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A great endeavor has been undertaken to engineer molecular rotors operated by an electrical
current. A frequently met operation principle is the transfer of angular momentum taken from the
incident flux. In this paper we present an alternative driving agent that works also in situations
where angular momentum of the incoming flux is conserved. This situation arises typically with
molecular rotors that exhibit an easy axis of rotation. For quantitative analysis we investigate here
a classical model, where molecule and wires are represented by a rigid curved path. We demonstrate
that in the presence of chirality the rotor generically undergoes a directed motion, provided that the
incident current exceeds a threshold value. Above threshold, the corresponding rotation frequency
(per incoming particle current) for helical geometries turns out to be 2πm/M1, where m/M1 is the
ratio of the mass of an incident charge carrier and the mass of the helix per winding number.

I. INTRODUCTION

Experiments employing the scanning-tunneling mi-
croscopy (STM) have achieved a directed rotation of a
molecule controlled by an electrical current. Correspond-
ingly, realizations of molecular switches and rotors have
been reported, [1–9], with potential relevance for future
molecular technologies.

The theory describing the working principle of such
molecular motors often employs angular Langevin equa-
tions [9, 10]. The method has been established by Hänggi
[11], Astumian [12] and collaborators in the context of
Brownian motors. It describes the dynamics of a clas-
sical angular variable ϑ that is subject to a ”ratchet”-
type of potential in the presence of a (phenomenologi-
cally treated) driving torque. Ab-initio expressions for
the current induced torques have been obtained within
the non-equilibrium Green’s function formalism [13, 14].
The current excites a variety of molecular vibrational
modes, rendering the atomistic analysis of the torque
very complex (see Ref. [6] for an ab-initio calculation
of the vibrations).

To bring about a controlled unidirectional rotation in
the STM setup requires a degree of symmetry breaking.
There are two typical situations: either the molecule by
itself exhibits a handedness (chirality) or chirality is im-
posed by the geometry of the molecular junction, for ex-
amples see [6] or [10]. The purpose of this article is to
provide a qualitative description of the current-induced
mechanical torque within a toy model framework.

We consider a classical model of the molecular rotor,
where the molecule is modeled as a one-dimensional curve
(”molecular wire”) that guides the flow of the charge car-
riers. (see Fig. 1 (left) for illustration). The motion of
the particle along the molecule obeys Lagrangian dynam-
ics. The wire can rotate around a given axis with angle θ.
The torque driving the rotation is provide by the back-
action of moving particle. In the absence of a potential

V (θ) angular momentum is conserved.

The main outcome of this work is that the wire rotates
even if the the net transfer of angular momentum of the
transmitted particles is zero. The operation principle is
that the particle exerts a torque when entering and leav-
ing the molecular wire. Even if both exactly compensate,
the wire rotates while the particle travels along, so that
each transmitted particle results in a shift δθ. This op-
erational principle is different than an earlier reported
[15] where an electric field was needed to continuously
accelerate the electrons while they travel along a helical
wire. When the rotation of the molecule is hindered by

FIG. 1. Left: A particle of mass m is constrained to move
along a path (red curve). An axis is assumed, so that the
initial and final radius of the path with respect to the axis
is zero. Furthermore, the path is allowed to rotate (angle ϑ)
around the axis. Right: N -helix which smoothly evolves from
a straight line to its radius R, parameterized by the formulas
in the Appendix. Here, the number of turns is N = 10 and
the full radius sets in from zero after δN = 1 turns.
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a potential barrier V (θ), we find that the mass current
needs to overcome a threshold for the wire to rotate. The
resulting time-averaged angular velocity is time indepen-
dent and directional for all supercritical currents.

Finally, we consider a situation where the net torque
exerted by the transmitted particle does not vanish.. In
this situation the rotation trivially appears due to the
momentum transfer (”garden-hose effect”). This situ-
ation represents molecular junctions where the incom-
ing or outgoing current can carry a non-vanishing an-
gular momentum. We present the characteristics of the
crossover between both regimes.

Summarizing, our work provides insights into the op-
eration principles of molecular rotors, specifically the
velocity-current characteristics and threshold currents.
Our results can support the design of nanoscale mechan-
ical devices.

II. MODEL

A. Model geometry (kinematics)

Our classical model contains a particle (mass m) mov-
ing on a rigid path, which can rotate around an axis, see
left part of Fig. 1. The rotation angle of the path is de-
noted by ϑ. In absence of the rotation degree of freedom
of the path, the particle would experience constrained
dynamics. With the rotation allowed, the motion of the
particle can exert a torque on the path. Conversely, the
dynamics of the path around its angle affects the passage
of the particle.

The trajectory (path) at rest (ϑ̇ = 0, ϑ = 0) will be
expressed parametrically in a cylindrical coordinate sys-
tem:

(ρ(s), φo(s), z(s)). (1)

The parameter s could be the distance along the path; for
the purpose of this work it is not required. For simplicity,
we further stipulate that z(s) is monotonously increasing
with s, and that the trajectory never intersects itself.

The model contains two dynamical variables, the de-
gree of freedom of the particle, s(t), and ϑ(t), the latter
being the angle of the path with respect to a static co-
ordinate system. Our aim is to investigate the dynamics
of ϑ under the condition that the incoming and outgoing
particles don’t carry any angular momentum. We achieve
this by conditioning the path to have vanishing radius at
its start and at the end,

ρ(−∞) = ρ(+∞) = 0. (2)

Later on we also employ a path with a finite final radius,
allowing for an angular momentum transfer. As we shall
demonstrate, paths satisfying Eq. (2) will still turn when
subjected to particles, if the path is chiral (lacks reflection
symmetry). We shall employ a helical path, with radius
smoothly raising from zero, effecting N turns and sinking

at the end, see Figure 1(b). The mathematical expression
of the path can be found in the Appendix.

B. Lagrangian dynamics

We construct the equations of motion from a La-
grangian, L(ϑ, ϑ̇, s, ṡ).

1. Static path

For a fixed path, ϑ = 0, the Lagrangian of this model
reduces to the Lagrangian of a particle subject to a con-
straint,

L0(s, ṡ) =
m

2

(
ρ̇2 + (ρφ̇o)

2 + ż2
)

(3)

=
m

2

(
∂ρ

∂s

2

+ (ρ
∂φo
∂s

)2 +
∂z

∂s

2)
ṡ2. (4)

Formally, as a consequence of the constraint the model
adopts the form of a free particle with an s-dependent
mass. Recalling the conservation of energy, the formal
integration of the Lagrangian (4) is trivial.

2. Dynamic path.

To allow a dynamical rotational degree of freedom ϑ
for the path, we now introduce the actual angle φ of the
particle in a static cylindrical system, defined by

φ = φo + ϑ (5)

and introduce it in Eq. (4).
Without a particle on a path, the dynamics of the rotor

will be governed by the kinetic energy 1
2Θϑ̇2 and the

potential energy V (ϑ).
The full Lagrangian of the coupled system becomes

L(ϑ, ϑ̇, s, ṡ) =
1

2
Θϑ̇2 − V (ϑ)+ (6)

+
m

2

(
∂ρ

∂s

2

ṡ2 + ρ2(
∂φo
∂s

ṡ+ ϑ̇)2 +
∂z

∂s

2

ṡ2
)
(7)

It provides two equations of motion (EOM), which are
listed in the Appendix. We integrate the EOM using a
Runge-Kutta method, see Appendix.

3. Basic parameters and scales

The parameters that enter the coupled dynamical
problem governed by the Lagrangian (7) are

• particle mass m
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• the definition of the path, Eq. (1). It will be as-
sumed, that the path has a characteristic radius
R ∼ max ρ(s), which will serve as a length scale.
Helical paths are primarily distinguished by the
number of turns N , which controls the time par-
ticle spends on the helix.

• inertia tensor of the path Θ. The latter can be ex-
pressed through the characteristic radius as MR2,
defining mass M . The ratio µ = m/M enters in
the collision characteristics.

• potential V (ϑ) that hinders the motion of the path
(setting a preferred direction). The difference be-
tween the min and max is denoted by ∆V . This is
the energy scale that needs to be overcome when
inducing an unbound rotation – else one is trapped
in the potential valley.

• The above parameters of the path combine to give
a time scale T :=

√
Θ/∆V , which equals 0.334

times the period of small harmonic oscillations of
the path without the particle, around the potential
minimum. We shall use T as a unit of time in our
numerical results.

• The initial velocity of the particle, at s = −∞,
denoted by ż(−∞), ”the impact velocity”. A suit-
able unit for the latter is R/T and it is inversely
proportional to the time spent in the curved path.

• The precise initial placement of the particle,
z(−∞), is irrelevant, because the particle decou-
ples from the path when ρ = 0.

C. Conservation laws

Consider a single collision event, with particle starting
at s = −∞, passing through the rotor (where ρ 6= 0) and
leaving towards s =∞[16].
a. Energy conservation. If before the collision the

path is at rest, energy conservation implies that

∆E =
1

2
Θϑ̇2 + V (ϑ)

∣∣∣∣
t=∞

=
1

2
m
[
ż(−∞)2 − ż(∞)2

]
.

(8)
This is a consequence of the invariance of the Lagrangian
(7) with respect to time translations. The right hand side
of Eq. (8) describes the energy loss of the particle after
the collision. We shall focus on the regime where the
energy gain of the path, ∆E, is small, usually not higher
than ∆V . In the limit of fast impact velocities, Eq. (8)
implies that the relative decrease of the particle velocity
after the collision is small.

b. Angular momentum conservation. When V (ϑ) =
const., the Lagrangian (7) is invariant with respect to
rotations. The total angular momentum

J = Θϑ̇+mρ2φ̇ (9)

is time independent. For paths satisfying Eq. (2) J equals
the angular momentum of the path before and after the
collision.

D. Path under a current: Stroboscopic dynamics

We will also investigate a dynamics of the path when
the particles come sequentially, i.e. the path under a cur-
rent. When the particles arrive to the path periodically,
with period ∆t, the particle current reads

I(t) =

∞∑
n=−∞

δ(t− n∆t). (10)

The time-averaged current reads 〈I(t)〉 = I = 1/∆t.
We will assume for each incident particle identical ini-

tial conditions, i.e at each time n∆t the same z and
ż(−∞). However, the initial conditions for ϑ and ϑ̇
will be different, corresponding to the dynamical state
of the path. In between the sequential collisions, the
path evolves under its independent equation of motion,
Θϑ̈ = −V ′(ϑ).

III. RESULTS

First, we demonstrate how a particle that does not
carry any angular momentum can turn the path. It is
instructive to begin with the limit of full rotational in-
variance, when V = 0, Sec. III A, because conservation
laws allow for a straightforward integration of the EOM.
Next, we treat analytically the case V 6= 0 in the limit
of fast projectiles in the so called sudden approximation
(SA) in Sec. III B. We use the analytical considerations
as guiding principles for the analysis of the numerics in
Sec. III C. After that we consider paths which allow for
a finite angular momentum transfer in Sec. III E.

A. Rotational invariance

When V = 0, the dynamics of a single shot (collision)
is entirely captured by angular momentum conservation.

Let us assume the path at rest before the collision.
Eq. (9) with J = 0 binds the change of the angle of
the particle with the change of the angle of the path
(analogous with Keppler’s law)

−mρ2(s)dφ(s) = Θdϑ. (11)

Integrating from s = −∞ to s =∞, we obtain

−m2A = Θ∆ϑ (12)

where on the left hand side A = 1
2

∫
ρ2dφ denotes the

area described by the ’clock’ with a variable radius ρ(s)
during the passage of the particle. For the N -helix, A ≈
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πR2N . On the right hand side we obtained the change
of the angle of the path.

Although the path can experience a turn, no angular
velocity is generated after the collision, as a consequence
of Eq. (2). The traversing particle does exert a torque,
however, when the torque is integrated over time, it pro-
duces no net angular velocity. The path experiences a
turn in a preferred direction. For a general path, the
turn is finite, if the ’clock’ area is finite. This situation
can not be realized in paths with a spatial reflection plane
or an inversion point located on the path. For paths with
handedness (chirality), the sign of the turn is determined
by the the sign of A, which, in turn, has the chirality
sign.

Next, while still assuming V = 0, we ponder three
specific sectors centered around ϑ = 0,±2π/3, and inves-
tigate the conditions for a single particle to switch the
N -helix from one sector to another. The condition is
that ∆ϑ reaches ±2π/6. Combining with Eq. (12), we
arrive at

N
m

M
=

1

6
(13)

(or more precisely, Am
M = 1

6R
2π). In the above formula,

M is proportional to N , so that the required threshold
particle mass m is independent on the length of the helix.

B. Broken rotational invariance: analytic
considerations in the sudden approximation

We will be concerned with a situation in which the
rotation of the path will be hindered, in order to study
switching. We introduce a potential

V = ∆V sin2(3ϑ/2) (14)

with three minima, separated by obstacles of the height
∆V . Three-state rotors have been reported recently in
experimental Refs. [6, 10]. Rotational invariance is bro-
ken and although there is energy conservation, the equa-
tions of motion are difficult to treat analytically. How-
ever, there is a limit where approximations are feasible.

1. Single particle dynamics.

If the passage time of the particle δt is much smaller
than the oscillation period≈ T , we may safely neglect the
potential in the collision problem. The formulas (13,12)
remain valid in this limit and will serve us as a useful
guide. The above mentioned condition for the applica-
bility of the formulas of the sudden approximation (SA)
can be formulated as

T '
LN

ż(−∞)
≈ 2πRN

ż(−∞)
, (15)

where the passage time on the right side has been ap-
proximated from a uniform motion of the projectile over

the path length LN (where ρ > 0). For an N -helix pa-
rameterized in the Appendix,

LN ≈ 2πNR. (16)

An important feature in the broken rotational invari-
ance is that the restoring torque gives the path an accel-
eration once the particle is gone. The resulting motion
can be, in general, bound to the potential minimum or
unbound, depending on the parameters. In the SA, the
condition that separates the two regimes is expressed by
the Eq. (13).

2. Helix under a current.

A single particle may not cause a turn that is sufficient
for an unbound motion if the mass ratio µ = m/M is
too low, for example. But the required critical turn can
be effected if particles arrive sequentially, i.e. under a
current I. According to the formula (13), each particle
induces an angular boost as it passes.

If the current runs for a time t (to be specified later),
formula (13) becomes

ItN
m

M
=

1

6
. (17)

It determines the minimum threshold mass current Im =
mI required to perform a switch. The last formula is
applicable under specific conditions:

1. Eq. (18) comes from the SA, demanding that the
impact velocity is large enough, Eq. (15).

2. The time between collisions should be much smaller
than T in order to silence the restoring torque:
I−1 � T

3. The switching time t must also be much shorter
than T , else the path likely performs an oscillatory
motion against a displaced minimum.

Our objective will be to determine the threshold mass
current Im. Therefore, the condition Eq. (17) from the
SA can be written as

ImT =
M1

6
(18)

where M1 = M
N is the mass of a single helix turn. (A

more general version replaces N by A/πR2.) It should
be added that T is a function of length because it depends
on the mass.

The criterion (18) along its range of validity will be
demonstrated numerically in the following section.

C. Numerical results for single-projectile dynamics

After the analytic considerations, we resort to the nu-
merical solution of the EOM in order to investigate the
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0
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ż(−∞)T/R =
ϑ
/2
µ
A

t ż(−∞) [1/R]

100 500 1000

FIG. 2. Impact of the passage of a single particle on the angle
of the 50-helix. The shaded region denotes the time interval
when ρ is nonzero, i.e. , the particle is in the helix. The
traces are parameterized by the impact velocity. The time is
rescaled by the velocity in order to match the traces together.
The angle is rescaled by factors from the Eq. (12), whence -1
indicates the angle in the sudden limit. Other parameters are
µ = m/M = 0.004, δN = 1, and the potential of Eq. (14).

situation in which the rotational invariance is broken by
the potential, Eq. (14), which sets three preferred direc-
tions. First, we inspect the applicability of the SA and
then we investigate the hindered helix subject to the cur-
rent.

1. Limits of the sudden approximation

Figure 2 shows the time evolution of ϑ during and after
a collision with a particle for three different impact ve-
locities. The initial condition for the helix was ϑ = ϑ̇ = 0
and the particle was put at the entrance of the helix with
impact velocity ż(−∞).

At the beginning of the collision, for very short times,
the three curves lie on top of each other. This is because
at these times the restoring torque −V ′(ϑ) is not very
effective. The condition that the passage time is much
smaller than T is fulfilled at the beginning for all traces.
For ż(−∞)T/R = 1000 the helix turns with an almost
constant velocity when the particle is in and the total an-
gle reaches the value from the SA. For ż(−∞)T/R = 500
the restoring torque markedly bends the curve towards
the potential minimum. The slowest projectile (green
curve) gives the helix only a small initial velocity. When
the projectile is in the body of the helix, the helix os-
cillates. Here, SA is not applicable, except for the very
short times. The collapse of the SA predicted by the
Eqs. (15,16) is ż(−∞)T/R ≈ 314, consistent with the
Figure 2.

After the collision, the helix performs either a bound
motion around the potential minimum or its motion is
unbound. In Supplementary Fig. 9 we plot the critical
parameters m/M , ż(−∞) and N .

D. Helix under a current

The threshold ratio m/M1 = 1/6 is too high to be
achieved in molecules under STM, but we can make it
more favorable if we consider the helix under a particle
current I, as the formula Eq. (18) suggests.

Figure 3 shows the evolution of the angle when the 1.5-
helix is under a current. The traces contain tiny sequen-
tial steps, which are more pronounced for large µ. These
are the angular boosts produced by the collisions. The
plot also shows a comparison with a straight line obtained
from the SA: ϑSA(t) = −tIm2A/Θ (smoothed over time).
The deviation is caused by the restoring torque −V ′(ϑ),
which counteracts the boosts. This counter-effect can
result in a bound (oscillatory) motion or an unbound di-
rected motion with a constant average angular velocity
〈ϑ̇〉 and a small oscillatory component.

How does 〈ϑ̇〉 depend on the current? Eq. (18) suggest
a critical behavior as Im increases. For large currents, a
linear relation 〈ϑ̇〉 ∝ −Im is expected, because each parti-
cle causes an angular boost. Fig. 4 shows the dependence
of the velocity on the mass current for different mass ra-
tios in the fast impact limit. The data points collapse on
a single universal curve.

This plot fully encapsulates the mass dependence. It
also has the length dependence: as a function of length,
only T is expected to change via the linear increase of
M = M1N . Provided the impact velocity is fast enough,
the universal curve has negligible velocity dependence.
Supplementary Figure 8 shows that for smaller velocities,
the threshold Im shifts to higher values. The limit ∆V →
0+ is also of interest: It implies T →∞, and henceforth
vanishing threshold Im.

E. Directed motion of a helix with an open end

a. Angular momentum transfer. In a scanning tun-
neling setup, the condition (2) is not always realized, for
example, when the tip of the microscope does not bind to
the molecule. In our theoretical framework, this situation
is represented by a path parameterized by s ∈ (−∞, sF).
At the initial point ρ(s = −∞) = 0, but at the final point
ρ(sF) := sF > 0. Thus, as the particle leaves the path
at sF, it transfers angular momentum to the path, see
Eq. (9). Consequently, the collision causes a boost both

in ϑ and ϑ̇.
As long as the restoring torque can be neglected, in

the SA we can obtain the angular momentum boost by
combining energy and angular momentum conservation
laws,

Θ∆ϑ̇ = −ρFmż(−∞) +O(
m

M
)2. (19)

The first term assumes that the velocity of the outgoing
particle equals the impact velocity. This velocity must
be corrected due to energy transfer, which yields a term
in the second order in µ.
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1000µ =
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ϑ
[2
π
/3
]

t/T
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5
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ϑ
/t

[1
/T

]

t/T

FIG. 3. Time evolution of the angle of the path ϑ un-
der a current IT = 40, for different mass ratios µ = m/M
and ż(−∞)T/R = 1000. The path is an N -helix with
N = 1.5, δN = 1 (depicted in the inset). Numerical results
(solid lines) are complemented by linear evolution from the
SA (dotted lines). The steep parts of the saw-tooth profile,
visible in the top panel, are in the intervals when particle flies
through the helix. The bottom panel presents ϑ/t for long
times, showing directed motion for large enough µ.

b. Switching in the SA. The condition for switching
is that the energy gain of the path, Eq. (8), must over-
come the potential barrier. In the limit of large velocities
the kinetic term (due to angular momentum boosts) dom-
inates over the potential gain via angular boosts and the
condition becomes ∆V = 1

2Θ(∆ϑ̇)2. For a single particle,

the switching condition reads
√

2 = ρFµż(−∞)T/R2.
Under a current, the velocity boosts can be added se-

quentially and the condition becomes

√
2 = ρFImż(−∞)

T 2

MR2
=
ρFIp
∆V

(20)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

−
〈ϑ̇
〉M

1
/2
π
I m

6Im/M1 [1/T ]

µ = 0.005
µ = 0.01
µ = 0.02
µ = 0.06

FIG. 4. Dependence of the average angular velocity of the
helix under a mass current Im = mI for different mass ratios
µ = m/M . M1 is the mass of a single helix turn; the impact
velocity is ż(−∞)T/R = 1000. The inset shows that the par-
ticle upon entering the helix starts revolving counterclockwise
when seen from the opposite helix end. Therefore, the helix
turns clockwise to compensate the angular momentum. The
current therefore causes a constant negative −〈ϑ̇〉.

−0.5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 2 4 6 8 10 12 14

ϑ̇
/t

[T
−
2
]

t [T ]

I = 5
I = 10
I = 15
I = 20
I = 40

FIG. 5. ρF = R. Time evolution of the angular velocity for
a path with ρF = R, where the angular momentum boosts
dominate. As a function of µ, there is a transition from a
bound motion to an unbound motion, with a non-constant
velocity.

where we introduced the incident momentum current
Ip = mż(−∞)I. The nominator of the fraction on the
right side can be interpreted approximately as the outgo-
ing angular momentum current, in view of the expansion
in Eq. (19).

Numerical simulations confirm the threshold behavior,
Fig. 5. Below the threshold, the path is bound to the
potential minimum. Above the transition the path is
accelerated, possibly non-uniformly.

In the next step we investigate the dependence of the
threshold current. For a fixed mass ratio, Fig. 6 shows the
threshold mass current. There are two regimes covered
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/T
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FIG. 6. Threshold mass current as a function of the impact
velocity for different values of the exit radius ρF. µ = 0.05

in that plot:

• ρF = 0: the helix is not accelerated. The thresh-
old Im depends on the impact velocity very weakly
in the given range. Actually, it increases with de-
creasing impact velocity (see Fig. 8. This is the
mechanism of angular boosts studied in the previ-
ous section.

• For nonzero ρF, the collision causes a net torque,
the helix always accelerates. In the limit of
large impact velocities the switching due to angu-
lar momentum boosts overtakes and the threshold
Im drops inversely proportional to ż(−∞). This
regime is the familiar garden hose effect.

To take a closer look at the mechanism of angular mo-
mentum boosts, we plot the threshold momentum current
Ip for different values of ρF and µ in Fig. 7. The data
collapses on a single curve, which saturates in the large
impact velocity limit.

IV. DISCUSSION AND OUTLOOK

Our results are valid when thermal fluctuations are
small, i.e. kBT � ∆V . To account for fluctuations, it is
customary to apply the Langevin equation for ϑ equipped
with stochastic torques and a deterministic torque, the
latter driving the directed rotation [11]. Our approach
predicts the detailed form of the deterministic torque as it
follows from the passage of the particle through a chiral
path with ρF ∼ R. When ρF = 0, the effect of the
passage (collision) is to boost the angle. In the stochastic
equation, such a single-particle process can be accounted
for by the torque of the form

F (ϑ, ϑ̇)
d

dt
δ(t)

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

0 200 400 600 800 1000 1200

ρ
F
I p
/√

2
[m

R
2
/T

2
]

ż(−∞) [R/T ]

µ = 0.05, ρF = 0.15R
µ = 0.05, ρF = 0.2R
µ = 0.01, ρF = 0.2R

FIG. 7. Velocity dependence of the threshold momentum
current Ip = mż(−∞)I. The large - velocity limit is domi-
nated by the garden hose effect – angular momentum boosts.

in the limit of short collision times. The derivative of a
delta function expresses a torque pulse that is immedi-
ately cancelled by a pulse of an opposite sign, thus gen-
erating no net ϑ̇ but a boost in ϑ. The function F (ϑ, ϑ̇)
follows from our methodology straightforwardly.

We have focused largely on the conditions of a directed
rotation. To implement an efficient switch, more condi-
tions need to be fulfilled. First, the rotor’s velocity must
be attenuated in order for the rotor to settle in the near-
est potential minimum. Second, the current must flow
in controlled short pulse. The optimal parameter regime
can be sought using the EOM Eqs. (27,28) and it is be-
yond the scope of the present work. We expect that the
threshold current will vanish in a strongly overdamped
limit and a linear response of ϑ̇ is expected.

Quantum effects are responsible for rich transport phe-
nomenology of molecular junctions [17]. Here we pause
to discuss quantum effects related to the electronic de-
grees of freedom, assuming that the quantization levels
of the rotational motion fall below the working tem-
perature. Rotation only happens via inelastic electron
tunneling. Importantly, each single electron scattering
event must obey fundamental conservation laws; there-
fore, the principles outlined in this manuscript will sur-
vive in the quantum limit. Two quantum aspects are
significant in this context: (1) the electron transport pro-
cess is stochastic, allowing for transmission and reflection
at the same time. Particle reflection off the helix can not
induce any rotation, unless the following effect is consid-
ered. (2) electrons carry spin angular momentum, which
couples with the orbital momentum by spin-orbit inter-
action (SOI). It was proposed that SOI is responsible for
spin selectivity in helical wires [18]. In relation to the
topic of molecular rotors, the question of how could the
spin degree of freedom induce mechanical rotation is an
open one.
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The results presented here demonstrate a directed ro-
tation without any momentum transfer in a molecular
rotor. Such devices can rotate when under particle cur-
rent, but they can not do work, because each electron
boosts the angle but not the frequency. Although they
can not operate as motors, these rotors can serve in
nanoscale information storage and processing. The in-
formation readout can be performed in linear response
(under the threshold current). A small symmetry break-
ing is needed in order to discriminate between the three
states.

V. CONCLUSIONS

Summarizing, we have investigated the classical dy-
namics of a molecular rotor under a particle current. The
molecule was modelled by a massive path that has a ro-
tational degree of freedom. Our approach expresses the
impact of a single collision on the rotor in a way that
stems explicitly from the (chiral) geometry of the rotor.

When the particles do not carry (or take) any angu-
lar momentum, rotation is possible via angular boosts.
If the rotation is hindered by a potential barrier ∆V ,
the requirement that the incident particles carry enough
energy is not sufficient for switching. Instead, a stricter
requirement that the boosts be sufficiently fast and dense
in time applies, Eq. (18).

When the particles are allowed to transfer angular mo-
mentum, we predict a crossover from the regime of an-
gular boosts to the regime of angular momentum boosts.
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APPENDIX: COORDINATES OF AN N-HELIX

We introduce a path definition

φ(s) = s (21)

ρ(s) =
{

erfc [2(s/π −N)/δN ]− (22)

erfc [2(s/π +N)/δN ]
}
/2 (23)

z(s) = s (24)

describing a helix with N turns, whose radius goes to zero
smoothly at its both ends within a distance proportional
to δN , see Fig. 1(b). The smooth onset is achieved by
employing the complementary error functions, erfc. In

the above definition, we adopt as a unit of length the
maximum radius R.

This path will be employed for s ∈ (−∞, sF). When
sF = ∞, condition (2) is fulfilled. Setting as finite sF
provides a path with an open end, when the particle exits
the path at a finite ρ.

APPENDIX: EQUATIONS OF MOTION

A. EOM from the Lagrangian

The equations of motion (EOM) derived from a La-

grangian L(ϑ, ϑ̇, s, ṡ) by the principle of least action [19]
read

d

dt

(
∂L
∂ϑ̇

)
=
∂L
∂ϑ

(25)

d

dt

(
∂L
∂ṡ

)
=
∂L
∂s
. (26)

Inserting Eq. (7), the EOM take the form

m%2φ′o s̈+m(ρ2φ′o)
′ ṡ2 + (2mρρ′) ṡϑ̇ + Θρ ϑ̈ =

= −V ′(ϑ)− γΘ ϑ̇ (27)

(
ρ′2 + ρ2φ′2o + z′2

)
s̈ +

1

2

(
ρ′2 + ρ2φ′2o + z′2

)′
ṡ2−

− ρρ′ ϑ̇2 + ρ2φ′o ϑ̈ = 0 (28)

The first EOM delivers the equation for a rotor in the
limit m = 0. We have added a phenomenological damp-
ing term −γΘ ϑ̇ to the EOM (which does not follow from
the conservative Lagrangian formalism). The damping
term is zero in all numerical results of this work un-
less stated explicitly. When V = γ = 0, the equation
expresses angular momentum conservation. The second
equation describes the constrained particle dynamics if
ϑ = const. Notice that the mass m drops out, because
the particle experiences inertial forces only.

B. Transformation to dimension-less variables

1. EOM of the rotor

Substituting t̃ = t/T in Eq. (27) renders the first EOM
dimension-less,

(1 +
m

M
ρ̃2) ϑ̈ +

m

M
%̃2φ′o s̈+

m

M
(ρ̃2φ′o)

′ ṡ2 + 2
m

M
ρ̃ρ̃′ ṡϑ̇ =

= −V ′(ϑ)/∆V − γ̃ ϑ̇ (29)

where now the dots indicate differentiation with respect
to t̃ and we defined ρ̃ := ρ/R, which is a quantity of the
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order of unity, and γ̃ := γT is a dimensionless damp-
ing rate. Notice the appearance of the small parameter
m
M , which, however, is here often multiplied by the large
velocity ṡ.

2. EOM for the particle

The substitution of t̃ leaves the second EOM in the
form

(
ρ̃′2 + ρ̃2φ′2o + z̃′2

)
s̈ +

1

2

(
ρ̃′2 + ρ̃2φ′2o + z̃′2

)′
ṡ2−

− ρ̃ρ̃′ ϑ̇2 + ρ̃2φ′o ϑ̈ = 0, (30)

where we introduced z̃ = z/R and the dot indicates dif-
ferentiation w.r. to t̃. At the entry point, s = 0, the
velocity of the particle equals dz(0)/dt. The dz̃(0)/dt
means the inverse dwell time δτ . We shall assume that
δτ = 10−2T and henceforth dz̃(0)/dt̃ ≈ 102.

APPENDIX: PERIPHERAL NUMERICAL
RESULTS
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FIG. 8. Velocity dependence of average angular velocity of
the path subjected to a mass current Im. For lower velocities
the threshold current increases, marking a departure from the
SA.
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ż(−∞) = 100
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FIG. 9. Threshold mass ratio m/M for an unbound directed
motion as a function of helix length N (δN = 1) and the
impact velocity. The dotted line is the threshold according
to the SA, Eq. (13), which coincided with the numerics if the
time particle spends in the helix is short.
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