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In recent years, effective Dirac systems recieved a lot of attention in solid 
state physics. These are systems whose dispersion can effectively be de-
scribed by a Dirac cone, the most prominent examples beeing graphene 
and topological insulators (TIs). These systems exhibit intriguing phenomena 
for example, TIs can host perfectly transmitted modes or, in conjunction 
with superconductors, Majorana zero modes. This thesis deals with super-
conducting heterostructures of both of the aforementioned materials and 
examines transport phenomena as well as the formation of subgap states 
in such systems: In the first chapter, superconducting bilayer graphene with 
a chemisorbed adatom is investigated and the existence of peculiar subgab 
states, so-called Yu-Shiba-Rusinov states, is shown. The second chapter deals 
with T junction devices make out of three-dimensional (3D) TI nanowires.

Together with proximity induced superconductivity in one arm and external 
magnetic fields, this setup allows for the occurence of crossed Andreev re-
flection, including perfect crossed Andreev reflection, and negative nonlocal 
conductances. In the third chapter, Josephson junctions of 3D TI nanowires 
are investigated. The origin of unusual, experimentally observed supercur-
rent oscillations in dependence of a parallel magnetic field is examinated in 
a semiclassical analysis.
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Introduction

Throughtout this thesis, we will investigate two different materials, graphene and
topological insulators (TIs). At first sight, these two are very different: Graphene is a
2D material which consists of a single layer of carbon atoms [1, 2]. TIs on the other
hand, are either 2D quantum wells or 3D materials made from metal compounds
[3], HgCdTe, HgTe, Bi1 – xSbx , Bi2Se3, or Bi2Te3 for example. However, both of them
provide realizations of massless Dirac electrons in solid state systems: In graphene,
electrons near the 𝑲 and 𝑲 ′ points behave like massless Dirac electrons, whereas for
TIs, the surface states can be described with the 2D massless Dirac equation while
the bulk is insulating. Thus, we call both of them effective Dirac systems—“effective”,
because these descriptions are only valid in the low energy limit or for the surface
states, respectively.

Here, we will consider superconducting heterostructures, i.e., hybrid structures of
these effective Dirac systems with superconductors. Superconductors are materials
with zero electrical resistence [4]. An intriguing phenomenon in such systems is the
proximity effect [5]—in contact with a superconductor, usually nonsuperconducting
materials can become superconducting themselves. In the first Chapter, we use this
effect implicitly to introduce superconductivity in bilayer graphene (BLG), i.e., two
layers of graphene stacked on top of each other. In the other Chapters, superconduc-
tivity is induced only in a part of the system leading to heterostructures containing
normal and superconducting parts. Such systems show a lot of interesting phenom-
ena, like Andreev reflection (AR) [6], Josephson currents and Andreev bound states
[5, 7–11], or Yu-Shiba-Rusinov (YSR) states [12–16], as well as topological supercon-
ductivity and Majorana zero modes [17–21], which were discovered more recently
and predicted to enable fault-tolerant quantum computation [19]. This explains why
these heterostructures are intensively investigated theoretically and experimentally.

In the first Chapter, we investigate superconducting bilayer graphene (SBLG),
where an adatom is chemisorbed onto a carbon atom. For the adatom, we use hydro-
gen since this is the most common impurity, although other adatoms like fluorine
should give similar results. Superconducting systems are characterized by a super-
conducting gap, which appears to be, at the same time, the order parameter of the
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phase transition [4]. However, the adatoms form impurities which can lead to the
formation of subgap states, i.e., bound states with energies inside the superconduct-
ing gap. These states are called Yu-Shiba-Rusinov (YSR) states [12–16]. Our goal is
to confirm the existence of YSR states in this system and to calculate their spectrum.
On the one hand, this could motivate an experimental investigation since YSR states
have experimentally been confirmed to exist in graphene grain boundaries [22]. On
the other hand, it has been shown that the existence of YSR states in superconducting
graphene heterostructures influences spin relaxation [23, 24].

In the next Chapters, we switch to heterostructures with nanowires made from
3D TIs and investigate their transport behavior.

Heterostructures involving both, normal and superconducting parts, exhibit a
prominent transport process called “Andreev reflection” (AR). Here, an electron com-
ing in through the normal part is reflected as a hole, and at the same time, a Cooper
pair is formed in the superconductor. The presence of a second normal contact en-
ables another process called “crossed Andreev reflection” (CAR), where the outgoing
hole is located in the other normal contact. This is of particular interest since its
reversed process splits a Cooper pair into two entangled electrons in different con-
tacts [25–27]. In the second Chapter, we propose a T junction device made out of
3D TI nanowires and show that this system allows for the observation of CAR by
numerically simulating its transport properties.

In the third Chapter, we look at Josephson junctions made from 3D TI nanowires.
Since the superconducting TI nanowires are predicted to be topolgical and host Ma-
jorana zero modes [28, 29], these systems should give rise to the fractional Josephson
effect amongst other things [for a recent experiment on this subject, see 30]. Joseph-
son junctions are superconducting heterostructures where a weak link, for example a
normal metal or an insulator, is sandwiched in between two superconductors. Joseph-
son [7] predicted that a supercurrent between the two superconducting contacts is
present despite the nonsuperconducting regions in between, earning him the Nobel
prize in 1973 [31]. While this current is a transport process, it can be explained by
subgap states called Andreev bound states (ABSs) [5, 8–11]; this constitutes a link
between the two phenomena, transport and subgap states, investigated in this thesis.
We aim to analytically calculate the critical current, which is the maximum Joseph-
son current, and investigate its behavior in dependence of a magnetic field parallel
to the nanowire. Recent experiments revealed oscillations of the critical current with
an unexpected periodicity. With our theoretical model, we propose an explanation
for this behavior and, through a semiclassical analysis, reveal the physical origin of
these oscillations.
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Chapter 1.

Yu-Shiba-Rusinov states in
superconducting bilayer graphene

The results in this Chapter have been published by Barth, Fuchs, and Kochan [24].
The analytical calculation of the Yu-Shiba-Rusinov (YSR) states has been performed
by Jacob Fuchs with the assistance of Denis Kochan.

1.1. Introduction

Yu-Shiba-Rusinov states
Between 1965 and 1968, Yu [12], Shiba [13], and Rusinov [14, 15] showed indepen-
dently that a (single) magnetic impurity in an 𝑠-wave superconductor can host bound
states. In honor of their discoverers, these states are nowadays called Yu-Shiba-
Rusinov (YSR) states or just simply Shiba states. For example, Shiba [13] investigated
an 𝑠-wave BCS superconductor with a classical magnetic impurity coupled to the
conduction electrons. The Hamiltonians of the superconductor and the impurity
read 𝐻BCS = ∑𝒌,𝛼 𝜀𝒌𝑐†𝒌,𝛼𝑐𝒌,𝛼 + Δ0∑𝒌 (𝑐†𝒌,+𝑐†−𝒌,− + 𝑐−𝒌,−𝑐𝒌,+) (1.1)

and 𝐻ex = 12𝑁 ∑𝒌,𝒌′,𝛼,𝛽 𝐽 𝑐†𝒌,𝛼(𝝈𝛼,𝛽 ⋅ 𝑺)𝑐𝒌′,𝛽 , (1.2)

respectively; here, 𝐽 describes the interaction strength, 𝑆 = |𝑺| is the impurity spin
and 𝑁 the system size. Shiba considered a classical spin, neglecting all quantum
mechanical effects, by investigating the limit 𝐽 → 0, 𝑆 → ∞ with the constraint

3
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−3 −2 −1 0 1 2 3JS [1/N0]−1.00−0.75−0.50−0.250.000.250.500.751.00
en
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E[Δ 0]

Figure 1.1. Example of Yu-Shiba-Rusinov states. YSR states of a classical spin with a
spherically symmetric exchange as calculated by Shiba [13], see Eq. (1.3).

𝐽 𝑆 = const. Through the Green’s function and 𝑇 matrix [13, 32],1,2 he found subgap
states at energies 𝐸 = ±Δ0 1 − (𝐽 𝑆𝜋𝑁0/2)21 + (𝐽 𝑆𝜋𝑁0/2)2 , (1.3)

where 𝑁0 is the normal-state density of states (DOS) at the Fermi energy. Figure 1.1
shows how the energy of these states depends on the product 𝐽 𝑆 given a constant
normal-state DOS 𝑁0. Note that this energy spectrum shows a zero crossing (𝐸 =0) for some critical value 𝐽𝑐 of 𝐽 ,3 where the nature of the ground states typically
switches between a singlet and doublet state [16].

It took several years until YSR states could be realized experimentally. First exper-
iments focused on magnetic impurities in superconductors [33–35]. Later, YSR states
have been reported in magnetic moments [36] and atomic chains adsorbed onto a
superconductor [37–41], magnetic islands [42, 43], and molecular junctions [44]. In

1A similar approach was used by Rusinov [15]. Yu [12] and Rusinov [14] derived similar results by
Bogoliubov transformation [see also 32].

2In this work, we use a similar method; compare Section 1.4.2.
3We use 𝐽 here, and not 𝐽 𝑆, since the spin 𝑆 is constant in real physical systems.
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1.1. Introduction

the last years, YSR states have gained particular interest in the search for topological
phase transitions [16, 37] and Majorana modes and their applications in quantum
computing [45–48].

Graphene
Graphene [1, 2, 49–53] is a single layer of graphite, i.e., a one atom thick sheet
of carbon atoms arranged in a 2D honeycomb lattice. While the band structure is
known since the 1940s [54], the first experimental realization was reported in 2004
by Novoselov et al. [55]: Following an idea by Andre Geim, they peeled off a layer
from graphite using an adhesive tape and transferred it to a silicon substrate [55, 56].
This marked the starting point of an thriving research on graphene and other 2D
materials [57]. In 2010, Novoselov and Geim have been awarded the Nobel Prize for
their achievement [58–60].

Of special interest are heterostructures of graphene and bilayer graphene (BLG)
[61–65] with other 2D materials [66–69]. These systems offer, for example, high
mobility [70] or large spin diffusion lengths [71] which makes them suitable for spin-
tronics applications. In these heterostructures, the proximity effect can introduce
additional effects in graphene like spin-orbit coupling or magnetic exchange inter-
action [70]. Proximity induced superconductivity is also of special interest [72–75]
and has already been experimentally verified [76–84].

Yu-Shiba-Rusinov states in graphene
YSR states in graphene have first been computed by Lado and Fernández-Rossier
[85]. They investigated graphene on top of a superconductor functionalized by a
hydrogen atom, where electron-electron interactions induce local magnetic moments.
They showed that hydrogenated graphene exhibits subgap states by calculating the
corresponding YSR state spectrum. Kochan et al. [23] studied YSR states using a
method similar to the one employed in this Chapter and also investigated their effect
on the quasiparticle spin relaxation.

YSR states have also been experimentally observed in graphene grain boundaries
by Cortés-del Río et al. [22] using scanning tunneling microscopy and spectroscopy.
Graphene grain boundaries are boundaries between graphene domains with a differ-
ent orientation of the lattice, where under-coordinated carbon atoms exist. Cortés-del
Río et al. deposited lead (Pb) islands on a graphene surface to induce superconduc-
tivity in the graphene layer. Using scanning tunneling spectroscopy, they measured
the local density of states (LDOS) which reveals the induced superconducting gap as
well as the subgap YSR states near the graphene grain boundaries. The experimental
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Chapter 1. Yu-Shiba-Rusinov states in superconducting bilayer graphene

observation of YSR states in this system also provides a proof of the existence of mag-
netic moments in such boundaries since magnetic moments are necessary for the
formation of YSR states [22]. Note that the observation of YSR states in chemically
pure systems is also exceptional.

Outline
In this work, we want to investigate superconducting Bernal-stacked bilayer gra-
phene (SBLG) functionalized by a single hydrogen atom and explore YSR states in
such systems. We use realistic parameters from density functional theory calcula-
tions such that our predictions can be put to the test in experiments.

First, we introduce the theoretical model for bilayer graphene (BLG) and deduce
the Bogoliubov-de Gennes Hamiltonian of SBLG in Section 1.2. We proceed by
calculating the Green’s function of SBLG in Section 1.3. With that, we calculate
the YSR states in Section 1.4. The results are shown and discussed in Section 1.4.5.
Appendices A and B contain some mathematical details.

1.2. Model of superconducting bilayer graphene

First, we need to define the Hamiltonian for SBLG and derive the corresponding
Bogoliubov-de Gennes Hamiltonian. For this, we follow the procedure of Kochan
et al. [23] for single layer graphene and extend it to BLG.

1.2.1. Lattice structure

The top view of the lattice structure of Bernal-stacked (or 𝐴𝐵-stacked) bilayer gra-
phene is shown in Fig. 1.2. Two graphene sheets, denoted by 1 and 2, individually
consist of two triangular sublattices, denoted by 𝐴 and 𝐵. The primitive vectors of
these sublattices are given by𝒂1 = (𝑎, 0) and 𝒂2 = ( 12𝑎, 12√3𝑎) (1.4)

with 𝑎 = 0.246 nm being the lattice constant. The directed distances from an 𝐴 atom
to its three neighbouring 𝐵 atoms are given by𝜹1 = (0, 1√3𝑎), 𝜹2 = (− 12𝑎, − 12√3𝑎), and 𝜹3 = ( 12𝑎, − 12√3𝑎) (1.5)

such that the distance between two neighbouring carbon atoms is 𝑎cc = 𝑎/√3 =0.142 nm. While the second graphene layer has the same lattice structure as the first

6



1.2. Model of superconducting bilayer graphene

A1
B1
A2
B2 �1�2 �3

a1
a2

Figure 1.2. BLG lattice. 𝐴 and 𝐵 depict the two sublattices for the lower (1) and upper
(2) graphene layers. The brown rhombus shows the unit cell, 𝒂1,2 the primitive
vectors, and 𝜹1,2,3 the vectors from an 𝐴 atom to its nearest neighbors.

one, it is shifted by −𝜹1 such that any 𝐵2 atom is above an 𝐴1 atom (compare Fig. 1.2).
Therefore, the positions of all atoms are𝐏𝐴1 = 𝐏 = {𝑛𝒂1 + 𝑚𝒂2}, 𝐏𝐵1 = 𝜹1 + 𝐏 = {𝜹1 + 𝑛𝒂1 + 𝑚𝒂2}, (1.6)𝐏𝐴2 = −𝜹1 + 𝐏, 𝐏𝐵2 = 𝐏 = 𝐏𝐴1 . (1.7)

Note that the reciprocal lattice is also a honeycomb lattice with the primitive
vectors 𝒃1 = ( 2𝜋𝑎 , − 1√3 2𝜋𝑎 ) and 𝒃2 = (0, 2√3 2𝜋𝑎 ). (1.8)

The coordinates of the 𝑲 and 𝑲 ′ points are given by𝑲 = ( 4𝜋3𝑎 , 0) and 𝑲 ′ = −𝑲. (1.9)

1.2.2. Tight binding Hamiltonian of bilayer graphene

Let 𝑋𝑗 (𝑹, 𝜎) be the annihilation operator corresponding to a particle with spin 𝜎 on
the sublattice 𝑋 = 𝐴, 𝐵 of the graphene layer 𝑗 = 1, 2 at the site with the position𝑹 ∈ 𝐏𝑋𝑗 . The number of lattice cells is denoted by 𝑁 . To write the tight binding
Hamiltonian, we use the convention that the summation∑𝑹 ≡ ∑𝑹∈𝐏 (1.10)

7



Chapter 1. Yu-Shiba-Rusinov states in superconducting bilayer graphene

runs over all lattice cells 𝐏 (except when explicitly noted otherwise) and the summa-
tion ∑⟨𝑹,𝑹′+𝜹1⟩ (1.11)

runs over all cells 𝑹, 𝑹′ ∈ 𝐏 such that 𝑹 and 𝑹′ + 𝜹1 are nearest neighbours.
The tight binding Hamiltonian can be divided into four parts,𝐻 = 𝐻0 + 𝐻1 + 𝐻𝜇 + 𝐻Δ, (1.12)

where𝐻0 = − 𝛾0 ∑⟨𝑹,𝑹′+𝜹1⟩,𝜎(𝐴†1 (𝑹, 𝜎)𝐵1(𝑹′ + 𝜹1, 𝜎) + 𝐵†1 (𝑹′ + 𝜹1, 𝜎)𝐴1(𝑹, 𝜎))
− 𝛾0 ∑⟨𝑹−𝜹1,𝑹′⟩,𝜎(𝐴†2 (𝑹 − 𝜹1, 𝜎)𝐵2(𝑹′, 𝜎) + 𝐵†2 (𝑹′, 𝜎)𝐴2(𝑹 − 𝜹1, 𝜎)) (1.13)

describes the two graphene layers within the nearest-neighbour approximation,𝐻1 = 𝛾1∑𝑹,𝜎(𝐴†1 (𝑹, 𝜎)𝐵2(𝑹, 𝜎) + 𝐵†2 (𝑹, 𝜎)𝐴1(𝑹, 𝜎)) (1.14)

captures the interlayer coupling between them,𝐻𝜇 = − 𝜇∑𝑹,𝜎 (𝐴†1 (𝑹, 𝜎)𝐴1(𝑹, 𝜎) + 𝐵†1 (𝑹 + 𝜹1, 𝜎)𝐵1(𝑹 + 𝜹1, 𝜎)+ 𝐴†2 (𝑹 − 𝜹1, 𝜎)𝐴2(𝑹 − 𝜹1, 𝜎) + 𝐵†2 (𝑹, 𝜎)𝐵2(𝑹, 𝜎)) (1.15)

stands for the chemical potential (energy is measured from the Fermi level), and𝐻Δ = Δ∑𝑹 (𝐴†1 (𝑹, −)𝐴†1 (𝑹, +) + 𝐵†1 (𝑹 + 𝜹1, −)𝐵†1 (𝑹 + 𝜹1, +)+ 𝐴†2 (𝑹 − 𝜹1, −)𝐴†2 (𝑹 − 𝜹1, +) + 𝐵†2 (𝑹, −)𝐵†2 (𝑹, +))+ Δ∗∑𝑹 (𝐴1(𝑹, +)𝐴1(𝑹, −) + 𝐵1(𝑹 + 𝜹1, +)𝐵1(𝑹 + 𝜹1, −)+ 𝐴2(𝑹 − 𝜹1, +)𝐴2(𝑹 − 𝜹1, −) + 𝐵2(𝑹, +)𝐵2(𝑹, −)) (1.16)

governs the superconducting 𝑠-wave coupling. This is the McClure-Slonczewski-
Weiss parametrization [24, 86–89], where the “skew” couplings, conveniently labeled
as 𝛾3,4, have been omitted to simplify the model. The atoms 𝐴1 and 𝐵2, coupled via𝛾1, are called dimer sites, whereas the atoms 𝐵1 and 𝐴2, not coupled via 𝛾1, are called
nondimer sites. In this work, the graphene nearest neighbour hopping is taken to
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1.2. Model of superconducting bilayer graphene


1

!


0
0A1 B1

A2 B2 adatom

Figure 1.3. Tight-binding model of BLG with an adatom chemisorbed onto a dimer site.
The BLG lattice is the same as in Fig. 1.2. Some of the hoppings are drawn in bold
and annotated with the corresponding hopping parameters.

be 𝛾0 = 2.6 eV, the interlayer hopping 𝛾1 = 0.339 eV, and the distance between the
graphene layers 𝑐 = 0.335 nm [24]. The tight binding model and its hoppings are
depicted in Fig. 1.3 (note that we already included the adatom from Section 1.4.1
there).

1.2.3. Tight binding Hamiltonian in Bloch basis

Next, one has to express the Hamiltonian within the Bloch basis |𝑋𝑗 , 𝒌, 𝜎⟩ instead of
the real-space tight binding basis |𝑋𝑗 , 𝑹, 𝜎⟩. The corresponding transformation of the
basis states is given by|𝑋𝑗 , 𝒌, 𝜎⟩ = 1√𝑁 ∑𝑹∈𝐏𝑋𝑗 exp(i𝒌 ⋅ 𝑹) |𝑋𝑗 , 𝑹, 𝜎⟩, (1.17)

whereas the transformation of the annihilation operators reads𝑋𝑗 (𝒌, 𝜎) = 1√𝑁 ∑𝑹∈𝐏𝑋𝑗 exp(i𝒌 ⋅ 𝑹) 𝑋𝑗 (𝑹, 𝜎). (1.18)

For any 𝒌 in the first Brillouine zone, one has∑𝑹∈𝐏𝑋𝑗 exp(i𝒌 ⋅ 𝑹) = 𝑁𝛿𝒌,𝟎 for all 𝑋 and 𝑗 (1.19)
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and ∑⟨𝑹,𝑹′+𝜹1⟩ exp(i𝒌 ⋅ 𝑹 − i𝒌′ ⋅ (𝑹′ + 𝜹1))
= ∑⟨𝑹−𝜹1,𝑹′⟩ exp(i𝒌 ⋅ (𝑹 − 𝜹1) − i𝒌′ ⋅ 𝑹′) = 𝑁𝛿𝒌,𝒌′𝑓 (𝒌), (1.20)

where 𝑓 (𝒌) = exp(−i𝒌 ⋅ 𝜹1) + exp(−i𝒌 ⋅ 𝜹2) + exp(−i𝒌 ⋅ 𝜹3) (1.21)

is the nearest-neighbor structural function of the graphene lattice. Thus, the Hamil-
tonian in the Bloch basis is given by

𝐻0 = − 𝛾0∑𝒌,𝜎 𝑓 (𝒌)(𝐴†1 (𝒌, 𝜎)𝐵1(𝒌, 𝜎) + 𝐴†2 (𝒌, 𝜎)𝐵2(𝒌, 𝜎))− 𝛾0∑𝒌,𝜎 𝑓 ∗(𝒌)(𝐵†1 (𝒌, 𝜎)𝐴1(𝒌, 𝜎) + 𝐵†2 (𝒌, 𝜎)𝐴2(𝒌, 𝜎)), (1.22)

𝐻1 = 𝛾1∑𝒌,𝜎 (𝐴†1 (𝒌, 𝜎)𝐵2(𝒌, 𝜎) + 𝐵†2 (𝒌, 𝜎)𝐴1(𝒌, 𝜎)), (1.23)

𝐻𝜇 = − 𝜇∑𝒌,𝜎 (𝐴†1 (𝒌, 𝜎)𝐴1(𝒌, 𝜎) + 𝐵†1 (𝒌, 𝜎)𝐵1(𝒌, 𝜎))− 𝜇∑𝒌,𝜎 (𝐴†2 (𝒌, 𝜎)𝐴2(𝒌, 𝜎) + 𝐵†2 (𝒌, 𝜎)𝐵2(𝒌, 𝜎)), (1.24)

and 𝐻Δ = Δ∑𝒌 (𝐴†1 (−𝒌, −)𝐴†1 (𝒌, +) + 𝐵†1 (−𝒌, −)𝐵†1 (𝒌, +))+ Δ∑𝒌 (𝐴†2 (−𝒌, −)𝐴†2 (𝒌, +) + 𝐵†2 (−𝒌, −)𝐵†2 (𝒌, +))+ Δ∗∑𝒌 (𝐴1(𝒌, +)𝐴1(−𝒌, −) + 𝐵1(𝒌, +)𝐵1(−𝒌, −))+ Δ∗∑𝒌 (𝐴2(𝒌, +)𝐴2(−𝒌, −) + 𝐵2(𝒌, +)𝐵2(−𝒌, −)). (1.25)
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1.2.4. Bogoliubov-de Gennes Hamiltonian

Introducing the Nambu-like field operators𝐶(𝒌) = (𝐴1(𝒌, +), 𝐵1(𝒌, +), 𝐴2(𝒌, +), 𝐵2(𝒌, +),𝐴†1 (−𝒌, −), 𝐵†1 (−𝒌, −), 𝐴†2 (−𝒌, −), 𝐵†2 (−𝒌, −))𝑇 (1.26)𝐶†(𝒌) = (𝐴†1 (𝒌, +), 𝐵†1 (𝒌, +), 𝐴†2 (𝒌, +), 𝐵†2 (𝒌, +),𝐴1(−𝒌, −), 𝐵1(−𝒌, −), 𝐴2(−𝒌, −), 𝐵2(−𝒌, −)) (1.27)

and utilizing the fermionic commutation relations{𝑋†𝑗 (𝒌, 𝜎), 𝑋 ′𝑗 ′(𝒌′, 𝜎′)} = 𝛿𝑋,𝑋 ′𝛿𝑗 ,𝑗 ′𝛿𝒌,𝒌′𝛿𝜎,𝜎′ (1.28)

as well as the relation 𝑓 (−𝒌) = 𝑓 ∗(𝒌), the Hamiltonian given by Eq. (1.12) can be
rearranged to 𝐻 = ∑𝒌 𝐶†(𝒌)(𝒌)𝐶(𝒌) −∑𝒌 4𝜇. (1.29)

In the following, the constant ∑𝒌 4𝜇, solely contributing to the ground state energy,
will be dropped. Here,

(𝒌) = (ℎ(𝒌) −Δ−Δ∗ −ℎ(𝒌)) (1.30)

is the Bogoliubov-de Gennes Hamiltonian of SBLG and

ℎ(𝒌) = ⎛⎜⎜⎜⎜⎝
−𝜇 −𝛾0𝑓 (𝒌) 0 𝛾1−𝛾0𝑓 ∗(𝒌) −𝜇 0 00 0 −𝜇 −𝛾0𝑓 (𝒌)𝛾1 0 −𝛾0𝑓 ∗(𝒌) −𝜇

⎞⎟⎟⎟⎟⎠ (1.31)

the Hamiltonian of normal-phase BLG. Note that the upper left and lower right block
in the last equation,

ℎ′(𝒌) = ( −𝜇 −𝛾0𝑓 (𝒌)−𝛾0𝑓 ∗(𝒌) −𝜇 ) , (1.32)

represent the Hamiltonian of single layer graphene.
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1.3. Green’s function of superconducting bilayer
graphene

1.3.1. Resolvent Green’s function

The resolvent Green’s function is defined as

𝐺0(𝜖, 𝒌) = [𝜖 −(𝒌)]−1 = (𝜖 − ℎ ΔΔ∗ 𝜖 + ℎ)−1 . (1.33)

In what follows, we use 𝜉 = 𝜉(𝜖) = √𝜖2 − |Δ|2, where the branch cut is chosen in
a way such that 𝜉 = i√|Δ|2 − 𝜖2 whenever |𝜖| < |Δ|. Since Δ is proportional to the
identity matrix, we have

(𝜖 − ℎ ΔΔ∗ 𝜖 + ℎ)(𝜖 + ℎ −Δ−Δ∗ 𝜖 − ℎ) = (𝜖 + ℎ −Δ−Δ∗ 𝜖 − ℎ)(𝜖 − ℎ ΔΔ∗ 𝜖 + ℎ)= (𝜖2 − ℎ2 − |Δ|2 00 𝜖2 − ℎ2 − |Δ|2)= (𝜉2 − ℎ2 00 𝜉2 − ℎ2) (1.34)

and therefore

𝐺0(𝜖, 𝒌) = ((𝜖 + ℎ)(𝜉2 − ℎ2)−1 −Δ(𝜉2 − ℎ2)−1−Δ∗(𝜉2 − ℎ2)−1 (𝜖 − ℎ)(𝜉2 − ℎ2)−1)= ((𝜉2 − ℎ2)−1(𝜖 + ℎ) −Δ(𝜉2 − ℎ2)−1−Δ∗(𝜉2 − ℎ2)−1 (𝜉2 − ℎ2)−1(𝜖 − ℎ)) , (1.35)

where (𝜉2 − ℎ2)−1 = (𝜉 ± ℎ)−1(𝜉 ∓ ℎ)−1. Note that𝑔0(𝜉 , 𝒌) = [𝜉 − ℎ(𝒌)]−1 (1.36)

is the resolvent Green’s function of the Hamiltonian ℎ(𝒌) of bilayer graphene.
One can also express the Green’s function 𝐺0(𝜖, 𝒌) totally in terms of 𝑔0(𝜉(𝜖), 𝒌).

Namely, 𝐺0(𝜖, 𝒌) = (𝐴 𝐵𝐶 𝐷) , (1.37)
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where 𝐴 = 12 𝑔+(𝜉) + 𝜖𝜉 𝑔−(𝜉), 𝐵 = − Δ2𝜉 𝑔−(𝜉), (1.38)

𝐶 = −Δ∗2𝜉 𝑔−(𝜉), 𝐷 = −12 𝑔+(𝜉) + 𝜖𝜉 𝑔−(𝜉), (1.39)

and 𝑔±(𝜉) = 𝑔0(𝜉) ± 𝑔0(−𝜉). (1.40)

1.3.2. Resolvent Green’s function of bilayer graphene

Next, the resolvent Green’s function 𝑔0(𝜉 , 𝒌) = [𝜉 − ℎ(𝒌)]−1 of BLG is needed. We
derive it in the same way like Kochan et al. [23]. First, note that 𝜉 − ℎ(𝒌) is a block
matrix,

𝜉 − ℎ(𝒌) = (𝜉 − 𝑔(𝒌) −𝛾1𝑢−𝛾1𝑙 𝜉 − 𝑔(𝒌)) = (𝐴1 𝐵1𝐶1 𝐷1) (1.41)

with 𝑢 = (0 10 0) and 𝑙 = (0 01 0) = 𝑢𝑇 . (1.42)

Therefore, the following identity can be applied:

(𝐴1 𝐵1𝐶1 𝐷1)−1 = (𝐴−11 + 𝐴−11 𝐵1𝑆−11 𝐶1𝐴−11 −𝐴−11 𝐵1𝑆−11−𝑆−11 𝐶1𝐴−11 𝑆−11 ) = (𝐴′1 𝐵′1𝐶′1 𝐷′1) (1.43)

whenever 𝐴1 and its Schur complement 𝑆1 = 𝐷1 − 𝐶1𝐴−11 𝐵1 are invertible. With the
abbreviations 𝛼 = (𝜉 + 𝜇)2 − 𝛾20 |𝑓 |2 and 𝛽 = 𝛼2 − (𝜉 + 𝜇)2𝛾21 , (1.44)

one can write

𝐴−11 = (𝜉 − 𝑔)−1 = 𝛼−1(𝜉 + 𝜇 −𝛾0𝑓−𝛾0𝑓 ∗ 𝜉 + 𝜇) , (1.45)

𝑆1 = 𝛼−1((𝜉 + 𝜇)𝛼 𝛾0𝑓 𝛼𝛾0𝑓 ∗𝛼 (𝜉 + 𝜇)(𝛼 − 𝛾21 )) , (1.46)
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and 𝑆−11 = 𝛽−1((𝜉 + 𝜇)(𝛼 − 𝛾21 ) −𝛾0𝑓 𝛼−𝛾0𝑓 ∗𝛼 (𝜉 + 𝜇)𝛼) . (1.47)

This leads to the following result:

𝑔0(𝜉 , 𝒌) = (𝐴′1 𝐵′1𝐶′1 𝐷′1) (1.48)

with 𝐴′1 = 𝛽−1((𝜉 + 𝜇)𝛼 −𝛾0𝑓 𝛼−𝛾0𝑓 ∗𝛼 (𝜉 + 𝜇)(𝛼 − 𝛾21 )) , (1.49)

𝐵′1 = 𝛾1𝛽−1(−(𝜉 + 𝜇)𝛾0𝑓 ∗ (𝜉 + 𝜇)2𝛾20 (𝑓 ∗)2 −(𝜉 + 𝜇)𝛾0𝑓 ∗) , (1.50)

𝐶′1 = 𝛾1𝛽−1(−(𝜉 + 𝜇)𝛾0𝑓 𝛾20 𝑓 2(𝜉 + 𝜇)2 −(𝜉 + 𝜇)𝛾0𝑓 ) , (1.51)

and 𝐷′1 = 𝛽−1((𝜉 + 𝜇)(𝛼 − 𝛾21 ) −𝛾0𝑓 𝛼−𝛾0𝑓 ∗𝛼 (𝜉 + 𝜇)𝛼) . (1.52)

1.3.3. Green’s function in the real space basis

Transformation to the real space basis

Now, we have obtained the Green’s function operator 𝐺0(𝜖) as𝐺0(𝜖) = ∑𝒌 𝐶†(𝒌)𝐺0(𝜖, 𝒌)𝐶(𝒌) = ∑𝒌 𝐶†(𝒌)[𝜖 −(𝒌)]−1𝐶(𝒌). (1.53)

To express it in the real space basis, one needs to apply the transformation rules

𝐶(𝒌) = 1√𝑁 ∑𝑹 exp(i𝒌 ⋅ 𝑹)𝑀(𝒌) 𝐶(𝑹) (1.54)

and 𝐶†(𝒌) = 1√𝑁 ∑𝑹 exp(−i𝒌 ⋅ 𝑹)𝑀†(𝒌) 𝐶†(𝑹)
= 1√𝑁 ∑𝑹 exp(−i𝒌 ⋅ 𝑹) 𝐶†(𝑹)𝑀†(𝒌) (1.55)
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for the creation and annihilation operators, cf. Eq. (1.18), where

𝑀(𝒌) = (𝑚(𝒌) 00 𝑚(𝒌)) , 𝑚(𝒌) = diag(1, exp(i𝒌 ⋅ 𝜹1), exp(−i𝒌 ⋅ 𝜹1), 1), (1.56)

and 𝐶(𝑹) = (𝐴1(𝑹, +), 𝐵1(𝑹 + 𝜹1, +), 𝐴2(𝑹 − 𝜹1, +), 𝐵2(𝑹, +),𝐴†1 (𝑹, −), 𝐵†1 (𝑹 + 𝜹1, −), 𝐴†2 (𝑹 − 𝜹1, −), 𝐵†2 (𝑹, −))𝑇 . (1.57)

Thus, the Green’s resolvent can be written as𝐺0(𝜖) = ∑𝒌 𝐶†(𝒌)𝐺0(𝜖, 𝒌)𝐶(𝒌) = ∑𝑹,𝑹′ 𝐶†(𝑹)𝐺̃0(𝜖, 𝑹, 𝑹′)𝐶(𝑹′) (1.58)

with 𝐺̃0(𝜖, 𝑹, 𝑹′) = 1𝑁 ∑𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′))𝑀†(𝒌)𝐺0(𝜖, 𝒌)𝑀(𝒌). (1.59)

Note that the blocks 𝐴, 𝐵, 𝐶, and 𝐷 of 𝐺0(𝜖, 𝒌) depend on 𝒌 only via 𝑔0(𝜉 , 𝒌), and
that the matrix 𝑀(𝒌) is block diagonal. Therefore, it is sufficient to calculate𝑔̃0(𝜉 , 𝑹, 𝑹′) = 1𝑁 ∑𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′)) 𝑚†(𝒌) 𝑔0(𝜉(𝜖), 𝒌)𝑚(𝒌). (1.60)

Then, Eqs. (1.37) to (1.40) give the following expression for 𝐺̃0(𝜖, 𝑹, 𝑹′):
𝐺̃0(𝜖, 𝑹, 𝑹′) = (𝐴̃(𝜖, 𝑹, 𝑹′) 𝐵̃(𝜖, 𝑹, 𝑹′)𝐶̃(𝜖, 𝑹, 𝑹′) 𝐷̃(𝜖, 𝑹, 𝑹′)) (1.61)

with 𝐴̃(𝜖, 𝑹, 𝑹′) = 12 𝑔̃+(𝜉 , 𝑹, 𝑹′) + 𝜖𝜉 𝑔̃−(𝜉 , 𝑹, 𝑹′), (1.62)𝐵̃(𝜖, 𝑹, 𝑹′) = − Δ2𝜉 𝑔̃−(𝜉 , 𝑹, 𝑹′), (1.63)

𝐶̃(𝜖, 𝑹, 𝑹′) = −Δ∗2𝜉 𝑔̃−(𝜉 , 𝑹, 𝑹′), (1.64)𝐷̃(𝜖, 𝑹, 𝑹′) = −12 𝑔̃+(𝜉 , 𝑹, 𝑹′) + 𝜖𝜉 𝑔̃−(𝜉 , 𝑹, 𝑹′), (1.65)

and 𝑔̃±(𝜉 , 𝑹, 𝑹′) = 𝑔̃0(𝜉 , 𝑹, 𝑹′) ± 𝑔̃0(−𝜉, 𝑹, 𝑹′). (1.66)
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Calculation of the matrix elements of 𝑔̃0
The calculation of the matrix elements of 𝑔̃0 is rather lengthy. Therefore, only a
sketch for one special case will be shown. The most important results, which are
used in Section 1.4, are given in Eqs. (1.75) to (1.77). Some other results as well
as some mathematical identities, which have been used in this calculations, can be
found in Appendices A and B.

For ease of notation, let 𝑧 = 𝜉 + 𝜇 in the following. For example, Eq. (1.44) now
reads 𝛽 = (𝑧2 − 𝛾20 |𝑓 |2)2 − 𝑧2𝛾21 = [𝑧(𝑧 − 𝛾1) − 𝛾20 |𝑓 |2][𝑧(𝑧 + 𝛾1) − 𝛾20 |𝑓 |2]. (1.67)

The sum over all wavevectors 𝒌 can, for large 𝑁 , be approximated by an integral
over the first Brillouin zone such that, e.g.,

(𝑔̃0(𝜉 , 𝑹, 𝑹′))11 = 1𝑁 ∑𝒌 exp(i𝒌 ⋅ (𝑹 − 𝑹′))(𝑔0(𝜉 , 𝒌))11
≈ 𝑉0(2𝜋)2 ∫1BZ

d2𝒌 exp(i𝒌 ⋅ (𝑹 − 𝑹′))(𝑔0(𝜉 , 𝒌))11= 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(i𝒌 ⋅ (𝑹 − 𝑹′)) 𝑧(𝑧2 − 𝛾20 |𝑓 (𝒌)|2)(𝑧2 − 𝛾20 |𝑓 (𝒌)|2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 (𝒌)|2 + 𝑧𝛾1) , (1.68)

where 𝑉0 = 3√3𝑎2cc/2 ≈ 5.24 × 10−2 nm2 is the volume (area) of the BLG unit cell.
The integral representations of all matrix elements are listed in Appendix A.

The dominant contribution of the integrand comes from the region, where the
denominator is zero or has a minimum. This happens near the 𝑲 and 𝑲 ′ points. So,
one can utilize circular two-valley approximation

∫
1BZ

d2𝒌 𝐹(𝒌) ≈ ∫|𝒒|<𝜅 d2𝒒 𝐹(𝑲 + 𝒒) + ∫|𝒒|<𝜅 d2𝒒 𝐹(−𝑲 + 𝒒) (1.69)

with the momentum cut-off 𝜅 = 2(√3𝜋)1/2/3𝑎cc ≈ 1.10×1010 nm−1 such that the num-
ber of states is preserved [compare, e.g., 90]. In this region, 𝑓 can be approximated
by 𝑓 (±𝑲 + 𝒒) ≈ ∓32𝑎cc|𝒒| exp(±i𝜑𝒒), (1.70)

see Appendix B, where 𝑲 is the position of the 𝑲 point in 𝒌-space and |𝒒| and 𝜑𝒒 are
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1.3. Green’s function of superconducting bilayer graphene

polar coordinates in the vicinity of the 𝑲 or 𝑲 ′ points, respectively. For example,(𝑔̃0(𝜉 , 𝑹, 𝑹′))11 ≈ 𝑉0𝜈2(2𝜋)2 ∫|𝒒|<𝜅 d2𝒒 exp(i(𝑲 + 𝒒) ⋅ (𝑹 − 𝑹′)) 𝑧(𝑧̃20 − |𝒒|2)(𝑧̃2− − |𝒒|2)(𝑧̃2+ − |𝒒|2)+ 𝑉0𝜈2(2𝜋)2 ∫|𝒒|<𝜅 d2𝒒 exp(i(−𝑲 + 𝒒) ⋅ (𝑹 − 𝑹′)) 𝑧(𝑧̃20 − |𝒒|2)(𝑧̃2− − |𝒒|2)(𝑧̃2+ − |𝒒|2) , (1.71)

where 𝜈 = 23𝑎cc𝛾0 , 𝑧̃20 = 𝜈2𝑧2, and 𝑧̃2± = 𝜈2𝑧2± = 𝜈2𝑧(𝑧 ± 𝛾1). (1.72)

In the case 𝑹 = 𝑹′, the integration over the polar angle 𝜑𝒒 contributes to a factor
of 2𝜋 such that, together with the partial fraction decompositions Eqs. (B.2) and (B.3),
we have (𝑔̃0(𝜉 , 𝑹, 𝑹))11 = 𝑉0𝜈2𝑧2𝜋 (∫ 𝜅0 d𝑞 𝑞𝑧̃2− − 𝑞2 + ∫ 𝜅0 d𝑞 𝑞𝑧̃2+ − 𝑞2). (1.73)

The indefinite integral in this equation can be solved analytically:𝐼1(𝑧, 𝑞) = ∫ d𝑞 𝑞𝑧2 − 𝑞2 = −14 ln([Re(𝑧2) − 𝑞2]2 + [Im(𝑧2)]2)+ 12i arctan(Re(𝑧) − 𝑞Im(𝑧) ) + 12i arctan(Re(𝑧) + 𝑞Im(𝑧) ),
(1.74)

see Appendix B. Thus, the diagonal matrix elements of the onsite Green’s function𝑔̃0 are(𝑔̃0(𝜉 , 𝑹, 𝑹))11 = 𝑉0𝜈22𝜋 𝑧[𝐼1(𝑧̃−, 𝜅) − 𝐼1(𝑧̃−, 0) + 𝐼1(𝑧̃+, 𝜅) − 𝐼1(𝑧̃+, 0)] (1.75)

and(𝑔̃0(𝜉 , 𝑹, 𝑹))22 = 𝑉0𝜈22𝜋 {[𝑧 − 𝛾1][𝐼1(𝑧̃−, 𝜅) − 𝐼1(𝑧̃−, 0)] + [𝑧 + 𝛾1][𝐼1(𝑧̃+, 𝜅) − 𝐼1(𝑧̃+, 0)]}
(1.76)

as well as(𝑔̃0(𝜉 , 𝑹, 𝑹))33 = (𝑔̃0(𝜉 , 𝑹, 𝑹))22 and (𝑔̃0(𝜉 , 𝑹, 𝑹))44 = (𝑔̃0(𝜉 , 𝑹, 𝑹))11 (1.77)

because of the symmetry between the two graphene layers.
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1.4. Yu-Shiba-Rusinov states

1.4.1. Model of the full system

The Hamiltonian of the SBLG with the adatom chemisorbed on the upper graphene
layer is given by 𝐻 = 𝐻SBLG + 𝑉AD, (1.78)

where 𝐻SBLG is the Hamiltonian (1.12) of SBLG and 𝑉AD describes the adatom and its
interaction with the upper graphene layer. In the following, 𝑋 = 𝐵 (𝑋 = 𝐴) is used
when the adatom is chemisorbed onto a dimer (nondimer) site, i.e., onto a 𝐵2 (𝐴2)
atom. The position of the adatom is denoted by 𝑹AD.

Since the adatom is assumed to have a permanent magnetic moment, the degrees
of freedom are extended by its spin degrees of freedom denoted by the quantum
number 𝜍. Then, the annihilation and creation operators of the adatom are denoted
by 𝐷(𝜎, 𝜍) and 𝐷†(𝜎, 𝜍). The creation and annihilation operators of the carbon atoms
now read 𝑋𝑖(𝑹, 𝜎, 𝜍) with 𝑋𝑖(𝑹, 𝜎, +) ≡ 𝑋𝑖(𝑹, 𝜎) ≡ 𝑋𝑖(𝑹, 𝜎, −) (the operator 𝑋𝑖(𝑹, 𝜎)
being the operator from the system without any adatom).

The adatom potential 𝑉AD consists of two parts,𝑉AD = 𝑉o + 𝑉s, (1.79)

with 𝑉o and 𝑉s describing orbital and spin effects, respectively. The orbital part,
where we additionally included the superconducting pairing, reads𝑉o = ∑𝜎,𝜍 (𝜀 − 𝜇)𝐷†(𝜎, 𝜍)𝐷(𝜎, 𝜍)

+∑𝜎,𝜍 𝜔(𝐷†(𝜎, 𝜍)𝑋2(𝑹AD, 𝜎, 𝜍) + 𝑋†2 (𝑹AD, 𝜎, 𝜍)𝐷(𝜎, 𝜍))+∑𝜍 (Δ𝐷†(−, 𝜍)𝐷†(+, 𝜍) + Δ∗𝐷(+, 𝜍)𝐷(−, 𝜍)), (1.80)

where 𝜀 describes the onsite potential of the adatom and 𝜔 the coupling between the
adatom and the nearest carbon atom. The spin part reads𝑉s = −𝐽𝒔 ⋅ 𝑺, (1.81)

where 𝒔 is the spin operator of an itinerant electron and 𝑺 the spin operator of
the permanent magnetic moment. The components of the first one are given by
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1.4. Yu-Shiba-Rusinov states

𝑠𝑖 = ∑𝜎,𝜎′,𝜍,𝜍′ 𝐷†(𝜎, 𝜍) (𝜎𝑖)𝜎,𝜎′𝐷(𝜎′, 𝜍′). The parameters of the adatom Hamiltonian,
Eqs. (1.79) to (1.81), are taken for a hydrogen atom from fitting to density functional
theory calculations [91, 92] and read 𝜀 = 0.25 eV, 𝐽 = −0.4 eV, and 𝜔 = 6.5 eV in the
dimer and 𝜀 = 0.35 eV, 𝐽 = −0.4 eV, and 𝜔 = 5.5 eV in the nondimer case.

The full tight binding model including the hoppings is depicted in Fig. 1.3 on Page 9
for the dimer case.

1.4.2. Connection between the Yu-Shiba-Rusinov states and the
Green’s function

The Green’s resolvent of the Hamiltonian (1.78) is given by 𝐺(𝜖) = (𝜖 − 𝐻)−1. It can
be expressed by the Green’s resolvent 𝐺0 of SBLG via𝐺(𝜖) = (𝜖 − 𝐻SBLG − 𝑉AD)−1= {[𝜖 − 𝐻SBLG][1 − (𝜖 − 𝐻SBLG)−1𝑉AD]}−1= (1 − 𝐺0(𝜖)𝑉AD)−1𝐺0(𝜖)= 𝐺0(𝜖) + 𝐺0(𝜖)𝑉AD𝐺0(𝜖) + … , (1.82)

where we used the Neumann series (1−𝑇 )−1 = ∑𝑛 𝑇 𝑛 in the last step to get the Dyson
equation. The energies of the YSR states are eigenenergies of 𝐻 so that the resolvent𝐺(𝜖) = (𝜖 − 𝐻)−1 behaves singularly at these energies. Since we do not expect
them to coincide with the eigenvalues of 𝐺0(𝜖), we find them as the energies, where1−𝐺0(𝜖)𝑉AD has a nontrivial kernel. Since 1−𝐺0(𝜖)𝑉AD is the identity operator in the
kernel of 𝑉AD, no element of the kernel of 𝑉AD can be in the kernel of 1 − 𝐺0(𝜖)𝑉AD.
Thus, it is sufficient to look at the subspace spanned by 𝑋†2 (𝑹AD, 𝜎, 𝜍) and 𝐷†(𝜎, 𝜍).
As this subspace is of finite dimension, one gets the following condition for the
energies: det(1 − 𝐺0(𝜖)𝑉AD) = 0. (1.83)

Note that this condition is equivalent to det(1 − 𝑉AD𝐺0(𝜖)) = 0.
This result is in agreement with the 𝑇 matrix approximation [32]: The 𝑇 matrix is

defined as 𝑇 (𝜖) = 𝑉AD(1 − 𝐺0(𝜖)𝑉AD)−1 such that 𝐺(𝜖) = 𝐺0(𝜖) + 𝐺0(𝜖)𝑇 (𝜖)𝐺0(𝜖); the
energies of the YSR states are given by the poles of the 𝑇 matrix and correspond to
the poles of (1 − 𝐺0(𝜖)𝑉AD)−1 [see also 24].

1.4.3. Downfolding of the adatom potential

To solve Eq. (1.83), we need to either extend the Green’s function calculated in the
previous Section in the space spanned by 𝑋†2 (𝑹AD, 𝜎, 𝜍) and 𝐷†(𝜎, 𝜍), or downfold
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the operator 𝑉AD to the space spanned by 𝑋†2 (𝑹AD, 𝜎, 𝜍). Here, we choose the second
method.

First, let us explain the method of downfolding with a toy model. Assume a system
with two subspaces, where the Hamiltonian is given in the following form:

𝐻 = (𝐻1 𝑉𝑉 † 𝐻2) . (1.84)

Then, the eigenequation reads𝐻1Ψ1 + 𝑉Ψ2 = 𝐸Ψ1 and 𝑉 †Ψ1 + 𝐻2Ψ2 = 𝐸Ψ2. (1.85)

From the second equation, one has Ψ2 = (𝐸 − 𝐻2)−1𝑉 †Ψ1 which can be inserted into
the first equation yielding𝐻1Ψ1 + 𝑉 (𝐸 − 𝐻2)−1𝑉 †Ψ1 = 𝐸Ψ1. (1.86)

This is another eigenvalue-like equation 𝐻 ′ Ψ1 = 𝐸Ψ1 with the “downfolded Hamil-
tonian” 𝐻 ′ = 𝐻1 + 𝑉 (𝐸 − 𝐻2)−1𝑉 †. (1.87)

The second part, 𝑉 (𝐸 − 𝐻2)−1𝑉 †, looks like an additional potential added to the
Hamiltonian 𝐻1 and is known as self-energy.

In our case, 𝐻2 is given by the onsite terms of 𝑉AD,∑𝜎,𝜍 (𝜀−𝜇)𝐷†(𝜎, 𝜍)𝐷(𝜎, 𝜍)+∑𝜍 (Δ𝐷†(−, 𝜍)𝐷†(+, 𝜍) + Δ∗𝐷(+, 𝜍)𝐷(−, 𝜍))−𝐽 𝒔⋅𝑺, (1.88)

and 𝑉 by the hoppings of 𝑉AD between the adatom and the graphene layer,∑𝜎,𝜍 𝜔𝑋†2 (𝑹AD, 𝜎, 𝜍)𝐷(𝜎, 𝜍). (1.89)

Utilizing once more the anticommutation relations (1.28), these can be rewritten into12 ∑𝜎,𝜍 (𝜀 − 𝜇) (𝐷†(𝜎, 𝜍)𝐷(𝜎, 𝜍) − 𝐷(𝜎, 𝜍)𝐷†(𝜎, 𝜍) + 1)
+ 12 ∑𝜍 (Δ𝐷†(−, 𝜍)𝐷†(+, 𝜍) + Δ∗𝐷(+, 𝜍)𝐷(−, 𝜍))
− 12 ∑𝜍 (Δ𝐷†(+, 𝜍)𝐷†(−, 𝜍) + Δ∗𝐷(−, 𝜍)𝐷(+, 𝜍)) − 𝐽 𝒔 ⋅ 𝑺 (1.90)
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(where the constant 2(𝜀 − 𝜇), only contributing to the ground state energy, can be
ignored) and 12 ∑𝜎,𝜍 𝜔(𝑋†2 (𝑹AD, 𝜎, 𝜍)𝐷(𝜎, 𝜍) − 𝐷(𝜎, 𝜍)𝑋†2 (𝑹AD, 𝜎, 𝜍)). (1.91)

1.4.4. Matrix representations

In the two subspaces, the extended Nambu basis can be chosen as𝐶 = (𝑋2(𝑹AD, +, +), 𝑋2(𝑹AD, −, +), 𝑋2(𝑹AD, +, −), 𝑋2(𝑹AD, −, −),𝑋†2 (𝑹AD, +, +), 𝑋†2 (𝑹AD, −, +), 𝑋†2 (𝑹AD, +, −), 𝑋†2 (𝑹AD, −, −)) (1.92)

and 𝐶′ = (𝐷(+, +), 𝐷(−, +), 𝐷(+, −), 𝐷(−, −),𝐷†(+, +), 𝐷†(−, +), 𝐷†(+, −), 𝐷†(−, −)). (1.93)

Let 2, , … be the matrix representations of the Bogoliubov-de Gennes Hamiltoni-
ans of 𝐻2, 𝑉 , … in this Nambu space. Using 𝜁 = 𝜀 − 𝜇, they read

2 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜁 − 𝐽 0 0 0 0 −Δ 0 00 𝜁 + 𝐽 −2𝐽 0 Δ 0 0 00 −2𝐽 𝜁 + 𝐽 0 0 0 0 −Δ0 0 0 𝜁 − 𝐽 0 0 Δ 00 Δ∗ 0 0 −𝜁 + 𝐽 0 0 0−Δ∗ 0 0 0 0 −𝜁 − 𝐽 2𝐽 00 0 0 Δ∗ 0 2𝐽 −𝜁 − 𝐽 00 0 −Δ∗ 0 0 0 0 −𝜁 + 𝐽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.94)

and

 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜔 0 0 0 0 0 0 00 𝜔 0 0 0 0 0 00 0 𝜔 0 0 0 0 00 0 0 𝜔 0 0 0 00 0 0 0 −𝜔 0 0 00 0 0 0 0 −𝜔 0 00 0 0 0 0 0 −𝜔 00 0 0 0 0 0 0 −𝜔

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.95)
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Furthermore, the Nambu-space representation 0(𝜖) of 𝐺0(𝜖) reads

0 =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

′11 0 0 0 0 ′12 0 00 ′11 0 0 −′12 0 0 00 0 ′11 0 0 0 0 ′120 0 0 ′11 0 0 −′12 00 −′21 0 0 ′22 0 0 0
′21 0 0 0 0 ′22 0 00 0 0 −′21 0 0 ′22 00 0 ′21 0 0 0 0 ′22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.96)

where

′ = ((𝐺̃0(𝜖, 𝑹, 𝑹′))44 (𝐺̃0(𝜖, 𝑹, 𝑹′))48(𝐺̃0(𝜖, 𝑹, 𝑹′))84 (𝐺̃0(𝜖, 𝑹, 𝑹′))88) (1.97)

in the dimer (𝑋 = 𝐵) and

′ = ((𝐺̃0(𝜖, 𝑹, 𝑹′))33 (𝐺̃0(𝜖, 𝑹, 𝑹′))37(𝐺̃0(𝜖, 𝑹, 𝑹′))73 (𝐺̃0(𝜖, 𝑹, 𝑹′))77) (1.98)

in the nondimer (𝑋 = 𝐴) case; see Eq. (1.61) for the definition of 𝐺̃0(𝜖, 𝑹, 𝑹′).
1.4.5. Results

The condition (1.83) for the YSR state spectrum cannot be solved analytically. There-
fore, the energies of the YSR states are calculated numerically using the NumPy [93,
94] and SciPy [95, 96] libraries. However, it turned out that it is numerically more
stable to determine the rootsdet((𝐸 −2)−1†) det(1 − 0(𝐸 −2)−1†) = 0. (1.99)

Note that the matrix representations (1.94) to (1.96) from the previous Section and
the “downfolded Hamiltonian” (1.87) have been used.

In Fig. 1.4, the spectrum of the YSR states in SBLG is shown for a chemisorbed
hydrogen adatom. Let us first focus on the upper panel withΔ = 50meV and compare
our results with numerical results of M. Barth [24]. The latter ones are obtained by
diagonalizing a rectangular flake with hard-wall boundary conditions using GNU
Octave [97, for details, see 24]. One can see that the analytical and numerical results
match very well. The remaining tiny difference can be attributed to the following
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Figure 1.4. YSR state spectrum of hydrogenated SBLG. The pairing gap is chosen asΔ = 50meV in the upper panel and Δ = 1meV in the lower panel. In the upper
panel, the results obtained from Eq. (1.99) (dots) are compared to the numerical
results from M. Barth [24] (lines), whereas for the more realistic value of Δ = 1meV
in the lower panel, there are no numerical results because the computational effort
is much higher in this case.
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reasons: first, the numerics include finite size effects since the sample size cannot
be arbitrarily large; and second, the numerical diagonalization has a finite accuracy
(here, a tolerance of 10−5 was used [24]).

Now, consider the more realistic case Δ = 1meV displayed in the lower panel of
Fig. 1.4.4 We obtain a pair of YSR states in each, dimer and nondimer, case. Note
that the difference between the dimer and nondimer case does not only stem from
the different values of the parameters 𝜀, 𝐽 , and 𝜔 (see Section 1.4.1, Page 19) but also
the different expressions for the diagonal elements of the Green’s function (compare,
e.g., Section 1.3, Eqs. (1.75) to (1.77)). The YSR “spectra” look similar to the results
for a classical spin (see Fig. 1.1) and also agree with the findings of Kochan et al. for
hydrogenated single layer graphene [23]. Similar to the two parity switching points
with 𝐸(𝐽𝑐𝑆) = 0, we also obtain two points with 𝐸(𝜇𝑐) = 0 with 𝜇𝑐 ≈ −102meV and𝜇𝑐 ≈ 67meV in the dimer case and 𝜇𝑐 ≈ −102meV and 𝜇𝑐 ≈ 87meV in the nondimer
case. However, the YSR states do not peak at ±Δ in the nondimer case (this also
occurs for Δ0 = 50meV in both, dimer and nondimer, cases). This happens because
we investigate the 𝜇-dependence of the YSR states instead of the 𝐽 -dependence.

Let us now investigate the 𝐽 -depencence of the YSR states by treating 𝐽 as a free
variable5. The results are shown in Fig. 1.5 for different values of the chemical poten-
tial 𝜇. We again observe the characteristic YSR state behaviour: There exists a pair of
YSR states which behaves qualitatively like the results of Shiba [13]—especially, there
are two parity switching points 𝐽𝑐 (where 𝐸(𝐽𝑐) = 0) and there are no subgap sates for𝐽 = 0 (i.e., 𝐸(𝐽 = 0) = ±Δ). Previously, Lado and Fernández-Rossier [85] reported an
unconventional linear dependence of the energy on the exchange coupling 𝐽 around𝐽 = 0 in hydrogenated superconducting single layer graphene. However, our results
in Fig. 1.5 for SBLG clearly display a conventional quadratic behaviour like in Fig. 1.1.
There are several possible explanations for this difference: The different number of
graphene layers, the different models for the adatom or a different choice of parame-
ters. Applying our model to single layer graphene would lead to very similar results
as in Sections 1.4.1 to 1.4.4, the major difference being different Green’s function
elements in Eq. (1.96), directly related to 𝑔̃0(𝜉 , 𝑹, 𝑹′). Moreover, we think that it is
unlikely that a different choice of the parameters (namely, the superconducting cou-
pling Δ, the adatom onsite potential 𝜖, and the coupling 𝜔 between the adatom and
the carbon atom) can affect the qualitative behaviour of the YSR states when sticking

4Note that there are no numerical results for Δ = 1meV because the computational effort is too high.
5In experiment, it is hard to change the exchange coupling 𝐽 while it is much more feasible to tune

the chemical potential 𝜇 via gating.

24



1.4. Yu-Shiba-Rusinov states

−1.0
0.0
1.0

en
er

gy
[meV] � = 150meVdimer non-dimer

−1.0
0.0
1.0

en
er

gy
[meV] � = −50meV

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
exchange coupling J [eV]−1.0

0.0
1.0

en
er

gy
[meV] � = −150meV

Figure 1.5. Dependence of the YSR states in hydrogenated SBLG on the exchange cou-
pling 𝐽 . For all values of the chemical potentials 𝜇, the pairing gap is set to Δ = 1meV.
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to realistic magnitudes. On the other hand, instead of including an additional atom
in the tight-binding Hamiltonian (compare Eqs. (1.12), (1.78) and (1.79)), Lado and
Fernández-Rossier add an infinite onsite energy on the functionalized carbon atom.
We think that this infinity is the reason for the nonanalytic behaviour of their spec-
tral function and, thus, also the reason for the unconventional behaviour of the YSR
states they observed.6

Outlook
We have shown that YSR states exist in SLBG and show the characteristic dependence
on 𝜇 and 𝐽 . This motivates experimental investigation of these systems. Additionally,
YSR states in graphene systems with adatoms have been reported to modify the spin
relaxation rates [23, 24]: Normally, the spin relaxation decreases when increasing
the temperature in the presence of magnetic impurities but increases in the presence
of spin-orbit coupling (all in the superconducting phase); the first phenomenon is
known as Hebel-Slichter effect [98–100]. However, resonant YSR states lead to a
breakdown of this effect in both, single [23] and bilayer [24] graphene.

6Note that a change in the model can, quite generally, have a massive impact on the physical properties
of a system.
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Chapter 2.

Crossed Andreev reflection in
topological insulator nanowire

T junctions

The results of this chapter have been published by Fuchs et al. [101]. The 2D surface
model has been developed by Jacob Fuchs, who also did the numerical calculations
based upon it; the results obtained with the 3D BHZ model have been obtained by
Michael Barth.

2.1. Introduction

Crossed Andreev reflection
Superconductor (S) hybrid structures show many interesting physical effects [4]
and there is still thriving research in this field since the first observation of super-
conductivity in 1911 by Kamerlingh Onnes [4, 102]. One particularly interesting
phenomenon in NS junctions—a junction between a normal conductor (N) and a
superconductor—is the Andreev reflection [6, 103]: Here, an electron incoming from
the N contact with an energy inside the superconducting band gap is reflected as a
hole, whereas simultaneously a Cooper pair is formed in the S. In an NSN junction,
where a S is sandwiched in between two N contacts, there exist more possible scat-
tering processes, all of them beeing depicted in Fig. 2.1. Of particular interest is the
so-called crossed Andreev reflection (CAR), where the outgoing hole is located in
the second N contact such that the created Cooper pair is formed from two electrons
from different, spatially separated N contacts. Its reciprocal process, Cooper pair
“splitting”, where two entangled electrons in separated leads are generated, is of in-
terest as a possible source of entangled electrons [26, 27]. Cooper pair splitters have
already been investigated both theoretically [25, 104, 105] and experimentally [26, 27,
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N NS

electron

R

AR

T

CAR

electron hole

Figure 2.1. Possible scattering processes in an NSN junction. Reflection (R): An electron
(red) is reflected as an electron. Transmission (T): An electron is transmitted as an
electron. Andreev reflection (AR): An electron is reflected as a hole (blue). Crossed
Andreev reflection (CAR): An electron is transmitted as a hole.

106]. Also, CAR has been reported in experiments [107] and theoretically predicted
to exist, e.g., in the 1D Kitaev chain [108] or in graphene [109–111]. Although CAR is
in most cases dominated by electron transmission (T), where the incoming electron
leaves the junction through the other N contact as an electron, perfect CAR has been
reported in bilayer graphene [112], Dirac semimetals in the quantum Hall regime
[113], or 2D antiferromagnets [114], for example. However, these findings depend
strongly on geometrical properties or on local doping.

Topological insulators and 3D TI nanowires
Topological insulators (TIs) are interesting materials exhibiting a gapped, insulating
bulk, but gapless surface states capable of transporting charge [3]. This leads to a lot
of novel transport phenomena: 2D TIs host 1D helical edge modes [115], whereas 3D
TIs possess 2D surface states which mediate the transport robust to disorder [116].
In contact with 𝑠-wave superconductors, they show topological superconductivity
and can host Majorana zero modes [3, 117]. In this work, we focus on nanowires
made from 3D TIs. Such nanowires have been investigated in several experiments
[e.g. 118–138].

Crossed Andreev reflection in topological insulators
Due to the many diverse transport phenomena happening in TIs, we are interested in
the question, whether CAR can also be realized in this class of materials. Indeed, CAR
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has already been discussed previously. For example, it has been used as study tool
for topological phase transitions and Majorana zero modes [139–141]. Furthermore,
it has been predicted that CAR should occur in systems with magnetic ordering [142,
143], in double TI Josephson junctions [144], in 2D TIs where the two edges are
coupled [145, 146], in the presence of odd-frequency triplet superconductivity [147,
148], or in bipolar setups [149–151].

Outline

In this Chapter, we propose and investigate the T junction device depicted in Fig. 2.5,
an experimentally realizable setup exhibiting CAR. On the one hand, our proposed
system shows perfect CAR in a large parameter range (meaning that no T and no
reflections occur, which is quite remarkable), but also shows (imperfect) CAR in an
even larger range. These findings are robust to disorder due to topological protections
and are even controllable by an external magnetic field—meaning that one can switch
between CAR and T by tuning the magnetic field.

We want to start our exploration by reviewing the basics of 3D TI nanowires
that are necessary to understand the rest of this Chapter as well as the contents
of Chapter 3. Afterwards, we describe the 3D TI nanowire NS junction from Juan,
Ilan, and Bardarson [152] our proposed T junction device is built upon in Section 2.3.
Then, we discuss the working principle of our proposed setup in Section 2.4 and
elaborate on the theoretical model in Section 2.5. The numerical results are presented
in Section 2.6. In Appendix C, we give some technical details about our numerical
implementation.

2.2. Introduction to 3D TI nanowires

Nanowires made from 3D TIs have already been extensively investigated in literature
both theoretically [e.g. 116, 133, 152–160] and experimentally [e.g. 118–138]. In
this Section, we want to give a brief overview of their basic properties which are
necessary to understand the rest of this Chapter. There exist good introductions by
Kozlovsky [161] and, especially, Bardarson and Ilan [154] who also cover the contents
of Section 2.3.
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Chapter 2. Crossed Andreev reflection in TI nanowire T junctions

2.2.1. 3D TI nanowires with parallel magnetic field

The topological surface states of a cylindrical nanowire are commonly described by
the Dirac Hamiltonian [116, 133, 154, 156, 161],

𝐻 = ℏ𝑣𝐹[𝑘̂𝑥𝜎𝑥 + (𝑘̂𝑠 + 2𝜋𝑃 𝜙𝜙0)𝜎𝑦] − 𝜇. (2.1)

Here, 𝑣𝐹 is the Fermi velocity, 𝑥 and 𝑠 are the coordinates along the wire and around
the circumference, 𝑘̂𝑥 and 𝑘̂𝑠 the cooresponding wave number operators, 𝑃 denotes
the perimeter of the cross section, 𝜙 the flux of the magnetic field parallel to the wire,𝜙0 = ℎ/𝑒 is the magnetic flux quantum, and 𝜇 the chemical potential. However, there
is a Berry phase of 𝜋 around the circumference [116, 155, 156, 162, 163]—therefore,
the wave function satisfies antiperiodic boundary conditions, 𝜓(𝑠) = −𝜓(𝑠 +𝑃) [for a
detailed derivation of the Hamiltonian (2.1) and the boundary condition, see 156, 161,
164]. Due to the antiperiodic boundary conditions, the azimuthal wave number is
quantized as 𝑘𝑠 = 2𝜋(𝑙 + 1/2)/𝑃 with 𝑙 ∈ 𝐙. For a given wave number 𝑘𝑥 and a given
angular momentum quantum number 𝑙, there are two eigenmodes with energies

𝐸 = ±ℏ𝑣𝐹√𝑘2𝑥 + 4𝜋2𝑃2 (𝑙 + 12 + 𝜙𝜙0)2 − 𝜇. (2.2)

Notice that, for 𝜇 = 0, the spectrum (2.2) is gapped whenever 1/2 + 𝜙/𝜙0 ∉𝐙, see Fig. 2.2. For 1/2 + 𝜙/𝜙0 ∈ 𝐙 on the other hand, there exists a mode with
linear dispersion. This mode garanties that the conductance does not drop below
one conductance quantum 𝑒2/ℎ in the presence of disorder [116, 154, 159] and is,
therefore, called “perfectly transmitted mode”.

Before we continue, we have to comment on the geometry. To get Eq. (2.1), a
circular cross section has been taken. In experiments however, the cross section is
often rectangular or trapezoidal [see, e.g., 118, 133]. Then, one can either still use
Hamiltonian (2.1) together with the according perimeter 𝑃 or use a Hamiltonian
which respects the correct surface orientations but needs more intricate matching
conditions at the edges [compare 165]. While the first approach is much better suited
for analytical insights, we need to use the latter one for our T junction device, see
Section 2.5. Thus, we only consider nanowires with rectangular cross sections from
now on.
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Figure 2.2. Spectra of the 3D TI nanowires. (a) Spectra for three different values of the
magnetic flux 𝜙 through the wire cross section, where 𝜙0 = ℎ/𝑒 is the magnetic flux
quantum; the chemical potential 𝜇 is set to 𝜇 = 0 for these spectra. For 𝜙 = 𝜙0/2,
the gap is closed and a linear mode exists. (b) Phase diagram of the 3D TI nanowires.
White regions are topologically trivial with Majorana number𝑀 = +1, green regions
are topologically nontrivial with 𝑀 = −1; the Majorana number 𝑀 is given as 𝑀 =(−1)𝜈, where 𝜈 is the number of Fermi points. The numbers in the regions indicate
the number of Fermi points 𝜈. (c) Spectrum of a 3D TI nanowire with a perpendicular
magnetic field; parameters and model are the same as for Fig. 2.4. Landau levels
are marked green and propagating (counterpropagating) edge states of one side blue
(red).
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2.2.2. 3D TI nanowires in a perpendicular magnetic field

Let us now switch to the case when there is a magnetic field perpendicular to the
wire axis, say, in vertical direction. When the field is strong enough, a quantum Hall
transition happens: Landau levels form on the top and bottom surfaces and chiral
edge states form on the side surfaces [158, 163, 165–167]. “Strong enough” means
that the magnetic length 𝑙𝐵 = √ℏ/𝑒𝐵, which characterizes the spatial elongation
of the Landau level, is smaller than the wire width. In the spectrum, Landau levels
manifest as flat bands (marked with green in Fig. 2.2(c)), whereas the bent bands at
their edges correspond to the propagating states on the side surfaces (marked with
red and blue in Fig. 2.2(c)). Note that for our geometry some bands show dips near
the edge of the Landau levels such that two additional side surface states appear
before the Fermi level crosses the next Landau level. In this case, one of these modes
propagates in the opposite direction (this one is marked with red in Fig. 2.2(c)). Thus,
the difference between the number 𝑁+ of propagating modes and the number 𝑁− of
counterpropagating modes equals 𝑁+ − 𝑁− = 2𝑛 + 1 [166], where 𝑛 is the number of
filled Landau levels.

2.2.3. Superconducting 3D TI nanowires

When in contact to a superconductor, a 3D TI nanowire can become superconducting
itself which is known as the proximity effect. Cook and Franz [28] investigated a
nanowire proximitized by an 𝑠-wave superconductor and showed that it exhibits
topological superconductivity for suitable values of the chemical potential 𝜇 and the
axial magnetic flux 𝜙. This can be explained using the Majorana number 𝑀 . As
shown by Kitaev [19], the Majorana number simplifies to 𝑀 = (−1)𝜈 in the limit
of small superconducting coupling Δ, where 𝜈 is the number of Fermi points in
the positive half of the Brillouin zone. Whenever one has 𝑀 = +1, the system is
topologically trivial, whereas it is topologically nontrivial for 𝑀 = −1. For the 3D
TI nanowire, the nontrivial regions are colored green in phase diagram Fig. 2.2(b).
Note that for 1/2+ 𝜙/𝜙0 ∈ 𝐙, the number of Fermi points is always odd ensuring the
nontrivial topology for any value of the chemical potential 𝜇. Thus, the (proximitized)
nanowire represents a topological superconductor in this case. As 1D topological
superconductors are predicted to have two boundary Majorana states at each end
[19], these nanowires are promising candidates for realizing Majorana zero modes
(which can also be tuned using the axial magnetic field). Note that the existence of
Majorana modes in exactly these systems has been verified both analytically [28]
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and numerically [28, 29].
Let us now discuss how the Hamiltonian of the superconducting nanowire looks

like. The Bogoliubov-de Gennes Hamiltonian of the system reads

𝐻BdG = ( 𝐻(𝜙) Δ0 exp(2𝜋i𝑛𝑣𝑠/𝑃)Δ0 exp(−2𝜋i𝑛𝑣𝑠/𝑃) −𝐻(−𝜙) ) (2.3)

with 𝐻 from Eq. (2.1) [152, 154, 157, 164]. Here, we have allowed for the existence of
vortices along the nanowire axis by including the phase 2𝑛𝑣𝑠/𝑃 in the superconduct-
ing pair potential; 𝑛𝑣 describes the number of vortices. When the magnetic flux is 0
(𝜙0/2; 𝜙0; etc.), it is expected to have 𝑛𝑣 = 0 (1; 2; etc.) vortices pinned, the pinning
of the new vortices happening somewhere in between (e.g. 𝑛𝑣 = floor(2𝜙/𝜙0 + 1/2)
whith the floor function floor(𝑥) = max{𝑛 ∈ 𝐙|𝑛 ≤ 𝑥}). This is crucial to maintain the
superconducting gap, otherwise the magnetic field closes the gap [this is extensively
discussed in 29, 164, see also 152, 154].1

2.3. 3D TI nanowire NS junction

Before presenting the T junction, we have to introduce its most important building
block, the 3D TI nanowire NS junction shown in Fig. 2.3. This system has been
investigated by Juan, Ilan, and Bardarson [152, 154].

In a particle-hole symmetric system, the eigenvalues of the reflection matrix are
either twofold degenerate or equal to 0 or 1 [a selfcontained derivation is given in
169]. This is known as Béri degeneracy for it was discovered by Béri [170]. When
there is only one conducting mode present in the N part, the reflection coefficient
can only take the values 0 or 1. Thus, the NS conductance 𝐺NS is either 0 or 2𝑒2/ℎ.
It now happens that the conductance is 0 in the topologically trivial regime and2𝑒2/ℎ in the topologically nontrivial regime [152, 169]. This can be clearly seen
in the NS conductances shown in Fig. 2.4. Note that, in a clean system without
perpendicular magnetic field, the conductance shows plateaus at even (odd) integer
multiples of 2𝑒2/ℎ in the topologically trivial (nontrivial) case when more than one
mode is present [21, 169]. In the presence of disorder, the plateaus of the single-mode
regime remain [152, 169] since the Béri degeneracy still applies.

1The phase 2𝑛𝑣𝑠/𝑃 of the pair potential is similar to the one of the Hamiltonian (3.1) in Chapter 3
so that its derivation in Appendix D is also applicable to the system in this Chapter. However, we
have to restrict to integer 𝑛𝑣 since the superconducting pair potential Δ(𝑠) = Δ0 exp(2i𝑛𝑣𝑠/𝑃) has
to be periodic in 𝑠: Δ(𝑠 + 𝑃) = Δ(𝑠).
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Figure 2.3. Scheme of the 3D TI nanowire NS junction from Juan, Ilan, and Bardarson
[152]. One half of the 3D TI nanowire is in the normal state (N; drawn in gray)
and the other half is superconducting (S) through the proximity effect (drawn in
green). The parallel magnetic field 𝑩𝑥 is present in the whole junction, whereas the
perpendicular magnetic field 𝑩𝑧 is only present in the N part and does not extend
into the S part.
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Figure 2.4. Conductance of the 3D TI nanowire NS junction from Fig. 2.3 without (a)
and with (b) a perpendicular magnetic field in the N part. Calculations are based
on the model from Juan, Ilan, and Bardarson [152] and were performed using the
Kwant code [168]. The following parameters have been used: ℏ𝑣𝐹 = 330meVnm,Δ0 = 0.25meV, 𝑤 = 160 nm, and ℎ = 70 nm.
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Figure 2.5. Scheme of the T junction. The setup consists of three TI nanowires, where
the third one (lead 3) is proximitized by an 𝑠-wave superconductor. The magnetic field𝑩𝑧 is perpendicular to the junction and induces chiral edge states in the TI nanowires.
Thus, electrons entering the junction from lead 1 have to leave the junction through
lead 2 either as electron or hole. These processes are the electron transmission (T)
and crossed Andreev reflection (CAR), respectively. The magnetic field 𝑩𝑥 parallel
to the third lead allows to control which of these processes occurs.

The single-mode regime is the most interesting for our purpose: 𝐺NS = 0 in the
trivial regime (𝜙 = 0) indicates T, whereas 𝐺NS = 2𝑒2/ℎ in the nontrivial regime
(𝜙 = 𝜙0/2) indicates AR. This means that one can switch between T and AR by
tuning the magnetic field. When there is no perpendicular magnetic field (𝐵𝑧 = 0),
the range of the single-model regime is relatively small: the chemical potential 𝜇
has to be tuned into a range determined by ℏ𝑣𝐹4𝜋/𝑃 . However, we can enlarge
this regime considerably by adding a perpendicular magnetic field in the N part
(𝐵𝑧 ≠ 0) to drive it into the quantum Hall regime: In this case, the parameter range
for the chemical potential 𝜇 is determined by the position of the first Landau levelℏ𝑣𝐹√2𝑒|𝐵𝑧 |/ℏ = ℏ𝑣𝐹√2/𝑙𝐵𝑧 .
2.4. T junction

In the NS junction from the previous Section, the incoming electron and the outgoing
hole are already spatially separated into the two chiral edge states (for 𝜙 = 𝜙0/2). We
take advantage of this by splitting these chiral modes into different leads converting
AR into CAR. Figure 2.5 shows the T junction device proposed by us, where this can
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Chapter 2. Crossed Andreev reflection in TI nanowire T junctions

be achieved.

Let us take a look at the transport process depicted in Fig. 2.5 to illustrate the
working principle of the T junction device: First, note that the magnetic field 𝑩𝑧 is
perpendicular to all three leads such that all of them are in the quantum Hall regime;
this is crucial for our purposes. (In the superconducting part, the perpendicular
magnetic field is screened, as above.) Thus, an electron entering the junction through
lead 1 through the chiral front surface channel cannot go to the top and bottom
surfaces because they are insulating due to the quantum Hall effect. Therefore, it
enters the side surface of lead 3, where it eventually bumps into the NS interface.
There, it is Andreev reflected (normally reflected) when the magnetic field 𝑩𝑥 parallel
to the third lead induces a magnetic flux 𝜙 = 𝜙0/2 (𝜙 = 0) through the cross section.
The outgoing hole (electron) on the other chiral channel enters the front surface
channel of lead 2 for the same reasons mentioned before leaving the junction through
lead 2. In total, the electron from lead 1 leaves the junction through lead 2 as hole
(electron) such that we have CAR (T).

It is important to notice that the T junction behaves differently depending on the
magnitude of the magnetic field 𝑩𝑥 . This means that one can switch between CAR
and T by tuning 𝑩𝑥 .

Note that the parallel field 𝑩𝑥 should not be too strong, otherwise Landau levels
develop on the front and back surfaces of leads 1 and 3, too. This restriction is,
however, easily met since the width of the nanowires is typically much larger than
the height in experimental realizations [see, e.g., 133]; we tried to show this in Fig. 3.2.

2.5. Methods

The Hamiltonian Eq. (2.1) cannot be applied to the T junction since there are two wires
with different axis orientations. Thus, we use an approach similar to the one of Brey
and Fertig [165], where each surface is described by a different Hamiltonian and the
wave functions are matched at the edges, see Section 2.5.1. From this Hamiltonian,
we derive a tight-binding model via the finite difference method as described in
Appendix C. Afterwards, the S matrix is calculated using the Kwant code [168, see
also 171–173] from which we extract the transmission coefficients as well as the local
and nonlocal conductances 𝐺11 and 𝐺21, see Section 2.5.2.
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2.5.1. Model

Before we identify the Hamiltonian of the system, let us have a look at the geometry.
As depicted in Fig. 2.5, there is one wire oriented in the 𝑦 direction and another
one oriented in the −𝑥 direction. The latter one forms the T arm and becomes
superconducting for 𝑥 < 0. Width and height of the first wire are denoted by 𝑤 andℎ, the width of the second wire is denoted by 𝑙. The superconducting part is 𝑑𝑁 away
from the first wire and, when implementing the system, leads 1 and 2 are put 𝑑1 and𝑑2 away from the T arm, although the explicit choice of these distances does not
matter.

A surface with the normal 𝒏̂ (which is a unit vector) is described by the Hamiltonian𝐻𝒏̂ = ℏ𝑣𝐹 (𝝈 × 𝒌̂) ⋅ 𝒏̂ − 𝜇, (2.4)

where 𝝈 is the vector of Pauli matrices and 𝒌̂ the vector of wave number operators
[156, 165]. For Bi2Se3, we use ℏ𝑣𝐹 = 410meVnm [174], whereas ℏ𝑣𝐹 = 330meVnm
for HgTe [133]. Note that we neglect any anisotropy and doping effects by using the
same value for ℏ𝑣𝐹 for any surface and by omitting any scalar potential. Written out,
one has 𝐻±𝒙̂ = ±ℏ𝑣𝐹 (−𝑘̂𝑦𝜎𝑧 + 𝑘̂𝑧𝜎𝑦), (2.5)𝐻±𝒚̂ = ±ℏ𝑣𝐹 (𝑘̂𝑥𝜎𝑧 − 𝑘̂𝑧𝜎𝑥), (2.6)

and 𝐻±𝒛̂ = ±ℏ𝑣𝐹 (−𝑘̂𝑥𝜎𝑦 + 𝑘̂𝑦𝜎𝑥). (2.7)

For implementing the wire Hamiltonians, it is best to express the wave number
operators as one parallel to the wire, 𝑘̂∥, and one going counterclockwise around
the perimeter, 𝑘̂⟂, analogously to Eq. (2.1). The resulting Hamiltonians are listed in
Table 2.1.

At an edge connecting the 𝒏̂1 surface with the 𝒏̂2 surface, the wave functions satisfy𝜓𝒏̂1 = 𝑈𝒏̂1𝒏̂2𝜓𝒏̂2 with 𝑈𝒏̂1𝒏̂2 = exp(−i𝜽 ⋅ 𝝈/2) beeing the appropriate spin rotation and𝜽 denoting the product of the rotation angle and axis. These matching conditions
fit the one of Brey and Fertig [165] for the isometric parameters 𝐴1 = 𝐴2 = ℏ𝑣𝐹 and𝐷1 = 𝐷2 = 0. For example, consider the edge between the 𝒛̂ and 𝒙̂ surfaces: The
wave function 𝜓𝒙̂ on the 𝒙̂ surface is related to the wave function 𝜓𝒛̂ by a rotation of𝜋/2 around the 𝑦 axis:𝜓𝒙̂ = 𝑈𝒙̂𝒛̂𝜓𝒛̂ , where 𝑈𝒙̂𝒛̂ = exp(−i𝜋4 𝜎𝑦) = 1√2(1 − i𝜎𝑦). (2.8)
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Table 2.1. Surface Hamiltonians for wires in different directions. For simplicity, ℏ𝑣𝐹 = 1
in this table.

wire direction
surface 𝒙̂ 𝒚̂ 𝒛̂−𝒚̂ −𝑘̂∥𝜎𝑧 + 𝑘̂⟂𝜎𝑥 𝑘̂∥𝜎𝑥 + 𝑘̂⟂𝜎𝑧𝒙̂ −𝑘̂∥𝜎𝑧 + 𝑘̂⟂𝜎𝑦 𝑘̂∥𝜎𝑦 + 𝑘̂⟂𝜎𝑧𝒛̂ −𝑘̂∥𝜎𝑦 + 𝑘̂⟂𝜎𝑥 𝑘̂∥𝜎𝑥 + 𝑘̂⟂𝜎𝑦𝒚̂ 𝑘̂∥𝜎𝑧 + 𝑘̂⟂𝜎𝑥 −𝑘̂∥𝜎𝑥 + 𝑘̂⟂𝜎𝑧−𝒙̂ 𝑘̂∥𝜎𝑧 + 𝑘̂⟂𝜎𝑦 −𝑘̂∥𝜎𝑦 + 𝑘̂⟂𝜎𝑧−𝒛̂ 𝑘̂∥𝜎𝑦 + 𝑘̂⟂𝜎𝑥 −𝑘̂∥𝜎𝑥 + 𝑘̂⟂𝜎𝑦

Indeed, the Hamiltonian satisfies𝑈𝒙̂𝒛̂𝐻𝒛̂(𝑘𝑥 = 𝑘−𝑧 , 𝑘𝑦 = 𝑘𝑦)𝑈 †̂𝒙𝒛̂ = 𝐻𝒙̂(𝑘𝑥 , 𝑘𝑦). (2.9)

Note that the antiperiodic boundary conditions belonging to Hamiltonian (2.1) do
not apply here anymore: it is “split” into the matching conditions at the four edges
since exp(−i𝜋4 𝒏̂ ⋅ 𝝈)4 = exp(−i𝜋𝒏̂ ⋅ 𝝈) = cos(𝜋) + i(𝒏̂ ⋅ 𝝈) sin(𝜋) = −1. (2.10)

In the superconducting half, the perpendicular magnetic field vanishes, 𝑩 = 𝐵𝑥 𝒆̂𝑥+𝐵𝑧Θ(𝑥)𝒆̂𝑧 . The vector potential 𝑨 is chosen as

𝑨 = 𝑨𝑥 + 𝑨𝑧 = 12𝐵𝑥(−𝑧𝒆̂𝑦 + 𝑦𝒆̂𝑧) − 𝐵𝑧𝑥Θ(𝑥)𝒆̂𝑦 . (2.11)

Note that it is important to keep 𝑨𝑧 constant for 𝑥 < 0 and contiuous at 𝑥 = 0, the
most practical choice for the implementation beeing 𝑨𝑧(𝑥 < 0) = 0.

Superconductivity is modelled with the Bogoliubov-de Gennes Hamiltonian (2.3).

2.5.2. Local and nonlocal conductances

In a multiterminal setup, the conductance can be calculated from the transmission
coefficients 𝑇 R/AR𝑎𝑎 and 𝑇 T/CAR𝑏𝑎 , 𝑏 ≠ 𝑎, and the number of channels 𝑁𝑎 of lead 𝑎 in the
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way described by Lambert and Raimondi [175]. The local conductance 𝐺𝑎𝑎 relates
the current in lead 𝑎 flowing into the junction to the voltage applied at the same lead𝑎 and reads 𝐺𝑎𝑎 = 𝜕𝐼𝑎𝜕𝑉𝑎 ||||𝑉𝑎=0 = 𝑒2ℎ (𝑁𝑎 + 𝑇AR𝑎𝑎 − 𝑇 R𝑎𝑎); (2.12)

the nonlocal conductance 𝐺𝑏𝑎, 𝑏 ≠ 𝑎, on the other hand, relates the current in lead 𝑏
flowing out of the junction to the voltage applied at the (differing) lead 𝑎 and reads

𝐺𝑏𝑎 = − 𝜕𝐼𝑏𝜕𝑉𝑎 ||||𝑉𝑎=0 = 𝑒2ℎ (𝑇 T𝑏𝑎 − 𝑇CAR𝑏𝑎 ). (2.13)

Note that the sign of the nonlocal conductance 𝐺𝑏𝑎 indicates the direction of current
flow in lead 𝑏. Therefore, it provides a direct measure for the behaviour of the T
junction: A positive nonlocal conductance (e.g. 𝐺21 > 0) indicates that T (from lead 1
to lead 2) dominates over CAR, whereas a negative nonlocal conductance (𝐺21 < 0)
signals dominating CAR.

2.6. Results

Results for a Bi2Se3 nanowire
Let us first examine the results for Bi2Se3. To compare with the numerical results
obtained with the more realistic 3D BHZ model, we use rather small wire dimensions
(3D calculations with larger dimensions are numerically too demanding): width and
height are chosen as 𝑤 = 𝑙 = 50 nm and ℎ = 10 nm. While these dimensions are
still experimentally feasible [see 135, for example], they impose the need for large
magnetic field to ensure that the wires are in the quantum Hall regime: Here, we use
a perpendicular magnetic field of 𝐵𝑧 = 20 T, which ensures that the N part is in the
quantum Hall state as 𝑙𝐵𝑧 = √ℏ/𝑒𝐵 ≈ 5.7 nm ≪ 𝑤, 𝑙. This order of magnitude does
not impose big problems for theoretical simulations, but is unrealistic to be achieved
in experiments. Furthermore, we use ℏ𝑣𝐹 = 410meVnm [174] and Δ = 0.25meV [as
in 152]. The sign of 𝐵𝑧 is fixed in such a way that it fits the situation from Section 2.4
and Fig. 2.5, where CAR is possible for an electron coming from lead 1. Thus, we
exclusively look at the situation, where a small bias voltage is applied at lead 1.
The results for the transmission coefficients 𝑇 T/CAR21 and 𝑇 R/AR11 are shown in Fig. 2.6,
whereas the results for the nonlocal conductances 𝐺21 are shown in Fig. 2.7.
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Figure 2.6. Transmission coefficients in a Bi2Se3 T junction. Subfigures (a) and (c) show
the results obtained with the 2D surface model from Section 2.5, subfigures (b) and
(d) the results of Michael Barth from the 3D BHZ model [101]. We used the following
parameters: 𝑤 = 50 nm, ℎ = 10 nm, Δ = 0.25meV, and 𝐵𝑧 = 20T, together withℏ𝑣𝐹 = 410meVnm in the 2D surface model calculations. For 𝜙 = 𝜙0/2, a vortex is
present in the superconductor.
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Figure 2.7. Nonlocal conductance in a Bi2Se3 T junction. The results are obtained (a)
with the 2D surface model from Section 2.5 and (b) with the 3D BHZ model by
Michael Barth [101]. The parameters are the same as in Fig. 2.6. In the regions with
negative nonlocal conductance, CAR dominates over T.
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Results for a Bi2Se3 nanowire without parallel magnetic field

Let us begin by scrutinizing the case without any parallel magnetic field, 𝐵𝑥 = 0.
The corresponding results from the 2D surface model are shown in Fig. 2.6(a) and
Fig. 2.7(a). In the single-mode regime 𝜇 ≲ 78meV, there is perfect T and no CAR as
expected. When counterpropagating modes exist for 78meV ≲ 𝜇 ≲ 102meV, reflec-
tion processes (R and AR) become possible. However, as soon as the second Landau
level is crossed at 𝜇 ≈ 102meV, these reflection processes are no longer possible as
there are no counterpropagating modes anymore. Positive nonlocal conductance 𝐺21
indicates that T dominates over CAR.

Results for a Bi2Se3 nanowire with parallel magnetic field

Now, we continue with the situation, where a parallel magnetic field is present: We
use 𝐵𝑥 = 4.14 T such that 𝜙 = 𝜙0/2 and also include a vortex in the S lead, 𝑛𝑣 = 1,
see Section 2.2.3. Here, the single-mode regime shows perfect CAR as predicted in
Section 2.4. When the counterpropagating modes are present for larger values of
the chemical potential 𝜇, reflection processes are possible just as in the previous
case. However, CAR still persists in this case and for all larger values of 𝜇 except
that it is not the dominating transport process anymore. This can also be seen in
the nonlocal conductance: 𝐺21 is negative in the single-mode regime but becomes
postive afterwards.

Comparison with the results from the 3D BHZ model

Next, we want to compare the results of the 2D surface model from Section 3.3.1, see
Fig. 2.6(a, c) and Fig. 2.7(a), with the results of Michael Barth obtained with the 3D
BHZ model [101, see also 174, 176] shown in Fig. 2.6(b, d) and Fig. 2.7(b). As one can
see, the results from both models agree qualitatively very well; however, there are
two quantitative differences we want to comment on: First, a slightly larger parallel
magnetic field of 𝐵𝑥 = 4.6 T was used for the 3D simulations. This is due to the fact
that the surface modes are not located directly on the outermost layer of sites but
extend into the bulk which effectively reduces the cross section area [see appendix B
of 101]. Second, the chemical potentials 𝜇 are shifted with respect to each other in
the two simulations. The origin of this is that the 3D BHZ model contains an offset,
i.e., a constant potential [101, 165]. Furthermore, the numerical results show a peak
in the number of modes 𝑁1 of lead 1 at 𝜇 ≈ 135meV. This is a numerical issue—the
Landau levels are not perfectly flat in this case (note that this also happens for the
2D surface model below, see Fig. 2.8).
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Figure 2.8. (a) Transmission coefficients and (b) nonlocal conductance in a HgTe T junc-
tion. The parameters match the experimental values for HgTe nanowires from
Ziegler et al. [133]: ℏ𝑣𝐹 = 330meVnm, 𝑤 = 160 nm, ℎ = 70 nm, Δ = 0.25meV, and𝐵𝑧 = 1T. For 𝜙 = 𝜙0/2, a vortex is present in the superconductor.
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Results for HgTe nanowire
While the results above exhibit the CAR, they have one major drawback: The large
magnitude of the perpendicular magnetic field 𝐵𝑧 poses a challenge for experimental
realization. This can be overcome by increasing the width of the wires since, then, a
smaller magnetic length 𝑙𝐵𝑧 and, thus, a smaller magnetic field 𝐵𝑧 is needed to drive
the wires into the quantum Hall state. Experimentally realized HgTe nanowires are
actually much wider than the dimensions from the previous section: The wires from
Ziegler et al. [133] show widths from 150 nm to 500 nm. To demonstrate this, we
simulate the T junction with these parameters by setting 𝑤 = 𝑙 = 160 nm, ℎ = 70 nm,ℏ𝑣𝐹 = 330meVnm, and Δ = 0.25meV. For the perpendicular magnetic field, we use𝐵𝑧 = 1T which is enough to guarantee the quantum Hall state (𝑙𝐵𝑧 = √ℏ/𝑒𝐵𝑧 ≈26 nm ≪ 𝑤; compare also the band structure of such a wire in Fig. 2.2(c)). The results
are displayed in Fig. 2.8. As one can see, they show qualitative agreement with the
previous ones, especially for the occurrence of T and CAR in the single-mode regime
(where topological protection due to the Béri degeneracy holds).

Outlook
Last but not least, we want to shortly discuss some more results from Fuchs et al.
[101] which have only been verified by 3D calculations of Michael Barth.

First, it is also possible that one can observe CAR and a negative nonlocal conduc-
tance over a large range of chemical potentials 𝜇 when the system is not yet in the
quantum Hall state such that smaller magnitudes of 𝐵𝑧 also suffice. This is promising
since it reduces the experimentally challenging requirement for large magnetic fields
further.

Second, topological protection should guarantee perfect CAR in the single-mode
regime in the presence of impurities and defects. This is due to the Béri degeneracy
and has already been shown for the NS junction [152]. 3D simulations of Michael
Barth including disorder also confirm this statement: They showed the single-mode
regime to be robust against disorder and CAR to persist even outside the single-mode
regime [for a more detailed discussion, we refer the reader to 101, section IV.C.].
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Chapter 3.

Topological insulator nanowire
Josephson junctions

3.1. Introduction

3D TI nanowire Josephson junctions
In this Chapter, we investigate Josephson junctions [7] made out of the 3D TI nano-
wires from Chapter 2. These systems are of particular interest since the existence
of (tunable) Majorana zero modes [28, 29] is predicted to give rise to a 4𝜋-periodic
Josephson current [19]. Missing Shapiro steps have already been observed in experi-
ments [30, 177] indicating the Josephson current to have a 4𝜋-periodic component.
On the other hand, the geometrical setup itself is interesting and unusual: Since
transport in TIs is mediated by the surface modes, these systems resemble a Joseph-
son junction of a cylinder hosting modes with nonzero angular momentum looping
around the circumference.

Here however, we focus on the critical current and its dependence on an axial
magnetic field, since this is currently investigated experimentally at the University
of Regensburg. In these experiments, nanowires with trapezoidal cross sections were
obtained from a HgTe film by chemical etching. After etching away the appropriate
parts of the capping layer, deploying Niobium (Nb) on top creates superconducting
fingers on top of the wire. Figure 3.1 (a, b) shows the experimental setup of such
systems, in this case for a similar experiment investigating the Shapiro spectrum
[30]. Mainly two different behaviours have been observed: In some samples, the
critical current declines with increasing field, whereas in other samples it oscillates
with a Fraunhofer-like pattern peaking at 𝜙 = 0, ℎ/4𝑒, ℎ/2𝑒, etc., see Fig. 3.1 (c).
The second case is highly unususal since only a perpendicular field should give rise
to a Fraunhofer pattern and, even more strikingly, no peaks should emerge when
the magnetic flux 𝜙 is an odd integer mupltiple of ℎ/4𝑒, as we discuss in the next
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(a)

(b)

(c)

Figure 3.1. Experiments on the 3D TI nanowire Josephson junctions: (a) Scheme and (b)
electron micrograph of the experimental setup as well as (c) the differential resistanced𝑉/d𝐼 of the sample in dependence on the current 𝐼 between two inner Nb stripes
and the flux Φ through the nanowire cross section in units of Φ0 = 𝜙0/2 = ℎ/2𝑒.
Note that the RF antenna is not used for the current measurements. Figures (a) and
(b) are taken from Fischer et al. [30]1, Fig. (c) is from R. Fischer.

paragraph. In the following, we call these peaks the (ℎ/4𝑒)-peaks.

First theoretical investigations were done by Ilan et al. [157]. They predicted the
critical current to have a single maximum at 𝜙 = 0, ℎ/2𝑒, ℎ/𝑒, … whenever there
are zero, one, two, … vortices present along the nanowire axis. This explains the
observations of the declining supercurrent. However, supercurrent oscillations with
a period of ℎ/2𝑒 are also in line with their results: Any change of the magnetic field byℎ/2𝑒 allows one vortex along the wire axis to be formed or destroyed, as described in
Section 2.2.3 [see also 152], which leads to the (ℎ/2𝑒)-periodicity with (ℎ/2𝑒)-peaks.
However, the (ℎ/4𝑒)-peaks remain inexplicable.

Supercurrent oscillations in dependence of an axial magnetic field have also been
reported in related systems like semiconductor nanowires [178–185]. However, most
of them lack the well determined periodicity of (ℎ/2𝑒).

1Ref. [30] has been published under the terms of the Creative Commons Attribution 4.0 International
license.
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3.2. Geometry and model Hamiltonian

Outline
The objective of this work is to propose a theoretical model explaining the origin of
the unusual (ℎ/4𝑒)-peaks and to identify their physical origin. This model is based on
the following premises: First, there is only surface transport since we have a 3D TI.
Therefore, we only model the surface states and neglect any contributions from the
bulk as in Chapter 2. However, it turned out that the topological origin of the surface
states is not essential—topologically trivial surface states with a quadratic dispersion
also lead to (ℎ/4𝑒)-peaks. This is the reason why we consider both, topological and
trivial surface states, in the following. Second, the superconducting fingers laid on
top of the nanowires do not cover the hole perimeter of the nanowire cross section.
Thus, we assume that the proximity induced superconductivity does not develop
around the whole cross section perimeter but only in the part in contact with the su-
perconducting fingers. This can be the case if the superconducting coherence length
is smaller the the wire width; this condition is met in the systems we investigate in
Sections 3.6.3 and 3.7.3. This assumption is crucial since superconductivity around
the whole perimeter does not lead to (ℎ/4𝑒)-peaks as discussed above. Furthermore,
the experiments show finite transparencies due to the manufacturing process, possi-
ble doping effects from the superconductor, etc. In order to include this, we include𝛿-barriers at the NS interfaces.

In a semiclassical analysis, we dissect the different (classical) paths and calculate
their contributions to the supercurrent. Among them are paths which loop around the
perimeter and pick up an Aharonov-Bohm phase due to the axial magnetic field. This
Aharonov-Bohm phase modifies their current phase relation leading to the (ℎ/4𝑒)-
peaks whenever these paths have enough weight in comparison to the straight paths.

After introducing the geometry and Hamiltonian of our model in Section 3.2, we
introduce the semiclassical method for calculating the Josephson current in Sec-
tion 3.3. The current for each classical trajectory is calculated in Section 3.4. Then,
we employ a minimal model to demonstrate how the (ℎ/4𝑒)-peaks emerge and get
a clear picture of their physical origin. Afterwards, we turn to experimentally real-
izable, realistic systems with trivial and topological surface states in Section 3.6 and
Section 3.7, respectively.

3.2. Geometry and model Hamiltonian

In this Section, we want to present the geometry of our model and its Hamiltonian.
The geometry is shown in Fig. 3.2. Its base component is a nanowire or, properly
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speaking, the surface of a nanowire. According to experiments, we assume a rectan-
gular cross section.2 The junction is characterized by the following dimensions: the
width 𝑤 and the height ℎ of the nanowire, the perimeter 𝑃 = 2(𝑤 + ℎ) of the cross
section, the length 𝐶 = 𝑤+ 2ℎ of the perimeter part covered by the superconductor,3

the junction length 𝐿 and the widths 𝑊L/R of the left/right superconductors. All di-
mensions are defined in Fig. 3.2. There are two superconducting fingers laid over the
nanowires such that it contacts the top and side surfaces of the nanowire but not the
bottom surface. We assume the surfaces contacted by the superconductor to become
superconducting themselves by the proximity effect, but not the ones which are left
pristine. These regions are colored green in Fig. 3.2, whereas the noncovered parts
are colored gray. Last but not least, there is a magnetic field 𝑩 parallel to the wire
axis.

To describe the system, we employ the following Bogoliubov-de Gennes Hamilto-
nian: 𝐻 = (ℎ𝑒 − 𝜇 + 𝑈 Δ exp(i𝜑)Δ exp(−i𝜑) ℎℎ + 𝜇 − 𝑈) , (3.1)

where ℎe/h are the electron and hole Hamiltonians, 𝜇 is the chemical potential, 𝑈
describes the barriers at the NS interfaces, Δ embodies the superconducting order
parameter (and is space dependent, but real), and 𝜑 the phase of the superconductor.

For TIs, the surface particles are captured by the Dirac Hamiltonian

ℎe/h = ±ℏ𝑣𝐹[𝑘̂𝑧𝜎𝑥 + (𝑘̂𝑠 ± 2𝜋𝑃 𝜙𝜙0)𝜎𝑦] (3.2)

known from Chapter 2. To shortly recapitulate, 𝑣𝐹 is the Fermi velocity, 𝑘̂𝑠,𝑧 denote
the wave number operators, 𝜎𝑥,𝑦,𝑧 the Pauli matrices, 𝜙 refers to the magnetic flux
through the cross section and 𝜙0 = ℎ/𝑒 is the magnetic flux quantum. Note that we
use the Hamiltonians and the magnetic field for a cylindrical nanowire; this can be
done because the nanowires with circular, rectangular and trapezoidal cross sections
are homeomorphic. In order to observe the (𝜙0/4)-periodic oszillations in the critical
current, it is, however, not necessary that the surface states are of topological origin
and show a Dirac dispersion (as already mentioned above). Thus, we also use the

2In experiments, the nanowires actually have a trapezoidal cross section. However, the rectangular
geometry is easier to handle in theoretical models and the differences between these two geometries
should be rather tiny.

3In Section 3.5, we allow 𝐶 to vary freely for illustration purposes.
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Figure 3.2. Geometry of the 3D TI nanowire Josephson junction. Along with a 3D sketch
of the nanowire (a), we show a sketch of the unrolled 2D surface (b). The surface of
the 3D TI nanowire (gray) exhibits proximity induced superconductivity (green) in
two regions on the left and right; note that the wire is not superconducting around
the whole perimeter but the bottom part stays normal. The barriers at certain NS
interfaces are marked in orange. The different types of paths are illustrated in red,
purple and blue, respectively.
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quadratic Hamiltonian ℎe/h = ± ℏ22𝑚[𝑘̂2𝑧 + (𝑘̂𝑠 ± 2𝜋𝑃 𝜙𝜙0)2] (3.3)

to simulate the junction with topologically trivial “metallic” surface states. Here,𝑚 denotes the effective mass of the surface electrons. Note that the wave functionΨ shares different boundary conditions in both cases: In the Dirac case, we have
antiperiodic boundary conditions Ψ(𝑠 + 𝑃) = −Ψ(𝑠), whereas in the topologically
trivial case, we have periodic boundary conditions Ψ(𝑠 + 𝑃) = Ψ(𝑠).

The barrier is only assumed to appear at the NS interfaces normal to the 𝑧 direction,
see Fig. 3.2. Thus, we have

𝑈(𝑧, 𝑠) = {𝑈0[𝛿(𝑧) + 𝛿(𝑧 − 𝐿)] for 0 ≤ 𝑠 ≤ 𝐶 and0 otherwise.
(3.4)

This placement is rather phenomenological to describe the imperfect transparencies
observed in such systems [30]. For example, doping effects [186] would be more
naturally described by increasing the chemical potential in the superconducting parts,
but the introduction of a barrier shows similar effects. We also have to mention a few
possible arguments underpinning the fact that the barriers are only placed on specific
NS junctions: First of all, including smaller barriers at the other interfaces would
show similar effects, only with a reduced overall current. Second, the side surfaces
are different from the top and bottom surfaces due to the sample manufacturing; on
the one hand, the additional CdTe layers on the top and bottom surfaces can lead to
doping effects; on the other hand, etching away the capping layers before deploying
the superconductors can also lead to differences, for example if the capping layer on
top was not fully removed or if the underlaying HgTe of the top surface was attacked
during the etching process.

The magnetic field parallel to the wire axis and its vectorpotential read𝑩 = 𝐵𝒆̂𝑧 and 𝑨 = 12𝑩 × 𝒓 = 12𝐵𝑟𝒆̂𝑠 . (3.5)

The superconducting order parameter amounts to Δ0 in the regions covered by
the superconducting fingers but is zero otherwise:

Δ = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δ0 for 0 ≤ 𝑠 ≤ 𝐶 and −𝑊𝐿 ≤ 𝑧 ≤ 0,Δ0 for 0 ≤ 𝑠 ≤ 𝐶 and 𝐿 ≤ 𝑧 ≤ 𝐿 + 𝑊𝑅, and0 otherwise.

(3.6)
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3.3. Semiclassical method

The phase 𝜑 of the superconductors reads

𝜑 = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
+ 12𝜑0 + 4𝜋 𝑠𝑃 𝜙𝜙0 for −𝑊𝐿 ≤ 𝑧 ≤ 0,− 12𝜑0 + 4𝜋 𝑠𝑃 𝜙𝜙0 for 𝐿 ≤ 𝑧 ≤ 𝐿 + 𝑊𝑅, and0 otherwise

(3.7)

and consists of two parts: one governs the global phase difference 𝜑0 between the
left and right superconductors, the other one is induced by the magnetic field; in
contrast to the first one, the latter one is space dependent. In the following, we want
to prove the exact form of the latter one. First, it is important to notice that the
thickness of the superconducting contacts on top of the nanowires is smaller than
their London penetration depth. Thus, the magnetic field penetrates the contacts and
no screening supercurrents develop. This, in turn, is satisfied if the Hamiltonian is
locally unitary equivalent to a Hamiltonian without a magnetic field and without a
position-dependent phase. Indeed, the unitary transformation

𝑈(𝜙) = exp(2𝜋i 𝑠𝑃 𝜙𝜙0 𝜏𝑧), (3.8)

where the Pauli matrix 𝜏𝑧 acts in particle-hole space, fulfills 𝑈(𝜙)𝐻(𝜙)𝑈†(𝜙) = 𝐻(0),
see Appendix E. Note that this transformation also modifies the boundary condition
for the wave function:(𝑈Ψ)(𝑠 + 𝑃) = ∓ exp(2𝜋i 𝜙𝜙0 𝜏𝑧)(𝑈Ψ)(𝑠), (3.9)

where the upper (lower) sign is for the Dirac (quadratic) Hamiltonian. This will
become important in Section 3.4 when calculating the ABSs.

3.3. Semiclassical method

3.3.1. Method

For this more complex geometry, we use a semiclassical method following Ostroukh
et al. [187]. This allows us to get a deeper understanding of the geometrical effect
which is responsible for the (ℎ/4𝑒)-periodic supercurrent.

The semiclassical method is applicable in the limit 𝑘𝐹𝐿 ≫ 1 and consists of assign-
ing wave modes to each classical trajectory: Every classical trajectory Γ hosts a small
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tube (with a width of the Fermi wavelength 𝜆𝐹 = 2𝜋/𝑘𝐹 ) that acts as a wave guide
for one single mode. These modes are characterized by a wave number 𝒌 belonging
to the Fermi surface (meaning |𝒌| = 𝑘𝐹 since we have a circular Fermi surface) and
contribute a current 𝑖(Γ) to the total current.

Before showing how to obtain the total current, we want to briefly note two as-
sumptions we make in our calculations. First, we assume straight paths neglegting
any curvature. This is justified since the Lorentz force is perpendicular to the nano-
wire surface. Second, we will also work in the short junction limit 𝐿 ≪ 𝜉 = ℏ𝑣𝐹/Δ0
for simplicity. However, our findings are expected to qualitatively hold for longer
junctions as well.

The total current is the integral of the current contributions 𝑖(Γ) over all (classical)
paths Γ. We choose a cut through the normal part in azimuthal direction, i.e., a
straight line determined by 𝑧 = 𝑧cut with 0 < 𝑧cut < 𝐿. Then, the integral measure is
given by d𝑠 d𝑘𝑠/2𝜋 [187], where 𝑠 is the 𝑠-coordinate of the paths along this cut and𝑘𝑠 is the corresponding wave number of this path. The measure can also be expressed
as d𝑠 d𝜃 cos(𝜃)𝑘𝐹/2𝜋, where 𝜃 is the angle the path encloses with the 𝑧 direction. In
equations, this reads

𝐼 = 12𝜋 ∫ d𝑠 ∫ d𝑘𝑠 𝑖(𝑠, 𝑘𝑠) = 𝑘𝐹2𝜋 ∫ d𝑠 ∫ d𝜃 cos(𝜃)𝑖(𝑠, 𝜃). (3.10)

For the rest of this Section, we explore this integral and its relationship with the
geometry in more detail.

Above, we made another, bigger simplification: When barriers at the NS interfaces
are present (see Fig. 3.2), they allow for normal reflection. However, normal reflection
conserves the momentum parallel to the interface such that the outgoing electron
does not share the same path with the incident electron. In this case, integral (3.10)
is not valid anymore. Instead, one would have path integrals including all normal
reflections. This is, however, very difficult to calculate since the current contribution 𝑖
gets harder to obtain and one would have to apply resummation techniques to solve
the integrals. Since this goes beyond the scope of this work, we continue using
integral (3.10) and calculate the current contribution 𝑖 for a 1D Josephson junction
with barriers.

3.3.2. Classification of the paths

Looking at the geometry depicted in Fig. 3.2, one notices that we can classify the
paths into different categories. Then, the integral (3.10) for the total current is evalu-
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3.3. Semiclassical method

ated seperately for each of these categories. In the rest of this Section, we want to
introduce their definitions.

First, we can assign a crossing number 𝑛 to every path: For a given line cut 𝑠 = 𝑠cut

through the normal region, 𝐶 < 𝑠cut < 𝑃 , we can count the number a path crosses this
cut with a positive sign indicating a crossing in positive 𝑠-direction and a negative
sign indicating a crossing in negative 𝑠-direction (it is assumed that the path runs in
positive 𝑧 direction). In Fig. 3.2 for example, there are two red paths with 𝑛 = 0 and𝑛 = 1, respectively. In fact, the crossing number can be viewed as winding number
around the perimeter, i.e., the winding number of the trajectory projected onto the
perimeter and closed by contracting the section covered by the superconductor to a
point.

Furthermore, we can classify the paths in different types depending on which NS
interface the start and end points are (see also Table 3.1 on Page 55):

Type-1 paths are “direct” paths. The ends of the paths are located on the 𝑧 = 0 and𝑧 = 𝐿 NS interfaces. If the wire is fully superconducting, 𝐶 = 𝑃 , only these
type of paths exist.

Type-2 paths are “mixed” paths, where one end is on a 𝑧 = const NS interface and
the other one on a 𝑠 = const NS interface. We can subdivide these paths further
into type-2L and type-2R paths depending on whether they start on the 𝑧 = 0
interface or end on the 𝑧 = 𝐿 interface (L and R denoting whether the 𝑧 = const
interface is on the left or on the right superconductor).

Type-3 paths are “side” paths originating from both NS junctions at the 𝑠 = 0 and𝑠 = 𝐶 interfaces.

Note that there are no paths with crossing number 𝑛 = 0 for the type-1 and type-2
paths.

3.3.3. Trajectories

Without magnetic field, the dispersion of an electron in the normal part is given by𝐸 = ℏ𝑣𝐹√𝑘2𝑧 + 𝑘2𝑠 − 𝜇 (3.11)

for the Dirac Hamiltonian and by

𝐸 = ℏ22𝑚(𝑘2𝑧 + 𝑘2𝑠 ) − 𝜇 (3.12)
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Chapter 3. Topological insulator nanowire Josephson junctions

for the quadratic Hamiltonian. Thus, the group velocity 𝒗 = ∇𝒌𝐸/ℏ reads

𝒗 = 𝑣𝐹 𝒌|𝒌| (3.13)

for the Dirac and 𝒗 = ℏ2𝑚𝒌 (3.14)

for the quadratic Hamiltonian; note that in both cases the direction of the velocity
is given by the wave number vector 𝒌. Since we’ll only look at paths at the Fermi
surface, the wave numbers satisfy |𝒌| = √𝑘2𝑠 + 𝑘2𝑧 = 𝑘𝐹 , where 𝑘𝐹 is the Fermi wave
number. Thus, the trajectory of a path can be parametrized as

𝒓(𝑡) = (𝑠0 + 𝑡 𝑘𝑠𝑘𝐹 , 𝑧0 + 𝑡 𝑘𝑧𝑘𝐹 ), (3.15)

where we used the arc length 𝑡 as parameter and denoted the start point coordinates
by (𝑠0, 𝑧0). Using the 𝑠 or 𝑧 coordinate as parameter, one gets

𝑠(𝑧) = 𝑠0 + (𝑧 − 𝑧0) 𝑘𝑠𝑘𝑧 and 𝑧(𝑠) = 𝑧0 + (𝑠 − 𝑠0)𝑘𝑧𝑘𝑠 , (3.16)

respectively. If the end coordinates (𝑠, 𝑧) = (𝑠1, 𝑧1) are known, the wave numbers 𝑘𝑠 ,𝑘𝑧 can be determined through the relations𝑘𝑧𝑘𝑠 = 𝑧1 − 𝑧0𝑠1 − 𝑠0 and 𝑘2𝑧 + 𝑘2𝑠 = 𝑘2𝐹 . (3.17)

Thus, the dependence of the wave numbers 𝑘𝑠 and 𝑘𝑧 on the start and end coordinates
is given by 𝑘𝑠 = 𝑘𝐹 𝑠1 − 𝑠0√(𝑠1 − 𝑠0)2 + (𝑧1 − 𝑧0)2 (3.18)

and 𝑘𝑧 = 𝑘𝐹 𝑧1 − 𝑧0√(𝑠1 − 𝑠0)2 + (𝑧1 − 𝑧0)2 , (3.19)

respevtively. The start and end coordinates for all types of paths are given in Table 3.1.
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3.3. Semiclassical method

Table 3.1. Start and end coordinates of the paths for different path types and crossing
numbers 𝑛. The start coordinates (𝑠0, 𝑧0) and end coordinates (𝑠1, 𝑧1) are either con-
stant or varied within an interval [𝑎, 𝑏].

path type 𝑠0 𝑧0 𝑠1 𝑧1
1 [0, 𝐶] 0 [𝑛𝑃, 𝑛𝑃 + 𝐶] 𝐿
2L 𝑛 > 0 [0, 𝐶] 0 𝑛𝑃 [𝐿, 𝐿 + 𝑊𝑅]𝑛 < 0 [0, 𝐶] 0 𝑛𝑃 + 𝐶 [𝐿, 𝐿 + 𝑊𝑅]
2R 𝑛 > 0 𝐶 [−𝑊𝐿, 0] [𝑛𝑃, 𝑛𝑃 + 𝐶] 𝐿𝑛 < 0 0 [−𝑊𝐿, 0] [𝑛𝑃, 𝑛𝑃 + 𝐶] 𝐿
3 𝑛 > 0 𝐶 [−𝑊𝐿, 0] 𝑛𝑃 [𝐿, 𝐿 + 𝑊𝑅]𝑛 < 0 0 [−𝑊𝐿, 0] 𝑛𝑃 + 𝐶 [𝐿, 𝐿 + 𝑊𝑅]

3.3.4. Phase space integration

Type-1 paths

Let 𝐼1,𝑛 be the current of all type-1 paths with crossing number 𝑛. Solving the integral
(3.10) by substitution with Eq. (3.18) and inserting the appropriate integral bounds,
one gets

𝐼1,𝑛 = 12𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝑘𝑠,max𝑘𝑠,min

d𝑘𝑠 𝑖1,𝑛(𝑠0, 𝑘𝑠)
= 12𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝑛𝑃+𝐶𝑛𝑃 d𝑠1 ( 𝜕𝜕𝑠1 𝑘𝐹 𝑠1 − 𝑠0[(𝑠1 − 𝑠0)2 + (𝑧1 − 𝑧0)2]1/2)𝑖1,𝑛(𝑠0, 𝑠1)= 𝑘𝐹2𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝑛𝑃+𝐶𝑛𝑃 d𝑠1 𝐿2[(𝑠1 − 𝑠0)2 + 𝐿2]3/2 𝑖1,𝑛(𝑠0, 𝑠1)= 𝑘𝐹2𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝐶0 d𝑠1 𝐿2[(𝑛𝑃 + 𝑠1 − 𝑠0)2 + 𝐿2]3/2 𝑖1,𝑛(𝑠0, 𝑛𝑃 + 𝑠1). (3.20)

Type-2 paths

The currents of the type-2L and type-2R paths are denoted by 𝐼2L,𝑛 and 𝐼2R,𝑛, respec-
tively. Note that the cases 𝑛 > 0 and 𝑛 < 0 have to be treated separately since the
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start and end coordinates cannot be expressed uniformly, see Table 3.1. One has

𝐼 ′2L,𝑛;𝑛>0 = 12𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝐿+𝑊𝑅𝐿 d𝑧1 ( 𝜕𝜕𝑧1 𝑘𝐹 𝑠1 − 𝑠0[(𝑠1 − 𝑠0)2 + (𝑧1 − 𝑧0)2]1/2)𝑖2L,𝑛(𝑠0, 𝑧1)
= 𝑘𝐹2𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝐿+𝑊𝑅𝐿 d𝑧1 (𝑛𝑃 − 𝑠0)𝑧1[(𝑛𝑃 − 𝑠0)2 + 𝑧21]3/2 𝑖2L,𝑛(𝑠0, 𝑧1), (3.21)

𝐼 ′2L,𝑛;𝑛<0 = 𝑘𝐹2𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝐿+𝑊𝑅𝐿 d𝑧1 (𝑠0 − 𝑛𝑃 − 𝐶)𝑧1[(𝑛𝑃 + 𝐶 − 𝑠0)2 + 𝑧21]3/2 𝑖2L,𝑛(𝑠0, 𝑧1), (3.22)

𝐼 ′2R,𝑛;𝑛>0 = 𝑘𝐹2𝜋 ∫ 0−𝑊𝐿 d𝑧0 ∫ 𝐶0 d𝑠1 (𝑛𝑃 + 𝑠1 − 𝐶)(𝐿 − 𝑧0)[(𝑛𝑃 + 𝑠1 − 𝐶)2 + (𝐿 − 𝑧0)2]3/2 𝑖2R,𝑛(𝑧0, 𝑛𝑃 + 𝑠1),
(3.23)

and𝐼 ′2R,𝑛;𝑛<0 = 𝑘𝐹2𝜋 ∫ 0−𝑊𝐿 d𝑧0 ∫ 𝐶0 d𝑠1 (−𝑛𝑃 − 𝑠1)(𝐿 − 𝑧0)[(−𝑛𝑃 − 𝑠1)2 + (𝐿 − 𝑧0)2]3/2 𝑖2R,𝑛(𝑧0, 𝑛𝑃 + 𝑠1).
(3.24)

Note that we wrote 𝐼 ′ since this is not yet the final result: One, still, has to exclude
the paths that cross any superconducting region without starting or ending there
by adjusting the bounds of the integrals. For example, a type-2L path with 𝑛 > 0
(compare the type-2 path depicted in Fig. 3.2) must not cross the right superconductor
before the end point with 𝑠1 = 𝑛𝑃 . This means that 𝑠(𝑧 = 𝐿) has to take a value in
the uncovered part below 𝑠1 = 𝑛𝑃 . Thus, one has the condition 𝑠(𝐿) > (𝑛 − 1)𝑃 + 𝐶.
Similarly, one has the conditions 𝑠(𝐿) < (𝑛 + 1)𝑃 for type-2L paths with 𝑛 < 0,𝑠(0) < 𝑃 for type-2R paths with 𝑛 > 0, and 𝑠(0) > 𝐶 −𝑃 for type-2R paths with 𝑛 < 0.
Using Eqs. (3.16) and (3.17), these conditions can be rewritten as

𝑧1 < 𝐿 𝑛𝑃 − 𝑠0(𝑛 − 1)𝑃 + 𝐶 − 𝑠0 or 𝑠0 > 𝑛𝑃 − (𝑃 − 𝐶) 𝑧1𝑧1 − 𝐿 (3.25)

for type-2L paths with 𝑛 > 0,

𝑧1 < 𝐿 𝑛𝑃 + 𝐶 − 𝑠0(𝑛 + 1)𝑃 − 𝑠0 or 𝑠0 < 𝑛𝑃 + 𝑃 𝑧1𝑧1 − 𝐿 − 𝐶 𝐿𝑧1 − 𝐿 (3.26)

for type-2L paths with 𝑛 < 0,

𝑠1 < 𝑃 − (𝑃 − 𝐶) 𝐿𝑧0 or 𝑧0 > −𝐿 𝑃 − 𝐶𝑠1 − 𝑃 (3.27)
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for type-2R paths with 𝑛 > 0, and

𝑠1 > (𝑃 − 𝐶)𝐿 − 𝑧0𝑧0 or 𝑧0 > −𝐿 𝑃 − 𝐶−𝑠1 − 𝑃 + 𝐶 (3.28)

for type-2R paths with 𝑛 < 0. Thus, we get the following integrals:

𝐼2L,𝑛;𝑛>0 = 𝑘𝐹2𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝑏2L,𝑛;𝑛>0(𝑠0)𝐿 d𝑧1 (𝑛𝑃 − 𝑠0)𝑧1[(𝑛𝑃 − 𝑠0)2 + 𝑧21]3/2 𝑖2L,𝑛(𝑠0, 𝑧1), (3.29)

𝐼2L,𝑛;𝑛<0 = 𝑘𝐹2𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝑏2L,𝑛;𝑛<0(𝑠0)𝐿 d𝑧1 (𝑠0 − 𝑛𝑃 − 𝐶)𝑧1[(𝑛𝑃 + 𝐶 − 𝑠0)2 + 𝑧21]3/2 𝑖2L,𝑛(𝑠0, 𝑧1), (3.30)

𝐼2R,𝑛;𝑛>0 = 𝑘𝐹2𝜋 ∫ 0−𝑊𝐿 d𝑧0 ∫ 𝑏2R,𝑛;𝑛>0(𝑧0)0 d𝑠1(𝑛𝑃 + 𝑠1 − 𝐶)(𝐿 − 𝑧0)[(𝑛𝑃 + 𝑠1 − 𝐶)2 + (𝐿 − 𝑧0)2]3/2 𝑖2R,𝑛(𝑧0, 𝑛𝑃 + 𝑠1), (3.31)

and𝐼2R,𝑛;𝑛<0 = 𝑘𝐹2𝜋 ∫ 0−𝑊𝐿 d𝑧0 ∫ 𝐶𝑎2R,𝑛;𝑛<0(𝑧0) d𝑠1 (−𝑛𝑃 − 𝑠1)(𝐿 − 𝑧0)[(−𝑛𝑃 − 𝑠1)2 + (𝐿 − 𝑧0)2]3/2 𝑖2R,𝑛(𝑧0, 𝑛𝑃 + 𝑠1)
(3.32)

with the bounds 𝑏2L,𝑛;𝑛>0(𝑠0) = min(𝐿 + 𝑊𝑅, 𝐿 𝑛𝑃 − 𝑠0(𝑛 − 1)𝑃 + 𝐶 − 𝑠0), (3.33)𝑏2L,𝑛;𝑛<0(𝑠0) = min(𝐿 + 𝑊𝑅, 𝐿 𝑛𝑃 + 𝐶 − 𝑠0(𝑛 + 1)𝑃 − 𝑠0), (3.34)𝑏2R,𝑛;𝑛>0(𝑧0) = min(𝐶, −(𝑛 − 1)𝑃 − (𝑃 − 𝐶) 𝐿𝑧0), (3.35)

and 𝑎2R,𝑛;𝑛<0(𝑧0) = max(0, (𝑃 − 𝐶)𝐿 − 𝑧0𝑧0 + 𝑛𝑃). (3.36)

Type-3 paths

Similar calculations lead to the current 𝐼3,𝑛 of the type-3 paths. However, the bounds
of the integrals become slightly more intricate. For 𝑛 > 0, one has the two conditions𝑠(0) < 𝑃 and 𝑠(𝐿) > (𝑛− 1)𝑃 +𝐶. Furthermore, these conditions can only be satisfied
simultaneously for 𝑛 > 1 if 𝑧0 > −𝐿(𝑃 − 𝐶)/[(𝑛 − 2)𝑃 + 𝐶], such that one has three
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constraints on the boundaries. Similarly, one has the conditions 𝑠(0) > 𝐶 − 𝑃 and𝑠(𝐿) < (𝑛 − 1)𝑃 for 𝑛 < 0 as well as 𝑧0 > 𝐿(𝑃 − 𝐶)/[(𝑛 + 2)𝑃 − 𝐶] for 𝑛 < −1. Thus,
the integrals read

𝐼3,𝑛 = 𝑘𝐹2𝜋 ∫ 0𝑎(0)3,𝑛 d𝑧0 ∫ 𝑏(1)3,𝑛(𝑧0)𝑎(1)3,𝑛(𝑧0) d𝑧1 (|𝑛|𝑃 − 𝐶)2[(|𝑛|𝑃 − 𝐶)2 + (𝑧1 − 𝑧0)2]3/2 𝑖3,𝑛(𝑧0, 𝑧1) (3.37)

with the bounds

𝑎(0)3,𝑛 = {−𝑊𝐿 for 𝑛 = ±1 andmax(−𝑊𝐿, −𝐿 𝑃−𝐶(|𝑛|−2)𝑃+𝐶) for |𝑛| > 1,
(3.38)

𝑎(1)3,𝑛(𝑧0) = max(𝐿, −𝑧0 (|𝑛| − 1)𝑃𝑃 − 𝐶 ), (3.39)

and 𝑏(1)3,𝑛(𝑧0) = {𝐿 + 𝑊𝑅 for 𝑛 = ±1 andmin(𝐿 + 𝑊𝑅, 𝐿 |𝑛|𝑃−𝐶(|𝑛|−1)𝑃 − 𝑧0 𝑃−𝐶(|𝑛|−1)𝑃) for |𝑛| > 1.
(3.40)

Comparison to a planar Josephson junction

From the upper results, one can derive the current of a planar Josephson junc-
tion by taking the limit 𝐶 → ∞ of 𝐼𝑛=0 and using the Josephson current 𝑖𝑛=0 =(𝑒Δ0/ℏ) sin(𝜑0/2) [11]. Then, 𝐶 corresponds to the width of the junction. Since there
exist only type-1 paths for 𝑛 = 0, one has

𝐼𝑛=0 = 𝐼1,𝑛=0 = 𝑘𝐹2𝜋 ∫ 𝐶0 d𝑠0 ∫ 𝐶0 d𝑠1 𝐿2[(𝑛𝑃 + 𝑠1 − 𝑠0)2 + 𝐿2]3/2 𝑖𝑛=0= 𝑘𝐹𝜋 (√𝐿2 + 𝐶2 − 𝐿)𝑒Δ0ℏ sin( 12𝜑0) (3.41)

which gives 𝐼𝑛=0 ≈ 𝑘𝐹𝐶 𝑒Δ0𝜋ℏ sin( 12𝜑0) (3.42)

for 𝐶 → ∞. This results is identical to the result from Kulik and Omel’Yanchuk [188,
see also 187, 189].
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S SN

Tright-moving electron and hole

le�-moving electron and hole
TSL SR

Figure 3.3. Schematic illustration of Andreev bound states. In an SNS junction, left
moving electrons and holes in the normal part are Andreev reflected (and maybe also
partially normal reflected) on the left NS interface. The reflected particles move to
the right until they undergo a similar scattering process on the right NS interface
ending as again left-moving particles. This allows the formation of bound states, the
Andreev bound states (ABS).

3.4. Andreev bound states and current contributions

The current contribution of each classical trajectory can be calculated via the Andreev
bound states (ABSs). In an SNS junction, ABSs embody the microscopic picture for
the Josephson current [5, 8–11], see Fig. 3.3. To illustrate this, let us consider a left-
moving electron in the N region with an energy inside the superconducting band
gap. When it reaches the left NS interface, it is Andreev reflected as hole (if the
interface is ideal) and leaves behind a Cooper pair in the left superconductor. The
hole moves towards the right NS interface and is, similarly, Andreev reflected as
electron, destroying a Cooper pair in the right superconductor. Interference, now,
leads to the formation of bound states. During such a process, a Cooper pair is
transferred from one superconductor to the other causing a supercurrent.

In this Section, we calculate the ABSs assigned to the classical trajectories including
the axial magnetic flux through the wire and barriers at the left and right NS interfaces
and derive the current contributions.

3.4.1. Andreev bound states from the scattering formalism

The scattering formalism was first utilized by Beenakker [11] to describe the Andreev
bound states. In this Section, we follow Pientka et al. [190].
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Chapter 3. Topological insulator nanowire Josephson junctions

Transport at the left and right NS interfaces can be described by the scattering
matrices 𝑆L/R. Unitarity allows us to write

𝑆L/R = 𝑟𝐴( 𝑟𝑟𝑁 𝑡𝑟∗L/R𝑡𝑟L/R −𝑟𝑟∗𝑁) = exp(i𝛼)( 𝑟 exp(i𝜑𝑁 ) 𝑡 exp(−i𝜑L/R)𝑡 exp(i𝜑L/R) −𝑟 exp(−i𝜑𝑁 )) , (3.43)

where 𝛼 describes the Andreev reflection phase (usually, 𝛼 = − arccos(𝐸/Δ0)), 𝑟2
and 𝑡2 are the coefficients for normal and Andreev reflection (we have 0 ≤ 𝑟, 𝑡 ≤ 1
and 𝑟2 + 𝑡2 = 1), 𝜑L/R denotes the phase of the left or right superconductor, and 𝜑𝑁
describes the phase upon normal reflection. The transmission through the normal
region is governed by the transmission matrix

𝑇 = (𝑡𝑒 00 𝑡ℎ) = (exp(i𝑘𝑒𝐿) 00 exp(i𝑘ℎ𝐿)) , (3.44)

where 𝑘e/h represents the electron or hole wave number and 𝐿 is the junction length.
The subgap spectrum is determined bydet(1 − 𝑆𝐿𝑇 𝑆𝑅𝑇 ) = 0 (3.45)

which is the condition for the formation of bound states, compare Fig. 3.3.

3.4.2. Effect of the magnetic field

To investigate the effect of the magnetic field, we use the Hamiltonian 𝐻(𝜙 = 0) and
the boundary conditions Ψ(𝑠 + 𝑃) = ∓ exp(2𝜋i(𝜙/𝜙0)𝜏𝑧)Ψ(𝑠) for the wave functions,
see Eqs. (3.1) and (3.9). In this form, the magnetic field only occurs in the transmission
matrix 𝑇 and not in the scattering matrices 𝑆L/R. Especially, the phases 𝜑L/R of the
left and right superconductors are given by ±𝜑0/2.

First, notice that the magnetic field breaks time reversal symmetry [157] such that
the transmission from the left to the right and from the right to the left cannot be
described with the same transmission matrix any longer. Therefore, Eq. (3.45) has to
be changed to det(1 − 𝑆𝐿𝑇𝐿𝑅𝑆𝑅𝑇𝑅𝐿) = 0 (3.46)

with the two (distinct) transmission matrices 𝑇𝐿𝑅 and 𝑇𝑅𝐿.
Let’s look at a path with crossing number 𝑛. Since the boundary condition con-

serves the wave number, the transmission matrices can be written as products of the
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3.4. Andreev bound states and current contributions

transmission matrix 𝑇 from Eq. (3.44) and the boundary condition:

𝑇𝐿𝑅 = [∓ exp(−2𝜋i 𝜙𝜙0 𝜏𝑧)]𝑛𝑇 = (∓1)𝑛(exp(i𝑘𝑒𝐿 − i𝛾) 00 exp(i𝑘ℎ𝐿 + i𝛾)) (3.47)

and𝑇𝑅𝐿 = [∓ exp(+2𝜋i 𝜙𝜙0 𝜏𝑧)]𝑛𝑇 = (∓1)𝑛(exp(i𝑘𝑒𝐿 + i𝛾) 00 exp(i𝑘ℎ𝐿 − i𝛾)) , (3.48)

where 𝛾 = 2𝜋𝑛 𝜙𝜙0 (3.49)

is exactly the Aharonov-Bohm phase

𝛾 = 𝑒ℏ ∫Γ d𝒍 ⋅ 𝑨 (3.50)

an electron acquires when moving from the left to the right superconductor along
the trajectory Γ.

Note that the antiperiodic boundary condition belonging to the Dirac Hamiltonian
(3.2) cancels out in the subgap condition (3.46) since both 𝑇𝐿𝑅 and 𝑇𝑅𝐿 contain the
factor (∓1)𝑛.

Writing 𝑓 = exp(i𝛾) and inserting the expressions (3.43), (3.47) and (3.48), the
subgap condition (3.46) reads0 = det(1 − 𝑆𝐿𝑇𝐿𝑅𝑆𝑅𝑇𝑅𝐿) = 1 + 𝑟4𝐴𝑟2𝑒 𝑡2ℎ − 𝑟2𝑟2𝐴[𝑟2𝑁 𝑡2𝑒 + (𝑟∗𝑁 )2𝑡2ℎ]− 𝑡2𝑟2𝐴𝑡𝑒𝑡ℎ[𝑟𝑅𝑟∗𝐿𝑓 2 + 𝑟∗𝑅𝑟𝐿(𝑓 ∗)2]. (3.51)

After multiplication with (𝑟2𝐴𝑡𝑒𝑡ℎ)∗, one getscos(2𝛼 + (𝑘𝑒 + 𝑘ℎ)𝐿) = 𝑟2 cos(2𝜑𝑁 + (𝑘𝑒 − 𝑘ℎ)𝐿) + 𝑡2 cos(𝜑𝐿 − 𝜑𝑅 − 2𝛾). (3.52)

It is important to notice that the magnetic field manifests exclusively as modification
of the phase difference 𝜑𝐿−𝜑𝑅 with the Aharonov-Bohm phase 𝛾 (the factor of 2 stem-
ming from the fact that one has two particles, an electron and a counterpropagating
hole, each of them contributing 𝛾). This agrees with the expression of Ostroukh et al.
[187] and with the substitution of the phase difference 𝜑𝐿 −𝜑𝑅 by its gauge invariant
expression [4, p. 202].
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Chapter 3. Topological insulator nanowire Josephson junctions

In the case of perfect Andreev reflection, 𝑟 = 0 and 𝑡 = 1, and in the short-junction
limit 𝐿 → 0, the subgap condition (3.52) is reduced tocos(2𝛼) = cos(𝜑𝐿 − 𝜑𝑅 − 2𝛾). (3.53)

For 𝛼 = − arccos(𝐸/Δ0) [11] and 𝜑𝐿 − 𝜑𝑅 = 𝜑0, one obtains the ABS spectrum𝐸 = ±Δ0 cos( 12𝜑0 − 𝛾) (3.54)

in agreement with Ostroukh et al. [187].
For finite transmission, 𝑡 < 1, we can denote the transmission coefficient with𝜏 = 𝑡2. When the normal reflection phase vanishes, 𝜑𝑁 = 0, Eq. (3.52) yields the

ABSs 𝐸 = ±Δ0√1 − 𝜏 sin2( 12𝜑0 − 𝛾) (3.55)

in the short junction limit 𝐿 → 0. This is in agreement with [5, 11].

3.4.3. Asymmetric junctions

So far, we have assumed that the two NS interfaces are identical and share the same
scattering matrices (up to the superconducting phase). This, however, is not true for
type-2 paths. For an asymmetric junction, the scattering matrices read

𝑆L/R = 𝑟𝐴,L/R (𝑠L/R𝑟𝑁 ,L/R 𝑡L/R𝑟∗L/R𝑡L/R𝑟L/R −𝑠L/R𝑟∗𝑁 ,L/R)= exp(i𝛼L/R) (𝑠L/R exp(i𝜑𝑁 ,L/R) 𝑡L/R exp(−i𝜑L/R)𝑡L/R exp(i𝜑L/R) −𝑠L/R exp(−i𝜑𝑁 ,L/R)) (3.56)

with 𝑠2L/R + 𝑡2L/R = 1. Note the change of the variable name from 𝑟 to 𝑠L/R in order to
avoid naming conflicts. Then, the subgap condition (3.45) becomes0 = det(1 − 𝑆𝐿𝑇LR𝑆𝑅𝑇RL) = 1 + 𝑟2𝐴,𝐿𝑟2𝐴,𝑅𝑡2𝑒 𝑡2ℎ − 𝑟𝐴,𝐿𝑟𝐴,𝑅𝑠𝐿𝑠𝑅[𝑟𝑁 ,𝐿𝑟𝑁 ,𝑅𝑡2𝑒 + 𝑟∗𝑁 ,𝐿𝑟∗𝑁 ,𝑅𝑡2ℎ]− 𝑟𝐴,𝐿𝑟𝐴,𝑅𝑡𝐿𝑡𝑅[𝑟∗𝐿 𝑟𝑅𝑓 2 + 𝑟𝐿𝑟∗𝑅(𝑓 ∗)2]𝑡𝑒𝑡ℎ. (3.57)

After multiplication with (𝑟𝐴,𝐿𝑟𝐴,𝑅𝑡𝑒𝑡ℎ)∗, one arrives atcos(𝛼𝐿 + 𝛼𝑅 + (𝑘𝑒 + 𝑘ℎ)𝐿)= 𝑠𝐿𝑠𝑅 cos(𝜑𝑁 ,𝐿 + 𝜑𝑁 ,𝑅 + (𝑘𝑒 − 𝑘ℎ)𝐿) + 𝑡𝐿𝑡𝑅 cos(𝜑𝐿 − 𝜑𝑅 − 2𝛾). (3.58)
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3.5. Minimal model

3.4.4. Current

The current an ABS carries is proportional to the product of the derivative of its
energy with respect to the phase difference and the distribution function [5, 11, 189,
191, a derivation can be found in 192]. Since we have two ABSs with opposite sign
due to particle-hole symmetry, we have𝑖 = − 𝑒ℏ 𝜕𝐸𝜕𝜑0 tanh( 𝐸2𝑘𝐵𝑇 ), (3.59)

where 𝐸 is the energy of one of the two ABSs. Here, 𝑘𝐵 is the Boltzmann constant
and 𝑇 the temperature. In this work, we use the zero temperature limit 𝑇 → 0 such
that Eq. (3.59) becomes 𝑖 = − 𝑒ℏ 𝜕𝐸𝜕𝜑0 sgn(𝐸), (3.60)

where sgn is the sign function,

sgn(𝑥) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 for 𝑥 < 0,0 for 𝑥 = 0, and1 for 𝑥 > 0.

(3.61)

Thus, the current contribution of the ABSs with 𝐸 = ±Δ0 cos(𝜑0/2−𝛾) from Eq. (3.54)
reads 𝑖 = − 𝑒ℏ( 𝜕𝜕𝜑0Δ0 cos( 12𝜑0 − 𝛾)) sgn(cos( 12𝜑0 − 𝛾))= 𝑒Δ02ℏ sin( 12𝜑0 − 𝛾) sgn(cos( 12𝜑0 − 𝛾)), (3.62)

whereas for finite transmission, Eq. (3.55) gives𝑖 = − 𝑒ℏ 𝜕𝜕𝜑0Δ0√1 − 𝜏 sin2( 12𝜑0 − 𝛾)= 𝑒Δ04ℏ 𝜏 sin(𝜑0 − 2𝛾)√1 − 𝜏 sin2(𝜑0/2 − 𝛾) . (3.63)

3.5. Minimal model

Before discussing the more realistic setup in Sections 3.6 and 3.7, we want to look
at a minimal model and investigate the dependence of the critical current on the
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Chapter 3. Topological insulator nanowire Josephson junctions

magnetic field in this model. This will allow us to understand why and how the(ℎ/4𝑒)-peaks emerge in the experimental setup.

3.5.1. Model

First, we assume that there is no elastic scattering; especially, we neglect any barrier
at the NS interface by setting 𝑈0 = 0. We also restrict ourselves to the short junction
limit 𝐿 → 0. Then, the ABS spectrum is given by

𝐸𝑛 = ±Δ0 cos(12𝜑0 − 2𝜋𝑛 𝜙𝜙0) (3.64)

and their current contribution by

𝑖𝑛 = 𝑒Δ02ℏ sin(12𝜑0 − 2𝜋𝑛 𝜙𝜙0)sgn(cos(12𝜑0 − 2𝜋𝑛 𝜙𝜙0)). (3.65)

Note that the ABSs and their current contribution depend on the trajectory only
via the crossing number 𝑛, i.e., they do not depend on the detailed start and end
coordinates of the trajectory.

Furthermore, we use half-infinite superconductors, 𝑊𝐿,𝑅 → ∞. Together with
the upper results for the ABS, this enables us to solve the integrals (3.29) to (3.32)
and (3.37) analytically:

𝐼1,𝑛 = 𝑘𝐹2𝜋 (√(𝑛𝑃 + 𝐶)2 + 𝐿2 − 2√(𝑛𝑃)2 + 𝐿2 + √(𝑛𝑃 − 𝐶)2 + 𝐿2)𝑖𝑛, (3.66)𝐼2L/R,𝑛 = 𝑘𝐹2𝜋 (√(𝑛𝑃)2 + 𝐿2 − √(|𝑛|𝑃 − 𝐶)2 + 𝐿2− √[(|𝑛| − 1)𝑃 + 𝐶]2 + 𝐿2 + √[(|𝑛| − 1)𝑃]2 + 𝐿2)𝑖𝑛, (3.67)𝐼3,𝑛;𝑛=±1 = 𝑘𝐹2𝜋 (√(𝑃 − 𝐶)2 + 𝐿2 − 𝐿)𝑖𝑛, (3.68)

and 𝐼3,𝑛;|𝑛|>1 = 𝑘𝐹2𝜋 (√(|𝑛|𝑃 − 𝐶)2 + 𝐿2 − 2√[(|𝑛| − 1)𝑃]2 + 𝐿2+ √[(|𝑛| − 2)𝑃 + 𝐶]2 + 𝐿2)𝑖𝑛. (3.69)

Note that the contributions of the modes get smaller the higher the crossing num-
ber 𝑛 is. This happens because the integral measure gets smaller the larger the angle 𝜃
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with the 𝑧 axis is, see Eq. (3.10). Therefore, we only include trajectories with crossing
numbers 𝑛 = 0, ±1 in our minimal model.

With these assumptions, the total current reads𝐼 = 𝐼1,0 + (𝐼1,+1 + 𝐼2L,+1 + 𝐼2R,+1 + 𝐼3,+1) + (𝐼1,−1 + 𝐼2L,−1 + 𝐼2R,−1 + 𝐼3,−1)= 𝐼0 sin(12𝜑0)sgn(cos(12𝜑0))+ 𝐼1 sin(12𝜑0 − 2𝜋 𝜙𝜙0)sgn(cos(12𝜑0 − 2𝜋 𝜙𝜙0))+ 𝐼1 sin(12𝜑0 + 2𝜋 𝜙𝜙0)sgn(cos(12𝜑0 + 2𝜋 𝜙𝜙0)), (3.70)

see Eq. (3.62), where 𝐼0 and 𝐼1 are defined as

𝐼0 = 𝑒Δ02ℏ 𝑘𝐹2𝜋 (√𝐶2 + 𝐿2 − 𝐿) (3.71)

and 𝐼1 = 𝑒Δ02ℏ 𝑘𝐹2𝜋 (√(𝑃 + 𝐶)2 + 𝐿2 − 2√𝐶2 + 𝐿2 + 𝐿). (3.72)

The critical current is obtained as the maximum of 𝐼 , 𝐼𝑐 = max𝜑0 𝐼 .
3.5.2. Supercurrent oscillations in the minimal model

Figure 3.4 shows the current phase relation (3.70) of the minimal model for a perime-
ter of 𝑃 = 10𝐿. Since we use the zero temperature limit, there is a jump in the
current phase relation whenever a sign change in any ABS occurs (which is clear
from the appearance of the sgn function in Eq. (3.70)). This happens at 𝜑0 = ±𝜋 for
the paths with crossing number 𝑛 = 0. The paths with crossing number 𝑛 = ±1,
however, are shifted by the Aharonov-Bohm phase such that they show jumps at𝜑0 = ±𝜋 + 4𝜋𝜙/𝜙0 and 𝜑0 = ±𝜋 − 4𝜋𝜙/𝜙0, see Fig. 3.4(a). These jumps have a
direct impact on the position and value of the global maximum, compare the maxima
shown as circles in Fig. 3.4(b, c). Therefore, they are responsible for the oscillations
of the critical current shown in Fig. 3.5.

The jumps in the current phase relation and resulting oscillations in the critical
current are similar to previous findings for semicondutor nanowires: Yokoyama, Eto,
and Nazarov reported this behaviour due to the Zeeman effect [193–195] and Sriram
et al. made similar observations for the orbital effect of the axial magnetic field [196].
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Figure 3.4. Current phase relation of the minimal model for a wire with perimeter𝑃 = 10𝐿. The current is calculated with Eq. (3.70) and is given in units of 𝐼𝑐,0 =𝑒Δ0𝑘𝐹𝐿/4𝜋ℏ. Figure (a) shows the current contributions from the different paths with
crossing number 𝑛 = 0, ±1. Due to the Aharonov-Bohm phase, jumps at 𝜑0 ≠ ±𝜋
occur for 𝑛 = ±1. Figures (b) and (c) show the current phase relation for several
values of the magnetic flux 𝜙 through the cross section for (b) 𝐶 = 6.5𝐿 and for (c)
the limiting case 𝐶 = 0, where only an infinitesimal small stripe is superconducting.
The prevailing maxima are marked with circles.
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Figure 3.5. Critical current of the minimal model for a wire with perimeter 𝑃 = 10𝐿 in
dependence of the magnetic flux 𝜙 through the wire cross section. The critical current
is obtained as the maximum of the current phase relation (3.70) and given in units of𝐼𝑐,0 = 𝑒Δ0𝑘𝐹𝐿/4𝜋ℏ. The parameter 𝐶 describes the part of the cross section perimeter
which is covered by the superconductor. The smaller 𝐶 is, the more important the
paths with crossing number 𝑛 = ±1 are for the total current such that additional
peaks at 𝜙 = 𝜙0/4 = ℎ/4𝑒 appear.
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However, in contrast to Sriram et al. [196], the peaks of the supercurrent strictly
appear at multiples of ℎ/2𝑒, ℎ/4𝑒, ℎ/8𝑒 etc. in our case (depending on the maximum
crossing number |𝑛| with a significant contribution to the current).

Let us now focus on the periodicity of the critical current oscillations. Since the
current (3.70) is periodic in 𝜙 with a period of 𝜙0/2 = ℎ/2𝑒, the critical current is also
periodic in 𝜙with the same period. To illustrate how the peaks at 𝜙 = ℎ/4𝑒 appear, we
elaborate on the unphysical but instructive limit 𝐶 → 0. Here, only the type-3 paths
with crossing numbers 𝑛 = ±1 are left and the weight 𝐼0 vanishes, 𝐼0 = 0. The current𝐼 is (ℎ/2𝑒)-periodic in 𝜙 as above. However, it satisfies 𝐼 (𝜑0, 𝜙 + 𝜙0/4) = 𝐼(𝜑0 − 𝜋, 𝜙)
since

sin(12𝜑0 + 2𝜋 𝜙𝜙0 + 𝜋2) sgn(cos(12𝜑0 + 2𝜋 𝜙𝜙0 + 𝜋2))= − sin(12𝜑0 + 2𝜋 𝜙𝜙0 − 𝜋2) sgn(− cos(12𝜑0 + 2𝜋 𝜙𝜙0 − 𝜋2))= sin(12(𝜑0 − 𝜋) + 2𝜋 𝜙𝜙0)sgn(cos(12(𝜑0 − 𝜋) + 2𝜋 𝜙𝜙0)) (3.73)

(this can also be seen in Fig. 3.4(c)). As the critical current is obtained as the maximum
over the full interval [−𝜋, 𝜋], this results in dividing the period of the critical current
in half such that it reads ℎ/4𝑒. Then, the peak at 𝜙 = 0 implies a peak at 𝜙 = ℎ/4𝑒.

For 𝐶 > 0, these peaks remain but are less pronounced and smaller in comparison
to the peaks at 𝜙 = 0, ℎ/2𝑒, … due to the coexistence of paths with 𝑛 = ±1 and 𝑛 = 0.
This can be seen in Fig. 3.5. In particular, they vanish completely for 𝐶 ≳ 8𝐿 since
the ratio 𝐼1/𝐼0 becomes very small in this case: for 𝐶 = 8𝐿, e.g., we have 𝐼1/𝐼0 ≈ 0.41,
whereas 𝐼1/𝐼0 ≈ 0.96 for 𝐶 = 6𝐿. Thus, the “direct paths”, the type-1 paths with
crossing number 𝑛 = 0, dominate the total current more and more and the paths
with crossing numbers 𝑛 = ±1 become less and less important.

3.5.3. Implications for more realistic systems

In the last part of this Section 3.5, we want to go the other way round and address the
following question: What could someone do (for example, in an experiment) such
that the (ℎ/4𝑒)-peaks, (ℎ/8𝑒)-peaks, etc. emerge? For this, one has to ensure that the
paths with crossing numbers 𝑛 = ±1, 𝑛 = ±2, etc. become more and more important.
Especially, one has to ensure that the direct paths with crossing number 𝑛 = 0 do not
dominate. This can be done by, for example, adding barriers as defined in Eq. (3.4)
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and depicted in Fig. 3.2 which suppress their contributions. Other possibilities would
be to reduce the fraction of the cross section which is covered by the superconductor,
e.g., to only contact the top surface or one side surface instead of the top and both
side surfaces; this amounts to reducing 𝐶 as we have done in Fig. 3.5. In a real
experimental system, there are, of course, much more parameters one can tweak.
For example, one could also try to increase the carrier density and/or mobility on
the bottom surface by gating and/or doping. However, the semiclassical treatment
becomes much harder if we would try to incorporate such things.

3.6. Semiclassical model for the quadratic Hamiltonian

3.6.1. Scattering matrix of the NS interface

The scattering problem of an NS junction with a quadratic Hamiltonian similar to
Eq. (3.3) has been solved by Blonder, Tinkham, and Klapwijk [197]. The scattering
matrix reads

𝑆 = ( 𝑟𝑒𝑒 𝑟𝐴 exp(i𝜑)𝑟𝐴 exp(−i𝜑) 𝑟ℎℎ ) (3.74)

with 𝑟𝐴 = 𝑢0𝑣0𝑢20 + 𝑍2(𝑢20 − 𝑣20) = Δ0𝐸 + i(1 + 2𝑍2)(Δ20 − 𝐸2)1/2 , (3.75)

𝑟𝑒𝑒 = −(𝑍 + i)𝑍(𝑢20 − 𝑣20)𝑢20 + 𝑍2(𝑢20 − 𝑣20) = − 2i(𝑍 + i)𝑍(Δ20 − 𝐸2)1/2𝐸 + i(1 + 2𝑍2)(Δ20 − 𝐸2)1/2 , (3.76)

and 𝑟ℎℎ = −(𝑍 − i)𝑍(𝑢20 − 𝑣20)𝑢20 + 𝑍2(𝑢20 − 𝑣20) = − 2i(𝑍 − i)𝑍(Δ20 − 𝐸2)1/2𝐸 + i(1 + 2𝑍2)(Δ20 − 𝐸2)1/2 , (3.77)

where 𝑍(𝑘𝑠) = 𝑚𝑈0ℏ2𝑘𝑧(𝑘𝑠) = 𝑚ℏ2𝑈0(𝑘2𝑓 − 𝑘2𝑠 )−1/2 (3.78)

is the dimensionless barrier strength and

𝑢0 = (Δ02𝐸)1/2 exp(12i arccos( 𝐸Δ0)) (3.79)

69



Chapter 3. Topological insulator nanowire Josephson junctions

and 𝑣0 = (Δ02𝐸)1/2 exp(−12i arccos( 𝐸Δ0)) (3.80)

are the superconducting coherence factors. Note that, as expected, 𝑟𝑒𝑒 = 0 and𝑟ℎ𝑒 = exp(−i𝜑 − i arccos(𝐸/Δ0)) when there is no barrier, 𝑈0 = 0. Writing the S
matrix (3.74) as in Eq. (3.43), one gets

𝑆L/R = exp(i𝛼)( 𝑟 exp(i𝜑𝑁 ) 𝑡 exp(∓i𝜑0/2)𝑡 exp(±i𝜑0/2) −𝑟 exp(−i𝜑𝑁 )) (3.81)

with 𝛼 = arg(𝑟𝐴) = − arctan((1 + 2𝑍2)(Δ20/𝐸2 − 1)1/2), (3.82)𝑡 = |𝑟𝐴| = Δ0[𝐸2 + (1 + 2𝑍2)2(Δ20 − 𝐸2)]1/2 , (3.83)

𝑟 = |𝑟𝑒𝑒 | = (1 − 𝑡2)1/2 = 2(1 + 𝑍2)1/2𝑍(Δ20 − 𝐸2)1/2[𝐸2 + (1 + 2𝑍2)2(Δ20 − 𝐸2)]1/2 , (3.84)

and 𝜑𝑁 = arg(𝑟𝑒𝑒) − 𝛼 = − arctan(𝑍). (3.85)

The momenta read 𝑘e/h = ( 2𝑚ℏ2 (𝜇 ± 𝐸) − 𝑘2𝑠 )1/2. (3.86)

3.6.2. Andreev bound states

The ABSs for a type-𝑚 path with crossing number 𝑛 can be obtained by using the
results from Section 3.4 with the scattering matrix from Eq. (3.74). However, we
have to use appropriate values for 𝑍 for the left and right scattering matrices 𝑆L/R:
type-1 paths have a barrier at both NS interfaces such that 𝑍 is defined as in Eq. (3.78)
for both interfaces; type-2 paths have a barrier only at one NS interface such that
we have 𝑍 from Eq. (3.78) for one interface and 𝑍 = 0 for the other; type-3 paths
experience no barrier at all such that 𝑍 = 0 for both scattering matrices. As a result,
the ABSs for a type-𝑚 path with crossing number 𝑛 can be written as

𝐸𝑚,𝑛 = ±Δ0
√1 − 𝜏𝑚 sin2(12𝜑0 − 2𝜋𝑛 𝜙𝜙0), (3.87)
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3.6. Semiclassical model for the quadratic Hamiltonian

see Eqs. (3.49) and (3.55). The parameters 𝜏𝑚 are given by the results from Appendix F
and read 𝜏1 = 11 + 4𝑍2 , 𝜏2L/R = 11 + 𝑍2 , and 𝜏3 = 1, (3.88)

where the dimensionsless barrier strength 𝑍 is defined as in Eq. (3.78).
Note that 𝜏2L/R (𝜏1) amounts to the transmission through a plain 𝛿-barrier of height𝑈0 (2𝑈0) without any superconductors involved. This is in perfect agreement with

the thought experiment of Beenakker [11], where any barrier can be shifted into the
N region by an infinitesimal amount such that one is left with a clean NS interface.

Furthermore, notice that 𝜏3 = 1 implies that the ABSs take the form of Eq. (3.54),𝐸3,𝑛 = ±Δ0 cos(𝜑0/2 − 2𝜋𝑛𝜙/𝜙0).
3.6.3. Supercurrent oscillations

To investigate the supercurrent oscillations, we calculate the critical current for
realistic parameters: We take the width 𝑤 and height ℎ of the nanowire to be 𝑤 =400 nm and ℎ = 80 nm and the width of the superconducting fingers to be𝑊𝐿 = 𝑊𝑅 =1000 nm since these values are experimentally accessible [30, 133]. Furthermore, we
use 𝜇 = 30meV for the chemical potential and set ℏ2/2𝑚 = 330meVnm2 such that
the energy scales are comparable with the parameters used for the Dirac Hamiltonian
in Section 3.7. Then, the Fermi wave number is 𝑘𝐹 ≈ 0.3 nm−1 such that 𝑘𝐹𝐿 ≈ 3 to 30
for 𝐿 = 10 nm to 100 nm and the semiclassical limit is satisfied. For the induced order
parameter Δ0, we use Δ0 = 0.8meV as in Section 3.7. Then, the coherence length is𝜉 ≈ 250 nm such that taking the short junction limit is justified.

Since the paths with larger angles are less important (they are weighted withcos(𝜃) in the integral Eq. (3.10)), we introduce the cutoff 𝑛max = 1, only taking into
account paths with crossing number |𝑛| ≤ 𝑛max = 1. This is a good approximation as
the critical current does not change when setting 𝑛max to values greater than 1, see
Appendix H.

The results for the critical current are shown in Fig. 3.6 for two different lengths 𝐿.
As expected, it is (ℎ/2𝑒)-periodic with peaks at 𝜙 = 0, ℎ/2𝑒, … When the barrier
strength 𝑈0 increases, the transmissions 𝜏1,2 of type-1 and type-2 paths decrease
and, with them, the currents 𝐼1,𝑛 and 𝐼2,𝑛. This leads to a smaller current overall.
However, the current 𝐼1,0 gets less dominant, especially since the type-3 paths are
not affected by the barrier at all such that the currents 𝐼3,𝑛 stay the same. This also
means that the paths with crossing numbers 𝑛 = ±1 get more important and peaks
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Figure 3.6. Critical current of the nanowire Josephson junction from Fig. 3.2 with metal-
lic surface states for two different junction lengths 𝐿. Semiclassical results are drawn
with solid lines and belong to the left 𝑦 axis; numerical results from Michael Barth
[198] are drawn with dashed lines and belong to the right 𝑦 axis. The current oscil-
lates with a period of 𝜙0/2 = ℎ/2𝑒, but shows peaks at 𝜙0/4 = ℎ/4𝑒 when (sufficiently
large) barriers (compare Fig. 3.2) at the NS interfaces are present.
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3.6. Semiclassical model for the quadratic Hamiltonian

Table 3.2. Quotient of the critical current maxima from semiclassics divided by the max-
ima from numerics with metallic surface states for different barrier strengths 𝑈0 and
different junction lengths 𝐿. See Fig. 3.6 for the full semiclassical and numerical re-
sults. 𝑈0 = 0meVnm 𝑈0 = 100meVnm 𝑈0 = 200meVnm

for 𝐿 = 100 nm: 2.65 2.89 3.25
for 𝐿 = 16 nm: 1.85 2.66 3.25

at 𝜙 = ℎ/4𝑒, 3ℎ/4𝑒, … emerge like in Section 3.5. For very large barrier strengths, the(ℎ/4𝑒)-peaks and the (ℎ/2𝑒)-peaks are nearly equal in size meaning that the current
contributions of all paths are suppressed except for the ones from the type-3 paths
with 𝑛 = ±1.

Figure 3.6 also includes the numerical results from Michael Barth [198]. They
show the same qualitative behaviour and even share the broadening of the peaks.
However, the critical currents obtained from numerics are substantially smaller; the
quotients of the maxima from semiclassics and numerics are listed in Table 3.2. There
are several reasons for this: First and foremost, the amplitude of the ABS spectra as
obtained in the numerics is not Δ0 but, roughly estimated, Δ0/2 [198]. The reason
for this is the following: at the superconducting contacts, the perimeter also forms
an 𝑆𝑁𝑆 junction such that ABSs form at the uncovered bottom surface. Thus, the
wire at the contacts looks like there would be an “effective gap” Δeff which is smaller
than the order parameter Δ0, Δeff < Δ0. Furthermore, the issue that the semiclassical
method ignores the change of direction upon normal reflection also does not exist
in numerics. This agrees with the fact that the critical current decreases faster with
increasing barrier strength 𝑈0 in numerics than in the semiclassical calculations,
compare Table 3.2. Another reason is that numerics is not bound to the short-junction
limit but also captures the behaviour of ABSs for intermediate-length junctions. This
explains why the quotients get smaller for shorter junction lengths 𝐿 like in Table 3.2.
Similarly, the numerical results are for the finite temperature 𝑇 = 50mK which also
slightly decreases the current.

Next, we want to discuss how the plateaus arise in the semiclassical model without
barrier (𝑈0 = 0). Since 𝑈0 = 0, we also have 𝑍 = 0 such that 𝜏𝑚 = 1 and 𝐸𝑚,𝑛 =±Δ0 cos(𝜑0/2 − 2𝜋𝑛𝜙/𝜙0) for all types of paths (𝑚 denotes the type of path). Thus,
the current contributions 𝑖𝑚,𝑛 are independent of the start and end points of the

73



Chapter 3. Topological insulator nanowire Josephson junctions

0 0.25 0.5 0.75 1
magnetic flux � [�0]

6
8

cr
it

.c
ur

re
nt
I c[�A]

critical current

−� −�/2 0 �/2 �
phase di�erence '0

−7.5−5.0−2.50.0
2.55.0
7.5

cu
rr

en
t
I[�A]

current phase relation

0.00
0.05
0.10
0.15
0.20
0.25

m
ag

ne
ti

c
fl

ux
�[� 0]

Figure 3.7. Current phase relation of the nanowire Josephson junction from Fig. 3.2 with
metallic surface states without barriers at the NS interfaces for junction length 𝐿 =100 nm. The maxima are marked with circles.
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Figure 3.8. Current phase relation of the nanowire Josephson junction from Fig. 3.2 with
metallic surface states with barriers at the NS interfaces for junction length 𝐿 = 100 nm
and barrier strength 𝑈0 = 100meVnm. The maxima are marked with circles.
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trajectories such that the currents 𝐼𝑚,𝑛 are proportional to

sin(12𝜑0 − 2𝜋𝑛 𝜙𝜙0)sgn(cos(12𝜑0 − 2𝜋𝑛 𝜙𝜙0)). (3.89)

Then, the current satisfies 𝐼𝑚,𝑛(𝜑0) = 𝐼𝑚,−𝑛(−𝜑0) = −𝐼𝑚,−𝑛(𝜑0) and one has𝐼𝑚,𝑛(±𝜋) + 𝐼𝑚,−𝑛(±𝜋) = 𝐼𝑚,𝑛(±𝜋) + 𝐼𝑚,𝑛(∓𝜋) = 𝐼𝑚,𝑛(±𝜋) − 𝐼𝑚,𝑛(±𝜋) = 0 (3.90)

for any 𝑛 > 0 such that𝐼 (±𝜋) = 𝐼1,0(±𝜋) + 𝐼2,0(±𝜋) + 𝐼3,0(±𝜋) = 𝐼1,0(±𝜋). (3.91)

Now, around 𝜙 = ℎ/4𝑒 and 𝜙 = 3ℎ/4𝑒, the maximum of the current phase relation
is located at 𝜑0 = 𝜋 which is the maximum of 𝐼1,0.4 This can clearly be seen in the
current phase relation shown in Fig. 3.7. Since 𝐼1,0 is independent of the magnetic
flux 𝜙, the critical current 𝐼𝑐 = 𝐼1,0(±𝜋) is as well leading to the plateau in the critical
current. In the numerics on the other hand, the transmissions are not exactly one
since the junction length 𝐿 is slightly bigger than 0 and the temperature is also
different from zero. As a consequence, the jumps in the currents are smoothened out.
Thus, the maxima are not located directly at 𝜑0 = 𝜋 and the current contributions
from the paths with 𝑛 > 0 are small but nonzero. However, they are minimal for𝜙 = ℎ/4𝑒 and 𝜙 = 3ℎ/4𝑒 like the current 𝐼 (𝜑0, 𝜙) is also minimal in the semiclassics
for a fixed 𝜑0 slightly below 𝜋, see Fig. 3.7.

Let us now look at the current phase relation for the larger barrier strength 𝑈0 =100meVnm shown in Fig. 3.8. There, one can see that the current 𝐼1,0 does not
dominate the total current anymore but the currents 𝐼𝑛=±1 do: The maximum shifts
from 𝜑0 = 𝜋 to 𝜑0 = 0 when 𝜙 is changed from 0 to 𝜙0/4 following the maximum
of the paths with crossing numbers 𝑛 = ±1 and the current changes its sign in the
interval (0, 𝜋).
3.7. Semiclassical model for the Dirac Hamiltonian

3.7.1. Scattering matrix of the NS interface

For the Dirac Hamiltonian (3.2), the scattering matrix of an NS junction can be
calculated in the same way as done by [197] for the quadratic Hamiltonian. This is

4The current contribution 𝐼1,0 dominates the total current and the maxima of the other contributions∑𝑛≠0 𝐼𝑚,𝑛(𝜑0) are smaller.
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done in Appendix G. The elements of the scattering matrix (3.74) are given by𝑟𝐴 = 𝑢0𝑣0𝑢20 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)(𝑢20 − 𝑣20)= Δ0𝐸 + i[1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)](Δ20 − 𝐸2)1/2 , (3.92)

𝑟𝑒𝑒 = −𝑍[cos(𝜃) − i𝑍][cos(𝜃) + i sin(𝜃)] sin(𝜃)(𝑢20 − 𝑣20)(1 + 𝑍2) cos2(𝜃)𝑢20 + 𝑍2 sin2(𝜃)(𝑢20 − 𝑣20)= − 𝑍1 + 𝑍2 2i[cos(𝜃) − i𝑍][1 + i tan(𝜃)] tan(𝜃)(Δ20 − 𝐸2)1/2𝐸 + i[1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)](Δ20 − 𝐸2)1/2 , (3.93)

and 𝑟ℎℎ = −𝑍[cos(𝜃) + i𝑍][cos(𝜃) − i sin(𝜃)] sin(𝜃)(𝑢20 − 𝑣20)(1 + 𝑍2) cos2(𝜃)𝑢20 + 𝑍2 sin2(𝜃)(𝑢20 − 𝑣20)= − 𝑍1 + 𝑍2 2i[cos(𝜃) + i𝑍][1 − i tan(𝜃)] tan(𝜃)(Δ20 − 𝐸2)1/2𝐸 + i[1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)](Δ20 − 𝐸2)1/2 , (3.94)

where 𝜃 = arctan(𝑘𝑦𝑘𝑧) = arctan( 𝑘𝑦[𝜇2(ℏ𝑣𝐹 )−2 − 𝑘2𝑦]1/2) (3.95)

is the angle of incidence and

𝑍 = 𝑈0ℏ𝑣𝐹 (3.96)

the dimensionless barrier strength.
Using the parameterization of Eqs. (3.43) and (3.81), one has𝛼 = arg(𝑟𝐴) = − arctan([1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)](Δ20/𝐸2 − 1)1/2), (3.97)𝑡 = |𝑟𝐴| = Δ0{𝐸2 + [1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)]2(Δ20 − 𝐸2)}1/2 , (3.98)

𝑟 = 2𝑍(1 + 𝑍2)−1/2 tan(𝜃)[1 + 𝑍2(1 + 𝑍2)−1 tan2(𝜃)]1/2(Δ20 − 𝐸2)1/2{𝐸2 + [1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)]2(Δ20 − 𝐸2)}1/2 (3.99)

and 𝜑𝑁 = 2 arctan( cos(𝜃) + 𝑍 tan(𝜃)𝑍 − sin(𝜃) − [1 + 𝑍2 + 𝑍2 tan2(𝜃)]1/2). (3.100)

77



Chapter 3. Topological insulator nanowire Josephson junctions

Note that 𝑟 can become negative in this expression. Using ordinary polar form, one
would have to write

𝑟 = 2𝑍(1 + 𝑍2)−1/2|tan(𝜃)|[1 + 𝑍2(1 + 𝑍2)−1 tan2(𝜃)]1/2(Δ20 − 𝐸2)1/2{𝐸2 + [1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)]2(Δ20 − 𝐸2)}1/2 (3.101)

and𝜑𝑁 = 𝜋Θ(−𝑍 tan(𝜃)) + 2 arctan( cos(𝜃) + 𝑍 tan(𝜃)𝑍 − sin(𝜃) − [1 + 𝑍2 + 𝑍2 tan2(𝜃)]1/2). (3.102)

3.7.2. Andreev bound states

The calculation of the ABS is also similar to Section 3.6.2. They can again be written
in the form of Eq. (3.87), where in this case, the 𝜏𝑚 read

𝜏1 = 1sin2(𝜑𝑁 ) + [1 + 2𝑍2(1 + 𝑍2)−1 tan2(𝜃)]2 cos2(𝜑𝑁 ) , (3.103)𝜏2 = 11 + 𝑍2(1 + 𝑍2)−1 tan2(𝜃) , (3.104)

and 𝜏3 = 1. (3.105)

In contrast to the results of Section 3.6.2 for the quadratic Hamiltonian (3.3), the pa-
rameters 𝜏1,2 directly depend on the angle of incidence 𝜃, whereas the dimensionless
barrier strength is independent of 𝜃.

3.7.3. Supercurrent oscillations

For investigating the oscillations of the critical current, we look at systems with the
following parameters: The width 𝑤 and height ℎ of the wire cross section are set to𝑤 = 300 nm and ℎ = 80 nm, the Junction length 𝐿 to 𝐿 = 200 nm, and the widths of
the superconducting fingers to 𝑊𝐿 = 𝑊𝑅 = 1000 nm. These dimensions match the
experimental values [30, 133]. For the Fermi velocity, we use ℏ𝑣𝐹 = 330meVnm cor-
responding to HgTe nanowires [101, 133]. The chemical potential is set to 𝜇 = 30meV
which is large enough to agree with experiments (in experiments, the chemical po-
tential is typically quite far in the conduction band) but small enough to be treatable
in numerical calculations we want to compare our results to. With these values,
the Fermi wave number is 𝑘𝐹 ≈ 0.09 nm−1; since 𝑘𝐹𝐿 ≈ 18, we are indeed in the
semiclassical limit. The superconducting order parameter Δ0 is set to Δ0 = 0.8meV;
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Figure 3.9. Critical current of the 3D TI nanowire Josephson junction from Fig. 3.2 with
effective Dirac surface states. Semiclassical results are drawn with solid lines and
belong to the left 𝑦 axis; numerical results from Michael Barth [198] are drawn with
dashed lines and belong to the right 𝑦 axis. The current oscillates with a period
of 𝜙0/2 = ℎ/2𝑒, but shows peaks at 𝜙0/4 = ℎ/4𝑒 when (sufficiently large) barriers
(compare Fig. 3.2) at the NS interfaces are present.

this is in line with the experimental estimation 0.22meV ≤ Δ0 ≤ 0.95meV of Fischer
et al. [30]. Thus, the coherence length reads 𝜉 ≈ 400 nm such that taking the short
junction limit is justified.

As in the previous Section, we use 𝑛max = 1 and ignore all paths with crossing
number |𝑛| > 1; including them does not lead to big improvements, see Appendix H.

The critical current is shown in Fig. 3.9. Qualitatively, it looks very similar to the
critical current obtained for the surface states with a quadratic dispersion. However,
there is one difference which stands out: The (ℎ/4𝑒)-peaks also exist for 𝑈0 = 0
and vanish when increasing the barrier strength initially. This behaviour is not
reproduced in the numerics. Let us first discuss why we see this feature in the
semiclassical results and afterwards why they deviate from the numerical results.

Figure 3.10 shows the current contributions 𝐼𝑚,𝑛 for different barrier strengths 𝑈0,
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Table 3.3. Quotient of the critical current maxima from semiclassics divided by the max-
ima from numerics with Dirac surface states for different barrier strengths 𝑈0. See
Fig. 3.9 for the full semiclassical and numerical results.𝑈0 = 0meVnm 𝑈0 = 100meVnm 𝑈0 = 300meVnm 𝑈0 = 600meVnm2.60 2.69 2.94 5.05
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Figure 3.10. Current contributions of the 3D TI nanowire Josephson junction with effec-
tive Dirac surface states for different barrier strengths 𝑈0. The magnetic flux 𝜙 through
the cross section is set to 𝜙 = 𝜙0/4 = ℎ/4𝑒. The current 𝐼1,0 is only slightly affected
by the barrier as they posses a small angle of incidence 𝜃; the currents 𝐼1,±1 and 𝐼2,±1
decrease strongly as expected, whereas the currents 𝐼3,±1 do not change at all as the
type-3 paths are not affected by the barrier.
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where the magnetic flux 𝜙 is fixed to 𝜙 = 𝜙0/4. When there is no barrier, 𝑈0 = 0, the
currents of the type-2 and type-3 paths are nearly as large as the current of the type-1
paths with 𝑛 = 0 and, summed up, the paths with 𝑛 = ±1 contribute a larger current
than the type-1 paths with 𝑛 = 0. Therefore, the critical current around 𝜙 = 𝜙0/4
is dominated by those paths, leading to the (ℎ/4𝑒)-peaks. In addition to that, one
notices that the contributions from the type-1 paths with crossing number 𝑛 = 0 are
only slightly affected by the barrier: These paths have a very small angle of incidence𝜃 such that the transmissions 𝜏1 are nearly one, see Eqs. (3.103) and (3.104) (for 𝜃 = 0,
one has even 𝜏1 = 1). The type-1 and type-2 paths with crossing number 𝑛 = ±1 on
the other hand, are stronger affected by the barrier. While their contributions are
substantial for vanishing barriers (𝑈0 = 0), they become unimportant very fast such
that the (ℎ/4𝑒)-peaks vanish. The contributions from the type-3 paths, however, are
smaller but unaffected by the barriers such that they gain importance for very large
barrier strengths 𝑈0 and are responsible for the emergence of the (ℎ/4𝑒)-peaks when𝑈0 is increased again.

As already discussed in Section 3.6.3, numerics also respects the finite, nonzero
junction length 𝐿 and the nonzero temperature. Now, type-3 and type-2 paths are
typically longer than type-1 paths and paths with crossing number 𝑛 = ±1 are
typically longer than paths with 𝑛 = 0. Therefore, we expect these paths to contribute
less to the current than in the semiclassics. In turn, the current 𝐼1,0 becomes more
dominant preventing the (ℎ/4𝑒)-peaks for small barrier strengths 𝑈0.

Last, we want to look at the current phase relation shown in Fig. 3.11. The results
look smiliar to the previous results for the surface states with a quadratic dispersion
(see Section 3.6.3). However, the type-1 and type-2 paths have a finite transmission𝜏1,2 ≠ 1 (whenever 𝜃 ≠ 0 and 𝑈0 ≠ 0). This has the consequence that there are no
jumps in the currents 𝐼1,𝑛 and 𝐼2,𝑛. Therefore, the jumps at 𝜙 = ±𝜋 vanish as well5

which can be seen in Fig. 3.10.

Concluding remarks

Our findings presented in Sections 3.5 to 3.7 suggest that the (ℎ/4𝑒)-peaks are caused
by paths winding around the perimeter (i.e., the paths with crossing number 𝑛 = ±1)
which pick up an Aharonov-Bohm phase. Since these peaks are also present for
topologically trivial surfaces states with a quadratic dispersion, see Section 3.6, we
conclude that this effect is of geometrical and not of topological origin.

5For 𝜙 = 0, ℎ/2𝑒, …, the jumps at 𝜙 = ±𝜋 still exist due to 𝐼3,𝑛, but are much less pronounced.
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Figure 3.11. Current phase relation of the 3D TI nanowire Josephson junction from
Fig. 3.2 with effective Dirac surface states for barrier strength 𝑈0 = 600meVnm. The
maxima are marked with circles.
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Concluding remarks

Looking at the experimentally measured critical current in Fig. 3.1(c), one notices
an overall decrease for increasing magnitute of the parallel magnetic field. This
behaviour is not captured in the analytical and numerical results of Figs. 3.6 and 3.9.
We attribute this to the fact that the proximity induced superconductivity is slowly
destroyed with increasing magnetic field [compare 164].
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Conclusion

To conclude this thesis, let us briefly summarize what was done and review our key
results.

In the first Chapter, we investigated superconducting bilayer graphene (SBLG)
with a chemisorbed adatom. Such systems can exhibit subgap states called Yu-Shiba-
Rusinov (YSR) states. We calculated the Green’s function of SBLG, the 𝑇 matrix of the
full system including the adatom, and, from that, the energies of the subgap states.
Due to using realistic parameters for a chemisorbed hydrogen atom, we confirmed the
existence of YSR states in such systems. Furthermore, we investigated the YSR state
spectrum in dependence of the chemical potential 𝜇 and the exchange coupling 𝐽 .
Since YSR states have already been measured in graphene grain boundaries, our
findings propose that one can detect such YSR states in SBLG in actual experiments,
for example by measuring the local density of states. Furthermore, they show that it
is worth to further investigate graphene systems with adatoms as discussed below.

Chapters 2 and 3 dealt with 3D topological insulator (TI) nanowires, which received
a lot of experimental research in the last years. They exhibit surface states and an
insulating bulk such that one can restrict oneself to a model for the surface states
alone.

In Chapter 2, we proposed a T junction device—made from 3D TI nanowires, where
the T arm is proximitized by an 𝑠-wave superconductor—as a platform for observing
crossed Andreev reflection (CAR). This is interesting since the reversed process of
CAR, Cooper pair splitting, can be used to generate entangled electrons. We ex-
amined the T junction working principle and established the occurence of CAR in
such systems. A 2D surface model allowed the numerical simulation of its trans-
port behavior by calculating transmission coefficients and conductances. The results
contain the signatures of CAR, for example by displaying a negative nonlocal conduc-
tance. The single-mode regime renders perfect CAR over a large range of chemical
potentials, but a magnetic field parallel to the T arm can be used to switch between
electron transmission (T) and CAR. Comparison with (numerically more demanding)
3D calculations of Michael Barth shows agreement regarding the physical properties.
This T junction device is within experimental reach (we used realistic parameters for
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our calculations) such that it makes up for an experimental proposal for clear-cut
observation of CAR and negative nonlocal conductance.

The final Chapter deals with Josephson junctions made from 3D TI nanowires by
adding 𝑠-wave superconductor contacts on top of them. In order to explain experi-
mental findings, where the critical current exhibits maxima at multiples of ℎ/4𝑒, we
proposed a model, where the bottom part of the wire, which is not in contact with
the superconductor, is not proximitized, meaning that the superconducting pairing
potential Δ is zero in these regions. The current phase relation and critical current
have been calculated semiclassically by dissection into the different classical trajec-
tories. This showed that the paths responsible for the (ℎ/4𝑒)-peaks are the ones
winding once around the perimeter and, thus, picking up an Aharonov-Bohm phase.
Using different Hamiltonians for the surface states revealed that the (ℎ/4𝑒)-peaks
are a more universal geometrical effect of wires exhibiting surface transport with an
insulating bulk—in other words, the topological origin is not necessary to observe
such supercurrent oscillations in experiments. To the best of our knowledge, such
geometrical phenomena have not been discussed previously in these nanowires.

Finally, let us think about possible research directions for the future.
In Chapter 1, we used Bernal stacked BLG in proximity to a superconductor. How-

ever, recent experiments reported superconductivity in magic-angle twisted bilayer
graphene [199–201], twisted trilayer graphene [202, 203] and even untwisted rhom-
bohedral trilayer graphene [204]. It is interesting to find out whether YSR states
also appear in these systems, since these could be observed in experiments with-
out the need of a superconducting substrate for introducing superconductivity. In
twisted multilayer graphene, there are lots of different positions for the adatom to
be chemisorbed at such that the position dependence of the YSR states promises to
provide much richer physics than in untwisted multilayer graphene.

Besides, chains of magnetic adatoms on superconducting substrates have gained
attraction as they might exhibit topological superconductivity and Majorana zero
modes [16, 37]. Thus, it would be interesting to search for these phenomena in chains
of (nonmagnetic) adatoms on SBLG or magic-angle twisted BLG.

Note that the 2D surface model used to describe the T junction of Chapter 2 can
be improved further—the anisotropy of Bi2Se3, for example, has not been captured
in our approach. Likewise, the model for the Josephson junction in Chapter 3 can be
improved by including the finite length and finite temperature effects. However, we
think that these improvements will not reveal any new physical effects. Regarding
the Josephson junction, it would be much more intriguing to get a better grasp on
the quantum mechanical effects of such systems, although the complex geometry
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of the partial superconductivity renders the analytical description very difficult. For
example, the superconductors should lead to the formation of Andreev bound states
(ABSs) in azimuthal direction in the uncontacted bottom part. In principle, this could
phenomenologically be described by introducing an effective pairing potential Δeff,
but a deeper physical insight is still due. Also, the dependence of the superconducting
gap on the magnetic field and the decay of the critical current for larger fields are
not yet well described and can be improved.

Regarding the T junction device, experimental realization and measurement of
the CAR and nonlocal conductance to confirm our theoretical findings is of great
interest. Another step would be to integrate our proposed system into a larger
quantum circuit to perform quantum information experiments. For example, one
could operate the T junction as a Cooper pair splitter and measure the correlations
between the split electrons to determine whether these electrons violate Bell (or
“Bell-type”) inequalities [205].

Additional experimental research on the Josephson junctions is also needed. Mea-
surements of the current phase relation can reveal secondary maxima and, thus,
provide a test for the explanation of the (ℎ/4𝑒)-peaks we proposed.

Recently, there has been substantial effort to realize Majorana fermions in solid
state systems [20, 21, 206]. Although evidence of their existence has been reported
in several experiments [e.g. 30, 207–211], a clear “smoking gun” experiment is still
missing and the subject is under heavy debate [212–214]. As Majorana zero modes
have been predicted to exist in 3D TI nanowires [28, 29, 215], these wires can provide
a platform to search for further signatures of Majorana zero modes both in theory
and experiment. This is necessary for additional steps in utilizing Majorana fermions
for quantum computing.
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Appendix A. Integral representations of 𝑔̃0
The integral representations of all matrix elements of 𝑔̃0, cf. Section 1.3.3, are given
by (𝑧 = 𝜉 + 𝜇)

(𝑔̃0)11 ≈ 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(i𝒌 ⋅ (𝑹 − 𝑹′)) 𝑧(𝑧2 − 𝛾20 |𝑓 (𝒌)|2)(𝑧2 − 𝛾20 |𝑓 (𝒌)|2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 (𝒌)|2 + 𝑧𝛾1) , (A.1)

(𝑔̃0)12 ≈ − 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′ − 𝜹1)) (𝑧2 − 𝛾20 |𝑓 |2)𝛾0𝑓(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) , (A.2)

(𝑔̃0)13 ≈ − 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′ + 𝜹1)) 𝑧𝛾1𝛾0𝑓 ∗(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) , (A.3)

(𝑔̃0)14 ≈ 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′)) 𝑧2𝛾1(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) , (A.4)

(𝑔̃0)21 ≈ − 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′ + 𝜹1)) (𝑧2 − 𝛾20 |𝑓 |2)𝛾0𝑓 ∗(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) , (A.5)

(𝑔̃0)22 ≈ 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′)) 𝑧(𝑧2 − 𝛾20 |𝑓 |2 − 𝛾21 )(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) , (A.6)

(𝑔̃0)23 ≈ 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′ + 2𝜹1)) 𝛾1𝛾20 (𝑓 ∗)2(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) , (A.7)

(𝑔̃0)31 ≈ − 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′ − 𝜹1)) 𝑧𝛾1𝛾0𝑓(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) , and (A.8)

(𝑔̃0)32 ≈ 𝑉0(2𝜋)2 ∫1BZ
d2𝒌 exp(−i𝒌 ⋅ (𝑹 − 𝑹′ − 2𝜹1)) 𝛾1𝛾20 𝑓 2(𝑧2 − 𝛾20 |𝑓 |2 − 𝑧𝛾1)(𝑧2 − 𝛾20 |𝑓 |2 + 𝑧𝛾1) . (A.9)

The other matrix elements are determined by the relations(𝑔̃0)24 = (𝑔̃0)13, (A.10)
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(𝑔̃0)33 = (𝑔̃0)22, (𝑔̃0)34 = (𝑔̃0)12, (A.11)(𝑔̃0)41 = (𝑔̃0)14, (𝑔̃0)42 = (𝑔̃0)31, (A.12)(𝑔̃0)43 = (𝑔̃0)21, and (𝑔̃0)44 = (𝑔̃0)11. (A.13)

Appendix B. Some useful mathematical identities

Approximation of 𝑓
Since ±𝑲 ⋅ 𝜹1 = 0, ±𝑲 ⋅ 𝜹2 = ∓2𝜋/3, and ±𝑲 ⋅ 𝜹3 = ±2𝜋/3, the function 𝑓 can be
approximated by

𝑓 (±𝑲 + 𝒒) = exp(−i𝑎|𝒒|√3 cos(𝜑𝒒 − 𝜋2 ))+ exp(±i2𝜋3 ) exp(−i𝑎|𝒒|√3 cos(𝜑𝒒 − 𝜋2 − 2𝜋3 ))+ exp(∓i2𝜋3 ) exp(−i𝑎|𝒒|√3 cos(𝜑𝒒 − 𝜋2 − 4𝜋3 ))= 1 − i 𝑎|𝒒|√3 cos(𝜑𝒒 − 𝜋2 ) + 𝑂((𝑎|𝒒|)2)+ [− 12 ± i√32 ] [1 + i 𝑎|𝒒|2√3 cos(𝜑𝒒 − 𝜋2 ) − i 𝑎|𝒒|2 sin(𝜑𝒒 − 𝜋2 ) + 𝑂((𝑎|𝒒|)2)]+ [− 12 ∓ i√32 ] [1 + i 𝑎|𝒒|2√3 cos(𝜑𝒒 − 𝜋2 ) + i 𝑎|𝒒|2 sin(𝜑𝒒 − 𝜋2 ) + 𝑂((𝑎|𝒒|)2)]= ∓3𝑎|𝒒|2√3 exp(±i𝜑𝒒) + 𝑂((𝑎|𝒒|)2). (B.1)

Partial fraction decompositions
One has the following partial fraction decompositions:

1(𝑧̃2+ − 𝑞2)(𝑧̃2− − 𝑞2) = 1𝑧̃2+ − 𝑧̃2−( 1𝑧̃2− − 𝑞2 − 1𝑧̃2+ − 𝑞2) (B.2)

and 𝑞2(𝑧̃2+ − 𝑞2)(𝑧̃2− − 𝑞2) = 1𝑧̃2+ − 𝑧̃2−( 𝑧̃2−𝑧̃2− − 𝑞2 − 𝑧̃2+𝑧̃2+ − 𝑞2). (B.3)
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Calculation of the integrals
Since one has to be careful with the branch cut, we split the integrand into real and
imaginary part. With 𝑧 = 𝑎 + i𝑏, 𝑎, 𝑏 ∈ 𝐑,

𝐼1(𝑧, 𝑞) = ∫ d𝑞 𝑞𝑧2 − 𝑞2= 12 ∫ d𝑞 ( 𝑎 − i𝑏 − 𝑞(𝑎 − 𝑞)2 + 𝑏2 − 𝑎 − i𝑏 + 𝑞(𝑎 + 𝑞)2 + 𝑏2)= −14 ln((𝑎 − 𝑞)2 + 𝑏2) + 12i arctan(𝑎 − 𝑞𝑏 )− 14 ln((𝑎 + 𝑞)2 + 𝑏2) + 12i arctan(𝑎 + 𝑞𝑏 )= −14 ln([Re(𝑧2) − 𝑞2]2 + [Im(𝑧2)]2)+ 12i arctan(𝑎 − 𝑞𝑏 ) + 12i arctan(𝑎 + 𝑞𝑏 ) (B.4)

since 𝜕𝜕𝑞 ln((𝑎 ± 𝑞)2 + 𝑏2) = ± 2(𝑎 ± 𝑞)(𝑎 ± 𝑞)2 + 𝑏2 (B.5)

and 𝜕𝜕𝑞 arctan(𝑎 ± 𝑞𝑏 ) = ± 𝑏(𝑎 ± 𝑞)2 + 𝑏2 . (B.6)

Similarly,

𝐼3(𝑧, 𝑞) = ∫ d𝑞 𝑞3𝑧2 − 𝑞2 = −∫ d𝑞 (𝑞 − 𝑧2𝑞𝑧2 − 𝑞2) = −12𝑞2 + 𝑧2𝐼1(𝑧, 𝑞). (B.7)
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Appendix C. Numerical implementation and finite
difference method

Finite difference method
As mentioned above, the finite difference method gives a possibility to convert the
low-energy continuous models to tight-binding models. Let us demonstrate this
method in one dimension. On a lattice with lattice spacing 𝑎 (where 𝑥𝑖 = 𝑥0 + 𝑖𝑎),
one can approximate the derivatives by the following finite differences:

𝜕𝑥𝜓(𝑥𝑖) ≈ 12𝑎(𝜓(𝑥𝑖+1) − 𝜓(𝑥𝑖−1)) (C.1)

and 𝜕2𝑥𝜓(𝑥𝑖) ≈ 1𝑎2 (𝜓(𝑥𝑖+1) − 2𝜓(𝑥𝑖) + 𝜓(𝑥𝑖−1)). (C.2)

Thus, the operators 𝑘̂𝑥 and 𝑘̂2𝑥 translate to

𝑘̂𝑥 → − i2𝑎 ∑𝑖 (|𝑥𝑖+1⟩⟨𝑥𝑖| − |𝑥𝑖⟩⟨𝑥𝑖+1|) (C.3)

and 𝑘̂2𝑥 → 1𝑎2 ∑𝑖 (−2|𝑥𝑖⟩⟨𝑥𝑖| + |𝑥𝑖+1⟩⟨𝑥𝑖| + |𝑥𝑖⟩⟨𝑥𝑖+1|). (C.4)

Fermion doubling
Note that this method has one major drawback: Due to the Nielsen-Ninomiya the-
orem [216–218], a second Dirac cone appears at the edge of the Brillouin zone—a
phenomenon known as fermion doubling [see, e.g., 161, 219]. There exist several
proposals how to deal with this [e.g. 219–225]. The most simple of them is the fol-
lowing [161]: Use an even number of lattice points and divide the resulting transport
coefficients by a factor of two (or by a factor of four for 2D systems). This works as
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long as there is no scattering between the two Dirac cones. Another method consists
of adding an additional mass term to the Hamiltonian [219–221]:𝐻𝒏̂ = ℏ𝑣𝐹 (𝝈 × 𝒌̂) ⋅ 𝒏̂ − 𝜇 − 14𝐸bc𝑎2(𝒌̂2 − (𝒌̂ ⋅ 𝒏̂)2)(𝝈 ⋅ 𝒏̂) (C.5)

so that, for example,𝐻𝒛̂ = ℏ𝑣𝐹 (𝑘̂𝑦𝜎𝑥 − 𝑘̂𝑥𝜎𝑦) − 𝜇 − 14𝐸bc𝑎2(𝑘̂2𝑥 + 𝑘̂2𝑦)𝜎𝑧 . (C.6)

This introduces a gap of 𝐸bc to the spurious Dirac cones.

Peierls substitution
In tight-binding simulations, the minimal coupling 𝒌̂ → 𝒌̂ + 𝑒𝑨/ℏ fails. Instead,
one has to apply the Peierls substitution [226] to include magnetic fields. Then,
any hopping 𝑡𝑖,𝑗 from 𝒙𝑖 to 𝒙𝑗 is multiplied by a phase factor related to the vector
potential 𝑨: 𝑡𝑖,𝑗 → 𝑡𝑖,𝑗 exp(−i 𝑒ℏ ∫ 𝒙𝑗𝒙𝑖 d𝒍 ⋅ 𝑨). (C.7)

Geometrical layout of the tight-binding system
When defining the tight-binding system in the numerical calculations, it is best to roll
out the two nanowire surfaces and use a square grid for both of them. The periodic
boundary conditions connect the edges of the slabs from the rolled out nanowire;
hoppings between the two grids glue the two nanowires together.

Matching conditions
Let us now look at one edge of a rolled out nanowire to investigate how the match-
ing conditions modify the finite differences. Let 𝑠 be the coordinate perpendicular
to this edge and 𝑠𝑘 its position. Then, the matching condition reads 𝜓𝒏̂1(𝑠𝑘+1) =𝑈𝒏̂1𝒏̂2𝜓𝒏̂2(𝑠𝑘+1). The finite difference at the edge gives

𝜕𝑥𝜓𝒏̂1(𝑠𝑘) ≈ 12𝑎(𝜓𝒏̂1(𝑠𝑘+1) − 𝜓𝒏̂1(𝑠𝑘−1)) = 12𝑎(𝑈 †̂𝒏2𝒏̂1𝜓𝒏̂2(𝑠𝑘+1) − 𝜓𝒏̂1(𝑠𝑘−1)) (C.8)

which means that the edge hoppings have to be mutliplied by 𝑈𝒏̂1𝒏̂2 and 𝑈 †̂𝒏1𝒏̂2 , re-
spectively: When 𝑡𝑘,𝑘−1 = −(i/2𝑎)ℏ𝑣𝐹𝜎𝑛, the edge hoppings read

𝑡𝑘+1,𝑘 = − i2𝑎ℏ𝑣𝐹𝜎𝑛𝑈 †̂𝒏2𝒏̂1 and 𝑡𝑘,𝑘+1 = i2𝑎ℏ𝑣𝐹𝑈𝒏̂2𝒏̂1𝜎𝑛. (C.9)
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Appendix D. Alternative derivation of the
superconducting phase

In this Appendix, we want to show an alternative derivation of the magnetic field-
dependence of the superconducting phase 𝜑 from Eq. (3.7) using the Ginzburg-Landau
theory.

First, note that the order parameter is proportional to the Ginzburg-Landau wave-
function 𝜓 [4, p. 111]. Neglegting the contributions of the normal state, the free
energy density 𝑓 reads𝑓 = 𝛼|𝜓|2 + 12𝛽|𝜓|4 + 12𝑚|(−iℏ∇ − 2𝑒𝑨)𝜓|2. (D.1)

Separating the absolute value and phase of the wavefunction, one can write 𝜓 =𝜓0 exp(i𝜑) where 𝜓0 = |𝜓|, such that𝑓 = 𝛼𝜓20 + 12𝛽𝜓40 + 12𝑚[ℏ2(∇𝜓0)2 + (ℏ∇𝜑 − 2𝑒𝑨)2𝜓20]. (D.2)

Assuming a constant order parameter, 𝜓0 = const, the free energy becomes mini-
mal when the term (ℏ∇𝜑 − 2𝑒𝑨) is zero [see also 227, 228]. Note that this term is
proportional to the electric current density𝒋𝑆 = 2𝑒𝑚 Re(𝜓∗(−iℏ∇ − 2𝑒𝑨)𝜓) = −2𝑒𝑛𝑆𝑚 (ℏ∇𝜑 − 2𝑒𝑨) (D.3)

where 𝑛𝑆 is the superconducting density such that our argumentation in Section 3.2
that there is no supercurrent is valid. In our case, this means∇𝜑 = 2𝑒ℏ 𝑨 = 𝑒ℏ𝐵𝑟𝒆𝑠 (D.4)

which is satisfied by 𝜑 = 𝑒ℏ𝐵𝑟2 2𝜋𝑠𝑃 = 4𝜋 𝜙𝜙0 𝑠𝑃 (D.5)

for a cylindrical nanowire.
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Appendix E. Unitary transformation of the Hamiltonian

For any operators 𝑎 and 𝑏, one has[𝑎, 𝑏𝑛] = ∑𝑘<𝑛 𝑏𝑛−𝑘−1[𝑎, 𝑏]𝑏𝑘 . (E.1)

This implies that [𝑎, exp(𝛽𝑏)] = ∑𝑛 1𝑛! [𝑎, (𝛽𝑏)𝑛] = 𝛽[𝑎, 𝑏] exp(𝛽𝑏) (E.2)

for any complex number 𝛽 whenever [𝑎, 𝑏] and 𝑏 commute with each other.
To prove that the unitary transformation (3.8) indeed fulfills 𝑈(𝜙)𝐻(𝜙)𝑈†(𝜙) =𝐻(0), it is sufficient to show thatexp(±2𝜋i 𝑠𝑃 𝜙𝜙0)ℎe/h(𝜙) exp(∓2𝜋i 𝑠𝑃 𝜙𝜙0) = ℎe/h(0). (E.3)

This, in turn, holds ifexp(±2𝜋i 𝑠𝑃 𝜙𝜙0)(𝑘̂𝑠 ± 2𝜋𝑃 𝜙𝜙0)exp(∓2𝜋i 𝑠𝑃 𝜙𝜙0) = 𝑘̂𝑠 . (E.4)

Since 𝑘̂𝑠 and 𝑠 do not commute with each other but satisfy [𝑠, 𝑘̂𝑠] = i due to the
canonical commutation relations, we can use Eq. (E.2) to obtain

exp(±2𝜋i 𝑠𝑃 𝜙𝜙0)(𝑘̂𝑠 ± 2𝜋𝑃 𝜙𝜙0)exp(∓2𝜋i 𝑠𝑃 𝜙𝜙0)= (𝑘̂𝑠 ± 2𝜋𝑃 𝜙𝜙0) + exp(±2𝜋i 𝑠𝑃 𝜙𝜙0)[𝑘̂𝑠 , exp(∓2𝜋i 𝑠𝑃 𝜙𝜙0)]= (𝑘̂𝑠 ± 2𝜋𝑃 𝜙𝜙0) + exp(±2𝜋i 𝑠𝑃 𝜙𝜙0)(∓2𝜋 1𝑃 𝜙𝜙0)exp(∓2𝜋i 𝑠𝑃 𝜙𝜙0)= 𝑘̂𝑠 (E.5)

which completes our proof. Finally, the boundary condition (3.9) follows from

𝑈(𝑠 + 𝑃)Ψ(𝑠 + 𝑃) = ∓𝑈(𝑃)𝑈(𝑠)Ψ(𝑠) = ∓ exp(2𝜋i 𝜙𝜙0 𝜏𝑧)𝑈(𝑠)Ψ(𝑠) (E.6)

where the upper (lower) sign is for the Dirac (quadratic) Hamiltonian.
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Appendix F. Andreev bound states for imperfect
interfaces

Here, we derive the form of the ABS when one or both NS interfaces of the Joseph-
son junction are imperfect. We assume that the Andreev reflection phase and the
reflection amplitude are energy dependent via

𝛼 = − arctan(𝐴(Δ20/𝐸2 − 1)1/2) and 𝑟2 = Δ20𝐸2 + 𝐴2(Δ20 − 𝐸2) (F.1)

and that the normal reflection phase does not depend on the energy. This corre-
sponds to the scattering matrices from Sections 3.6 and 3.7. Furthermore, we restrict
ourselves to the short junction limit 𝐿 → 0.

F.1. Two imperfect interfaces

When there are two imperfect interfaces (sharing the same scattering matrix), the
subgap equation readscos(2𝛼) = (1 − 𝑟2) cos(2𝜑𝑁 ) + 𝑟2 cos(𝜑0) (F.2)

as derived in Section 3.4, see Eq. (3.52). After inserting 𝛼 and 𝑟2 from Eq. (F.1) and
multiplying with 𝐸2 + 𝐴2(Δ20 − 𝐸2), one arrives at𝐸2 − 𝐴2(Δ20 − 𝐸2) = [𝐸2 + 𝐴2(Δ20 − 𝐸2) − Δ20] cos(2𝜑𝑁 ) + Δ20 cos(𝜑0). (F.3)

Solving this equation for 𝐸2 leads to the ABSs

𝐸 = ±Δ0
√1 − sin2(𝜑0/2)sin2(𝜑𝑁 ) + 𝐴2 cos2(𝜑𝑁 ) (F.4)

which corresponds to the results of Eq. (3.55) with 𝜏 = sin2(𝜑𝑁 ) + 𝐴2 cos2(𝜑𝑁 ).
F.2. One imperfect interface

When there is one imperfect and one clean interface, the clean one is described by𝛼′ = − arccos(𝐸/Δ0) and 𝑟 = 0. The subgap equation following from Eq. (3.58) readscos(𝛼 + 𝛼′) = cos(𝛼) cos(𝛼′) − sin(𝛼) sin(𝛼′) = 𝑟 cos(𝜑0). (F.5)
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Restricting to 𝐸 > 0 (which is allowed since the scattering matrix is also derived for
this case), one can derive the equation𝐸2 − 𝐴(Δ20 − 𝐸2) = Δ20 cos(𝜑0). (F.6)

Thus, the ABS read

𝐸 = ±Δ0√1 − 2 sin2(𝜑0/2)1 + 𝐴 (F.7)

which, again, corresponds to Eq. (3.55) with 𝜏 = (1 + 𝐴)/2.

Appendix G. Scattering matrix of a TI NS junction

In this Appendix, we derive the scattering matrix from Section 3.7.1 of an NS interface
with a Dirac Hamiltonian. Such a system can be described by the Hamiltonian𝐻 = (ℎ𝑒 ΔΔ∗ −ℎ∗𝑒) , ℎ𝑒 = ℏ𝑣𝐹 (𝑘𝑥𝜎𝑥 + 𝑘𝑦𝜎𝑦) − 𝜇 + 𝑈0𝛿(𝑥), (G.1)

where Δ = Δ0 exp(i𝜑)Θ(𝑥), (G.2)

such that the superconductor covers the 𝑥 > 0 half-plane. We restrict ourselves to
the subgap regime |𝐸| ≤ Δ0 and to the case of positive energies 𝐸 > 0.

G.1. Scattering states

The incoming and outgoing scattering states are denoted byΨin andΨout, respectively,
and read Ψin = 𝑎𝑒(2𝜋ℏ𝑣𝑒)−1/2 exp(i𝑘𝑒𝑥 + i𝑘𝑦𝑦)(𝜒𝑒,𝑟0 )+ 𝑎ℎ(2𝜋ℏ𝑣ℎ)−1/2 exp(−i𝑘ℎ𝑥 + i𝑘𝑦𝑦)( 0𝜒h,r) (G.3)

and Ψout = 𝑏𝑒(2𝜋ℏ𝑣𝑒)−1/2 exp(−i𝑘𝑒𝑥 + i𝑘𝑦𝑦)(𝜒e,l0 )+ 𝑏ℎ(2𝜋ℏ𝑣ℎ)−1/2 exp(i𝑘ℎ𝑥 + i𝑘𝑦𝑦)( 0𝜒h,l) . (G.4)
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Their momenta are given by𝑘𝑒 = [(𝐸 + 𝜇)2(ℏ𝑣𝐹 )−2 − 𝑘2𝑠 ]1/2 and 𝑘ℎ = [(𝐸 − 𝜇)2(ℏ𝑣𝐹 )−2 − 𝑘2𝑠 ]1/2, (G.5)

their group velocities by𝑣𝑒 = 𝑣𝐹 [1 − ℏ2𝑣2𝐹𝑘2𝑦(𝐸 + 𝜇)−2]1/2 and 𝑣ℎ = 𝑣𝐹 [1 − ℏ2𝑣2𝐹𝑘2𝑦(𝐸 − 𝜇)−2]1/2, (G.6)

and their spinors are

𝜒e,r/l = 1√2 ( 1(±𝑘𝑒 + i𝑘𝑦)(𝑘2𝑒 + 𝑘2𝑦)−1/2) (G.7)

and

𝜒h,r/l = 1√2 ( 1(∓𝑘ℎ + i𝑘𝑦)(𝑘2ℎ + 𝑘2𝑦)−1/2) . (G.8)

The scattering states Ψev of the evanescent particles in the superconductor are

Ψev = 𝑐el(2𝜋ℏ𝑣𝐹 )−1/2 exp(i𝑘el𝑥 + i𝑘𝑦𝑦)(𝑓 𝑢0𝜒el,r𝑓 ∗𝑣0𝜒el,r)+ 𝑐hl(2𝜋ℏ𝑣𝐹 )−1/2 exp(−i𝑘hl𝑥 + i𝑘𝑦𝑦)( 𝑓 𝑣0𝜒hl,r𝑓 ∗𝑢0𝜒hl,r) (G.9)

and have the wave numbers𝑘el = [(𝜇 + i𝜉)2(ℏ𝑣𝐹 )−2 − 𝑘2𝑠 ]1/2 and 𝑘hl = [(𝜇 − i𝜉)2(ℏ𝑣𝐹 )−2 − 𝑘2𝑠 ]1/2 (G.10)

where 𝜉 = (Δ20 − 𝐸2)1/2 and 𝑓 = exp(i𝜑/2). (G.11)

The coherence factors read

𝑢0 = (Δ02𝐸)1/2 exp(12i arccos( 𝐸Δ0)) (G.12)

and 𝑣0 = (Δ02𝐸)1/2 exp(−12i arccos( 𝐸Δ0)) (G.13)
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and the spinors

𝜒el,r/l = 1√2 ( 1(±𝑘el + i𝑘𝑦)(𝑘2el + 𝑘2𝑦)−1/2) (G.14)

and 𝜒hl,r/l = 1√2 ( 1(∓𝑘hl + i𝑘𝑦)(𝑘2hl + 𝑘2𝑦)−1/2) . (G.15)

Note that we did not norm the evanescent scattering states (G.9) with the actual
group velocities 𝑣el/hl but instead with the Fermi velocity 𝑣𝐹 since their transmission
coefficients are not important in the subgap regime |𝐸| < Δ0.
G.2. Matching condition

To determine the matching conditions at 𝑥 = 0, one has to integrate the eigenequation
of the Hamiltonian. This leads to

lim𝑥→0,𝑥>0 (−iℏ𝑣𝐹𝜎𝑥 00 iℏ𝑣𝐹𝜎𝑥)Ψ(𝑥)
= lim𝑥→0,𝑥<0 (−iℏ𝑣𝐹𝜎𝑥 − 𝑈0 00 iℏ𝑣𝐹𝜎𝑥 + 𝑈0)Ψ(𝑥) (G.16)

where we assumed that the barrier only acts in the normal part (when we use a
symmetric barrier, we get the exact same result for the scattering matrix). After
indroducing the dimensionless barrier strength

𝑍 = 𝑈0ℏ𝑣𝐹 , (G.17)

the matching condition (G.16) can be transformed toΨin(0) + Ψout(0) = (𝑋 − i𝑌 𝜎𝑥)Ψev(0) (G.18)

with 𝑋 = 11 + 𝑍2 and 𝑌 = 𝑍1 + 𝑍2 . (G.19)
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G.3. Andreev approximation

As done by Blonder, Tinkham, and Klapwijk for the quadratic Hamiltonian [197], we
utilize the Andreev approximation which is valid for 𝐸, Δ0 ≪ 𝜇. In this approxima-
tion, we can substitute the electron and hole momenta with the Fermi momentum𝑘𝑓 in 𝑥 direction, 𝑘e/h ≈ 𝑘el/hl ≈ 𝑘𝑓 = [𝜇2(ℏ𝑣𝐹 )−2 − 𝑘2𝑦]1/2, (G.20)

and the velocity with the Fermi velocity 𝑣𝑓 in 𝑥 direction,

𝑣e/h ≈ 𝑣𝑓 = 𝑣𝐹 [1 − ℏ2𝑣2𝐹𝑘2𝑦𝜇−2]1/2. (G.21)

This also means that one can approximate the spinors by

𝜒e,r/l ≈ 𝜒h,l/r ≈ 𝜒el,r/l ≈ 𝜒hl,l/r ≈ 𝜒𝑓 ± = 1√2 ( 1(±𝑘𝑓 + i𝑘𝑦)(𝑘2𝑓 + 𝑘2𝑦)−1/2) . (G.22)

In total, the scattering states read in the Andreev reflection

Ψin = 𝑎𝑒(2𝜋ℏ𝑣𝑓 )−1/2 exp(i𝑘𝑓 𝑥 + i𝑘𝑦𝑦)(𝜒𝑓 +0 )+ 𝑎ℎ(2𝜋ℏ𝑣𝑓 )−1/2 exp(−i𝑘𝑓 𝑥 + i𝑘𝑦𝑦)( 0𝜒𝑓 −) , (G.23)

Ψout = 𝑏𝑒(2𝜋ℏ𝑣𝑓 )−1/2 exp(i𝑘𝑓 𝑥 + i𝑘𝑦𝑦)(𝜒𝑓 −0 )+ 𝑏ℎ(2𝜋ℏ𝑣𝑓 )−1/2 exp(−i𝑘𝑓 𝑥 + i𝑘𝑦𝑦)( 0𝜒𝑓 +) , (G.24)

and Ψtrans = 𝑐el(2𝜋ℏ𝑣)−1/2 exp(i𝑘𝑓 𝑥 + i𝑘𝑦𝑦)(𝑓 𝑢0𝜒𝑓 +𝑓 ∗𝑣0𝜒𝑓 +)+ 𝑐hl(2𝜋ℏ𝑣)−1/2 exp(−i𝑘𝑓 𝑥 + i𝑘𝑦𝑦)( 𝑓 𝑣0𝜒𝑓 −𝑓 ∗𝑢0𝜒𝑓 −) . (G.25)
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G.4. Scattering matrix

Inserting the scattering states Eqs. (G.3), (G.4) and (G.9) into the matching condition
(G.18), one obtains the equation system𝑎𝑒(2𝜋ℏ𝑣𝑒)−1/2𝜒𝑒,𝑟 + 𝑏𝑒(2𝜋ℏ𝑣𝑒)−1/2𝜒e,l= 𝑐el(2𝜋ℏ𝑣𝐹 )−1/2𝑓 𝑢0(𝑋 + i𝑌 𝜎𝑥)𝜒el,r+ 11 + 𝑍2 𝑐hl(2𝜋ℏ𝑣𝐹 )−1/2𝑓 𝑣0(𝑋 + i𝑌 𝜎𝑥)𝜒hl,r (G.26)𝑎ℎ(2𝜋ℏ𝑣ℎ)−1/2𝜒h,r + 𝑏ℎ(2𝜋ℏ𝑣ℎ)−1/2𝜒h,l= 𝑐el(2𝜋ℏ𝑣𝐹 )−1/2𝑓 ∗𝑣0(𝑋 + i𝑌 𝜎𝑥)𝜒el,r+ 11 + 𝑍2 𝑐hl(2𝜋ℏ𝑣𝐹 )−1/2𝑓 ∗𝑢0(𝑋 + i𝑌 𝜎𝑥)𝜒hl,r. (G.27)

Here, we can apply the Andreev approximation. To simplify notation, we define𝜁± = 𝑘𝑥 ± i𝑘𝑦(𝑘2𝑥 + 𝑘2𝑦)1/2 = exp(±i𝜃) and 𝜃 = arctan(𝑘𝑦𝑘𝑥) (G.28)

and introduce the scaled coefficients𝑐el/hl = (1 − ℏ2𝑣2𝑘2𝑦𝜇−2)1/4𝑐el/hl. (G.29)

Thus, one arrives at the following equation system:𝑎𝑒 + 𝑏𝑒 = (𝑋 + i𝑌 𝜁𝑓 +)𝑓 𝑢0𝑐el + (𝑋 − i𝑌 𝜁𝑓 −)𝑓 𝑣0𝑐hl (G.30)𝜁𝑓 +𝑎𝑒 − 𝜁𝑓 −𝑏𝑒 = (𝑋𝜁𝑓 + + i𝑌 )𝑓 𝑢0𝑐el + (−𝑋𝜁𝑓 − + i𝑌 )𝑓 𝑣0𝑐hl (G.31)𝑎ℎ + 𝑏ℎ = (𝑋 + i𝑌 𝜁𝑓 +)𝑓 ∗𝑣0𝑐el + (𝑋 − i𝑌 𝜁𝑓 −)𝑓 ∗𝑢0𝑐hl (G.32)−𝜁𝑓 −𝑎ℎ + 𝜁𝑓 +𝑏ℎ = (𝑋𝜁𝑓 + + i𝑌 )𝑓 ∗𝑣0𝑐el + (−𝑋𝜁𝑓 − + i𝑌 )𝑓 ∗𝑢0𝑐hl. (G.33)

In order to obtain the scattering matrix, we write it in the matrix form𝑀𝑐 = 𝐻𝑎 (G.34)

with the coefficient vectors

𝑎 = (𝑎𝑒𝑎ℎ) and 𝑐 = ⎛⎜⎜⎜⎜⎝
𝑏𝑒𝑏ℎ𝑐el𝑐hl

⎞⎟⎟⎟⎟⎠ (G.35)
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and the matrices

𝑀 = ⎛⎜⎜⎜⎜⎝
−1 0 (𝑋 + i𝑌 𝜁𝑓 +)𝑓 𝑢0 (𝑋 − i𝑌 𝜁𝑓 −)𝑓 𝑣00 −1 (𝑋 + i𝑌 𝜁𝑓 +)𝑓 ∗𝑣0 (𝑋 − i𝑌 𝜁𝑓 −)𝑓 ∗𝑢0𝜁𝑓 − 0 (𝑋𝜁𝑓 + + i𝑌 )𝑓 𝑢0 (−𝑋𝜁𝑓 − + i𝑌 )𝑓 𝑣00 −𝜁𝑓 + (𝑋𝜁𝑓 + + i𝑌 )𝑓 ∗𝑣0 (−𝑋𝜁𝑓 − + i𝑌 )𝑓 ∗𝑢0

⎞⎟⎟⎟⎟⎠ (G.36)

and

𝐻 = ⎛⎜⎜⎜⎜⎝
1 00 1𝜁𝑓 + 00 −𝜁𝑓 −

⎞⎟⎟⎟⎟⎠ . (G.37)

From this, one can easily calculate the (modified extended) scattering matrix 𝑆 as

𝑆 = 𝑀−1𝐻 = (𝐴 𝐵𝐶 𝐷)−1(1𝐺) = (𝐵𝐹−1(𝐶 + 𝐺) − 1𝐹−1(𝐶 + 𝐺) ) (G.38)

where 𝐴, 𝐵, 𝐶, 𝐷 and 𝐺 are the block matrices of 𝑀 and 𝐻 and𝐹 = 𝐷 − 𝐶𝐴−1𝐵 = 𝐷 + 𝐶𝐵 (G.39)

is the Schur complement of 𝑀 . Note that 𝑆 = 𝐵𝐹−1(𝐶 +𝐺)−1 is the scattering matrix
we need to calculate the ABS. At the end, one gets

𝑆11 = 4𝑌 [𝑋 cos(𝜃) − i𝑌 ][cos(𝜃) + i sin(𝜃)] sin(𝜃)(𝑢20 − 𝑣20)det(𝐹) , (G.40)

𝑆12 = −4(𝑋 2 + 𝑌 2) cos2(𝜃)𝑓 2𝑢0𝑣0det(𝐹) , (G.41)

𝑆21 = −4(𝑋 2 + 𝑌 2) cos2(𝜃)(𝑓 ∗)2𝑢0𝑣0det(𝐹) , (G.42)

and 𝑆22 = 4𝑌 [𝑋 cos(𝜃) + i𝑌 ][cos(𝜃) − i sin(𝜃)] sin(𝜃)(𝑢20 − 𝑣20)det(𝐹) (G.43)

with det(𝐹) = −4(𝑋 2 + 𝑌 2) cos2(𝜃)𝑢20 − 4𝑌 2 sin2(𝜃)(𝑢20 − 𝑣20). (G.44)
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Appendix H. Critical current in dependence of the
maximum crossing number

In this Appendix, we want to justify the neglection of the paths with crossing number|𝑛| > 𝑛max = 1 when calculating the critical current in Sections 3.6.3 and 3.7.3. For
this, we repeat the calculations of the critical current using different values of 𝑛max.

The results for the quadratic Hamiltonian, where we chose the length 𝐿 = 100 nm,
are shown in Fig. H.1. As one can see, there is no visible difference for 𝑛max = 1
and 𝑛max = 2. Since the weights in the integrals (3.20), (3.29) to (3.32) and (3.37)
get smaller the higher |𝑛| is, we conclude that even higher values of 𝑛 also will not
change the result and 𝑛max = 1 is fully sufficient.

For the Dirac Hamiltonian, the critical current for different values of 𝑛max is shown
in Fig. H.2. Here, there is no visible difference for 𝑛max > 2 but slight differences
between 𝑛max = 1 and 𝑛max = 2 meaning that the current contributions from the
paths with crossing number 𝑛 = ±2 are still noticeable. First, the current around
the minima without barrier (𝑈0 = 0) is smoother and does not show dips. Thus, we
conclude that the results are not fully converged for 𝑛max = 1. Second, the current
gets enlarged around 𝜙 = 0, ℎ/2𝑒, …. This has the following reason: At the above-
mentioned values, the maxima for all crossing numbers 𝑛 align such that the current
is enlarged. However, the maxima of the contributions from the paths with crossing
number 𝑛 = ±2 shift very fast when the magnetic flux 𝜙 moves away from these
values such that the current enhancement also vanishes rapidly. Lastly, the peaks at𝜙 = ℎ/4𝑒 and 𝜙 = 3ℎ/4𝑒 are already slightly visible for smaller barrier strengths 𝑈0.
This is due to the fact that the critical current of the paths with 𝑛 = ±2 also shows
these (ℎ/4𝑒)-peaks and, thus, favours the formation of these. However, all in all these
effects are quite small such that setting 𝑛max = 1 is not too much of a simplification
and captures (at least) the qualitative behaviour very well.
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Figure H.1. Critical current of the nanowire Josephson junction from Fig. 3.2 with metal-
lic surface states for different maximum numbers of crossing 𝑛max. From top to bottom,
the barrier strengths are 𝑈0 = 0meVnm, 𝑈0 = 100meVnm, and 𝑈0 = 200meVnm
like in Fig. 3.6. Including paths with two crossings or more does not alter the results.
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Figure H.2. Critical current of the 3D TI nanowire Josephson junction from Fig. 3.2
with effective Dirac surface states for different maximum numbers of crossing 𝑛max.
From top to bottom, the barrier strengths are 𝑈0 = 0meVnm, 𝑈0 = 100meVnm,𝑈0 = 300meVnm, and 𝑈0 = 600meVnm like in Fig. 3.9. Including paths with two
crossings smoothens the curve for 𝑈0 = 0meVnm and enlarges the currents at𝜙 = 0, 𝜙0/4, 𝜙0/2, …; including paths with three crossings or more does not change
the results.
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In recent years, effective Dirac systems recieved a lot of attention in solid 
state physics. These are systems whose dispersion can effectively be de-
scribed by a Dirac cone, the most prominent examples beeing graphene 
and topological insulators (TIs). These systems exhibit intriguing phenomena 
for example, TIs can host perfectly transmitted modes or, in conjunction 
with superconductors, Majorana zero modes. This thesis deals with super-
conducting heterostructures of both of the aforementioned materials and 
examines transport phenomena as well as the formation of subgap states 
in such systems: In the first chapter, superconducting bilayer graphene with 
a chemisorbed adatom is investigated and the existence of peculiar subgab 
states, so-called Yu-Shiba-Rusinov states, is shown. The second chapter deals 
with T junction devices make out of three-dimensional (3D) TI nanowires.

Together with proximity induced superconductivity in one arm and external 
magnetic fields, this setup allows for the occurence of crossed Andreev re-
flection, including perfect crossed Andreev reflection, and negative nonlocal 
conductances. In the third chapter, Josephson junctions of 3D TI nanowires 
are investigated. The origin of unusual, experimentally observed supercur-
rent oscillations in dependence of a parallel magnetic field is examinated in 
a semiclassical analysis.

ISBN 978-3-86845-171-9

171_Fuchs_Physik_57_Umschlag.indd   Alle Seiten171_Fuchs_Physik_57_Umschlag.indd   Alle Seiten 14.10.22   14:0714.10.22   14:07


	Title
	Contents
	Introduction
	Yu-Shiba-Rusinov states in superconducting bilayer graphene
	Introduction
	Model of superconducting bilayer graphene
	Lattice structure
	Tight binding Hamiltonian of bilayer graphene
	Tight binding Hamiltonian in Bloch basis
	Bogoliubov-de Gennes Hamiltonian

	Green's function of superconducting bilayer graphene
	Resolvent Green's function
	Resolvent Green's function of bilayer graphene
	Green's function in the real space basis

	Yu-Shiba-Rusinov states
	Model of the full system
	Connection between the Yu-Shiba-Rusinov states and the Green's function
	Downfolding of the adatom potential
	Matrix representations
	Results


	Crossed Andreev reflection in topological insulator nanowire T junctions
	Introduction
	Introduction to 3D TI nanowires
	3D TI nanowires with parallel magnetic field
	3D TI nanowires in a perpendicular magnetic field
	Superconducting 3D TI nanowires

	3D TI nanowire NS junction
	T junction
	Methods
	Model
	Local and nonlocal conductances

	Results

	Topological insulator nanowire Josephson junctions
	Introduction
	Geometry and model Hamiltonian
	Semiclassical method
	Method
	Classification of the paths
	Trajectories
	Phase space integration

	Andreev bound states and current contributions
	Andreev bound states from the scattering formalism
	Effect of the magnetic field
	Asymmetric junctions
	Current

	Minimal model
	Model
	Supercurrent oscillations in the minimal model
	Implications for more realistic systems

	Semiclassical model for the quadratic Hamiltonian
	Scattering matrix of the NS interface
	Andreev bound states
	Supercurrent oscillations

	Semiclassical model for the Dirac Hamiltonian
	Scattering matrix of the NS interface
	Andreev bound states
	Supercurrent oscillations

	Concluding remarks

	Conclusion
	Appendices to the first chapter
	Integral representations of ̃g₀
	Some useful mathematical identities

	Appendices to the second chapter
	Numerical implementation and finite difference method

	Appendices to the third chapter
	Alternative derivation of the superconducting phase
	Unitary transformation of the Hamiltonian
	Andreev bound states for imperfect interfaces
	Two imperfect interfaces
	One imperfect interface

	Scattering matrix of a TI NS junction
	Scattering states
	Matching condition
	Andreev approximation
	Scattering matrix

	Critical current in dependence of the maximum crossing number

	Bibliography
	List of publications
	List of Figures
	List of Acronyms
	Acknowledgments



