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Topological transitions in two-dimensional Floquet superconductors
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We demonstrate the occurrence of a topological phase transition induced by an effective magnetic field in
a two-dimensional electron gas with spin-orbit coupling and in proximity to an s-wave superconductor. The
effective, perpendicular magnetic field is generated by an in plane, off-resonant ac-magnetic field or by circularly
polarized light. The conditions for entering the topological phase do not rely on fine parameter tuning: For
fixed frequency, one requires a minimal amplitude of the effective field which can be evaluated analytically.
In this phase, chiral edge states generally emerge for a system in stripe geometry unless the Rashba and
Dresselhaus coupling have the same magnitude. In this special case, for magnetic field driving the edge states
become Majorana flat bands, due to the presence of a chiral symmetry; the light irradiated system is a trivial
superconductor.
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I. INTRODUCTION

Nowadays pathways to manipulate material properties by a
time-periodic drive are often dubbed as “Floquet engineering”
[1]. This is based on the observation that the time evolution
and steady state of a quantum system under time-periodic
driving can be described in terms of a Floquet Hamiltonian,
whose quasi-eigenenergy spectrum can be entirely different
from the spectrum of the undriven Hamiltonian [2,3]. The
growing interest in this field is fueled by rapid develop-
ments in optical and microwave coherent control techniques,
together with the possibility of engineering novel quantum
materials exhibiting exotic electronic properties. For example,
time- and angle-resolved photoemission spectroscopy [4] has
been used to image the Floquet-Bloch surface states of a topo-
logical insulator, and to demonstrate that the surface Dirac
cone becomes gapped upon irradiation by circularly polarized
light [5]. Vice versa, intense circularly polarized light might
turn a trivial static conductor like graphene into a Haldane’s
Chern insulator supporting chiral edge modes [6].

While Floquet topological insulators are by now largely
understood, the study of Floquet topological superconductors,
in the focus of this work, is still in an early stage. Static topo-
logical superconductors have attracted a great deal of interest
for the realization of Majorana fermions in solid states and
their possible application to topological quantum computation
[7]. Crucially, the target system should have spin nondegen-
erate bands, e.g., due to the combined effects of spin-orbit
coupling (SOC) and of a magnetic field. The possibility of tun-
ing topological superconductivity by light has been discussed
by now in various one-dimensional setups ranging from cold
atom chains to Rashba nanowires [8–13]. Some studies have
addressed the possibility to observe Floquet-Majorana modes
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in finite two-dimensional (2D) systems, like the Kitaev model
on honeycomb lattices [14], a two-band model with s-wave
pairing on a square lattice [15], or a square model with
d-wave pairing for cuprate superconductivity [16]. By ap-
plying off-resonant drive modulating some of the system’s
properties (chemical potential, spin-orbit coupling strength,
etc.), edge modes have been predicted based on numerical
diagonalization of the associated Floquet Hamiltonians. In a
recent work, Plekhanov et al. [17] have posed the question,
whether a Floquet topological phase transition can be entered
also in the more conventional set-up of a two-dimensional
electron gas (2DEG) with spin-orbit coupling being proximity
coupled to an s-wave superconductor. Under resonance con-
ditions between two spin-orbit split bands, an out-of plane
magnetic field, see Fig. 1(a), is predicted to induce helical
edge modes. Despite appealing, a limitation of this proposal is
that the resonant condition can be satisfied only in a restricted
region in k space. Where the resonance is not satisfied, more
and more Floquet subbands participate in the low energy
behavior and the topological gap disappears.

Motivated by the former studies on 2D Floquet su-
perconductors [15–17], we investigate here the impact of
off-resonant time-dependent electromagnetic fields for the
setups in Fig. 1. Although we prevalently focus on the
one in Fig. 1(a), the two-models map onto similar effective
Hamiltonians obtained by using Löwdin partitioning. We
find that a high-frequency in plane ac-magnetic field gen-
erates an out-of plane component of an effective static
magnetic field which can drive the topological phase
transition. Our analytical results are corroborated by di-
agonalization of the full Floquet Hamiltonian for bulk as
well as stripe geometries. The topological phase boundaries
can be calculated analytically, and are well in agree-
ment with numerical predictions for topological invariants
of the bulk system. In turn, the Floquet spectrum of a
finite stripe displays chiral edge modes crossing at the
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FIG. 1. A 2DEG in proximity to a conventional superconductor
can become itself a (synthetic) superconductor. The combined ac-
tion of spin-orbit coupling (SOC) and a time-dependent magnetic
(a) or electric (b) field can drive the system to a topologically
nontrivial phase.

� point, for generic values of the SOC, in the parameter region
of finite Chern number. Remarkably, flat bands are found in
the limit of equal amplitude but different sign of Rahsba and
Dresselhaus SOC. They are enforced by a chiral symmetry
of the driven system [18] present in this special case. For
the laser irradiated setup, the effective out-of-plane magnetic
field vanishes when the Rashba and Dresselhaus SOC have the
same amplitude. In this case there is no topological phase. Fi-
nally, an interesting scaling of the topological phase transition
with system size is observed.

The paper is structured as follows: In Sec. II we con-
struct the Floquet–Bogoliubov de Gennes (BdG) Hamiltonian
matrix for our model, while in Sec. III the high frequency
effective Hamiltonian is derived within Löwdin perturbation
theory [25,26]. In Sec. IV numerical results are presented for
stripe geometries and compared with the expectation of the ef-
fective static model. Finally, conclusions are drawn in Sec. V.
Details of the calculations are presented in Appendices, A, B,
and C.

II. MODEL

With focus on the setup of Fig. 1(a) we consider a contin-
uum Hamiltonian near the � point

H(t ) = H0 + H� + H1(t ), (1)

where the static part describes a 2DEG with Rashba [19,20]
(α) and linear Dresselhaus [21] (β) SOC in proximity to an
s-wave superconductor. Explicitly,

H0 =
∑
σσ ′

∫
d2k ψ

†
kσ

(
h̄2k2

2m∗ −μ−αxkxσy + αykyσx

)
σσ ′

ψkσ ′ ,

H� = − �

2

∑
σσ ′

∫
d2k (ψ†

kσ (iσy)
σσ ′ψ

†
−kσ ′ + h.c.). (2)

Here, ψ
†
kσ (ψkσ ) are creation (annihilation) operators of an

electron with spin component σ along the z direction and
wave vector k; for the SOC constants we define αx := α + β,
αy := α − β, and in real as well as spin space the x-coordinate
axis points along the crystallographic [1, 1̄, 0]-direction while
the y axis lies along [1, 1, 0]; m∗ is the effective mass and
μ the chemical potential. Superconductivity induced in the
2DEG by proximity effects is captured by the mean-field
Hamiltonian H�, where � is the proximity induced super-
conducting gap. For the time-dependent part driving the spin

dynamics in the 2DEG we consider the generic expression

H1(t ) =
∑
σσ ′

∫
d2k ψ

†
kσ

(A(t ) · σ)σσ ′ψkσ ′ . (3)

Here, Ai(t ) = μB(gi/2)Bi(t ), with gi the effective gyromag-
netic ratio along the i direction, the magnetic field amplitude

Bi(t ) = Bic cos(�t ) + Bis sin(�t ), (4)

σ = (σx, σy, σz ) the vector of Pauli matrices. Thus, in full
generality,

A(t ) = q cos(�t ) + r sin(�t ) with q, r ∈ R3. (5)

Due to the periodicity of the external magnetic field, we use
Floquet theory to find the quasienergy spectrum and discuss
topological properties. Explicitly, the time dependent problem
can be recast onto an effective static problem for the Floquet
Hamiltonian

HF (t ) = H(t ) − ih̄∂t , (6)

when working in the composite Sambe space S = T ⊗ H
spanned by time periodic functions and the conventional
Hilbert space H [1,3]. We introduce the matrix elements in
T of H(t ) in terms of the Fourier transform

Hmn = (m|H(t )|n) := 1

T

∫ T

0
dt H(t )ei (m−n)�t . (7)

In turn the Floquet Hamiltonian has matrix elements

(HF )mn := Hmn − nh̄�δmn. (8)

Diagonalization of HF then yields the quasienergy spectrum
of the driven system. Care has to be taken when including
the contribution of the mean-field term H� in Eq. (7). Due
to the presence of two creation or two annihilation operators,
the superconducting term is off-diagonal in Sambe space and
couples Fourier modes n and -n.

Similar to the case of static superconductors, the evaluation
of the quasienergy spectrum is more conveniently performed
introducing the Nambu spinor �

†
k = (ψ†

k↑, ψ
†
k↓, ψ−k↑, ψ−k↓).

Then H(t ) can be expressed in terms of BdG matrices,

H(t ) = 1

2

∫
d2k �

†
k (H0(k) + H� + H1(t ))�k. (9)

The three parts of the BdG Hamiltonian are given by [22]

H0 = (εk − μ)τz ⊗ 12 + αyky12 ⊗ σx − αxkxτz ⊗ σy,

H� = �τy ⊗ σy, (10)

H1(t ) = Az(t )τz ⊗ σz + Ax(t )τz ⊗ σx + Ay(t )12 ⊗ σy,

with εk = h̄2k2/2m∗ and τi Pauli matrices in Nambu space.
Together with Eq. (7), this leads to the Floquet-BdG matrix

(HF )mn := Hmn − nh̄�δmnτz ⊗ 12. (11)

Diagonalization of HF then yields the quasienergy spectrum
of the driven system. Its form is provided in Appendix A.
While for generic driving frequencies a numerical diago-
nalization is required, analytical results can be obtained for
off-resonant driving, the case of interest in this work.
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FIG. 2. Topological phase transition induced by an in plane time-dependent magnetic field. (a), (b) Numerical quasienergy spectrum of
HF in stripe geometry for the two values of chemical potential and Zeeman field shown with red dots in panel (d). We considered Ny = 3600
transverse channels and retained NF = 3 Floquet modes. In the topological phase, panel (b), chiral mode crossing at the � point emerge.
(c) The two chiral edge modes decay exponentially towards the device interior and are localized at opposite edges. Here one of them is shown
for kxa = 0.1. (d) Chern number C2 of the bulk Floquet-BdG Hamiltonian for different values of hZ and μ. It holds C2 = 1 in the nontrivial
region; its boundary, depicted by the red solid line, is given by Eq. (14).

III. HIGH-FREQUENCY LIMIT: LöWDIN PARTITIONING

High-frequency driving is known to be an excellent tool
to dress parameters of the static, unperturbed Hamiltonian,
e.g., hopping elements or on-site energies [23], leading to phe-
nomena like coherent destruction of tunneling or dynamical
localization [3], which can be used to steer a topological phase
transition [24]. In addition, off-resonant drive can generate
terms absent in the static Hamiltonian [16], a crucial effect
in the following. Starting from the Floquet matrix (HF )mn,
we truncate it by retaining only the {m, n = 0,±1} blocks
(of dimension 4 × 4) into account. This gives rise to three
Floquet modes. The truncation is justified when W/h̄� is a
small quantity, with W being the static bandwidth. We then
apply the Löwdin perturbation scheme [25,26], allowing us to
fold the effects of terms including the higher harmonics ±1 in
an effective static model with only the n = 0 block. Explicitly,
see Appendix A 2, Löwdin perturbation up to first order in
W/h̄� results in the effective BdG Hamiltonian

Heff = H0 + H� + �z

h̄�
τz ⊗ σz + �y

h̄�
12 ⊗ σy + �x

h̄�
τz ⊗ σx

(12)

with � = r × q. Notably, the in-plane components of the
magnetic field generate an out-of-plane term in the effec-
tive Hamiltonian. This feature is crucial for the occurrence
of the topological phase transition. Hence, in the following
we choose Bz = 0, such that �x = �y = 0. Introducing the
Zeeman term hZ := �z/h̄�, the effective BdG Hamiltonian
reduces to the appealing form

Heff,Z = (εk − μ)τz ⊗ 12 − αxkxτz ⊗ σy

+ αyky12 ⊗ σx + �τy ⊗ σy + hZτz ⊗ σz. (13)

The spectrum of Heff,Z can be evaluated in closed form. Impor-
tantly, the superconducting term exhibits a p-wave component
in the eigenbasis of the normal conducting (� = 0) system,
see Appendix A. The gap closing condition yields the criti-
cal Zeeman amplitude hZ,c which separates the topologically
trivial from the nontrivial phase. For |α| �= |β| it is

|hZ,c| =
√

�2 + μ2. (14)

This result is remarkably simple, independent of the SOC
strength, and closely resembles the one for some Rashba 1D

[27] and 2D [28] setups. It implies that chiral edge modes
should appear in a finite size system, under appropriate choice
of the system’s parameters.

IV. EDGE MODES IN STRIPE GEOMETRIES

The emergence of such chiral modes is confirmed from
a numerical evaluation of the quasienergy spectrum of the
Floquet-BdG Hamiltonian HF in stripe geometry. Further,
topological invariants for the bulk system were calculated
numerically and also agree with the expectations of the simple
high frequency model. The numerical results can be seen in
Figs. 2–4, and are commented in detail below.

A. |α| �= |β|, chiral edge modes

For generic values of the spin-orbit coupling parameters
α and β chiral modes are expected to emerge in the topolog-
ical phase. This is observed in Figs. 2(a) and 2(b). Further,
Fig. 2(c) demonstrates the exponential decay of the modes
towards the interior of the stripe. The prediction of a topo-
logical boundary given in Appendix A 3 by Eq. (14) [red line
in Fig. 2(d)] agrees with a numerical evaluation of the Chern
numbers Cα [29–31] associated to the four quasienergy bands
εkα , α = 1, 2, 3, 4 of the central Floquet zone of the bulk Flo-
quet Hamiltonian HF (see Appendix B). As seen in Fig. 2(d),
C2 = 0, 1 before and after the gap closing at hZ,c. Because the
phase boundary only depends on the ratio hZ/� and μ/�,
it does not change if these quantities are scaled by the same
factor. For the edge modes to appear though the width of the
system should be appropriately changed, such that the decay
lengths of the modes remains much smaller that the width.
This property can be verified from the figures shown in the
Appendix. Here, the relevant scales are a factor 20 larger; edge
modes appear for correspondingly narrower stripes.

B. |α| = |β|, Majorana flat bands

The above results are quite generic and hold true for off-
resonant driving and |α| �= |β|. Hence they do not require fine
tuning of parameters. In the following we discuss one of the
special symmetry setting supporting persistent spin helices
[32–35], |α| = |β|. Here, a special choice of parameters leads
to Majorana flat bands [36]. This can occur in two situations.
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FIG. 3. Majorana flat bands for the symmetric case with SOC parameters α = −β. (a), (b) Quasienergy spectrum of HF in stripe geometry
with Zeeman amplitude and chemical potential corresponding to the two red dots on the left (a) and right (b) of the topological phase boundary
[solid red line in panel (d)]. (c) The spatial profile of the Majorana modes is shown for kxa = 0.1. (d) The partial Berry-phase sum parity
PB,kx=0 = PB,kx=π/2 is shown as a function of hZ/� and μ/�. The dashed vertical line separates the region with and without flat bands.

In case I the Rashba and Dresselhaus SOC strength have
opposite sign α = −β, which implies αx = 0, and αy = 2α.
Then, Majorana flat bands are found in stripe geometry with
finite width along the y direction. In the case II, α = β, the flat
bands occur for a finite width of the stripe in the x direction.
We demonstrate below that the emergence of flat bands is
strictly related to the presence of an additional chiral sym-
metry of the driven system.

A magnetic field breaks time-reversal symmetry. Hence,
for a generic parameter set, also the effective BdG
Hamiltonian Eq. (13) is only invariant under particle-hole
symmetry, with P = τx ⊗ 12K the associated antiunitary
particle-hole operator and K the operator of complex conju-
gation; it holds P2 = 1. In this case the system belongs in 2D
to the symmetry class D [37], and its topological properties are
well described in terms of Chern numbers, as discussed above.
For the special case, I, α = −β, the effective Hamiltonian
acquires a chiral symmetry with CI = τy ⊗ σz the associ-
ated unitary operator obeying C2

I = 1. As a consequence, the
high frequency BdG Hamiltonian is also invariant under the
time-reversal operation generated by TI = PCI. Notice that
T 2

I = −1. In this case the system belongs to the symmetry
class DIII; it can support flat bands if the associated Z2

invariant becomes nontrivial [7]. Similarly, we find for case
II, α = β, the chiral symmetry CII = τx ⊗ 12. The gap can
now close at finite momenta. Introducing polar coordinates
kx = k cos θ , ky = k sin θ , the closing occur when θ = 0, π/2
for case I, II respectively, and

|hZ,c(k)| =
√

�2 + (μ − a2k2ξ )2
, (15)

FIG. 4. Stability of flat bands. Midgap states and Majorana os-
cillations are still seen by lowering the driving frequency from h̄� =
7.5 ξ in panel (a) to h̄� = 5 ξ in panel (b).

where ξ is the hopping energy and a the lattice constant
in the square lattice tight-binding formulation. In Fig. 3 the
appearance of flat bands hosting Majorana edge modes is
shown for case I and a stripe with finite width along the
y direction. Notice that only the amplitude of the spin-orbit
coupling strength was changed compared to Fig. 2. Also, no
flat bands are found in case II. The situation is reverted if the
stripe has a finite geometry along the x direction, reflecting
the directionality of the effective SOC field. According to
Eq. (15), see Fig. 3(a), situations may happen where flat bands
only exist in certain regions of k space. This mixed regime
occurs in the parameter region between the topological phase
boundary and the vertical red line in Fig. 3(d). We expect the
miniflat bands not to be stable against perturbations. Here, as
Z2 invariant the partial Berry phase numbers proposed in Ref.
[18] were used, see Sec. C 4.

C. Topological signatures beyond off-resonance

The topological phase transition and the associated edge
modes in finite geometries have been obtained for driving en-
ergies h̄� much larger than the bandwidth W of the static 2D
system. In Fig. 4 we show that topological features are clearly
discerned also for h̄� = 7 ξ , where ξ is the hopping energy
in the tight-binding formulation. A series of crossing and
avoided crossing is observed not only for the in gap modes, but
also for the higher energy. Such features are common to other
topological systems and are a signature of the topological
character of the excitations near the avoided crossing, see,
e.g., Refs. [38,39].

V. EXPERIMENTAL FEASIBILITY AND CONCLUSIONS

We have demonstrated the emergence of topologically non-
trivial phases in a theoretical model of a 2DEG subject to
an in plane off-resonant magnetic field. A natural question
is to which extent such phases can be observed in the state
of the art experimental setups. For a 2DEG from ordinary
III-V semiconductors we estimate a hopping ξ 	 1.5 eV,
which implies frequencies in the energy range h̄� = 5 −
15 eV for the plots in Figs. 2–4. Further, with � 	 0.1 meV
and a gyromagnetic ratio g = 50 (e.g., for InSb [41]), one
finds magnetic field amplitudes Bxs 	 Byc ≈ 30 T. These are
rather large and destroy superconductivity, if the latter is in-
duced through proximity to a conventional superconductor
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like Nb having critical fields in the order of 0.8 T. A pos-
sible extension of this work thus points to proximity to 2D
Ising superconductors, like, e.g., NbSe2, which are known to
support large in plane critical fields of more than 30 T [42].
Signatures of triplet superconductivity were recently observed
in trilayer NbSe2 driven by a static in plane magnetic field up
to 33 T [43]. The pairing function discussed there has similar
s- and p-wave components as derived in Appendix A. This
suggests related low-energy physics for seemingly distinct 2D
superconductors. Alternating magnetic fields with amplitudes
of several Tesla are also difficult to achieve in ordinary labo-
ratories. Hence, we would like to comment also on the setup
in Fig. 1(b), with the 2DEG driven by circularly polarized
light with vector potential A(t ) = (A cos(�t ),A sin(�t ), 0).
In this case, the light couples to the 2DEG electrons through a
minimal coupling k → k − k0(t ), with k0(t ) = (e/ch̄)A(t ).
Following Refs. [16,40], in the off-resonant case, Löwdin
perturbation theory leads again to the Hamiltonian Eq. (13),
with the replacement m∗ → m∗/J0(x), αx,y,→ αx,yJ0(x) in
the single particle part and �z → −(αxαy/a2)J2

1 (x). Here,
Jn(x) is a Bessel function of first kind and x = (ea/ch̄)A.
Driving by light has the advantage that, since |J0| � 1, the
hopping ξ 	 1/m∗ gets effectively reduced and hence also
the frequencies � being required. Also for this model chiral
modes are expected for effective magnetic fields hZ larger
than the critical field Eq. (14) and generic SOC parameters.
However, in the symmetric cases α = ±β is either αx = 0 or
αy = 0, leading to a vanishing hZ and thus to trivial supercon-
ductivity.

In summary, in our work we focused on proximitized
semiconducting 2DEGs with strong spin-orbit coupling as
possible systems for the realization of a Floquet topolog-
ical superconductor. However, the large amplitudes of the
magnetic/electric fields and the high frequencies necessary
to induce Floquet topological superconductivity indicate the
need to look for alternative 2D materials. We suggest that 2D
superconductors of the Ising type, like few layers NbSe2, are
an ideal candidate to observe the topological phase transition.
Since off-resonant magnetic fields induce effective static mag-
netic fields, our analysis can be applied also to situations in
which only appropriate static fields are applied.
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APPENDIX A: FLOQUET BDG HAMILTONIAN IN THE
CONTINUUM MODEL

1. BdG Hamiltonian in Sambe space

We explicitly derive the Floquet-BdG matrix associated to
the continuum model Hamiltonian

H(t ) = H0 + H� + H1(t ), (A1)

defined in Eq. (1). Since H(t ) is time periodic, H(t ) = H(t +
T ), with the driving period T = 2π/�, we can apply Floquet

theory [3,44]. The solution to the Schrödinger equation

ih̄∂t |φα (t )〉 = H(t )|φα (t )〉 (A2)

are Floquet states

|φα (t )〉 = e
i
h̄ εαt |uα (t )〉, (A3)

with the quasienergies εα and the Floquet functions |uα (t )〉.
The latter are eigenstates of the Floquet Hamiltonian
HF (t ) := H(t ) − i h̄∂t ,

HF (t )|uα (t )〉 = εα|uα (t )〉. (A4)

Since the Floquet functions have the property of being peri-
odic in T , it is convenient to apply a Fourier expansion

|uα (t )〉 =
∞∑

n=−∞

∣∣un
α

〉
e−in�t . (A5)

Doing the same for H(t ),

Hn = 1

T

∫ T

0
dt H(t )ein�t , (A6)

allows one to rewrite the eigenvalue problem in Eq. (A4) as

∞∑
m=−∞

(Hn−m − nh̄�δnm)︸ ︷︷ ︸
=:(HF )nm

∣∣um
α

〉 = εα

∣∣um
α

〉
. (A7)

Going to Nambu space with

�
†
k = (ψ†

k↑, ψ
†
k↓, ψ−k↑, ψ−k↓), (A8)

the Hamiltonian Eq. (A1) assumes the form

H(t ) = 1

2

∫
d2k �

†
k (H0(k) + H� + H1(t ))�k, (A9)

where HBdG(t ) := H0(k) + H� + H1(t ) is a periodic BdG
Hamiltonian. The static part, see Eq. (10), is given by

H0 + H� =
(

h̄2k2

2m∗ − μ

)
τz ⊗ 12 + αyky12 ⊗ σx

− αxkxτz ⊗ σy + �τy ⊗ σy, (A10)

and the driving term of general (co-) sinusoidal behavior
writes as

H1(t ) =
(

h1(t ) 02×2

02×2 −h∗
1(t )

)
. (A11)

We consider the general form h1(t ) = A(t ) · σ for the time
dependent driving, with

A(t ) = q cos(�t ) + r sin(�t ) (A12)

=
(

q − ir
2

)
ei�t +

(
q + ir

2

)
e−i�t , (A13)

which is periodic in time with a period T = 2π/� and has
parameters rl , ql ∈ R, l ∈ {x, y, z}. The crucial part lies now
in writing down the BdG Hamiltonian in Sambe space. Here,
one should keep in mind that annihilation and creation opera-
tors are adjoints of each other and should be Fourier expanded
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FIG. 5. As expected from a Floquet Hamiltonian, replicas appear
which are separated by the horizontal red dashed lines.

consistently. Thus,

ψkσ (t ) =
∞∑

n=−∞
e−in�tψkσ,n, ψ

†
kσ (t ) =

∞∑
n=−∞

ein�tψ
†
kσ,n,

(A14)

in the Nambu spinor. Including such time dependence has
the consequence that the superconducting term parametrized
by � couples Fourier modes n and −n in the Floquet
equation to be discussed below. The correct antidiago-
nal position of the superconducting gap is crucial for the
quasienergy spectrum to exhibit the usual appearance of
replica, which we will explicitly show for the stripe geom-
etry, Fig. 5. To be more precise, in the Nambu-Sambe basis
(. . . , �†

k,−N , �
†
k,−N+1, . . . , �

†
k,N , . . .) we find the Floquet–

BdG matrix

(HF )mn = Hmn − nδmnh̄�τz ⊗ 12. (A15)

In the following HF is written down in a truncated form with N Floquet modes:

HF =

⎛⎜⎜⎜⎜⎝
H0 + Nh̄�τz ⊗ 12 d 04×4 · · · 04×4

d† H0 + (N − 1)h̄�τz ⊗ 12 d · · · 04×4
. . .

. . .
. . .

04×4 · · · d† H0 − (N − 1)h̄�τz ⊗ 12 d
04×4 · · · 04×4 d† H0 − Nh̄�τz ⊗ 12

⎞⎟⎟⎟⎟⎠

+ �

⎛⎜⎜⎝
s

. . .

s
s

⎞⎟⎟⎠, (A16)

with the matrices

d =
(

h1
1 0

0 −(h1
1

)∗), (A17)

h1
1 = 1

2
(q − ir) · σ (A18)

= 1

2

(
qz − irz qx − irx − iqy − ry

qx − irx + iqy + ry −qz + irz

)
, (A19)

s = τy ⊗ σy =

⎛⎜⎝ 0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞⎟⎠. (A20)

Here, the hn
1 are the Fourier components of h1(t ) =

h1(t + T ) with

h1(t ) = Ax(t )σx + Ay(t )σy + Az(t )σz =
∞∑

n=−∞
e−in�t hn

1.

(A21)

2. Löwdin high-frequency partitioning

For a general number of Floquet modes N , this truncated
Floquet–BdG Hamiltonian can be only treated numerically.
However, in the off-resonant regime, i.e., when the driving
energy h̄� exceeds the band width W , one can derive an
effective BdG Hamiltonian by folding down a higher replica

onto the central mode. The suitable tool to accomplish this
is Löwdin partitioning which is described in great detail in
[25,26]. In short: Assume that a Hamiltonian H can be ex-
pressed as a sum of a Hamiltonian H0 with known eigenvalues
En and eigenfunctions |ψn〉 and H′. The latter Hamiltonian is
treated as a perturbation. Decompose H′ further as a sum of
a block diagonal matrix H1, with subsets A and B, and H2.
Thus, we can write

H = H0 + H′ = H0 + H1 + H2. (A22)

The goal is to approximate the system consisting of block A, B
and their couplings with an effective block A where the effect
of block B has been “folded onto it”. Following [25,26], we
define the indices m, m′, m′′ which correspond to the states in
set A, and the indices l, l ′, l ′′ to the one of set B. The subsets
A and B may have degeneracies but it is crucial that Em �= El .
The matrix elements are defined by

H′
i j := 〈ψi|H′|ψ j〉. (A23)

It can be shown that a non-block-diagonal, anti-Hermitian
matrix S exists which transforms H into a block diagonal
Hamiltonian H̃ = e−SHeS , i.e., matrix S removes the cou-
pling between block A and B. This anti-Hermitian matrix can
be approximated in a successive manner which allows for an
approximation of H̃,

H̃ = H(0) + H(1) + H(2) + H(3) + . . . . (A24)
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The corresponding terms with indices belonging to the block A are given by

H(0)
mm′ = H0

mm′ , (A25)

H(1)
mm′ = H′

mm′ , (A26)

H(2)
mm′ = 1

2

∑
l

H′
mlH′

lm′

[
1

Em − El
+ 1

Em′ − El

]
, (A27)

H(3)
mm′ = −1

2

∑
l,m′′

[ H′
mlH′

lm′′H′
m′′m′

(Em′ − El )(Em′′ − El )
+ H′

mm′′H′
m′′lH′

lm′

(Em − El )(Em′′ − El )

]

+1

2

∑
l,l ′

H′
mlH′

ll ′H′
l ′m′

[
1

(Em − El )(Em − El ′ )
+ 1

(Em′ − El )(Em′ − El ′ )

]
. (A28)

In the following we apply the Löwdin partitioning to the Floquet-BdG matrix (A16). We start by only taking the central, n = 0,
and the n = ±1 Floquet modes into account. Thereby, we fold the n = ±1 Floquet blocks onto the central one. The Löwdin
correction up to first order in W/h̄�, W is the bandwidth, is then given by

H (2)
F = 1

h̄�

([
h−1

1 , h1
1

]
02×2

02×2 −[h−1
1 , h1

1

]∗
)

= qyrx − qxry

h̄�
τz ⊗ σz + qxrz − qzrx

h̄�
12 ⊗ σy + qzry − qyrz

h̄�
τz ⊗ σx. (A29)

The second-order correction is given by

H (3)
F = C01 12 ⊗ σx + C32 τz ⊗ σy + C03 12 ⊗ σz (A30)

with

C01 = − 1

h̄2�2
k ·
(

αx(qxqy + rxry)

αy
(
q2

y + q2
z + r2

y + r2
z

)), (A31)

C32 = 1

h̄2�2
k ·
(

αx
(
q2

x + q2
z + r2

x + r2
z

)
αy(qxqy + rxry)

)
, (A32)

C03 = 1

h̄2�2
k ·
(−αx(qyqz + ryrz )

αy(qxqz + rxrz )

)
. (A33)

The terms with the coefficients C01 and C32 renormalize the parts in H0 which are due to SOC. The new term proportional to
12 ⊗ σz vanishes in case of an in-plane magnetic field. In the following we neglect the second- order correction, leaving us with
the effective 4 × 4 BdG– Floquet Hamiltonian

Heff,Z = H (0)
F + H (2)

F . (A34)

3. Spectrum of the effective Hamiltonian

If the driving consists of an in plane magnetic field only the term proportional to τz ⊗ σz survives in Heff,Z. Then we can
diagonalize the spectrum in an easy way, i.e., without explicitly using Ferrari’s, Descartes’ or Euler’s solution for quartic
functions. Assuming this parameter setting, the effective static Hamiltonian has the following form:

Heff,Z =

⎛⎜⎜⎜⎜⎜⎜⎝

h̄2k2

2m∗ − μ + hZ αyky + iαxkx 0 −�

αyky − iαxkx
h̄2k2

2m∗ − μ − hZ � 0

0 � − h̄2k2

2m∗ + μ − hZ αyky − iαxkx

−� 0 αyky + iαxkx − h̄2k2

2m∗ + μ + hZ

⎞⎟⎟⎟⎟⎟⎟⎠, (A35)

where hZ, which appears due to the effective field, Eq. (A29), is given by

hZ := �z

h̄�
= qyrx − qxry

h̄�
. (A36)

The diagonal 2 × 2 blocks are diagonalized by the matrix

V1(k) =
(

v1(k) 02×2

02×2 v2(k)

)
, (A37)
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where

v1(k) =
(

γ+(k) −γ−(k)e−iϕ(k)

γ−(k)eiϕ(k) γ+(k)

)
, (A38)

v2(k) =
(

γ−(k)eiϕ(k) γ+(k)

γ+(k) −γ−(k)e−iϕ(k)

)
(A39)

with

γ±(k) =

√√√√√1

2

⎛⎝1 ± hZ√
(αxkx )2 + (αyky)2 + h2

Z

⎞⎠, (A40)

and

eiϕ(k) = αyky − iαxkx√
(αyky)2 + (αxkx )2

. (A41)

The Hamiltonian (A35) is rendered as

V †
1 HV1 =

⎛⎜⎝ η+ 0 −�2 �∗
1

0 η− �1 �2

−�2 �∗
1 −η− 0

�1 �2 0 −η+

⎞⎟⎠, (A42)

where now

η±(k) = h̄2k2

2m∗ − μ ±
√

(αxkx )2 + (αyky)2 + h2
Z. (A43)

Explicitly, we find that

�1 = 2�γ+γ−eiϕ, �2 = �(γ 2
+ − γ 2

−), (A44)

and hence the intraband pairing �1 is an odd function in the
wave vector k. In contrast, the interband pairing �2 is an
even function of momentum. The transformed Hamiltonian
Eq. (A42) thus reveals the presence of an effective p-wave
intravalley pairing, a necessary requirement for topological
superconductivity [7]. To fully uncover the topological prop-
erties of the effective Hamiltonian, we now follow Ref. [45]
and apply the transformation

V2 =

⎛⎜⎝ δ+ 0 δ− 0
0 δ− 0 δ+

−δ− 0 δ+ 0
0 −δ+ 0 δ−

⎞⎟⎠ (A45)

with

δ± =

√√√√√1

2

⎛⎝1 ± (η+ + η−)/2√
(η+ + η−)2/4 + �2

2

⎞⎠. (A46)

This transformation results in

V †
2 V †

1 HV1V2 =

⎛⎜⎝ λ+ −�∗
1 0 0

−�1 −λ+ 0 0
0 0 λ− �∗

1
0 0 �1 −λ−

⎞⎟⎠, (A47)

where

λ± = η+ − η−
2

±
√

(η+ + η−)2

4
+ �2

2. (A48)

Finally we can diagonalize the remaining 2 × 2 matrices. The
four eigenvalues are given by

λmn = m
(
h2

Z,c + h2
Z + k̄2(ᾱ2 + β̄2 − 2ξμ + 2ᾱβ̄ cos(2θ ))

+ ξ 2k̄4 + 2n
√
W
) 1

2 (A49)

with m = ±1, n = ±1 and the critical field

|hZ,c| =
√

�2 + μ2. (A50)

We introduced the abbreviation

W := h2
Zh2

Z,c + k̄2μ
(
(ᾱ2 + β̄2μ − 2h2

Zξ + 2ᾱβ̄μ cos(2θ ))

+ k̄4ξ
(
h2

Zξ − 2(ᾱ2 + β̄2)μ − 4ᾱβ̄μ cos(2θ )
)

+ k̄6ξ 2(ᾱ2 + β̄2 + 2ᾱβ̄ cos(2θ )
)
, (A51)

where we used polar coordinates with k̄x = k̄ cos(θ ), k̄y =
k̄ sin(θ ), and defined dimensionless quantities k̄ := ka, ᾱ :=
α/a, β̄ := β/a, with a the lattice constant. Finally, ξ :=
h̄2/(2m∗a2) is the hopping energy.

APPENDIX B: FLOQUET–BDG HAMILTONIAN IN THE
TIGHT-BINDING FORMULATION

1. Tight-binding version of the static Hamiltonian

For many numerical purposes it is convenient to work
with a tight-binding Hamiltonian which reduces to the static
Hamiltonian Eq. (2) in the long wave length limit. Working on
a square lattice with spacing a, the latter quantity is reformu-
lated as

H0 + H� =
∑
mlσ

[
(4ξ − μ)c†

mlσ cmlσ − ξ
(
c†

(m+1)lσ cmlσ + c†
m(l+1)σ cmlσ + H.c.

)]
+
∑
ml

[
− ᾱx

2

(
c†

(m+1)l↑cml↓ − c†
ml↑c(m+1)l↓ + H.c.

)+ i
ᾱy

2

(
c†

m(l+1)↑cml↓ − c†
ml↑cm(l+1)↓ − H.c.

)]

− �

2

∑
ml

(c†
ml↑c†

ml↓ − c†
ml↓c†

ml↑ + H.c.), (B1)

where the operators c†
mlσ , cmlσ create and annihilate, respectively, a particle with spin σ ∈ {↑,↓} at lattice site r = ma ex + la ey.

We have redefined the spin-orbit parameters as ᾱx := αx/a, ᾱy := αy/a.
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Let us now concentrate on an infinite stripe along the
y direction with L transversal lattice sites enumbered by m ∈
{0, . . . , L − 1}. Introducing the operators

c†
mσ (k) =

√
a

2π

∑
l

eikal c†
mlσ (B2)

for each wave number k ∈ [−π/a, π/a] along with the
Nambu spinor

�†
q (k) = (φ†

0 (k), . . . , φ†
L−1(k)), q ∈ {0, . . . , 4L − 1},

(B3)
where

φ†
m(k) = (c†

m↑(k), c†
m↓(k), cm↑(−k), cm↓(−k)), (B4)

the static Hamiltonian can be expressed as

H0 + H� = 1

2

∫ π/a

−π/a
dk

4L−1∑
q,q′=0

�†
q (k)Hqq′ (k)�q′ (k). (B5)

Here the BdG Hamiltonian in stripe geometry reads

Hqq′ (k) =

⎛⎜⎜⎝
a(k) b
b† a(k) b

b† a(k) b
. . .

. . .
. . .

⎞⎟⎟⎠, (B6)

with

a(k)=

⎛⎜⎝ η(k) ᾱy sin(ka) 0 −�

ᾱy sin(ka) η(k) � 0
0 � −η(k) ᾱy sin(ka)

−� 0 ᾱy sin(ka) −η(k)

⎞⎟⎠,

(B7)

η(k) = (4 − 2 cos(ka))ξ − μ, (B8)

and

b =

⎛⎜⎝ −ξ ᾱx/2 0 0
−ᾱx/2 −ξ 0 0

0 0 ξ −ᾱx/2
0 0 ᾱx/2 ξ

⎞⎟⎠. (B9)

Note that the matrix (B6) is real and symmetric.
For a stripe along the x-direction with again L transversal

lattice sites enumbered now by l ∈ {0, . . . , L − 1} one defines
operators

c†
lσ (k) =

√
a

2π

∑
m

eikamc†
mlσ , (B10)

and the entries of the spinor (B3) now read

φ†
m(k) = (c†

l↑(k), c†
l↓(k), cl↑(−k), cl↓(−k)). (B11)

The resulting BdG matrix is again of the form (B6) where now

a(k) =

⎛⎜⎜⎜⎝
η(k) iᾱx sin(ka) 0 −�

−iᾱx sin(ka) η(k) � 0

0 � −η(k) −iᾱx sin(ka)

−� 0 iᾱx sin(ka) −η(k)

⎞⎟⎟⎟⎠, (B12)

b =

⎛⎜⎜⎜⎝
−ξ −iᾱy/2 0 0

−iᾱy/2 −ξ 0 0

0 0 ξ −iᾱy/2

0 0 −iᾱy/2 ξ

⎞⎟⎟⎟⎠. (B13)

2. Tight-binding Floquet–BdG Hamiltonian in Nambu-Sambe space

Again, we consider the same driving as in Eq. (A11). Taking into account 2N + 1 Fourier modes with labels n ∈ {−N,−N +
1, . . . , N} around the central temporal Brillouin zone, the Nambu-Sambe spinor has 4L(2N + 1) components. The Floquet–BdG
Hamiltonian takes the form

HF (k) = Hbtd(k) + H�, (B14)

where the first contribution is block tridiagonal,

Hbtd(k) =

⎛⎜⎜⎜⎜⎝
H (k) + Nh̄�T z D

D+ H (k) + (N − 1)h̄�T z D
. . .

. . .
. . .

D
D+ H (k) − Nh̄�T z

⎞⎟⎟⎟⎟⎠ (B15)

with H (k) being the 4L × 4L BdG matrix (B6), but now without the superconducting coupling so that its diagonal blocks read

a(k)=

⎛⎜⎝ η(k) ᾱy sin(ka) 0 0
ᾱy sin(ka) η(k) 0 0

0 0 −η(k) ᾱy sin(ka)
0 0 ᾱy sin(ka) −η(k)

⎞⎟⎠. (B16)
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The matrix T z is diagonal,

T z =

⎛⎜⎜⎝
τ z ⊗ 12

τ z ⊗ 12
. . .

τ z ⊗ 12

⎞⎟⎟⎠. (B17)

The driving is further implemented in the block-diagonal
matrix

D =

⎛⎜⎜⎝
d

d
. . .

d

⎞⎟⎟⎠, (B18)

with d defined in Eq. (A17). Finally, the superconducting
coupling is included in the contribution

H� =

⎛⎜⎜⎝
S

. . .

S
S

⎞⎟⎟⎠, (B19)

where the 4L × 4L matrix S is given by

S =

⎛⎜⎜⎝
s

s
. . .

s

⎞⎟⎟⎠, (B20)

with s defined in Eq. (A20).
As mentioned in Sec. A 1, the correct anti-diagonal po-

sition of the superconducting gap � in the Floquet space,
connecting the n with the −n Floquet mode, results in a
quasienergy spectrum which shows the usual appearance of
replica. The spectrum of the Floquet Hamiltonian in stripe
geometry is shown in Fig. 5. We show the central Floquet band
and the two Floquet replicas above it.

3. Tight-binding spectra and Chern numbers

To determine from the 2D spectrum whether or not we
can find topologically protected boundary modes in a stripe
geometry, we calculate the Chern numbers Cα for the bulk
system. The latter are determined by integrating over the
Berry curvature Fα (k) [29–31],

Cα = 1

2π

∫
BZ

d2k Fα (k) · ẑ, (B21)

with

Fα (k) =
∑
β �=α

Im

〈
un

kα

∣∣∇kHF

∣∣un
kβ

〉× 〈un
kβ

∣∣∇kHF

∣∣un
kα

〉
(εkα − εkβ )2 . (B22)

The |un
kα〉, α = 1, 2, 3, 4, are the eigenstates of the n-th

Floquet mode of the Floquet–BdG tight-binding Hamiltonian.
In Figs. 6(a) and 6(b) we also show the Chern number of
the second and third Floquet bands (α = 2, 3) within the first
Floquet Brillouin zone (n = 0). We restricted to a smaller
range of chemical potentials compared to Fig. 2. In this way
we notice a small difference between the phase boundary as

FIG. 6. Chern numbers of the second (a) and third (b) band of
the first Floquet Brillouin zone of HF . (c) Energy gap between the
second and third band of the central Floquet mode of HF in units
of ξ . Values are calculated using the tight-binding formulation and
shown for different field strengths hZ and chemical potential μ in
units of the superconducting gap �. The red line indicates |hZ,c|,
Eq. (A50). Parameters used: NF = 5 and the frequency is h̄�/ξ =
20, qx = qz = 0, rz = 1 ξ , α = 0.1 ξa, β = 0.37 ξa.

evinced from the numerically calculated Chern numbers, and
the one obtained from the effective continuum Hamiltonian,
Eq. (A50), given by the solid red line. This difference is due
to the fact that the gap closing condition is slightly shifted
compared to the tight-binding model, as shown in Fig. 6(c).

Finally, we show in Fig. 7 energy gaps for a lower driving
frequency h̄� = 16ξ . In Fig. 7(a) the smallest energy gap
between the bands of the central Floquet mode is shown on a
larger parameter scale with the red line indicating the analyt-
ically found phase boundary. As one can see from Fig. 7(b),
which shows the smallest energy gap between different Flo-
quet replica, for the largest part of the parameter space the
driving frequency is too low to be in the off-resonant regime.
The dashed line indicates the parameters where the modes
from two different replica touch.

APPENDIX C: CHARACTERIZATION OF THE
TOPOLOGICAL PHASE AND EDGE STATES

We are going to discuss different conditions for the Rashba
and Dresselhaus SOC parameters. The ratio between both
controls the appearance of flat bands. From Eq. (A49), we can
extract the field hZ at which the central gap closes. One finds

FIG. 7. Smallest energy gap in units of ξ . (a) Shown is
the gap between the second and third band of the cen-
tral Floquet mode of HF . (b) Smallest energy gap between
different Floquet replica, of HF for different values of field strength
hZ and chemical potential μ. Parameters used: NF = 5 and the
frequency is h̄�/ξ = 16, qx = qz = 0, rz = 1 ξ , α = 0.1 ξa, β =
0.37 ξa.
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FIG. 8. Central gap of the 2D Floquet spectrum in units of ξ

for α = β. The gap closes for hZ =
√

�2 + μ2 at k = 0. However,
there is already a gap closing at finite wave vectors for hZ � �,
see discussion in Sec. C 2. The parameters are α = β = 0.37 ξa,
NF = 3, � = 0.1 ξ , rx = 1 ξ , ry = 0.2 ξ , rz = qx = qy = 0.

the following four conditions:

hZ,mn(k̄) = m

√
ξ 2k̄4 + h2

Z,c + n
√

−2k̄2�2γ − k̄2

2
(4ξμ + γ ),

(C1)

with m = ±1, n = ±1 and

γ := 2(ᾱ2 + β̄2 + 2ᾱβ̄ cos(2θ )). (C2)

We distinguish three cases:

1. |α| �= |β|
A gap closing only happens for k̄ = 0; thus one ends

up with the critical fields hZ,±,n(k̄ = 0) ≡ hZ±(k̄ = 0) :=
±hZ,c = ±

√
�2 + μ2. An example for the |α| �= |β| condi-

tion is shown in Fig. 2. This case can be well understood in
terms of Chern numbers.

As one can see, the gap closing at k̄ = 0 does not depend
on the SOC. However, in the following it will be shown that a
gap also closes at a finite momentum k̄ = √

μ/ξ if |α| = |β|.
The needed critical field in this case is equal or smaller than
hZ,c. Let us first consider the case α = β.

2. α = β

In this case, γ simplifies to γ = 4ᾱ2(1 + cos(2θ )) and a
necessary condition for a gap closing at a finite k̄ is θ = π/2.
In other terms, k̄x = 0 and k̄y = k̄, i.e., a gap closing can be
found along the y direction in k space. Equation (C1) yields
(sign n is redundant since γ = 0)

hZ,±(k̄) = ±hZ,c(k̄) :=
√

�2 + (μ − k̄2ξ )2
. (C3)

Thus, the smallest field at which the gap closes is

|hZ,c(k̄ = μ/ξ )| = � � hZ,c. (C4)

Since we are free to choose k as large as we want in Eq. (C3),
there is no gap reopening if the field is enlarged, as shown
in Fig. 8. This is in contrast to the |α| �= |β| case. The

FIG. 9. Quasienergy spectrum of HF (k) in stripe geometry with
a width of Ny = 200 transverse channels and for SOC parameters
α = β. The three panels show different field strengths. The field
is changed via qy (for fixed frequency h̄� = 20 ξ and NF = 4)
for α = β = 0.1 ξa. [� = 0.1 ξ, μ = 0.1 ξ, rx = 2 ξ, ry =
0.2 ξ, qx = 0, hZ,c/� = √

2]: (a) qy = 1.2 ξ , thus hZ/hZ,c =
0.85, (b) qy = 1.4 ξ , thus hZ/hZ,c = 0.99, (c) qy = 1.6 ξ , thus
hZ/hZ,c = 1.13.

quasienergy spectrum in case of a stripe geometry with con-
finement in the y direction is exemplarily shown in Fig. 9
for various values of the field strength changed via qy. As
expected, for this orientation of the stripe no closing occurs.

3. α = −β

Here, the only difference to the α = β case is the direction
at which the gap closing happens which is θ = 0. As for case
C 2, depending on the stripe direction, one can see either a
gap-closing and reopening if increasing the field hZ or only a
closing without gap reopening. The energy spectrum for such
a case in stripe geometry is shown in Fig. 3 and reported here
also in Fig. 10. In addition, we plot in Fig. 11 the central
energy gap as a function of the longitudinal wave vector and
the field hZ. Figure 11 shows nicely how the separated flat
bands merge to one with increasing hZ.

4. Partial Berry-phase

From the spectrum analysis above and especially Eq. (C3),
the region where we find disconnected flat bands [Figs. 10(a)
and 10(b)] is given by � < hZ < |hZ,c|. This can be under-
stood by counting the band touchings of the two central bands
(for μ = 0 and μ = 0.1 ξ the central gap is plotted in Fig. 11).
From Eq. (C3) this happens at

k̄± =
√

μ

ξ
± 1

ξ

√
h2

Z − �2. (C5)

For hZ � hZ,c, we are left with only one real value, k̄+. Since
the gap at k̄ = 0 is closed for fields hZ larger than � for

FIG. 10. Quasienergy spectrum of HF (k) in stripe geometry
with a width of Ny = 200 transverse channels and for SOC pa-
rameters α = −β. The three panels show different field strengths.
The field is changed via qy (for fixed frequency � = 20 ξ and
NF = 4) for α = −β = 0.1 ξa. [� = 0.1 ξ, μ = 0.1 ξ, rx =
2 ξ, ry = 0.2 ξ, qx = 0, hZ,c/� = √

2]: (a) qy = 1.2 ξ , thus
hZ/hZ,c = 0.85, (b) qy = 1.4 ξ , thus hZ/hZ,c = 0.99, (c) qy = 1.6 ξ ,
thus hZ/hZ,c = 1.13.
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FIG. 11. Central gap, in units of h̄�, plotted for α = −β = 0.1 ξ

with (a) μ = 0 and (b) μ = 0.1 ξ . In (a) the vertical line indicates the
critical field hZ/� = 1 below which one finds a gapped system. In
(b) the second vertical line indicates hZ,c. Other parameters: NF = 2,
� = 0.1 ξ , rx = 1 ξ , ry = 0.2 ξ , rz = qx = qy = 0.

|α| = |β|, one fails to calculate the Chern numbers of the
central two bands. However, examining Fig. 10, one expects
the existence of a topological quantity which distinguishes

the parameter space where we find disconnected flat bands
from the one where we find only one connected flat band as
shown in Fig. 10(c). To connect this change of band touchings
with a change of topology of the spectrum, we follow the
method presented in Refs. [18,46] and calculate the “partial”
topological quantum number called partial Berry-phase sum
parity (PBSP). According to Refs. [18,46] we fix one of the
wave-vector components by kp ∈ {0, π}, p ∈ {x, y} and calcu-
late the PBSP (in the following we choose kx to be fixed)

PB = (−1)mod2π (B+,kx )/π , B+ = Bkx,1 + Bkx,2 (C6)

with

Bkx,n = i
∫ π

−π

dky 〈φn,ky |∂kyφn,ky〉, (C7)

where n is the index of the two negative occupied bands. The
numerical evaluation of Bn, which has to guarantee numeri-
cally gauge invariance, is described in detail in Appendix D of
Ref. [46]. The result for kx = 0, αx = 0 is shown in Fig. 3(d).
For kx = π/a one finds the same result.
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