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ABSTRACT. Probabilistic methods are applied to the study of fatigue wear of sliding surfaces. A variance of time to 

failure (to occurrence of maximum allowable wear depth) is evaluated as a function of a mean wear rate of normal wear 

and a size of wear particles. A method of estimating probability of failure-free work during a certain time interval 

(reliability) is presented. An effect of the bedding-in phase of wear on the reliability is taken into account. Experimental 

data for Ultra High Molecular Weight Polyethylene (UHMWPE) cups of artificial hip implants is used to make numerical 

calculations. 

 

Introduction. Every year more than a million patients worldwide have a joint prosthesis implanted, 

the majority of which are hips and knees. The wear of artificial joints poses a particular challenge to 

engineers, medical scientists and clinicians, and this subject requires further development. This paper 

is devoted to estimation of probabilistic reliability of cups of artificial hip implants, made of Ultra 

High Molecular Weight Polyethylene (UHMWPE) with the use of experimental data available to the 

authors. 

During the sliding contact of surfaces, in near-surface material layers, prone to the friction damage, 

the stresses are distributed non-uniformly, because of discreteness of the surface contact. The actual 

contact area Aa is of the order 10 ÷103. Therefore, the average actual pressure pa at contact spots 

(defined as the ratio of the total contact force F to the actual contact area, pa = F/Aa) is 10 ÷ 103 times 

higher than the nominal pressure pn = F/An. Experimental and theoretical research shows that the 

average actual contact pressure pa does not change much upon the change of the total contact force 

F, but depends mainly on roughness parameters and mechanical properties of interacting surfaces [1]. 

This fact indicates the presence of plastic deformation in the near-surface layers of the interacting 

bodies. The plastic deformation causes displacement of the contact spots during the sliding contact, 

leading to the cyclic change of stress at points of the contacting surfaces. The cyclic variation of stress 

components and their high amplitude in the near surface layers (the average actual pressure pa is 

usually larger than the fatigue limit) causes cyclic fatigue in the near-surface layers. The fatigue 

damage and the resulting separation of particles of contacting surfaces occurs because of interaction 

of their ridges, the size and shape of which have random character. Besides, material properties in the 

near-surface layers can vary randomly too. Therefore the stress components in the near-surface layers 

and the wear depth are random functions of time. This leads to the need of using probabilistic methods 

to the study of wear and to the need of evaluating reliability of contacting surfaces, i.e. probability of 

failure-free work during a certain time interval (with failure understood as occurrence of the 

maximum allowable wear depth). It is established experimentally that the size of the wear particles 

in the fatigue wear is comparable with diameters of the contact spots, which vary from 10-6 m to 

10- 5 m [7]. More accurate experimental data on the average size of the wear particles is required for 

each particular contact pair. 

Some obvious formulas, needed for the further exposition, are 
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𝑊(𝑡) = ∫ Ẇ(𝜏)
𝑡

0
𝑑𝜏 (1) 

 

𝑚ẇ  ≡  𝐸[ẇ(𝑡)] ≡  ∫ Ẇ(𝜏)(Ẇ
∾

−∾
, 𝑡)𝑑Ẇ (2) 

 

𝜎ẇ
2(𝑡) ≡  𝐷[Ẇ(𝑡)] =  𝐸[Ẇ2] − (𝐸[Ẇ])2 =  ∫ Ẇ2𝑓(Ẇ

∾

−∾
, 𝑡)𝑑Ẇ − (∫ Ẇ𝑓(Ẇ

∾

−∾
, 𝑡)𝑑Ẇ))

2
   (3) 

 

𝑅ẇ(𝜏)  ≡  𝐸[Ẇ(𝑡)Ẇ(𝑡 + 𝜏) ] (4) 

 

𝑟ẇ(𝜏) =
1

𝑅ẇ(0)
𝐸[{Ẇ(𝑡) − 𝑚ẇ}{Ẇ(𝑡 + 𝜏) − 𝑚ẇ} ] (5) 

 

After the bedding -in phase of the wear, the amount of wear can be small as compared to the maximum 

allowable wear depth Wm, or the bedding-in phase of the wear can be performed by a manufacturer 

of the implant, before its use. In this case, it can be considered that the non-linear bedding-in phase 

of the wear process is not present on the graph of the wear depth versus time (Figure 2), and then the 

reliability calculations can be done by the method, presented below. 

 

 

Fig. 1. Typical phases of wear depth growth with time. 
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Fig. 2. Wear depth growth with time if the bedding ‐in phase is absent. 

 

For the steady-state (normal) phase of wear, the wear rate Ẇ(𝑡) can be treated as a stationary, ergodic 

random function of time, therefore the mean values (mathematical expectations) can be substituted 

with time-averaged quantities, leading to the formulas 

 

𝑚ẇ  ≡  𝐸[ẇ(𝑡)] =  
1

𝑇𝑛
∫ Ẇ(𝑡)

𝑇𝑛

0
𝑑𝑡 = 𝑐𝑜𝑛𝑠𝑡 = 𝑎 (6) 

 

𝜎ẇ
2(𝑡) ≡  𝐷[Ẇ(𝑡)] =  

1

𝑇𝑛
∫ Ẇ2(𝑡)

𝑇𝑛

0
𝑑𝑡 − (

1

𝑇𝑛
∫ Ẇ(𝑡)

𝑇𝑛

0
𝑑𝑡)

2

 = 𝑐𝑜𝑛𝑠𝑡  (7) 

 

𝑅ẇ(𝜏) =  
1

𝑇𝑛
∫ Ẇ(𝑡)Ẇ(𝑡 + 𝜏)

𝑇𝑛

0
𝑑𝑡 (8) 

 

𝑟ẇ(𝜏) =
1

𝑅ẇ(0)

1

𝑇𝑛
∫ [Ẇ(𝑡) − 𝑎][Ẇ(𝑡 + 𝜏) − 𝑎]

𝑇𝑛

0
𝑑𝑡 (9) 

 

For discrete experimental data, the autocorrelation function can be approximated by the 

autocorrelation sequence [6]. 

 

𝑅(𝑙) =  ∑ 𝑥(𝑛)𝑁−|𝑘|−1
𝑛=𝑖 𝑥(𝑛 − 𝑙)  (10a) 

 

Where 

 

𝑖 = 𝑙, 𝑘 = 0, 𝑓𝑜𝑟 𝑙 ≥ 0 

𝑖 = 0, 𝑘 = 𝑙, 𝑓𝑜𝑟 𝑙 < 0 
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and the mean wear rate can be calculated as 

 

 𝑎 =
1

N
 ∑ Ẇ𝑖

𝑁
𝑖=1   (10b) 

 

If for any choice of time instants t0 < t1 < ... < tn, the random variables W(t0), W(t 1)–W (t 0),…, W (t n)–

W(t n-1) are mutually independent, then the process W (t) is called the process with independent 

increments [8]. A process W(t) with independent increments is said to have stationary independent 

increments, if W(0) = 0, and the distribution of W(t + h)W(t) is independent of t for all positive h. For 

this process the mean value m w and the variance 𝜎𝑤
2  are proportional to t [8]. If, in addition to being 

a stationary random process, the wear rate Ẇ(t) is a highly random process, then the wear depth W(t) 

is a random process with stationary independent increments. In this case 

 

𝑚𝑤  ≡  𝐸[𝑊(𝑡)] = 𝑎𝑡  (11) 

 

𝜎ẇ
2(𝑡) ≡  𝐷[𝑊(𝑡)] = 𝑏𝑡  (12)  

 

where b – is a constant.  

To verify that Ẇ(t) is a highly random function of time, one needs to verify that the normalized 

autocorrelation function 𝑟Ẇ (τ) has a sharp spike at τ = 0 that drops off rapidly to zero as τ moves 

away from zero. 

The graph of the wear rate versus time [4] is presented in Figure 4. The graph of the normalized 

autocorrelation for the total wear rate (including bedding-in and steady-state phases of wear) is 

presented in Figure 5. It can be seen from this graph that at small values of time since the beginning 

of the wear process, the values of the autocorrelation are positive, and at large values of time ñ 

negative. The negativeness of the autocorrelation means that the initial increase of the wear rate leads 

to decrease of the wear rate upon the wear progression. Such behaviour of the wear rate is caused by 

presence of the bedding-in phase. By removing the first 28 values of the wear rate (corresponding to 

the first 3.5 years) from the data, used to plot the graph in Figure 4, one can remove the bedding-in 

phase and plot the normalized autocorrelation of the steady-state wear rate (Figure 6). One can see 

from the Figure 6 that for the normal wear, the autocorrelation of the wear rate indeed behaves in a 

manner that is characteristic for a highly random process: it has a sharp spike initially, and then drops 

o§ rapidly and oscillates near the zero value subsequently. From this follows that for the normal wear, 

the random process W(t) (wear depth as a function of time) is a process with stationary independent 

increments, for which the formulas (11) and (12) are true. Obviously, the formulas (11) and (12) 

cannot be applied for the wear process with the bedding-in phase present, because in this case the 

random function W(t) is not stationary. For the normal phase of wear, which has stationary 

independent increments of the wear depth W(t), the time interval to a wear depth W, θ(W), is also a 

random function of W with stationary independent increments, therefore its mean value mθ is 

proportional to W: 

 

 𝑚𝜃 =
𝑊

𝑎
  (13) 
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Fig. 4. Wear rate versus implantation time. 

 

 

Fig. 5. Autocorrelation sequence for the total wear. 
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Fig. 6. Autocorrelation sequence for the normal wear. 

 

Let us consider a time interval ∆t (between instants t and t+∆t), during which one of the following 

events occurs: either a particle of size h is separated from the surface with probability γ, or the particle 

is not separated form the surface (with probability 1– γ, obviously) is assumed that γ is proportional 

to ∆t: 

 

𝛾 = 𝜆∆𝑡  (14) 

 

The wear increment for the time interval ∆t is 

 

∆𝑊 = 𝑊(𝑡 + ∆𝑡 ) − 𝑊(𝑡)  (15) 

 

and its mean value is 

 

𝐸(∆𝑊) = 𝛾ℎ + (1 − 𝛾)·0 = 𝛾ℎ = 𝜆 ∆𝑡 ℎ  (16) 

 

From the last equation, we have 

 

𝐸 [
ΔW

Δ𝑡
] = 𝜆ℎ  (17) 

 

or, if ∆t → 0 , 
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𝐸 [
𝑑𝑊

𝑑𝑡
] = 𝜆ℎ  (18) 

 

The left side of eq. (18) is the mean rate of wear. According to this equation, the mean rate of wear 

is constant, and this is a consequence of the assumption in eq. (14). Therefore, the assumption in eq. 

(14) is valid for the normal wear. The mean value of di§erence of random variables is equal to the 

difference of their mean values, therefore 

 

𝐸 [
𝑑𝑊

𝑑𝑡
] =

𝑑𝐸[𝑊(𝑡)] 

𝑑𝑡
  (19) 

 

If the wear process is modelled as separation of discrete particles, then the function θ(W) can be 

treated as a random function of the wear depth with the gamma-distribution [2]: 

 

𝜙(𝜃, 𝑊) = {

1

Г(𝑛)
𝜆 𝑛𝜃𝑛−1 exp(−𝜆𝜃)  𝑓𝑜𝑟 𝜃 ≥ 0

0 𝑓𝑜𝑟 𝜃 < 0
} (20) 

 

where n – is a number of separated particles necessary for the wear depth to become equal to W. 

Obviously, 

 

𝑛 =
𝑊

ℎ
 (21) 

 

In eq. (20), 

 

Г(𝑛) = ∫ 𝑥𝑛−1𝑒−𝑥 𝑑𝑥
∞

0
 (22) 

 

The mean mθ and the variance 𝜎𝜃
2 of the function θ(W), having the gamma-distribution, is [5] 

 

𝑚𝜃 ≡ 𝐸[𝜃(𝑊)] = ∫ 𝜃
∞

0
 𝜙(𝜃, 𝑊)𝑑𝜃 = ∫ 𝜃

∞

0

1

Γ(𝑛)
𝜆𝑛𝜃𝑛−1 exp(−𝜆𝜃) 𝑑𝜃 =

𝑛

𝜆
 (23) 

 

𝜎𝜃
2 ≡ 𝐷[𝜃(𝑊)] = ∫ 𝜃2∞

0
 𝜙(𝜃, 𝑊)𝑑𝜃 − 𝑚𝜃

2 = ∫ 𝜃2∞

0
 

1

Γ(𝑛)
𝜆𝑛𝜃𝑛−1 exp(−𝜆𝜃) 𝑑𝜃 − (

𝑛

𝜆
)

2

=
𝑛

𝜆2 (24) 

 

If the size h of the particles, separated from the surface, is very small, then the number n of the 

separated particles for a given wear depth W is very large. With a large number n in the gamma-

distribution (20), the distribution becomes symmetrical and tends to the form [2] 

 

𝜙(𝜃, 𝑊) =
1

√2𝜋 √𝑛/𝜆2
𝑒𝑥𝑝 [−

(𝜃−
𝑛

𝜆
)2

2𝑛/𝜆2
] (25) 
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i.e. the distribution becomes normal with the mean value 

 

𝑚𝜃 ≡ 𝐸[𝜃(𝑊)] =
𝑛

𝜆
 (26) 

 

and the variance 

 

𝜎𝜃
2 ≡ 𝐷[𝜃(𝑊)] =

𝑛

𝜆2 =
𝑚𝜃

𝜆
 (27) 

 

where, according to eq. (18) 

 

𝜆 =
𝐸[ẇ(𝑡)]

ℎ
=

𝑚ẇ

ℎ
=

𝑎

ℎ
 (28) 

 

So, 

 

𝜎𝜃
2 =

𝑚𝜃

𝜆
=

𝑚𝜃

𝑎/ℎ
 (29) 

 

where, according to eq. (13), 

 

𝑚𝜃 =
𝑊

𝑎
  

 

Substituting eq. (13) into eq. (29), we find 

 

𝜎𝜃
2 =

ℎ

𝑎2  (30) 

 

where h is a mean size of a particle, separated from the surface, and a is the mean rate of the steady-

state (normal) wear. Introducing notations 

 

𝜇 =
1

𝑎
 , 𝜂 =

ℎ

𝑎2  (31) 

 

we will write eqs. (13) and (30) as 

 

𝑚𝜃 = 𝜇𝑊 , 𝜎𝜃
2 = 𝜂𝑊 (32) 

 

According to eq. (25), for the normal phase of wear with stationary independent increments of W(t), 

the probability density of θ(W) can be taken as normal. 
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𝜙(𝜃, 𝑊) =
1

𝜎2√2𝜋 
𝑒𝑥𝑝 (−

(𝜃−𝑚𝜏)2

2𝜎𝜃
2  ) =

1

√2𝜋 √𝜂𝑊
𝑒𝑥𝑝 (−

(𝜃−𝜇𝑊)2

2𝜂𝑊
) (33) 

 

Therefore, the probability that the time to some specified wear depth W is less than some specified 

time interval T is 

 

𝑃{𝜃(𝑊) < 𝑇} =
1

√2𝜋 √𝜂𝑊
= ∫ 𝑒𝑥𝑝 (−

(𝜃−𝜇𝑊)2

2𝜂𝑊
) 𝑑𝜃

𝑇

−∞
 (34) 

 

Then, the probability that the time to a maximum allowable wear depth Wm is less than some specifed 

time T (probability of failure during the time interval [0; T]) is 

 

𝑃{𝜃(𝑊𝑚) < 𝑇} =
1

√2𝜋 √𝜂𝑊𝑚
= ∫ 𝑒𝑥𝑝 (−

(𝜃−𝜇𝑊𝑚)2

2𝜂𝑊𝑚
) 𝑑𝜃

𝑇

−∞
 (35) 

 

Performing the change of the variable in the last integral 

 

𝑢 =
𝜃−𝜇𝑊𝑚

2𝜂𝑊𝑚
 (36) 

 

we obtain 

 

𝑃{𝜃(𝑊𝑚) < 𝑇} =
1

√2𝜋 
= ∫ 𝑒𝑥𝑝 (−

𝑢2

2
) 𝑑𝑢 = Ф (

𝑇−𝜇𝑊𝑚

√𝜂𝑊𝑚
)

𝑇−𝜇𝑊𝑚

√𝜂𝑊𝑚
−∞

 (38) 

 

Where 

 

Ф(𝑥) =
1

√2𝜋 
∫ 𝑒𝑥𝑝 (−

𝑢2

2
) 𝑑𝑢

𝑥

−∞
 (39) 

 

Then, the probability that the time to a maximum allowable wear depth Wm is larger than some 

specified time T (probability of failure-free work during the time interval [0; T]) is 

 

𝑃{𝜃(𝑊𝑚) > 𝑇} = 1 − 𝑃{𝜃(𝑊𝑚) < 𝑇} = 1 − Ф (
𝑇−𝜇𝑊𝑚

√𝜂𝑊𝑚
) (40) 

 

Now let us consider a situation in which the effect of the bedding-in phase on probability of failure 

is not negligible. In Figure 7, the end of the bedding-in phase coincides with the time instant t = 0, 

for convenience. The wear depth at the end of the bedding-in phase will be denoted as 
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𝑊0 ≡ 𝑊(0) (41) 

 

and it will be treated as a random quantity. Then 

 

𝑊∗(𝑡) = 𝑊(𝑡) − 𝑊0 (42) 

 

is the wear depth during the normal wear. The maximum allowable wear depth, measured from the 

beginning of the wear process (from t = t0 < 0) is denoted as Wm. The maximum allowable wear depth, 

measured from the beginning of the normal wear process (from t = 0) is denoted as W*m. Then 

 

𝑊𝑚
∗ = 𝑊𝑚 − 𝑊0 (43) 

 

Fig. 3. Illustration to reliability calculation with account of the bedding ‐in phase. W0 and * Wm are random 

quantities. 

 

The quantity Wm is not random, and the quantity W0 is random, so the quantity W*m is random. The 

time interval, measured from t = t0, to a predetermined wear depth W (measured from t = t0), will be 

denoted as θ(W). The function θ(W) is random. The time interval, measured from t = 0, to a wear 

depth W* (measured from t = 0), will be denoted as θ*(W*). The function θ*(W*) is random. 

Obviously  

 

𝜃(𝑊) = |𝑡0| + 𝜃∗(𝑊∗) (44) 
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Therefore 

 

𝜃(𝑊𝑚) = |𝑡0| + 𝜃∗(𝑊𝑚
∗ ) (45) 

 

The length of the bedding-in time interval is usually much less than the length of the time interval of 

normal wear: 

 

|𝑡0| ≪  𝜃(𝑊𝑚) (46) 

 

So, 

 

𝜃(𝑊𝑚) ≈  𝜃∗(𝑊𝑚
∗ ) (47) 

 

Then, the probability that the time to a maximum allowable wear depth Wm is less than some specified 

large time T is 

 

𝑃{𝜃(𝑊𝑚) < 𝑇} ≈ 𝑃{𝜃∗(𝑊𝑚
∗ )  < 𝑇} (48) 

 

So, with account of the bedding-in phase, i.e. considering that the maximum allowable wear depth 

during the normal wear, W*m, is a random quantity, the formula (38) can be substituted with the 

formula [8]  

 

𝑃{𝜃(𝑊𝑚) < 𝑇} ≈ 𝑃{𝜃∗(𝑊𝑚
∗ )  < 𝑇} = Ф (

𝑇−𝜇𝐸[𝑊𝑚
∗ ]

√𝜇𝐷[𝑊𝑚
∗ ]+𝜂𝐸[𝑊𝑚

∗ ]
) = Ф (

𝑇−𝜇(𝑊𝑚−𝐸[𝑊0])

√𝜇𝐷[𝑊0]+𝜂(𝑊𝑚−𝐸[𝑊0])
) (49) 

 

Where 

 

Ф(𝑥) =
1

√2𝜋 
∫ 𝑒𝑥𝑝 (−

𝑢2

2
) 𝑑𝑢

𝑥

−∞

 

 

If the bedding-in phase of the wear is absent, then W0 = 0, and the formula (49) reduces to the formula 

(38). The probability that the time to the maximum allowable wear depth Wm is larger than some 

specified time T (probability of failure-free work during the time interval [0; T]) is 

 

𝑃{𝜃(𝑊𝑚) > 𝑇} = 1 − 𝑃{𝜃(𝑊𝑚) < 𝑇} = 1 − Ф (
𝑇−𝜇(𝑊𝑚−𝐸[𝑊0])

√𝜇𝐷[𝑊0]+𝜂(𝑊𝑚−𝐸[𝑊0])
) (50) 

 

The mean value and variance of the wear depth at the beginning of the normal wear phase, E [W0] 

and D [W0], should be known from experimental data. The maximum allowable wear depth Wm is the 

wear depth at transition from the normal to catastrophic phase of wear, and it should be known from 
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experimental data also. So, the formula (50) can be used for evaluating probability of failure-free 

work during a time interval [0; T] . 

For the data on wear rate of UHMWPE cups of artifficial hip joints, presented in the reference Kurtz, 

2004, the mean wear rate during the normal wear is 𝑎 =  0.159
𝑚𝑚

𝑦𝑒𝑎𝑟
; the mean value of the wear 

depth at the beginning of the normal wear is E [W0] = 0,35 mm ; the variance of the wear depth at the 

beginning of the normal wear is D [W0] = 10-4 mm2 ; the maximum allowable wear depth is 

Wm=1,4 mm. Taking an average size of particles, separated from the surface, as h = 10-3 mm, we find 

the following dependence of the probability of failure-free work of the hip joint during a time period 

[0; T] on the value of T (Table 1). 

 

Table 1. Value of T. 
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