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REVIEW OF PIT NUCLEATION, GROWTH AND PITTING CORROSION
FATIGUE MECHANISMS

T. Goswami' and D.W. Hoeppner
Quality and Integrity Design Engineering Center
Department of Mechanical Engineering

University of Utah, Salt Lake City, UT 84112 USA.

ABSTRACT:

This paper presents a review of the state of the art developments in the pitting corrosion
fatigue of aircraft structural materials. Mechanisms that govern the nucleation and growth
of pitting and corrosion fatigue (CF) are briefly addressed. Some of the developments
made in the author's laboratories in proposing the fretting induced pit nucleation and
growth mechanisms, analysis of the hidden corrosion constituents in fuselage joints and
pitting corrosion fatigue crack growth (PCFCG) model are elucidated. An epistemology

of the topic is presented which will be of assistance to the community working in this area.

INTRODUCTION:

Corrosion of engineering artifacts, how corrosion nucleates and at what rate it grows, is a
very important issue in the life estimation and possible life extension of engineering
components. Even though design for fatigue durability and damage tolerance have

improved markedly over the past 30 years or so, the design for environmental fatigue

! Presently at Damage Tolerance Group, Cessna Aircraft Company, Wichita, KS 67215,
Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260-0035 USA.
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(corrosion fatigue) has received limited attention. Thus, consideration of environmental
effects is a difficult question the engineering research and design communities face today.
This paper attempts to unite the knowledge of chemistry of corrosion with engineering
aspects of crack and corrosion fatigue crack growth in aluminum alloys.

Corrosion is a major concern in the aerospace industry today (1). The costs of corrosion
and prevention methods are likely to increase with time. These are surveyed from
different published sources and are shown in the "time scales" of Fig. 1. Though exact
estimate of the costs of corrosion is very difficult to obtain, the estimates provided in Fig.
1 are based on published sources. Recent visits to commercial aircraft maintenance
facilities have indicated that unscheduled maintenance costs of corrosion range from 10 to
50% depending on aircraft, operator, flight activity etc. It is interesting to note that the
understanding of corrosion has increased in the last three decades, yet the costs of
corrosion is increasing from 2 to 3 times every decade. Several means were developed to
retard the corrosion damage by following prevention systems. When corrosion prevention
systems failed in certain systems it resulted, in some cases, in lives being lost. Such
accidents are many, however, a few examples are recorded in the "time scales" of Fig. 2.
Undoubtedly, much more information will emerge on this issue. The next section briefly
presents some background on corrosion.

TYPES OF LOCALIZED CORROSION:

The following types of localized corrosion are observed in the case of aircraft structures,

namely;

1. crevice,

2. pitting,

3. exfoliation,
4. filiform,
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Fig. 2. A few examples of failure in the corrosion prevention systems that claimed lives.

5. etch corrosion,

6. Galvanic corrosion,

7. intergranular corrosion,

8. microbial corrosion,

9. stress corrosion,

10. hydrogen embrittlement,

11. metallic mercury corrosion of aluminum alloys,
12. fretting corrosion, and

13. other types.

Many of the above corrosion mechanisms have been investigated independently, yet not

much is known on how a particular mechanism dominates in the structures of an aircraft.

Since aircraft structures are loaded, how loads interact with the corrosion mechanisms is

beyond the scope of this paper. Also, the nucleation and growth kinetics of the corrosion
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mechanisms summarized above are not yet fully investigated independently and also in
interactive modes in the presence of fatigue or cyclic loads. Therefore, it is prudent to
assume that the corrosion will form nuclei at a localized region of existing mechanical
damage such as slip systems (they act as corrosion tunnels), hard particles, material
discontinuities and where the protective films are ruptured. Corrosion also can form
nuclei by Galvanic® attack. It is speculated that corrosion mechanisms transfer from one
to other mechanisms e.g., a Galvanic attack may nucleate a pit and a pit may become a
crack or convert to some other corrosion type e.g., exfoliation. From the regions of pits,
intergranular type of corrosion may occur and from intergranular corrosion, stress
corrosion cracking may result. Other interactive mechanisms may be hydrogen or other
cell concentrations (chemical and/or biological) that may nucleate crevice corrosion and
filiform respectively. The growth of filliform corrosion is accelerated in the presence of
microbial or fungus species.

PARAMETERS INFLUENCE THE LOCALIZED CORROSION:

There are numerous parameters that influence the localized corrosion nucleation and
growth rates. Some of these parameters were listed by Oldfield and Sutton (2) for crevice
corrosion that were modified in this paper to make them more general for other types of

corrosion. They are:

Alloy composition major constituents, minor additions, and discontinuities their

density, size and types.

Electrochemical metal dissolution, oxygen reduction, hydrogen evolution, other

reactions reduction reactions, and potential drop.

*Luigi Galvani proposed electrochemical action of two electrical conductors, this process is
known as Galvanic reaction and in corrosion "Galvanic" corrosion.
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Bulk solution

composition

ClI- content, Oy content, pH, and pollutants.

Bulk solution

environment

temperature, agitation, and volume.

Composition of

media solution

hydrolysis equilibria, reaction rates, activities, and corrosion

products.

Passive film

characteristics

passive current, film stability, parameters of passivation and
repassivation, time of repassivation or otherwise, and material

parameters.

Mass transport

migration, diffusion, and convection.

phenomenon

Geometry exterior and interior surfaces for corrosion attack, area ratio, and
considerations number and shapes of attack.

Characterization of | surface, hidden, and characterization of parameters 1 through 8 at

corrosion sites

the hidden sites.

Corrosion geometry

depth, density, volume loss, and gap between sites of corrosion.

Corrosion crevice, pitting, exfoliation, filiform, Galvanic, intergranular,

characterization fretting corrosion, etch corrosion, microbial, stress corrosion,
metallic mercury corrosion, and hydrogen embrittlement.

Media metal/metal, metal/non-metal, metal/marine growth, Galvanically

characterization protected, applied potential, and hydrogen characterization.

In order to develop models of localized corrosion nucleation and growth kinetics for

different corrosion types, the above parameters must be known.
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PIT NUCLEATION AND GROWTH MECHANISMS:

A pit is defined in the Webster's new universal unabridged dictionary "as a hollow or
indentation in a surface". Since distribution of pits largely depends upon the density and
number of constituent particles present on the surface, they often number in several
thousands in an area of one mm’. Therefore, localized pitted regions transform to more
deeper material losses or in the form of exfoliation corrosion. In the case of aircraft
structures, pitting is observed as a major contributor to the corrosion damage. Therefore,
how pitting occurs, its nucleation and growth mechanisms need to be understood while
developing corrosion prevention methods.

A review of pitting corrosion has been elucidated in this paper in terms of electrochemical
aspects, pit nucleation and pit growth mechanisms. Later mechanical fatigue concepts
were combined with the corrosion, resulting into pitting corrosion fatigue process.
Electro-chemical Aspects in Corrosion:

Luigi Galvani (3), in 1791, published a discussion of electrochemical actions of two
electrical conductors, known as Galvanic reaction. For almost 100 years, no significant
development occurred with "Galvanic reaction". In 1904, Tafel (4) presented an equation
to describe the variation in the rate of reaction with over potential. A breakaway
oxidation that resulted in localized corrosion attack was proposed by Pilling and Bedworth
(5). Combining these two concepts, Evans (6) presented a linear relationship that
represented the rate of corrosion by corrosion current density. Wagner and Traud (7)
studied the electrode kinetics while Pourbaix (8) presented potential versus pH diagram.
This diagram is well known to describe the onset of passive film formation and it is also
known as isothermal phase diagram. Activities in the study of localized corrosion is

presented (9-16) in the time scales of Fig. 3.
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Pit Nucleation Mechanisms:

The mechanisms of pit nucleation processes are shown in the time scales of Fig. 4. They
are of the following types:

1. Adsorption and Adsorption Induced Mechanisms: Most mechanisms of pit
nucleation consider the adsorption of aggressive anions at energetically preferred sites.
Developments made in the adsorption based mechanisms (17-24) are presented in the time
scales of Fig. 4. They are based on either competitive adsorption or complex ion
formation on the surface. In this framework, continuous Cl- anions and passivating agents
are adsorbed. Above a critical potential, Cl adsorption was favored, which result in a
breakdown of passive film on the surface, allowing pit formation.

2. Ion Migration or Penetration Theories: These mechanisms (25-27) require either
penetration of damaging anions from the oxide/electrolyte interface to the metal/oxide
interface or migration of cations or their respective vacancies as a decisive process.
According to the penetration theory, aggressive anions adsorbed on the oxide film enter
and penetrate the film when the electrostatic field across the film/solution interface reaches
a critical value corresponding to the critical breakdown potential. Thus a discontinuous
oxide film is produced which is much better ion conductor than the original passive layer.
Rapid cation egress and pitting proceeds.

3. Mechanical Film Breakdown Theories: Mechanical breakdown of the passive film
(28-29) is an independent as well as combined phenomenon with the above two
frameworks. Breakdown of the passive film provides the electrolyte direct access to the
base metal. Pitting occurs. Developments made in these mechanisms are described in the
time scales of Fig. 4.

Pit Growth Mechanisms:

Four mechanisms by which a pit grows are described in the time scales of Fig. 5. They are
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as follows:

1. Charge Transfer Based Pit Growth: The early stages of pitting occur due to the high
current density present at the bottom of a pit. However, experimental validation of this
theory has become very complex issue. As a result, constant current potentials within pits,
are a widely accepted concept in the literature (30-32).

2. Diffusion Related Mechanisms: The presence of a salt layer on the surface of passive
materials results in the breakdown of the passive film (33-35). Solubility of salt in
aluminum alloys is quite high where salt precipitates on the metal surface. Mechanical
properties of exposed, aircraft structural materials, are expected to deteriorate by this

mode as active salt powder, white powder shown in Fig. 6, have been documented in the

Fig. 6. White powder (salt) deposition on fuselage.

tear down corrosion investigations of a C/KC 135 aircraft. The white powder was
analyzed using the energy dispersive X-ray analysis. Among various constituents, Ca, Cu,
Cl and traces of Zn were observed. Photomicrograph shown in Fig. 6 is the white powder

on the corroded plate, removed from a C/KC 135 aircraft, whereas Figs. 7 and 8 show the
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Fig. 7. Energy dispersive X-ray analysis of the white powder at a location
of Fig. 6.

Fig. 8. Energy dispersive X-ray analysis of the white powder at a location
of Fig. 6.
analysis of white powder, from a location from Fig. 6. It may be noted that this white
powder is as a result of cladding which with given time results in the formation of white
powder.
3. Ohmic Resistance Controlled Pit Growth: Pitting in titanium and aluminum alloys

occurs because of high Ohmic-limited current densities (36-37). The rate of pit growth
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also depends upon the time of exposure and applied potential. These models are shown'in
the time scales of Fig. S.

4. Fretting Induced Pit Nucleation and Growth Mechanism: Goswami and Hoeppner
(38) proposed a fretting induced pit nucleation and growth mechanism of aircraft
structural materials. Engineering applications such as bolts, rivets, couplings and other
specific joint configurations, for example, firtree and dovetail roots in a gas turbine disk
and blade attachments; relative displacement of the order of a few nanometers to as high
as several millimeters occurs in the joint. Under these conditions, the contacting surfaces
produce a normal pressure on the line of the actual load direction. This action results into
fretting. Fretting process involves the reaction between two contacting surfaces that
result in asperity removal called debris. Often these debris are corroded that nucleate pits.
Once, the pits are nucleated, the repeated fretting produces pit growth.

HYDROGEN EVOLUTION AND DEGRADATION:

The concentration of hydrogen increases at the sites where there are triaxial state of
stresses or at the sites where there are stress or strain concentrations. Hydrogen electrons
enter at three dimensional levels in transition metals and increase the concentration of
electrons on that level, thus causing the lattice cohesion to weaken. This facilitates the
nucleation and growth of corrosion and cracks (in sustained load conditions) even at the
atmospheric hydrogen pressure or in the presence of moisture.

Innumerable studies were made to investigate the effects of hydrogen on the strength and
other mechanical properties, where hydrogen was found to degrade the material
properties. Hydrogen also was found present at the bottom of a pit. Presence of
hydrogen at the bottom of a pit was recorded in terms of secondary ion emission. A trend
is shown schematically in Fig. 9 (a) which shows that as the distance from the pit bottom

increases, the emitted intensity of the ions decreases. Fig. 9 (b) shows effect of hydrogen
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ion
emision

—@ distance from pit bottom

(a) schematic representation of secondary ion emision from pit bottom.

ternating
tress
range

) =0.5 or
less than (a)

cycles to failure

(b) fatigue behavior of off-shore steel, in (a) no hydrogen and (b) hydrogen.

Fig. 9. Schematic behavior showing effect of hydrogen in a off-shore steel.

on steels where alternating stresses, for the same cyclic life, reduced more than one half in
the presence of hydrogen than that of the material without hydrogen.

When the temperature was increased, even at lower ranges (39) from 20 to 90°C, the
solubility of hydrogen increased in typical metals. Quickly, the hydrogen concentration

became critical in the region of triaxial stress states. Higher crack growth rates, even at
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this temperature range, was due to the activation energy for stress corrosion crack
propagation which became equal to activation energy for hydrogen diffusion. Therefore,
these hydrogen mechanisms cause a deleterious effect on the corrosion and/or corrosion
fatigue crack growth rates.

AIRCRAFT CORROSION FATIGUE:

The corrosion fatigue is a process in which gradual accumulation of damage takes place in
a material subjected to repeated stresses in corrosive environments. Thus, corrosion
fatigue is a failure mechanism of engineering components in which the damage as a result
of synergisms between fatigue and environment is accelerated. Therefore, failure of
components in such situations occurs prematurely in the low cycle fatigue regime. The
growth of damage may be in terms of cracks, embrittlements and localized material losses
(e.g., pitting, exfoliation, etc.).

An aircraft structure is likely to deteriorate as the flight cycles are applied. The loads and
environments in which an aircraft operates decides the rate of damage growth. Growth of
corrosion damage depends upon material as well as many other issues related to
manufacturing, design procedures, tooling, and assembly practices employed. If the
corrosion attack occurs on structurally significant items (SSI's), the consequences can be
very difficult to address. Since corrosion either accelerates other forms of damage such as
fatigue, fretting and other processes, this results in lowering the structural integrity of the
aircraft structure. The corrosion problems will appear in an aircraft depending upon the
type of aircraft, operating environment and usage. A typical example of corrosion prone
areas in a transport aircraft is shown in Fig. 10. These are under de-icer boots, floor
support and flooring, passenger, cargo and crew doors, galley areas, areas in the path of
exhaust gases, integral fuel tanks, toilet areas, and battery areas.

Corrosion fatigue studies of aircraft structural materials commenced in the late 1960's.
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Fig. 10.Corrosion susceptible areas in a small transport aircraft.

1. Under deicer boots. 2. Floor supports and flooring,

3. Passenger, cargo and crew doors, 4. Galley areas, 5. Areas in the path of
exhaust gases. 6. Internal fuel tank. 7. Toilet areas. 8. Battery areas.
(Courtesy of Canadian Department of National Defence)

Fracture mechanics modeling methods in corrosion fatigue were first proposed by Brown
(40). Later Wei and Landes (41) proposed a superposition model (linear summation of
crack growth by plasticity driven fatigue and crack growth by chemical reaction). Within
this model, the rate of hydrogen assisted fatigue cracking was predicted by adding two
contributory components; 1) crack growth by mechanical component in an inert
environment, and 2) that of the crack growth by static load, at similar stress intensity,
below:

(da/dN)mechanical = A (AK)?
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(da/dN)environment = 1/f (da/dt) environment (D

Austin and Walker (42) argued the superposition model and suggested that the two
processes are competing with one another and are not superposition, instead, competition
mechanisms. Wide body of the corrosion fatigue data were generated and assessed with
the superposition model, however, there were mixed opinions due to the following (43-
44).
1) It did not account for the corrosion fatigue crack growth at Kmax, below Kisce.

Where the latter term is the threshold limit of mode I stress intensity factor range in

stress corrosion cracking. In some alloys, the opposite trend was observed where the

crack growth at levels below Kigcc was higher than above Kiscce. This discrepancy
was more difficult where Kiscc = AKjc.

2) According to the superposition model, at the Kpax level corresponding to Kigcc, the
diagram should show a shift in the curve. However, such shifts were seen very
seldom, only under the hydrogen gas testing. Such a behavior, where occurred, the
shifting in the curve resulted below Kjscc.

3) As the superposition model provides qualitative evaluation of the effect of loading
frequency, such evaluations were unreal of a component loading waveform. As a
result, effect of different waveforms were not explored.

Therefore, no single model was statistically proven to the degree where it can be used in

design for life assessments of aircraft structures. However, several attempts were made to

develop such concepts. Several defense and civil aircraft operators formulated a

discussion of corrosion problems at this time (45) and the first international conference on

corrosion fatigue held in 1971.

The role of localized corrosion in the acceleration of fatigue crack growth (FCG) was

conceptually presented by Hoeppner (46-48) and corrosion fatigue crack growth studies
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were conducted on a series of aircraft structural materials. A parallel effort in the
corrosion fatigue crack growth rate (CFCGR) determination was made by Hall et al (49).
Several review articles (50) were written during this time as shown in the "Time Scale" of
Fig. 11. This work was a major undertaking by the USAF in the late 1960's and early
1970's to increase our understanding of environmental effects on fatigue crack growth.
Several attempts were made by the (46-48) Advisory Group for Aerospace Research and
Development, Structures and Materials Panel in a NATO effort to investigate corrosion
fatigue. Several round robin test programs were initiated as shown in Fig. 11. In recent
years more and more concerns were expressed by aircraft operators who either
experienced premature failures or intend to extend the design life of their aircraft fleets.
Several such interests are reflected in references (51-62).

When the areas of aircraft corrosion fatigue (CF) and CFCG were developing, practically
no attempts were made to address the effect of localized corrosion such as pitting and its
transformation into CF or fatigue crack growth processes. Hence, there is a need to
further develop localized corrosion mechanisms and concepts such as pit nucleation and
growth. Once these mechanisms are understood, they can be combined with the fatigue
and crack growth concepts. Such data can be synthesized in the further development of
probabilistic models that can be used in the design, maintenance and setting the inspection
intervals for existing fleets. The consideration of corrosion and corrosion fatigue can be
included in the aircraft structural integrity or damage tolerance analysis.

PITTING CORROSION FATIGUE:

The pit nucleation, growth and corrosion fatigue mechanisms are very important in
developing localized corrosion fatigue concepts. Pit growth rate is accelerated by many
factors such as microstructure, discontinuities present, film composition, (coherence and

mechanical properties of the film), previous plastic deformation etc., the quantitative
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estimations of growth rates are very difficult.

Once the pits form, their shapes are an additional consideration. In the literature pits were
assumed as hemispherical. However, microstructural influences may generate pits in
different shapes. In the authors’ laboratories deeper channel shaped pits were documented
in some aluminum alloys that may act as a crack. Currently, the criteria for a pit transition
to a crack is much in debate and no single, analytically valid, criterion has emerged.
Development of a criterion depends upon many factors e.g., the constituent particle
distribution, their size and density, stress range, frequency and waveform used. Hence no
criteria can be generalized and used to model pitting corrosion fatigue crack growth rates.
Various developments made in this area of research has been presented in the time scales
of Fig. 12 and in the references (63-75). The physics of pitting, fatigue, and pitting
corrosion fatigue (PCF) are elaborated in much detail else where (76).

Hoeppner (66), proposed a pitting CFCG model of aluminum alloys. As the pit growth
kinetics are not yet understood properly, when to consider a pit a crack is still a point of
great concern. Hoeppner, used a power law pit growth model, where the exponent
described the linear, parabolic and cubic growth rates respectively. A four parameter
Wiebull equation was used to fit the CG data. The equation employed in ref. (66) has the

following form:

f da k_]

log (— +1)-
l—A—Kzexp.|—{[ &(dN+) e]} |
K, | vV-e |
R J ]

(2)

For a decade no other model was put forward in the pitting CFCG modeling. Figure 12
compiles the models (63-75) that have been developed. Recently Kondo (73-74) used a pit

transition to a crack criterion and crack growth modeling within the linear elastic fracture
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mechanics. However, conventional pit shapes (hemispherical) were assumed due mainly
to the complexities in developing analytical approaches.
CONCLUDING REMARKS AND RECOMMENDATIONS:
This paper has briefly reviewed corrosion, electrochemical aspects, pit nucleation and
growth mechanisms, corrosion and pitting corrosion fatigue of aircraft materials over the
last 200 years. Recent interest in the extensive detection of corrosion and corrosion
induced fatigue cracks has increased the concern of the community related to our ability to
model the pitting corrosion fatigue process to incorporate life prediction into structural
integrity assurance procedures. Models proposed in 1960-70's allow these predictions to
be made under simplistic conditions. However, additional developments are needed to
allow greater confidence in the applicability of the models to assure residual strength of
structure will not be jeopardized. The greatest needs are related to the following:

1. Continued development of pitting corrosion prevention systems with verification of
their validity.

2. Consideration of pit size, shape, density and interaction on structural integrity.

3. Evaluation of need to identify structurally significant items (SSI) related to pitting
corrosion fatigue.

4. Development of understanding of pit growth kinetics, link up potentials of MPS
(multiple pitting sources) and conversion of pits to cracks modelable by fracture
mechanics.

5. Crack growth data in the structurally dependent regime and LEFM regimes to expand

the data base of aged and unaged aircraft materials.
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