an enhancement of wound healing by dual
release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from
gelatin Hydrogels. The authors demonstrated that culturing macrophages on fibrin gels
stimulated the secretion of the anti-inflammatory cytokine interleucin-10 (IL-10) [217].
Hydrogels represent a three-dimensional network filled with water that mimics tissue mi-
croenvironment and is therefore considered to be biocompatible material. By conjugating
signaling molecules, hydrogels can trigger cells to fulfill distinct functions. For tissue engi-
neering, degradable hydrogels are favored as they can be replaced by growing tissue [218].
Regarding disease and cancer treatment, injectable hydrogels are auspicious biomaterials
that can serve as scaffolds and carriers of therapeutic agents [219]. For instance, Xu et al.
injected gelatin hydrogel into intracerebral hemorrhage lesions in mice. The researchers
demonstrated that inflammation was suppressed in the intervention group. Macrophage
polarization was observed to shift towards the M2 phenotype leading to a decline in the
secretion of inflammatory cytokines, resulting in reduced neuronal loss and enhanced
functional recovery [220].

Shiratori et al. showed that drugs could polarize macrophages into different subtypes.
For example, Azithromycin, tofacitinib, hydroxychloroquine, and pioglitazone exhibit an
anti-inflammatory profile by downregulation of M1 markers and upregulation of some
M2 markers [221]. On the other hand, Huang et al. show that synthetic waterborne
polyurethane nanoparticles (PU NPs) can inhibit the macrophage polarization toward
the M1 phenotype but not toward the M2 phenotype [222]. In contrast, exposure of
macrophages to soluble fibrinogen leads to the secretion of large amounts of inflammatory
cytokine TNF-α. In conclusion, fibrin exerts a protective effect on macrophages, preventing
inflammatory activation. From these findings, the authors concluded that fibrin and
fibrinogen might represent key players in regulating macrophage phenotype behavior [217].
A differential regulation of macrophage inflammatory activation by fibrin and fibrinogen
was also shown by Hsieh, Smith et al. [223].

4.4. Role of Iron in Macrophage Polarization

As described above, M1 and M2 macrophages differ in their iron metabolism, so
iron oxide nanoparticles (IONPs) are a potent inducer of a switch of polarization. On the
one hand, IONPs have been shown to activate macrophages and inhibit tumor growth
on their own; on the other hand, IONPs have been used to deliver tumor-suppressing or
macrophage-activating biomolecules [224]. Another option to shift TAMs from an M2-like
to an M1-like phenotype was reported by Sang et al. They used Sulfur Quantum Dots as a
nano trap for free iron ions, which then led to the production of reactive oxygen species
and consequently to the reprogramming of macrophages to an M1-like phenotype. The
so-activated macrophages could then suppress tumor growth via the activation of immune
responses [225].

4.5. Influence of the Injury Microenvironment

In each tissue, the injury microenvironment is different. Although the injury triggers,
in general, a cascade of more or less the same reactions, the microenvironment and the tissue
responses to damage are derived from the tissue composition and the nature of the injury.
These unique microenvironments were shown in sterile inflammation against pathogen-
mediated inflammation due to the damage-associated molecular patterns recognized by
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inflammatory cells and not by pathogen-associated molecular patterns. For example, bone
regeneration is based on different activities than skeletal muscle regeneration, as reflected by
the differences in cytokine, chemokine, and growth factors present during homeostasis and
wound healing in these two tissues [226]. If we understand the microenvironment of the
inflamed tissue, then it might be easier to develop strategies regarding the reactions between
cells and biomaterials. Also, for biomaterial-mediated tissue repair strategies that use
endogenous monocyte/macrophage populations, the microenvironment of inflammatory
damage can decisively contribute to the criteria for material design. Immunoregenerative
materials can be designed to release molecules to enhance or disrupt specific features of
the lesion to facilitate repair [227,228], but they should also prioritize the general healing
goals of a particular tissue. Firstly, we must understand the properties of a tissue and its
responses to injury into consideration of its caused microenvironment and then combine
all this knowledge with the polarization of macrophages to achieve proper healing. The
cells have to be “guided” in a particular wound environment, according to the damaged
tissue [226]. The modulation of macrophages and their phenotype polarization was also
shown by Lee et al. They suggest, for example, positive modulation of macrophage
phenotype polarization (i.e., towards the regenerative M2 rather than the inflammatory
M1 phenotype) with a modified surface, which is essential for the osteogenesis function of
Titanium (Ti) bone implants. They showed that nanoscale topographical modification and
surface bioactive ion chemistry could positively modulate the macrophage phenotype in
a Ti implant surface. They induced the regenerative M2 macrophage phenotype of cells
in nanostructured Ti surfaces [229]. Zhu et al. analyzed the modifying role of surface
topography on macrophage polarization. The minimal scale of TiO2 honeycomb-like
structures of 90 nanometers was most effective in stimulating the M2 phenotype. Thus,
a favorable anti-inflammatory microenvironment was created, being beneficial for bone
formation and osteointegration [230]. Thus, macrophages are also of particular importance
for bone and cartilage formation as well as their remodeling [231,232]. From these examples,
we can conclude that by controlling the tissue environment and microenvironment, we can
control the macrophage behavior and modulate the macrophage phenotype [215].

4.6. Role of Macrophages in Angiogenesis

Angiogenesis is a further crucial mechanism that combines macrophages with various
processes in tissue engineering. Macrophages take part not only in wound healing as
such but also in angiogenesis to support the development and remodeling of vascular
networks [110,233–235]. Angiogenesis is a multistep process in which macrophages are
involved in each step. M2 macrophages secrete proteases (e.g., MMP9) and thus cleave the
ECM to create space for the newly forming vessels. In parallel, resting endothelial cells
are activated by paracrine stimulation [235]. For this purpose, mainly M1 macrophages
secrete pro-angiogenic factors such as VEGF-A, TNF, or FGF2 [236–239]. After loosening
the basement membrane, endothelial sprouting gives rise to new capillaries that migrate
toward angiogenic stimuli and then fuse with other sprouts or capillaries to form anas-
tomoses. In “tip cell guidance”, M2 macrophages wrap around the sprouts to facilitate
anastomosis formation. Subsequently, the new capillaries maturate, and M2 macrophages
remove redundant vessels via phagocytosis [235]. By imitating the physiological process
of Angiogenesis, researchers aim to endorse vascularization in tissue engineering scaf-
folds [240]. In this context, Spiller et al. analyzed the role of macrophage phenotype in the
vascularization of scaffolds. They found that M1 and M2c macrophages cause endothelial
sprouting and M2a macrophages supported anastomoses. The researchers could control
macrophage response by modifying scaffold properties [241]. Another recent study in-
vestigated whether reprogramming macrophages with KGM-modified SiO2 nanoparticles
influences diabetic wound healing. The researchers demonstrated that an M2-like phe-
notype was linked to angiogenesis, enhanced ECM production, and accelerated wound
healing by repressing extensive or persistent inflammation and fibrosis [242]. Targeting an-
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giogenesis in a macrophage-centered treatment approach, therefore, represents a promising
target in tissue engineering.

In conclusion, the differentiation of cells of the monocyte-macrophage lineage into M1
and M2 subpopulations is of major relevance for biomaterial applications in tissue engi-
neering. M1 macrophages are mainly active in the immune system during inflammation.
Excessive or prolonged M1 macrophage activation could result in “tissue injury” and thus
negatively affect the clinical course of a tissue-engineered implant. On the other hand,
M2 macrophages are important for the resolution of inflammation due to their ability to
produce anti-inflammatory cytokines. They are also important cells for homeostasis and
tissue regeneration. Being able to find the optimal balance between these subpopulations
remains a prime challenge in regenerative medicine but holds great promise for the future.

Taking all these findings together, which demonstrate the broad spectrum of macrophage
functions, it becomes clear that these cells should be essentially involved in biomaterial-
and tissue-engineered-based strategies, and their specific role should be taken into account.
Such considerations could open new pathways to modulate the plasticity of macrophages
in various tissue engineering approaches.

Metchnikow described macrophages for the first time. They were supposed to phago-
cytize foreign bodies and bacteria. Now, a hundred years after his death, macrophages
are still in trend with a variety of functions and subpopulations. It is our duty to continue
to examine them so that we can understand and explain different pathological processes
so that we can apply their functions in vitro and in vivo research fields regarding tissue
regeneration and engineering, but also in honor and memory of Metchnikow.
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